1920 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1920 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
 | |
|  *   {mikejc|engebret}@us.ibm.com
 | |
|  *
 | |
|  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
 | |
|  *
 | |
|  * SMP scalability work:
 | |
|  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
 | |
|  * 
 | |
|  *    Module name: htab.c
 | |
|  *
 | |
|  *    Description:
 | |
|  *      PowerPC Hashed Page Table functions
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #undef DEBUG
 | |
| #undef DEBUG_LOW
 | |
| 
 | |
| #define pr_fmt(fmt) "hash-mmu: " fmt
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/context_tracking.h>
 | |
| #include <linux/libfdt.h>
 | |
| #include <linux/pkeys.h>
 | |
| #include <linux/cpu.h>
 | |
| 
 | |
| #include <asm/debugfs.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/types.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/eeh.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/copro.h>
 | |
| #include <asm/udbg.h>
 | |
| #include <asm/code-patching.h>
 | |
| #include <asm/fadump.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/tm.h>
 | |
| #include <asm/trace.h>
 | |
| #include <asm/ps3.h>
 | |
| #include <asm/pte-walk.h>
 | |
| #include <asm/asm-prototypes.h>
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #define DBG(fmt...) udbg_printf(fmt)
 | |
| #else
 | |
| #define DBG(fmt...)
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_LOW
 | |
| #define DBG_LOW(fmt...) udbg_printf(fmt)
 | |
| #else
 | |
| #define DBG_LOW(fmt...)
 | |
| #endif
 | |
| 
 | |
| #define KB (1024)
 | |
| #define MB (1024*KB)
 | |
| #define GB (1024L*MB)
 | |
| 
 | |
| /*
 | |
|  * Note:  pte   --> Linux PTE
 | |
|  *        HPTE  --> PowerPC Hashed Page Table Entry
 | |
|  *
 | |
|  * Execution context:
 | |
|  *   htab_initialize is called with the MMU off (of course), but
 | |
|  *   the kernel has been copied down to zero so it can directly
 | |
|  *   reference global data.  At this point it is very difficult
 | |
|  *   to print debug info.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static unsigned long _SDR1;
 | |
| struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
 | |
| EXPORT_SYMBOL_GPL(mmu_psize_defs);
 | |
| 
 | |
| u8 hpte_page_sizes[1 << LP_BITS];
 | |
| EXPORT_SYMBOL_GPL(hpte_page_sizes);
 | |
| 
 | |
| struct hash_pte *htab_address;
 | |
| unsigned long htab_size_bytes;
 | |
| unsigned long htab_hash_mask;
 | |
| EXPORT_SYMBOL_GPL(htab_hash_mask);
 | |
| int mmu_linear_psize = MMU_PAGE_4K;
 | |
| EXPORT_SYMBOL_GPL(mmu_linear_psize);
 | |
| int mmu_virtual_psize = MMU_PAGE_4K;
 | |
| int mmu_vmalloc_psize = MMU_PAGE_4K;
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| int mmu_vmemmap_psize = MMU_PAGE_4K;
 | |
| #endif
 | |
| int mmu_io_psize = MMU_PAGE_4K;
 | |
| int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 | |
| EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
 | |
| int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 | |
| u16 mmu_slb_size = 64;
 | |
| EXPORT_SYMBOL_GPL(mmu_slb_size);
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| int mmu_ci_restrictions;
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| static u8 *linear_map_hash_slots;
 | |
| static unsigned long linear_map_hash_count;
 | |
| static DEFINE_SPINLOCK(linear_map_hash_lock);
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| struct mmu_hash_ops mmu_hash_ops;
 | |
| EXPORT_SYMBOL(mmu_hash_ops);
 | |
| 
 | |
| /* There are definitions of page sizes arrays to be used when none
 | |
|  * is provided by the firmware.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Fallback (4k pages only)
 | |
|  */
 | |
| static struct mmu_psize_def mmu_psize_defaults[] = {
 | |
| 	[MMU_PAGE_4K] = {
 | |
| 		.shift	= 12,
 | |
| 		.sllp	= 0,
 | |
| 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 | |
| 		.avpnm	= 0,
 | |
| 		.tlbiel = 0,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /* POWER4, GPUL, POWER5
 | |
|  *
 | |
|  * Support for 16Mb large pages
 | |
|  */
 | |
| static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 | |
| 	[MMU_PAGE_4K] = {
 | |
| 		.shift	= 12,
 | |
| 		.sllp	= 0,
 | |
| 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 | |
| 		.avpnm	= 0,
 | |
| 		.tlbiel = 1,
 | |
| 	},
 | |
| 	[MMU_PAGE_16M] = {
 | |
| 		.shift	= 24,
 | |
| 		.sllp	= SLB_VSID_L,
 | |
| 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
 | |
| 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
 | |
| 		.avpnm	= 0x1UL,
 | |
| 		.tlbiel = 0,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * 'R' and 'C' update notes:
 | |
|  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
 | |
|  *     create writeable HPTEs without C set, because the hcall H_PROTECT
 | |
|  *     that we use in that case will not update C
 | |
|  *  - The above is however not a problem, because we also don't do that
 | |
|  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
 | |
|  *     do the right thing and thus we don't have the race I described earlier
 | |
|  *
 | |
|  *    - Under bare metal,  we do have the race, so we need R and C set
 | |
|  *    - We make sure R is always set and never lost
 | |
|  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
 | |
|  */
 | |
| unsigned long htab_convert_pte_flags(unsigned long pteflags)
 | |
| {
 | |
| 	unsigned long rflags = 0;
 | |
| 
 | |
| 	/* _PAGE_EXEC -> NOEXEC */
 | |
| 	if ((pteflags & _PAGE_EXEC) == 0)
 | |
| 		rflags |= HPTE_R_N;
 | |
| 	/*
 | |
| 	 * PPP bits:
 | |
| 	 * Linux uses slb key 0 for kernel and 1 for user.
 | |
| 	 * kernel RW areas are mapped with PPP=0b000
 | |
| 	 * User area is mapped with PPP=0b010 for read/write
 | |
| 	 * or PPP=0b011 for read-only (including writeable but clean pages).
 | |
| 	 */
 | |
| 	if (pteflags & _PAGE_PRIVILEGED) {
 | |
| 		/*
 | |
| 		 * Kernel read only mapped with ppp bits 0b110
 | |
| 		 */
 | |
| 		if (!(pteflags & _PAGE_WRITE)) {
 | |
| 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
 | |
| 				rflags |= (HPTE_R_PP0 | 0x2);
 | |
| 			else
 | |
| 				rflags |= 0x3;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (pteflags & _PAGE_RWX)
 | |
| 			rflags |= 0x2;
 | |
| 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
 | |
| 			rflags |= 0x1;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We can't allow hardware to update hpte bits. Hence always
 | |
| 	 * set 'R' bit and set 'C' if it is a write fault
 | |
| 	 */
 | |
| 	rflags |=  HPTE_R_R;
 | |
| 
 | |
| 	if (pteflags & _PAGE_DIRTY)
 | |
| 		rflags |= HPTE_R_C;
 | |
| 	/*
 | |
| 	 * Add in WIG bits
 | |
| 	 */
 | |
| 
 | |
| 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
 | |
| 		rflags |= HPTE_R_I;
 | |
| 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
 | |
| 		rflags |= (HPTE_R_I | HPTE_R_G);
 | |
| 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
 | |
| 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
 | |
| 	else
 | |
| 		/*
 | |
| 		 * Add memory coherence if cache inhibited is not set
 | |
| 		 */
 | |
| 		rflags |= HPTE_R_M;
 | |
| 
 | |
| 	rflags |= pte_to_hpte_pkey_bits(pteflags);
 | |
| 	return rflags;
 | |
| }
 | |
| 
 | |
| int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 | |
| 		      unsigned long pstart, unsigned long prot,
 | |
| 		      int psize, int ssize)
 | |
| {
 | |
| 	unsigned long vaddr, paddr;
 | |
| 	unsigned int step, shift;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	shift = mmu_psize_defs[psize].shift;
 | |
| 	step = 1 << shift;
 | |
| 
 | |
| 	prot = htab_convert_pte_flags(prot);
 | |
| 
 | |
| 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 | |
| 	    vstart, vend, pstart, prot, psize, ssize);
 | |
| 
 | |
| 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
 | |
| 	     vaddr += step, paddr += step) {
 | |
| 		unsigned long hash, hpteg;
 | |
| 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 | |
| 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
 | |
| 		unsigned long tprot = prot;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we hit a bad address return error.
