1352 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1352 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Extensible Firmware Interface
 | |
|  *
 | |
|  * Based on Extensible Firmware Interface Specification version 0.9
 | |
|  * April 30, 1999
 | |
|  *
 | |
|  * Copyright (C) 1999 VA Linux Systems
 | |
|  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 | |
|  * Copyright (C) 1999-2003 Hewlett-Packard Co.
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  *	Stephane Eranian <eranian@hpl.hp.com>
 | |
|  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
 | |
|  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
 | |
|  *
 | |
|  * All EFI Runtime Services are not implemented yet as EFI only
 | |
|  * supports physical mode addressing on SoftSDV. This is to be fixed
 | |
|  * in a future version.  --drummond 1999-07-20
 | |
|  *
 | |
|  * Implemented EFI runtime services and virtual mode calls.  --davidm
 | |
|  *
 | |
|  * Goutham Rao: <goutham.rao@intel.com>
 | |
|  *	Skip non-WB memory and ignore empty memory ranges.
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/crash_dump.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/mm.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/kregs.h>
 | |
| #include <asm/meminit.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/mca.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #define EFI_DEBUG	0
 | |
| 
 | |
| static __initdata unsigned long palo_phys;
 | |
| 
 | |
| static __initdata efi_config_table_type_t arch_tables[] = {
 | |
| 	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
 | |
| 	{NULL_GUID, NULL, 0},
 | |
| };
 | |
| 
 | |
| extern efi_status_t efi_call_phys (void *, ...);
 | |
| 
 | |
| static efi_runtime_services_t *runtime;
 | |
| static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
 | |
| 
 | |
| #define efi_call_virt(f, args...)	(*(f))(args)
 | |
| 
 | |
| #define STUB_GET_TIME(prefix, adjust_arg)				       \
 | |
| static efi_status_t							       \
 | |
| prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
 | |
| {									       \
 | |
| 	struct ia64_fpreg fr[6];					       \
 | |
| 	efi_time_cap_t *atc = NULL;					       \
 | |
| 	efi_status_t ret;						       \
 | |
| 									       \
 | |
| 	if (tc)								       \
 | |
| 		atc = adjust_arg(tc);					       \
 | |
| 	ia64_save_scratch_fpregs(fr);					       \
 | |
| 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
 | |
| 				adjust_arg(tm), atc);			       \
 | |
| 	ia64_load_scratch_fpregs(fr);					       \
 | |
| 	return ret;							       \
 | |
| }
 | |
| 
 | |
| #define STUB_SET_TIME(prefix, adjust_arg)				       \
 | |
| static efi_status_t							       \
 | |
| prefix##_set_time (efi_time_t *tm)					       \
 | |
| {									       \
 | |
| 	struct ia64_fpreg fr[6];					       \
 | |
| 	efi_status_t ret;						       \
 | |
| 									       \
 | |
| 	ia64_save_scratch_fpregs(fr);					       \
 | |
| 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
 | |
| 				adjust_arg(tm));			       \
 | |
| 	ia64_load_scratch_fpregs(fr);					       \
 | |
| 	return ret;							       \
 | |
| }
 | |
| 
 | |
| #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
 | |
| static efi_status_t							       \
 | |
| prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
 | |
| 			  efi_time_t *tm)				       \
 | |
| {									       \
 | |
| 	struct ia64_fpreg fr[6];					       \
 | |
| 	efi_status_t ret;						       \
 | |
| 									       \
 | |
| 	ia64_save_scratch_fpregs(fr);					       \
 | |
| 	ret = efi_call_##prefix(					       \
 | |
| 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 | |
| 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 | |
| 	ia64_load_scratch_fpregs(fr);					       \
 | |
| 	return ret;							       \
 | |
| }
 | |
| 
 | |
| #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
 | |
| static efi_status_t							       \
 | |
| prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
 | |
| {									       \
 | |
| 	struct ia64_fpreg fr[6];					       \
 | |
| 	efi_time_t *atm = NULL;						       \
 | |
| 	efi_status_t ret;						       \
 | |
| 									       \
 | |
| 	if (tm)								       \
 | |
| 		atm = adjust_arg(tm);					       \
 | |
| 	ia64_save_scratch_fpregs(fr);					       \
 | |
| 	ret = efi_call_##prefix(					       \
 | |
| 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 | |
| 		enabled, atm);						       \
 | |