 | |
| 		 */
 | |
| 		if (!vsid)
 | |
| 			return -1;
 | |
| 		/* Make kernel text executable */
 | |
| 		if (overlaps_kernel_text(vaddr, vaddr + step))
 | |
| 			tprot &= ~HPTE_R_N;
 | |
| 
 | |
| 		/* Make kvm guest trampolines executable */
 | |
| 		if (overlaps_kvm_tmp(vaddr, vaddr + step))
 | |
| 			tprot &= ~HPTE_R_N;
 | |
| 
 | |
| 		/*
 | |
| 		 * If relocatable, check if it overlaps interrupt vectors that
 | |
| 		 * are copied down to real 0. For relocatable kernel
 | |
| 		 * (e.g. kdump case) we copy interrupt vectors down to real
 | |
| 		 * address 0. Mark that region as executable. This is
 | |
| 		 * because on p8 system with relocation on exception feature
 | |
| 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
 | |
| 		 * in order to execute the interrupt handlers in virtual
 | |
| 		 * mode the vector region need to be marked as executable.
 | |
| 		 */
 | |
| 		if ((PHYSICAL_START > MEMORY_START) &&
 | |
| 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
 | |
| 				tprot &= ~HPTE_R_N;
 | |
| 
 | |
| 		hash = hpt_hash(vpn, shift, ssize);
 | |
| 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 | |
| 
 | |
| 		BUG_ON(!mmu_hash_ops.hpte_insert);
 | |
| 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
 | |
| 					       HPTE_V_BOLTED, psize, psize,
 | |
| 					       ssize);
 | |
| 
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 		if (debug_pagealloc_enabled() &&
 | |
| 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
 | |
| 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 	}
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 | |
| 		      int psize, int ssize)
 | |
| {
 | |
| 	unsigned long vaddr;
 | |
| 	unsigned int step, shift;
 | |
| 	int rc;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	shift = mmu_psize_defs[psize].shift;
 | |
| 	step = 1 << shift;
 | |
| 
 | |
| 	if (!mmu_hash_ops.hpte_removebolted)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	for (vaddr = vstart; vaddr < vend; vaddr += step) {
 | |
| 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
 | |
| 		if (rc == -ENOENT) {
 | |
| 			ret = -ENOENT;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (rc < 0)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool disable_1tb_segments = false;
 | |
| 
 | |
| static int __init parse_disable_1tb_segments(char *p)
 | |
| {
 | |
| 	disable_1tb_segments = true;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("disable_1tb_segments", parse_disable_1tb_segments);
 | |
| 
 | |
| static int __init htab_dt_scan_seg_sizes(unsigned long node,
 | |
| 					 const char *uname, int depth,
 | |
| 					 void *data)
 | |
| {
 | |
| 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	const __be32 *prop;
 | |
| 	int size = 0;
 | |
| 
 | |
| 	/* We are scanning "cpu" nodes only */
 | |
| 	if (type == NULL || strcmp(type, "cpu") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
 | |
| 	if (prop == NULL)
 | |
| 		return 0;
 | |
| 	for (; size >= 4; size -= 4, ++prop) {
 | |
| 		if (be32_to_cpu(prop[0]) == 40) {
 | |
| 			DBG("1T segment support detected\n");
 | |
| 
 | |
| 			if (disable_1tb_segments) {
 | |
| 				DBG("1T segments disabled by command line\n");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init get_idx_from_shift(unsigned int shift)
 | |
| {
 | |
| 	int idx = -1;
 | |
| 
 | |
| 	switch (shift) {
 | |
| 	case 0xc:
 | |
| 		idx = MMU_PAGE_4K;
 | |
| 		break;
 | |
| 	case 0x10:
 | |
| 		idx = MMU_PAGE_64K;
 | |
| 		break;
 | |
| 	case 0x14:
 | |
| 		idx = MMU_PAGE_1M;
 | |
| 		break;
 | |
| 	case 0x18:
 | |
| 		idx = MMU_PAGE_16M;
 | |
| 		break;
 | |
| 	case 0x22:
 | |
| 		idx = MMU_PAGE_16G;
 | |
| 		break;
 | |
| 	}
 | |
| 	return idx;
 | |
| }
 | |
| 
 | |
| static int __init htab_dt_scan_page_sizes(unsigned long node,
 | |
| 					  const char *uname, int depth,
 | |
| 					  void *data)
 | |
| {
 | |
| 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	const __be32 *prop;
 | |
| 	int size = 0;
 | |
| 
 | |
| 	/* We are scanning "cpu" nodes only */
 | |
| 	if (type == NULL || strcmp(type, "cpu") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
 | |
| 	if (!prop)
 | |
| 		return 0;
 | |
| 
 | |
| 	pr_info("Page sizes from device-tree:\n");
 | |
| 	size /= 4;
 | |
| 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 | |
| 	while(size > 0) {
 | |
| 		unsigned int base_shift = be32_to_cpu(prop[0]);
 | |
| 		unsigned int slbenc = be32_to_cpu(prop[1]);
 | |
| 		unsigned int lpnum = be32_to_cpu(prop[2]);
 | |
| 		struct mmu_psize_def *def;
 | |
| 		int idx, base_idx;
 | |
| 
 | |
| 		size -= 3; prop += 3;
 | |
| 		base_idx = get_idx_from_shift(base_shift);
 | |
| 		if (base_idx < 0) {
 | |
| 			/* skip the pte encoding also */
 | |
| 			prop += lpnum * 2; size -= lpnum * 2;
 | |
| 			continue;
 | |
| 		}
 | |
| 		def = &mmu_psize_defs[base_idx];
 | |
| 		if (base_idx == MMU_PAGE_16M)
 | |
| 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 | |
| 
 | |
| 		def->shift = base_shift;
 | |
| 		if (base_shift <= 23)
 | |
| 			def->avpnm = 0;
 | |
| 		else
 | |
| 			def->avpnm = (1 << (base_shift - 23)) - 1;
 | |
| 		def->sllp = slbenc;
 | |
| 		/*
 | |
| 		 * We don't know for sure what's up with tlbiel, so
 | |
| 		 * for now we only set it for 4K and 64K pages
 | |
| 		 */
 | |
| 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
 | |
| 			def->tlbiel = 1;
 | |
| 		else
 | |
| 			def->tlbiel = 0;
 | |
| 
 | |
| 		while (size > 0 && lpnum) {
 | |
| 			unsigned int shift = be32_to_cpu(prop[0]);
 | |
| 			int penc  = be32_to_cpu(prop[1]);
 | |
| 
 | |
| 			prop += 2; size -= 2;
 | |
| 			lpnum--;
 | |
| 
 | |
| 			idx = get_idx_from_shift(shift);
 | |
| 			if (idx < 0)
 | |
| 				continue;
 | |
| 
 | |
| 			if (penc == -1)
 | |
| 				pr_err("Invalid penc for base_shift=%d "
 | |
| 				       "shift=%d\n", base_shift, shift);
 | |
| 
 | |
| 			def->penc[idx] = penc;
 | |
| 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
 | |
| 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
 | |
| 				base_shift, shift, def->sllp,
 | |
| 				def->avpnm, def->tlbiel, def->penc[idx]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| /* Scan for 16G memory blocks that have been set aside for huge pages
 | |
|  * and reserve those blocks for 16G huge pages.
 | |
|  */
 | |
| static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 | |
| 					const char *uname, int depth,
 | |
| 					void *data) {
 | |
| 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	const __be64 *addr_prop;
 | |
| 	const __be32 *page_count_prop;
 | |
| 	unsigned int expected_pages;
 | |
| 	long unsigned int phys_addr;
 | |
| 	long unsigned int block_size;
 | |
| 
 | |
| 	/* We are scanning "memory" nodes only */
 | |
| 	if (type == NULL || strcmp(type, "memory") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* This property is the log base 2 of the number of virtual pages that
 | |
| 	 * will represent this memory block. */
 | |
| 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 | |
| 	if (page_count_prop == NULL)
 | |
| 		return 0;
 | |
| 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
 | |
| 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 | |
| 	if (addr_prop == NULL)
 | |
| 		return 0;
 | |
| 	phys_addr = be64_to_cpu(addr_prop[0]);
 | |
| 	block_size = be64_to_cpu(addr_prop[1]);
 | |
| 	if (block_size != (16 * GB))
 | |
| 		return 0;
 | |
| 	printk(KERN_INFO "Huge page(16GB) memory: "
 | |
| 			"addr = 0x%lX size = 0x%lX pages = %d\n",
 | |
| 			phys_addr, block_size, expected_pages);
 | |
| 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
 | |
| 		memblock_reserve(phys_addr, block_size * expected_pages);
 | |
| 		pseries_add_gpage(phys_addr, block_size, expected_pages);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| static void mmu_psize_set_default_penc(void)
 | |
| {
 | |
| 	int bpsize, apsize;
 | |
| 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
 | |
| 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
 | |
| 			mmu_psize_defs[bpsize].penc[apsize] = -1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 
 | |
| static bool might_have_hea(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * The HEA ethernet adapter requires awareness of the
 | |
| 	 * GX bus. Without that awareness we can easily assume
 | |
| 	 * we will never see an HEA ethernet device.
 | |
| 	 */
 | |
| #ifdef CONFIG_IBMEBUS
 | |
| 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
 | |
| 		firmware_has_feature(FW_FEATURE_SPLPAR);
 | |
| #else
 | |
| 	return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| static void __init htab_scan_page_sizes(void)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	/* se the invalid penc to -1 */
 | |
| 	mmu_psize_set_default_penc();
 | |
| 
 | |
| 	/* Default to 4K pages only */
 | |
| 	memcpy(mmu_psize_defs, mmu_psize_defaults,
 | |
| 	       sizeof(mmu_psize_defaults));
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to find the available page sizes in the device-tree
 | |
| 	 */
 | |
| 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 | |
| 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
 | |
| 		/*
 | |
| 		 * Nothing in the device-tree, but the CPU supports 16M pages,
 | |
| 		 * so let's fallback on a known size list for 16M capable CPUs.
 | |
| 		 */
 | |
| 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 | |
| 		       sizeof(mmu_psize_defaults_gp));
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 	if (!hugetlb_disabled) {
 | |
| 		/* Reserve 16G huge page memory sections for huge pages */
 | |
| 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 | |
| 	}
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill in the hpte_page_sizes[] array.
 | |
|  * We go through the mmu_psize_defs[] array looking for all the
 | |
|  * supported base/actual page size combinations.  Each combination
 | |
|  * has a unique pagesize encoding (penc) value in the low bits of
 | |
|  * the LP field of the HPTE.  For actual page sizes less than 1MB,
 | |
|  * some of the upper LP bits are used for RPN bits, meaning that
 | |
|  * we need to fill in several entries in hpte_page_sizes[].
 | |
|  *
 | |
|  * In diagrammatic form, with r = RPN bits and z = page size bits:
 | |
|  *        PTE LP     actual page size
 | |
|  *    rrrr rrrz		>=8KB
 | |
|  *    rrrr rrzz		>=16KB
 | |
|  *    rrrr rzzz		>=32KB
 | |
|  *    rrrr zzzz		>=64KB
 | |
|  *    ...
 | |
|  *
 | |
|  * The zzzz bits are implementation-specific but are chosen so that
 | |
|  * no encoding for a larger page size uses the same value in its
 | |
|  * low-order N bits as the encoding for the 2^(12+N) byte page size
 | |
|  * (if it exists).
 | |
|  */
 | |
| static void init_hpte_page_sizes(void)
 | |
| {
 | |
| 	long int ap, bp;
 | |
| 	long int shift, penc;
 | |
| 
 | |
| 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
 | |
| 		if (!mmu_psize_defs[bp].shift)
 | |
| 			continue;	/* not a supported page size */
 | |
| 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
 | |
| 			penc = mmu_psize_defs[bp].penc[ap];
 | |
| 			if (penc == -1 || !mmu_psize_defs[ap].shift)
 | |
| 				continue;
 | |
| 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
 | |
| 			if (shift <= 0)
 | |
| 				continue;	/* should never happen */
 | |
| 			/*
 | |
| 			 * For page sizes less than 1MB, this loop
 | |
| 			 * replicates the entry for all possible values
 | |
| 			 * of the rrrr bits.
 | |
| 			 */
 | |
| 			while (penc < (1 << LP_BITS)) {
 | |
| 				hpte_page_sizes[penc] = (ap << 4) | bp;
 | |
| 				penc += 1 << shift;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init htab_init_page_sizes(void)
 | |
| {
 | |
| 	init_hpte_page_sizes();
 | |
| 
 | |
| 	if (!debug_pagealloc_enabled()) {
 | |
| 		/*
 | |
| 		 * Pick a size for the linear mapping. Currently, we only
 | |
| 		 * support 16M, 1M and 4K which is the default
 | |
| 		 */
 | |
| 		if (mmu_psize_defs[MMU_PAGE_16M].shift)
 | |
| 			mmu_linear_psize = MMU_PAGE_16M;
 | |
| 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 | |
| 			mmu_linear_psize = MMU_PAGE_1M;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	/*
 | |
| 	 * Pick a size for the ordinary pages. Default is 4K, we support
 | |
| 	 * 64K for user mappings and vmalloc if supported by the processor.
 | |
| 	 * We only use 64k for ioremap if the processor
 | |
| 	 * (and firmware) support cache-inhibited large pages.
 | |
| 	 * If not, we use 4k and set mmu_ci_restrictions so that
 | |
| 	 * hash_page knows to switch processes that use cache-inhibited
 | |
| 	 * mappings to 4k pages.
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 | |
| 		mmu_virtual_psize = MMU_PAGE_64K;
 | |
| 		mmu_vmalloc_psize = MMU_PAGE_64K;
 | |
| 		if (mmu_linear_psize == MMU_PAGE_4K)
 | |
| 			mmu_linear_psize = MMU_PAGE_64K;
 | |
| 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 | |
| 			/*
 | |
| 			 * When running on pSeries using 64k pages for ioremap
 | |
| 			 * would stop us accessing the HEA ethernet. So if we
 | |
| 			 * have the chance of ever seeing one, stay at 4k.
 | |
| 			 */
 | |
| 			if (!might_have_hea())
 | |
| 				mmu_io_psize = MMU_PAGE_64K;
 | |
| 		} else
 | |
| 			mmu_ci_restrictions = 1;
 | |
| 	}
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 	/* We try to use 16M pages for vmemmap if that is supported
 | |
| 	 * and we have at least 1G of RAM at boot
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 | |
| 	    memblock_phys_mem_size() >= 0x40000000)
 | |
| 		mmu_vmemmap_psize = MMU_PAGE_16M;
 | |
| 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
 | |
| 		mmu_vmemmap_psize = MMU_PAGE_64K;
 | |
| 	else
 | |
| 		mmu_vmemmap_psize = MMU_PAGE_4K;
 | |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 | |
| 	       "virtual = %d, io = %d"
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 	       ", vmemmap = %d"
 | |
| #endif
 | |
| 	       "\n",
 | |
| 	       mmu_psize_defs[mmu_linear_psize].shift,
 | |
| 	       mmu_psize_defs[mmu_virtual_psize].shift,
 | |
| 	       mmu_psize_defs[mmu_io_psize].shift
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
 | |
| #endif
 | |
| 	       );
 | |
| }
 | |
| 
 | |
| static int __init htab_dt_scan_pftsize(unsigned long node,
 | |
| 				       const char *uname, int depth,
 | |
| 				       void *data)
 | |
| {
 | |
| 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	const __be32 *prop;
 | |
| 
 | |
| 	/* We are scanning "cpu" nodes only */
 | |
| 	if (type == NULL || strcmp(type, "cpu") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 | |
| 	if (prop != NULL) {
 | |
| 		/* pft_size[0] is the NUMA CEC cookie */
 | |
| 		ppc64_pft_size = be32_to_cpu(prop[1]);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned htab_shift_for_mem_size(unsigned long mem_size)
 | |
| {
 | |
| 	unsigned memshift = __ilog2(mem_size);
 | |
| 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
 | |
| 	unsigned pteg_shift;
 | |
| 
 | |
| 	/* round mem_size up to next power of 2 */
 | |
| 	if ((1UL << memshift) < mem_size)
 | |
| 		memshift += 1;
 | |
| 
 | |
| 	/* aim for 2 pages / pteg */
 | |
| 	pteg_shift = memshift - (pshift + 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
 | |
| 	 * size permitted by the architecture.