| 	ia64_load_scratch_fpregs(fr);					       \
 | |
| 	return ret;							       \
 | |
| }
 | |
| 
 | |
| #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
 | |
| static efi_status_t							       \
 | |
| prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 | |
| 		       unsigned long *data_size, void *data)		       \
 | |
| {									       \
 | |
| 	struct ia64_fpreg fr[6];					       \
 | |
| 	u32 *aattr = NULL;						       \
 | |
| 	efi_status_t ret;						       \
 | |
| 									       \
 | |
| 	if (attr)							       \
 | |
| 		aattr = adjust_arg(attr);				       \
 | |
| 	ia64_save_scratch_fpregs(fr);					       \
 | |
| 	ret = efi_call_##prefix(					       \
 | |
| 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
 | |
| 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
 | |
| 		adjust_arg(data_size), adjust_arg(data));		       \
 | |
| 	ia64_load_scratch_fpregs(fr);					       \
 | |
| 	return ret;							       \
 | |
| }
 | |
| 
 | |
| #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
 | |
| static efi_status_t							       \
 | |
| prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 | |
| 			    efi_guid_t *vendor)				       \
 | |
| {									       \
 | |
| 	struct ia64_fpreg fr[6];					       \
 | |
| 	efi_status_t ret;						       \
 | |
| 									       \
 | |
| 	ia64_save_scratch_fpregs(fr);					       \
 | |
| 	ret = efi_call_##prefix(					       \
 | |
| 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 | |
| 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 | |
| 	ia64_load_scratch_fpregs(fr);					       \
 | |
| 	return ret;							       \
 | |
| }
 | |
| 
 | |
| #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
 | |
| static efi_status_t							       \
 | |
| prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
 | |
| 		       u32 attr, unsigned long data_size,		       \
 | |
| 		       void *data)					       \
 | |
| {									       \
 | |
| 	struct ia64_fpreg fr[6];					       \
 | |
| 	efi_status_t ret;						       \
 | |
| 									       \
 | |
| 	ia64_save_scratch_fpregs(fr);					       \
 | |
| 	ret = efi_call_##prefix(					       \
 | |
| 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
 | |
| 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
 | |
| 		adjust_arg(data));					       \
 | |
| 	ia64_load_scratch_fpregs(fr);					       \
 | |
| 	return ret;							       \
 | |
| }
 | |
| 
 | |
| #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
 | |
| static efi_status_t							       \
 | |
| prefix##_get_next_high_mono_count (u32 *count)				       \
 | |
| {									       \
 | |
| 	struct ia64_fpreg fr[6];					       \
 | |
| 	efi_status_t ret;						       \
 | |
| 									       \
 | |
| 	ia64_save_scratch_fpregs(fr);					       \
 | |
| 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
 | |
| 				__va(runtime->get_next_high_mono_count),       \
 | |
| 				adjust_arg(count));			       \
 | |
| 	ia64_load_scratch_fpregs(fr);					       \
 | |
| 	return ret;							       \
 | |
| }
 | |
| 
 | |
| #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
 | |
| static void								       \
 | |
| prefix##_reset_system (int reset_type, efi_status_t status,		       \
 | |
| 		       unsigned long data_size, efi_char16_t *data)	       \
 | |
| {									       \
 | |
| 	struct ia64_fpreg fr[6];					       \
 | |
| 	efi_char16_t *adata = NULL;					       \
 | |
| 									       \
 | |
| 	if (data)							       \
 | |
| 		adata = adjust_arg(data);				       \
 | |
| 									       \
 | |
| 	ia64_save_scratch_fpregs(fr);					       \
 | |
| 	efi_call_##prefix(						       \
 | |
| 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
 | |
| 		reset_type, status, data_size, adata);			       \
 | |
| 	/* should not return, but just in case... */			       \
 | |
| 	ia64_load_scratch_fpregs(fr);					       \
 | |
| }
 | |
| 
 | |
| #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
 | |
| 
 | |
| STUB_GET_TIME(phys, phys_ptr)
 | |
| STUB_SET_TIME(phys, phys_ptr)
 | |
| STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 | |
| STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 | |
| STUB_GET_VARIABLE(phys, phys_ptr)
 | |
| STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 | |
| STUB_SET_VARIABLE(phys, phys_ptr)
 | |
| STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 | |
| STUB_RESET_SYSTEM(phys, phys_ptr)
 | |
| 
 | |
| #define id(arg)	arg
 | |
| 
 | |
| STUB_GET_TIME(virt, id)