 | |
| 	 */
 | |
| 	return max(pteg_shift + 7, 18U);
 | |
| }
 | |
| 
 | |
| static unsigned long __init htab_get_table_size(void)
 | |
| {
 | |
| 	/* If hash size isn't already provided by the platform, we try to
 | |
| 	 * retrieve it from the device-tree. If it's not there neither, we
 | |
| 	 * calculate it now based on the total RAM size
 | |
| 	 */
 | |
| 	if (ppc64_pft_size == 0)
 | |
| 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 | |
| 	if (ppc64_pft_size)
 | |
| 		return 1UL << ppc64_pft_size;
 | |
| 
 | |
| 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| void resize_hpt_for_hotplug(unsigned long new_mem_size)
 | |
| {
 | |
| 	unsigned target_hpt_shift;
 | |
| 
 | |
| 	if (!mmu_hash_ops.resize_hpt)
 | |
| 		return;
 | |
| 
 | |
| 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * To avoid lots of HPT resizes if memory size is fluctuating
 | |
| 	 * across a boundary, we deliberately have some hysterisis
 | |
| 	 * here: we immediately increase the HPT size if the target
 | |
| 	 * shift exceeds the current shift, but we won't attempt to
 | |
| 	 * reduce unless the target shift is at least 2 below the
 | |
| 	 * current shift
 | |
| 	 */
 | |
| 	if ((target_hpt_shift > ppc64_pft_size)
 | |
| 	    || (target_hpt_shift < (ppc64_pft_size - 1))) {
 | |
| 		int rc;
 | |
| 
 | |
| 		rc = mmu_hash_ops.resize_hpt(target_hpt_shift);
 | |
| 		if (rc && (rc != -ENODEV))
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Unable to resize hash page table to target order %d: %d\n",
 | |
| 			       target_hpt_shift, rc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
 | |
| {
 | |
| 	int rc = htab_bolt_mapping(start, end, __pa(start),
 | |
| 				   pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 | |
| 				   mmu_kernel_ssize);
 | |
| 
 | |
| 	if (rc < 0) {
 | |
| 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
 | |
| 					      mmu_kernel_ssize);
 | |
| 		BUG_ON(rc2 && (rc2 != -ENOENT));
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int hash__remove_section_mapping(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
 | |
| 				     mmu_kernel_ssize);
 | |
| 	WARN_ON(rc < 0);
 | |
| 	return rc;
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| static void __init hash_init_partition_table(phys_addr_t hash_table,
 | |
| 					     unsigned long htab_size)
 | |
| {
 | |
| 	mmu_partition_table_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
 | |
| 	 * For now, UPRT is 0 and we have no segment table.
 | |
| 	 */
 | |
| 	htab_size =  __ilog2(htab_size) - 18;
 | |
| 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
 | |
| 	pr_info("Partition table %p\n", partition_tb);
 | |
| }
 | |
| 
 | |
| static void __init htab_initialize(void)
 | |
| {
 | |
| 	unsigned long table;
 | |
| 	unsigned long pteg_count;
 | |
| 	unsigned long prot;
 | |
| 	unsigned long base = 0, size = 0;
 | |
| 	struct memblock_region *reg;
 | |
| 
 | |
| 	DBG(" -> htab_initialize()\n");
 | |
| 
 | |
| 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 | |
| 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
 | |
| 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
 | |
| 		printk(KERN_INFO "Using 1TB segments\n");
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the required size of the htab.  We want the number of
 | |
| 	 * PTEGs to equal one half the number of real pages.
 | |
| 	 */ 
 | |
| 	htab_size_bytes = htab_get_table_size();
 | |
| 	pteg_count = htab_size_bytes >> 7;
 | |
| 
 | |
| 	htab_hash_mask = pteg_count - 1;
 | |
| 
 | |
| 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
 | |
| 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
 | |
| 		/* Using a hypervisor which owns the htab */
 | |
| 		htab_address = NULL;
 | |
| 		_SDR1 = 0; 
 | |
| 		/*
 | |
| 		 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
 | |
| 		 * to inform the hypervisor that we wish to use the HPT.
 | |
| 		 */
 | |
| 		if (cpu_has_feature(CPU_FTR_ARCH_300))
 | |
| 			register_process_table(0, 0, 0);
 | |
| #ifdef CONFIG_FA_DUMP
 | |
| 		/*
 | |
| 		 * If firmware assisted dump is active firmware preserves
 | |
| 		 * the contents of htab along with entire partition memory.
 | |
| 		 * Clear the htab if firmware assisted dump is active so
 | |
| 		 * that we dont end up using old mappings.
 | |
| 		 */
 | |
| 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
 | |
| 			mmu_hash_ops.hpte_clear_all();
 | |
| #endif
 | |
| 	} else {
 | |
| 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
 | |
| 
 | |
| #ifdef CONFIG_PPC_CELL
 | |
| 		/*
 | |
| 		 * Cell may require the hash table down low when using the
 | |
| 		 * Axon IOMMU in order to fit the dynamic region over it, see
 | |
| 		 * comments in cell/iommu.c
 | |
| 		 */
 | |
| 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
 | |
| 			limit = 0x80000000;
 | |
| 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
 | |
| 		}
 | |
| #endif /* CONFIG_PPC_CELL */
 | |
| 
 | |
| 		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
 | |
| 					    limit);
 | |
| 
 | |
| 		DBG("Hash table allocated at %lx, size: %lx\n", table,
 | |
| 		    htab_size_bytes);
 | |
| 
 | |
| 		htab_address = __va(table);
 | |
| 
 | |
| 		/* htab absolute addr + encoded htabsize */
 | |
| 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
 | |
| 
 | |
| 		/* Initialize the HPT with no entries */
 | |
| 		memset((void *)table, 0, htab_size_bytes);
 | |
| 
 | |
| 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
 | |
| 			/* Set SDR1 */
 | |
| 			mtspr(SPRN_SDR1, _SDR1);
 | |
| 		else
 | |
| 			hash_init_partition_table(table, htab_size_bytes);
 | |
| 	}
 | |
| 
 | |
| 	prot = pgprot_val(PAGE_KERNEL);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	if (debug_pagealloc_enabled()) {
 | |
| 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 		linear_map_hash_slots = __va(memblock_alloc_base(
 | |
| 				linear_map_hash_count, 1, ppc64_rma_size));
 | |
| 		memset(linear_map_hash_slots, 0, linear_map_hash_count);
 | |
| 	}
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| 	/* create bolted the linear mapping in the hash table */
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		base = (unsigned long)__va(reg->base);
 | |
| 		size = reg->size;
 | |
| 
 | |
| 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 | |
| 		    base, size, prot);
 | |
| 
 | |
| 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 | |
| 				prot, mmu_linear_psize, mmu_kernel_ssize));
 | |
| 	}
 | |
| 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a memory_limit and we've allocated TCEs then we need to
 | |
| 	 * explicitly map the TCE area at the top of RAM. We also cope with the
 | |
| 	 * case that the TCEs start below memory_limit.
 | |
| 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
 | |
| 	 * for either 4K or 16MB pages.
 | |
| 	 */
 | |
| 	if (tce_alloc_start) {
 | |
| 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 | |
| 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 | |
| 
 | |
| 		if (base + size >= tce_alloc_start)
 | |
| 			tce_alloc_start = base + size + 1;
 | |
| 
 | |
| 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 | |
| 					 __pa(tce_alloc_start), prot,
 | |
| 					 mmu_linear_psize, mmu_kernel_ssize));
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	DBG(" <- htab_initialize()\n");
 | |
| }
 | |
| #undef KB
 | |
| #undef MB
 | |
| 
 | |
| void __init hash__early_init_devtree(void)
 | |
| {
 | |
| 	/* Initialize segment sizes */
 | |
| 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 | |
| 
 | |
| 	/* Initialize page sizes */
 | |
| 	htab_scan_page_sizes();
 | |
| }
 | |
| 
 | |
| void __init hash__early_init_mmu(void)
 | |
| {
 | |
| #ifndef CONFIG_PPC_64K_PAGES
 | |
| 	/*
 | |
| 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
 | |
| 	 * do the following:
 | |
| 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
 | |
| 	 *
 | |
| 	 * Where the slot number is between 0-15, and values of 8-15 indicate
 | |
| 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
 | |
| 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
 | |
| 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
 | |
| 	 * with a BUILD_BUG_ON().
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| 	htab_init_page_sizes();
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize page table size
 | |
| 	 */
 | |
| 	__pte_frag_nr = H_PTE_FRAG_NR;
 | |
| 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
 | |
| 	__pmd_frag_nr = H_PMD_FRAG_NR;
 | |
| 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
 | |
| 
 | |
| 	__pte_index_size = H_PTE_INDEX_SIZE;
 | |
| 	__pmd_index_size = H_PMD_INDEX_SIZE;
 | |
| 	__pud_index_size = H_PUD_INDEX_SIZE;
 | |
| 	__pgd_index_size = H_PGD_INDEX_SIZE;
 | |
| 	__pud_cache_index = H_PUD_CACHE_INDEX;
 | |
| 	__pte_table_size = H_PTE_TABLE_SIZE;
 | |
| 	__pmd_table_size = H_PMD_TABLE_SIZE;
 | |
| 	__pud_table_size = H_PUD_TABLE_SIZE;
 | |
| 	__pgd_table_size = H_PGD_TABLE_SIZE;
 | |
| 	/*
 | |
| 	 * 4k use hugepd format, so for hash set then to
 | |
| 	 * zero
 | |
| 	 */
 | |
| 	__pmd_val_bits = 0;
 | |
| 	__pud_val_bits = 0;
 | |
| 	__pgd_val_bits = 0;
 | |
| 
 | |
| 	__kernel_virt_start = H_KERN_VIRT_START;
 | |
| 	__kernel_virt_size = H_KERN_VIRT_SIZE;
 | |
| 	__vmalloc_start = H_VMALLOC_START;
 | |
| 	__vmalloc_end = H_VMALLOC_END;
 | |
| 	__kernel_io_start = H_KERN_IO_START;
 | |
| 	vmemmap = (struct page *)H_VMEMMAP_BASE;
 | |
| 	ioremap_bot = IOREMAP_BASE;
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 	pci_io_base = ISA_IO_BASE;
 | |
| #endif
 | |
| 
 | |
| 	/* Select appropriate backend */
 | |
| 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
 | |
| 		ps3_early_mm_init();
 | |
| 	else if (firmware_has_feature(FW_FEATURE_LPAR))
 | |
| 		hpte_init_pseries();
 | |
| 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
 | |
| 		hpte_init_native();
 | |
| 
 | |
| 	if (!mmu_hash_ops.hpte_insert)
 | |
| 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
 | |
| 
 | |
| 	/* Initialize the MMU Hash table and create the linear mapping
 | |
| 	 * of memory. Has to be done before SLB initialization as this is
 | |
| 	 * currently where the page size encoding is obtained.
 | |
| 	 */
 | |
| 	htab_initialize();
 | |
| 
 | |
| 	pr_info("Initializing hash mmu with SLB\n");
 | |
| 	/* Initialize SLB management */
 | |
| 	slb_initialize();
 | |
| 
 | |
| 	if (cpu_has_feature(CPU_FTR_ARCH_206)
 | |
| 			&& cpu_has_feature(CPU_FTR_HVMODE))
 | |
| 		tlbiel_all();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| void hash__early_init_mmu_secondary(void)
 | |
| {
 | |
| 	/* Initialize hash table for that CPU */
 | |
| 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 | |
| 
 | |
| 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
 | |
| 			mtspr(SPRN_SDR1, _SDR1);
 | |
| 		else
 | |
| 			mtspr(SPRN_PTCR,
 | |
| 			      __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
 | |
| 	}
 | |
| 	/* Initialize SLB */
 | |
| 	slb_initialize();
 | |
| 
 | |
| 	if (cpu_has_feature(CPU_FTR_ARCH_206)
 | |
| 			&& cpu_has_feature(CPU_FTR_HVMODE))
 | |
| 		tlbiel_all();
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Called by asm hashtable.S for doing lazy icache flush
 | |
|  */
 | |
| unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!pfn_valid(pte_pfn(pte)))
 | |
| 		return pp;
 | |
| 
 | |
| 	page = pte_page(pte);
 | |
| 
 | |
| 	/* page is dirty */
 | |
| 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
 | |
| 		if (trap == 0x400) {
 | |
| 			flush_dcache_icache_page(page);
 | |
| 			set_bit(PG_arch_1, &page->flags);
 | |
| 		} else
 | |
| 			pp |= HPTE_R_N;
 | |
| 	}
 | |
| 	return pp;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_MM_SLICES
 | |
| static unsigned int get_paca_psize(unsigned long addr)
 | |
| {
 | |
| 	unsigned char *psizes;
 | |
| 	unsigned long index, mask_index;
 | |
| 
 | |
| 	if (addr < SLICE_LOW_TOP) {
 | |
| 		psizes = get_paca()->mm_ctx_low_slices_psize;
 | |
| 		index = GET_LOW_SLICE_INDEX(addr);
 | |
| 	} else {
 | |
| 		psizes = get_paca()->mm_ctx_high_slices_psize;
 | |
| 		index = GET_HIGH_SLICE_INDEX(addr);
 | |
| 	}
 | |
| 	mask_index = index & 0x1;
 | |
| 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
 | |
| }
 | |
| 
 | |
| #else
 | |
| unsigned int get_paca_psize(unsigned long addr)
 | |
| {
 | |
| 	return get_paca()->mm_ctx_user_psize;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Demote a segment to using 4k pages.
 | |
|  * For now this makes the whole process use 4k pages.
 | |
|  */
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
 | |
| 		return;
 | |
| 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
 | |
| 	copro_flush_all_slbs(mm);
 | |
| 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
 | |
| 
 | |
| 		copy_mm_to_paca(mm);
 | |
| 		slb_flush_and_rebolt();
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| #ifdef CONFIG_PPC_SUBPAGE_PROT
 | |
| /*
 | |
|  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
 | |
|  * Userspace sets the subpage permissions using the subpage_prot system call.
 | |
|  *
 | |
|  * Result is 0: full permissions, _PAGE_RW: read-only,
 | |
|  * _PAGE_RWX: no access.
 | |
|  */
 | |
| static int subpage_protection(struct mm_struct *mm, unsigned long ea)
 | |
| {
 | |
| 	struct subpage_prot_table *spt = &mm->context.spt;
 | |
| 	u32 spp = 0;
 | |
| 	u32 **sbpm, *sbpp;
 | |
| 
 | |
| 	if (ea >= spt->maxaddr)
 | |
| 		return 0;
 | |
| 	if (ea < 0x100000000UL) {
 | |
| 		/* addresses below 4GB use spt->low_prot */
 | |
| 		sbpm = spt->low_prot;
 | |
| 	} else {
 | |
| 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
 | |
| 		if (!sbpm)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
 | |
| 	if (!sbpp)
 | |
| 		return 0;
 | |
| 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
 | |
| 
 | |
| 	/* extract 2-bit bitfield for this 4k subpage */
 | |
| 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
 | |
| 
 | |
| 	/*
 | |
| 	 * 0 -> full premission
 | |
| 	 * 1 -> Read only
 | |
| 	 * 2 -> no access.
 | |
| 	 * We return the flag that need to be cleared.
 | |
| 	 */
 | |
| 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
 | |
| 	return spp;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_PPC_SUBPAGE_PROT */
 | |
| static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void hash_failure_debug(unsigned long ea, unsigned long access,
 | |
| 			unsigned long vsid, unsigned long trap,
 | |
| 			int ssize, int psize, int lpsize, unsigned long pte)
 | |
| {
 | |
| 	if (!printk_ratelimit())
 | |
| 		return;
 | |
| 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
 | |
| 		ea, access, current->comm);
 | |
| 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
 | |
| 		trap, vsid, ssize, psize, lpsize, pte);
 | |
| }
 | |
| 
 | |
| static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
 | |
| 			     int psize, bool user_region)
 | |
| {
 | |
| 	if (user_region) {
 | |
| 		if (psize != get_paca_psize(ea)) {
 | |
| 			copy_mm_to_paca(mm);
 | |
| 			slb_flush_and_rebolt();
 | |
| 		}
 | |
| 	} else if (get_paca()->vmalloc_sllp !=
 | |
| 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
 | |
| 		get_paca()->vmalloc_sllp =
 | |
| 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
 | |
| 		slb_vmalloc_update();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Result code is:
 | |
|  *  0 - handled
 | |
|  *  1 - normal page fault
 | |
|  * -1 - critical hash insertion error
 | |
|  * -2 - access not permitted by subpage protection mechanism
 | |
|  */
 | |
| int hash_page_mm(struct mm_struct *mm, unsigned long ea,
 | |
| 		 unsigned long access, unsigned long trap,
 | |
| 		 unsigned long flags)
 | |
| {
 | |
| 	bool is_thp;
 | |
| 	enum ctx_state prev_state = exception_enter();
 | |
| 	pgd_t *pgdir;
 | |
| 	unsigned long vsid;
 | |
| 	pte_t *ptep;
 | |
| 	unsigned hugeshift;
 | |
| 	int rc, user_region = 0;
 | |
| 	int psize, ssize;
 | |
| 
 | |
| 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
 | |
| 		ea, access, trap);
 | |
| 	trace_hash_fault(ea, access, trap);
 | |
| 
 | |
| 	/* Get region & vsid */
 | |
|  	switch (REGION_ID(ea)) {
 | |
| 	case USER_REGION_ID:
 | |
| 		user_region = 1;
 | |
| 		if (! mm) {
 | |
| 			DBG_LOW(" user region with no mm !\n");
 | |
| 			rc = 1;
 | |
| 			goto bail;
 | |
| 		}
 | |
| 		psize = get_slice_psize(mm, ea);
 | |
| 		ssize = user_segment_size(ea);
 | |
| 		vsid = get_user_vsid(&mm->context, ea, ssize);
 | |
| 		break;
 | |
| 	case VMALLOC_REGION_ID:
 | |
| 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
 | |
| 		if (ea < VMALLOC_END)
 | |
| 			psize = mmu_vmalloc_psize;
 | |
| 		else
 | |
| 			psize = mmu_io_psize;
 | |
| 		ssize = mmu_kernel_ssize;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Not a valid range
 | |
| 		 * Send the problem up to do_page_fault 
 | |
| 		 */
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
 | |
| 
 | |
| 	/* Bad address. */
 | |
| 	if (!vsid) {
 | |
| 		DBG_LOW("Bad address!\n");
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 	/* Get pgdir */
 | |
| 	pgdir = mm->pgd;
 | |
| 	if (pgdir == NULL) {
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* Check CPU locality */
 | |
| 	if (user_region && mm_is_thread_local(mm))
 | |
| 		flags |= HPTE_LOCAL_UPDATE;
 | |
| 
 | |
| #ifndef CONFIG_PPC_64K_PAGES
 | |
| 	/* If we use 4K pages and our psize is not 4K, then we might
 | |
| 	 * be hitting a special driver mapping, and need to align the
 | |
| 	 * address before we fetch the PTE.
 | |
| 	 *
 | |
| 	 * It could also be a hugepage mapping, in which case this is
 | |
| 	 * not necessary, but it's not harmful, either.
 | |
| 	 */
 | |
| 	if (psize != MMU_PAGE_4K)
 | |
| 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| 	/* Get PTE and page size from page tables */
 | |
| 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
 | |
| 	if (ptep == NULL || !pte_present(*ptep)) {
 | |
| 		DBG_LOW(" no PTE !\n");
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* Add _PAGE_PRESENT to the required access perm */
 | |
| 	access |= _PAGE_PRESENT;
 | |
| 
 | |
| 	/* Pre-check access permissions (will be re-checked atomically
 | |
| 	 * in __hash_page_XX but this pre-check is a fast path
 | |
| 	 */
 | |
| 	if (!check_pte_access(access, pte_val(*ptep))) {
 | |
| 		DBG_LOW(" no access !\n");
 | |
| 		rc = 1;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	if (hugeshift) {
 | |
| 		if (is_thp)
 | |
| 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
 | |
| 					     trap, flags, ssize, psize);
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 		else
 | |
| 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
 | |
| 					      flags, ssize, hugeshift, psize);
 | |
| #else
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * if we have hugeshift, and is not transhuge with
 | |
| 			 * hugetlb disabled, something is really wrong.
 | |
| 			 */
 | |
| 			rc = 1;
 | |
| 			WARN_ON(1);
 | |
| 		}
 | |
| #endif
 | |
| 		if (current->mm == mm)
 | |
| 			check_paca_psize(ea, mm, psize, user_region);
 | |
| 
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| #ifndef CONFIG_PPC_64K_PAGES
 | |
| 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
 | |
| #else
 | |
| 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
 | |
| 		pte_val(*(ptep + PTRS_PER_PTE)));
 | |
| #endif
 | |
| 	/* Do actual hashing */
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
 | |
| 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
 | |
| 		demote_segment_4k(mm, ea);
 | |
| 		psize = MMU_PAGE_4K;
 | |
| 	}
 | |
| 
 | |
| 	/* If this PTE is non-cacheable and we have restrictions on
 | |
| 	 * using non cacheable large pages, then we switch to 4k
 | |
| 	 */
 | |
| 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
 | |
| 		if (user_region) {
 | |
| 			demote_segment_4k(mm, ea);
 | |
| 			psize = MMU_PAGE_4K;
 | |
| 		} else if (ea < VMALLOC_END) {
 | |
| 			/*
 | |
| 			 * some driver did a non-cacheable mapping
 | |
| 			 * in vmalloc space, so switch vmalloc
 | |
| 			 * to 4k pages
 | |
| 			 */
 | |
| 			printk(KERN_ALERT "Reducing vmalloc segment "
 | |
| 			       "to 4kB pages because of "
 | |
| 			       "non-cacheable mapping\n");
 | |
| 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
 | |
| 			copro_flush_all_slbs(mm);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| 	if (current->mm == mm)
 | |
| 		check_paca_psize(ea, mm, psize, user_region);
 | |
| 
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	if (psize == MMU_PAGE_64K)
 | |
| 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
 | |
| 				     flags, ssize);
 | |
| 	else
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 	{
 | |
| 		int spp = subpage_protection(mm, ea);
 | |
| 		if (access & spp)
 | |
| 			rc = -2;
 | |
| 		else
 | |
| 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
 | |
| 					    flags, ssize, spp);
 | |
| 	}
 | |
| 
 | |
| 	/* Dump some info in case of hash insertion failure, they should
 | |
| 	 * never happen so it is really useful to know if/when they do
 | |
| 	 */
 | |
| 	if (rc == -1)
 | |
| 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
 | |
| 				   psize, pte_val(*ptep));
 | |
| #ifndef CONFIG_PPC_64K_PAGES
 | |
| 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
 | |
| #else
 | |
| 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
 | |
| 		pte_val(*(ptep + PTRS_PER_PTE)));
 | |
| #endif
 | |
| 	DBG_LOW(" -> rc=%d\n", rc);
 | |
| 
 | |
| bail:
 | |
| 	exception_exit(prev_state);
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hash_page_mm);
 | |
| 
 | |
| int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
 | |
| 	      unsigned long dsisr)
 | |
| {
 | |
| 	unsigned long flags = 0;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 
 | |
| 	if (REGION_ID(ea) == VMALLOC_REGION_ID)
 | |
| 		mm = &init_mm;
 | |
| 
 | |
| 	if (dsisr & DSISR_NOHPTE)
 | |
| 		flags |= HPTE_NOHPTE_UPDATE;
 | |
| 
 | |
| 	return hash_page_mm(mm, ea, access, trap, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hash_page);
 | |
| 
 | |
| int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
 | |
| 		unsigned long dsisr)
 | |
| {
 | |
| 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
 | |
| 	unsigned long flags = 0;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 
 | |
| 	if (REGION_ID(ea) == VMALLOC_REGION_ID)
 | |
| 		mm = &init_mm;
 | |
| 
 | |
| 	if (dsisr & DSISR_NOHPTE)
 | |
| 		flags |= HPTE_NOHPTE_UPDATE;
 | |
| 
 | |
| 	if (dsisr & DSISR_ISSTORE)
 | |
| 		access |= _PAGE_WRITE;
 | |
| 	/*
 | |
| 	 * We set _PAGE_PRIVILEGED only when
 | |
| 	 * kernel mode access kernel space.
 | |
| 	 *
 | |
| 	 * _PAGE_PRIVILEGED is NOT set
 | |
| 	 * 1) when kernel mode access user space
 | |
| 	 * 2) user space access kernel space.
 | |
| 	 */
 | |
| 	access |= _PAGE_PRIVILEGED;
 | |
| 	if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
 | |
| 		access &= ~_PAGE_PRIVILEGED;
 | |
| 
 | |
| 	if (trap == 0x400)
 | |
| 		access |= _PAGE_EXEC;
 | |
| 
 | |
| 	return hash_page_mm(mm, ea, access, trap, flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_MM_SLICES
 | |
| static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
 | |
| {
 | |
| 	int psize = get_slice_psize(mm, ea);
 | |
| 
 | |
| 	/* We only prefault standard pages for now */
 | |
| 	if (unlikely(psize != mm->context.user_psize))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't prefault if subpage protection is enabled for the EA.
 | |
| 	 */
 | |
| 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #else
 | |
| static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void hash_preload(struct mm_struct *mm, unsigned long ea,
 | |
| 		  unsigned long access, unsigned long trap)
 | |
| {
 | |
| 	int hugepage_shift;
 | |
| 	unsigned long vsid;
 | |
| 	pgd_t *pgdir;
 | |
| 	pte_t *ptep;
 | |
| 	unsigned long flags;
 | |
| 	int rc, ssize, update_flags = 0;
 | |
| 
 | |
| 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
 | |
| 
 | |
| 	if (!should_hash_preload(mm, ea))
 | |
| 		return;
 | |
| 
 | |
| 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
 | |
| 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
 | |
| 
 | |
| 	/* Get Linux PTE if available */
 | |
| 	pgdir = mm->pgd;
 | |
| 	if (pgdir == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/* Get VSID */
 | |
| 	ssize = user_segment_size(ea);
 | |
| 	vsid = get_user_vsid(&mm->context, ea, ssize);
 | |
| 	if (!vsid)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Hash doesn't like irqs. Walking linux page table with irq disabled
 | |
| 	 * saves us from holding multiple locks.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * THP pages use update_mmu_cache_pmd. We don't do
 | |
| 	 * hash preload there. Hence can ignore THP here
 | |
| 	 */
 | |
| 	ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
 | |
| 	if (!ptep)
 | |
| 		goto out_exit;
 | |
| 
 | |
| 	WARN_ON(hugepage_shift);
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
 | |
| 	 * a 64K kernel), then we don't preload, hash_page() will take
 | |
| 	 * care of it once we actually try to access the page.
 | |
| 	 * That way we don't have to duplicate all of the logic for segment
 | |
| 	 * page size demotion here
 | |
| 	 */
 | |
| 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
 | |
| 		goto out_exit;
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| 	/* Is that local to this CPU ? */
 | |
| 	if (mm_is_thread_local(mm))
 | |
| 		update_flags |= HPTE_LOCAL_UPDATE;
 | |
| 
 | |
| 	/* Hash it in */
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 	if (mm->context.user_psize == MMU_PAGE_64K)
 | |
| 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
 | |
| 				     update_flags, ssize);
 | |
| 	else
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
 | |
| 				    ssize, subpage_protection(mm, ea));
 | |
| 
 | |
| 	/* Dump some info in case of hash insertion failure, they should
 | |
| 	 * never happen so it is really useful to know if/when they do
 | |
| 	 */
 | |
| 	if (rc == -1)
 | |
| 		hash_failure_debug(ea, access, vsid, trap, ssize,
 | |
| 				   mm->context.user_psize,
 | |
| 				   mm->context.user_psize,
 | |
| 				   pte_val(*ptep));
 | |
| out_exit:
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_MEM_KEYS
 | |
| /*
 | |
|  * Return the protection key associated with the given address and the
 | |
|  * mm_struct.
 | |
|  */
 | |
| u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	u16 pkey = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!mm || !mm->pgd)
 | |
| 		return 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
 | |
| 	if (ptep)
 | |
| 		pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return pkey;
 | |
| }
 | |
| #endif /* CONFIG_PPC_MEM_KEYS */
 | |
| 
 | |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | |
| static inline void tm_flush_hash_page(int local)
 | |
| {
 | |
| 	/*
 | |
| 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
 | |
| 	 * page back to a block device w/PIO could pick up transactional data
 | |
| 	 * (bad!) so we force an abort here. Before the sync the page will be
 | |
| 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
 | |
| 	 * kernel uses a page from userspace without unmapping it first, it may
 | |
| 	 * see the speculated version.
 | |
| 	 */
 | |
| 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
 | |
| 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
 | |
| 		tm_enable();
 | |
| 		tm_abort(TM_CAUSE_TLBI);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void tm_flush_hash_page(int local)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Return the global hash slot, corresponding to the given PTE, which contains
 | |
|  * the HPTE.
 | |
|  */
 | |
| unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
 | |
| 		int ssize, real_pte_t rpte, unsigned int subpg_index)
 | |
| {
 | |
| 	unsigned long hash, gslot, hidx;
 | |
| 
 | |
| 	hash = hpt_hash(vpn, shift, ssize);
 | |
| 	hidx = __rpte_to_hidx(rpte, subpg_index);
 | |
| 	if (hidx & _PTEIDX_SECONDARY)
 | |
| 		hash = ~hash;
 | |
| 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
 | |
| 	gslot += hidx & _PTEIDX_GROUP_IX;
 | |
| 	return gslot;
 | |
| }
 | |
| 
 | |
| /* WARNING: This is called from hash_low_64.S, if you change this prototype,
 | |
|  *          do not forget to update the assembly call site !
 | |
|  */
 | |
| void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
 | |
| 		     unsigned long flags)
 | |
| {
 | |
| 	unsigned long index, shift, gslot;
 | |
| 	int local = flags & HPTE_LOCAL_UPDATE;
 | |
| 
 | |
| 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
 | |
| 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
 | |
| 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
 | |
| 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
 | |
| 		/*
 | |
| 		 * We use same base page size and actual psize, because we don't
 | |
| 		 * use these functions for hugepage
 | |
| 		 */
 | |
| 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
 | |
| 					     ssize, local);
 | |
| 	} pte_iterate_hashed_end();
 | |
| 
 | |
| 	tm_flush_hash_page(local);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
 | |
| 			 pmd_t *pmdp, unsigned int psize, int ssize,
 | |
| 			 unsigned long flags)
 | |
| {
 | |
| 	int i, max_hpte_count, valid;
 | |
| 	unsigned long s_addr;
 | |
| 	unsigned char *hpte_slot_array;
 | |
| 	unsigned long hidx, shift, vpn, hash, slot;
 | |
| 	int local = flags & HPTE_LOCAL_UPDATE;
 | |
| 
 | |
| 	s_addr = addr & HPAGE_PMD_MASK;
 | |
| 	hpte_slot_array = get_hpte_slot_array(pmdp);
 | |
| 	/*
 | |
| 	 * IF we try to do a HUGE PTE update after a withdraw is done.
 | |
| 	 * we will find the below NULL. This happens when we do
 | |
| 	 * split_huge_page_pmd
 | |
| 	 */
 | |
| 	if (!hpte_slot_array)
 | |
| 		return;
 | |
| 
 | |
| 	if (mmu_hash_ops.hugepage_invalidate) {
 | |
| 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
 | |
| 						 psize, ssize, local);
 | |
| 		goto tm_abort;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * No bluk hpte removal support, invalidate each entry
 | |
| 	 */
 | |
| 	shift = mmu_psize_defs[psize].shift;
 | |
| 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
 | |
| 	for (i = 0; i < max_hpte_count; i++) {
 | |
| 		/*
 | |
| 		 * 8 bits per each hpte entries
 | |
| 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
 | |
| 		 */
 | |
| 		valid = hpte_valid(hpte_slot_array, i);
 | |
| 		if (!valid)
 | |
| 			continue;
 | |
| 		hidx =  hpte_hash_index(hpte_slot_array, i);
 | |
| 
 | |
| 		/* get the vpn */
 | |
| 		addr = s_addr + (i * (1ul << shift));
 | |
| 		vpn = hpt_vpn(addr, vsid, ssize);
 | |
| 		hash = hpt_hash(vpn, shift, ssize);
 | |
| 		if (hidx & _PTEIDX_SECONDARY)
 | |
| 			hash = ~hash;
 | |
| 
 | |
| 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
 | |
| 		slot += hidx & _PTEIDX_GROUP_IX;
 | |
| 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
 | |
| 					     MMU_PAGE_16M, ssize, local);
 | |
| 	}
 | |
| tm_abort:
 | |
| 	tm_flush_hash_page(local);
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| void flush_hash_range(unsigned long number, int local)
 | |
| {
 | |
| 	if (mmu_hash_ops.flush_hash_range)
 | |
| 		mmu_hash_ops.flush_hash_range(number, local);
 | |
| 	else {
 | |
| 		int i;
 | |
| 		struct ppc64_tlb_batch *batch =
 | |
| 			this_cpu_ptr(&ppc64_tlb_batch);
 | |
| 
 | |
| 		for (i = 0; i < number; i++)
 | |
| 			flush_hash_page(batch->vpn[i], batch->pte[i],
 | |
| 					batch->psize, batch->ssize, local);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * low_hash_fault is called when we the low level hash code failed
 | |
|  * to instert a PTE due to an hypervisor error
 | |
|  */
 | |
| void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
 | |
| {
 | |
| 	enum ctx_state prev_state = exception_enter();
 | |
| 
 | |
| 	if (user_mode(regs)) {
 | |
| #ifdef CONFIG_PPC_SUBPAGE_PROT
 | |
| 		if (rc == -2)
 | |
| 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
 | |
| 		else
 | |
| #endif
 | |
| 			_exception(SIGBUS, regs, BUS_ADRERR, address);
 | |
| 	} else
 | |
| 		bad_page_fault(regs, address, SIGBUS);
 | |
| 
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| 
 | |
| long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
 | |
| 			   unsigned long pa, unsigned long rflags,
 | |
| 			   unsigned long vflags, int psize, int ssize)
 | |
| {
 | |
| 	unsigned long hpte_group;
 | |
| 	long slot;
 | |
| 
 | |
| repeat:
 | |
| 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
 | |
| 
 | |
| 	/* Insert into the hash table, primary slot */
 | |
| 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
 | |
| 					psize, psize, ssize);
 | |
| 
 | |
| 	/* Primary is full, try the secondary */
 | |
| 	if (unlikely(slot == -1)) {
 | |
| 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
 | |
| 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
 | |
| 						vflags | HPTE_V_SECONDARY,
 | |
| 						psize, psize, ssize);
 | |
| 		if (slot == -1) {
 | |
| 			if (mftb() & 0x1)
 | |
| 				hpte_group = (hash & htab_hash_mask) *
 | |
| 						HPTES_PER_GROUP;
 | |
| 
 | |
| 			mmu_hash_ops.hpte_remove(hpte_group);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return slot;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
 | |
| {
 | |
| 	unsigned long hash;
 | |
| 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
 | |
| 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
 | |
| 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
 | |
| 	long ret;
 | |
| 
 | |
| 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
 | |
| 
 | |
| 	/* Don't create HPTE entries for bad address */
 | |
| 	if (!vsid)
 | |
| 		return;
 | |
| 
 | |
| 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
 | |
| 				    HPTE_V_BOLTED,
 | |
| 				    mmu_linear_psize, mmu_kernel_ssize);
 | |
| 
 | |
| 	BUG_ON (ret < 0);
 | |
| 	spin_lock(&linear_map_hash_lock);
 | |
| 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
 | |
| 	linear_map_hash_slots[lmi] = ret | 0x80;
 | |
| 	spin_unlock(&linear_map_hash_lock);
 | |
| }
 | |
| 
 | |
| static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
 | |
| {
 | |
| 	unsigned long hash, hidx, slot;
 | |
| 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
 | |
| 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
 | |
| 
 | |
| 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
 | |
| 	spin_lock(&linear_map_hash_lock);
 | |
| 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
 | |
| 	hidx = linear_map_hash_slots[lmi] & 0x7f;
 | |
| 	linear_map_hash_slots[lmi] = 0;
 | |
| 	spin_unlock(&linear_map_hash_lock);
 | |
| 	if (hidx & _PTEIDX_SECONDARY)
 | |
| 		hash = ~hash;
 | |
| 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
 | |
| 	slot += hidx & _PTEIDX_GROUP_IX;
 | |
| 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
 | |
| 				     mmu_linear_psize,
 | |
| 				     mmu_kernel_ssize, 0);
 | |
| }
 | |
| 
 | |
| void __kernel_map_pages(struct page *page, int numpages, int enable)
 | |
| {
 | |
| 	unsigned long flags, vaddr, lmi;
 | |
| 	int i;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	for (i = 0; i < numpages; i++, page++) {
 | |
| 		vaddr = (unsigned long)page_address(page);
 | |
| 		lmi = __pa(vaddr) >> PAGE_SHIFT;
 | |
| 		if (lmi >= linear_map_hash_count)
 | |
| 			continue;
 | |
| 		if (enable)
 | |
| 			kernel_map_linear_page(vaddr, lmi);
 | |
| 		else
 | |
| 			kernel_unmap_linear_page(vaddr, lmi);
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
 | |
| 				phys_addr_t first_memblock_size)
 | |
| {
 | |
| 	/* We don't currently support the first MEMBLOCK not mapping 0
 | |
| 	 * physical on those processors
 | |
| 	 */
 | |
| 	BUG_ON(first_memblock_base != 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * On virtualized systems the first entry is our RMA region aka VRMA,
 | |
| 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
 | |
| 	 * on real mode access.
 | |
| 	 *
 | |
| 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
 | |
| 	 * to avoid some funky things such as RTAS bugs etc...
 | |
| 	 *
 | |
| 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
 | |
| 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
 | |
| 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
 | |
| 	 * for virtual real mode addressing and so it doesn't make sense to
 | |
| 	 * have an area larger than 1TB as it can't be addressed.
 | |
| 	 */
 | |
| 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
 | |
| 		ppc64_rma_size = first_memblock_size;
 | |
| 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
 | |
| 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
 | |
| 		else
 | |
| 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
 | |
| 					       1UL << SID_SHIFT_1T);
 | |
| 
 | |
| 		/* Finally limit subsequent allocations */
 | |
| 		memblock_set_current_limit(ppc64_rma_size);
 | |
| 	} else {
 | |
| 		ppc64_rma_size = ULONG_MAX;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| 
 | |
| static int hpt_order_get(void *data, u64 *val)
 | |
| {
 | |
| 	*val = ppc64_pft_size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpt_order_set(void *data, u64 val)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!mmu_hash_ops.resize_hpt)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	ret = mmu_hash_ops.resize_hpt(val);
 | |
| 	cpus_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
 | |
| 
 | |
| static int __init hash64_debugfs(void)
 | |
| {
 | |
| 	if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root,
 | |
| 				 NULL, &fops_hpt_order)) {
 | |
| 		pr_err("lpar: unable to create hpt_order debugsfs file\n");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| machine_device_initcall(pseries, hash64_debugfs);
 | |
| #endif /* CONFIG_DEBUG_FS */
 | 