 | |
| STUB_SET_TIME(virt, id)
 | |
| STUB_GET_WAKEUP_TIME(virt, id)
 | |
| STUB_SET_WAKEUP_TIME(virt, id)
 | |
| STUB_GET_VARIABLE(virt, id)
 | |
| STUB_GET_NEXT_VARIABLE(virt, id)
 | |
| STUB_SET_VARIABLE(virt, id)
 | |
| STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 | |
| STUB_RESET_SYSTEM(virt, id)
 | |
| 
 | |
| void
 | |
| efi_gettimeofday (struct timespec64 *ts)
 | |
| {
 | |
| 	efi_time_t tm;
 | |
| 
 | |
| 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 | |
| 		memset(ts, 0, sizeof(*ts));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
 | |
| 			    tm.hour, tm.minute, tm.second);
 | |
| 	ts->tv_nsec = tm.nanosecond;
 | |
| }
 | |
| 
 | |
| static int
 | |
| is_memory_available (efi_memory_desc_t *md)
 | |
| {
 | |
| 	if (!(md->attribute & EFI_MEMORY_WB))
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (md->type) {
 | |
| 	      case EFI_LOADER_CODE:
 | |
| 	      case EFI_LOADER_DATA:
 | |
| 	      case EFI_BOOT_SERVICES_CODE:
 | |
| 	      case EFI_BOOT_SERVICES_DATA:
 | |
| 	      case EFI_CONVENTIONAL_MEMORY:
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| typedef struct kern_memdesc {
 | |
| 	u64 attribute;
 | |
| 	u64 start;
 | |
| 	u64 num_pages;
 | |
| } kern_memdesc_t;
 | |
| 
 | |
| static kern_memdesc_t *kern_memmap;
 | |
| 
 | |
| #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
 | |
| 
 | |
| static inline u64
 | |
| kmd_end(kern_memdesc_t *kmd)
 | |
| {
 | |
| 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 | |
| }
 | |
| 
 | |
| static inline u64
 | |
| efi_md_end(efi_memory_desc_t *md)
 | |
| {
 | |
| 	return (md->phys_addr + efi_md_size(md));
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| efi_wb(efi_memory_desc_t *md)
 | |
| {
 | |
| 	return (md->attribute & EFI_MEMORY_WB);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| efi_uc(efi_memory_desc_t *md)
 | |
| {
 | |
| 	return (md->attribute & EFI_MEMORY_UC);
 | |
| }
 | |
| 
 | |
| static void
 | |
| walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 | |
| {
 | |
| 	kern_memdesc_t *k;
 | |
| 	u64 start, end, voff;
 | |
| 
 | |
| 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 | |
| 	for (k = kern_memmap; k->start != ~0UL; k++) {
 | |
| 		if (k->attribute != attr)
 | |
| 			continue;
 | |
| 		start = PAGE_ALIGN(k->start);
 | |
| 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 | |
| 		if (start < end)
 | |
| 			if ((*callback)(start + voff, end + voff, arg) < 0)
 | |
| 				return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the EFI memory map and call CALLBACK once for each EFI memory
 | |
|  * descriptor that has memory that is available for OS use.
 | |
|  */
 | |
| void
 | |
| efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 | |
| {
 | |
| 	walk(callback, arg, EFI_MEMORY_WB);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the EFI memory map and call CALLBACK once for each EFI memory
 | |
|  * descriptor that has memory that is available for uncached allocator.
 | |
|  */
 | |
| void
 | |
| efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 | |
| {
 | |
| 	walk(callback, arg, EFI_MEMORY_UC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look for the PAL_CODE region reported by EFI and map it using an
 | |
|  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 | |
|  * Abstraction Layer chapter 11 in ADAG
 | |
|  */
 | |
| void *
 | |
| efi_get_pal_addr (void)
 | |
| {
 | |
| 	void *efi_map_start, *efi_map_end, *p;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	u64 efi_desc_size;
 | |
| 	int pal_code_count = 0;
 | |
| 	u64 vaddr, mask;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 		if (md->type != EFI_PAL_CODE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (++pal_code_count > 1) {
 | |
| 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 | |
| 			       "dropped @ %llx\n", md->phys_addr);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * The only ITLB entry in region 7 that is used is the one
 | |
| 		 * installed by __start().  That entry covers a 64MB range.
 | |
| 		 */
 | |
| 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 | |
| 		vaddr = PAGE_OFFSET + md->phys_addr;
 | |
| 
 | |
| 		/*
 | |
| 		 * We must check that the PAL mapping won't overlap with the
 | |
| 		 * kernel mapping.
 | |
| 		 *
 | |
| 		 * PAL code is guaranteed to be aligned on a power of 2 between
 | |
| 		 * 4k and 256KB and that only one ITR is needed to map it. This
 | |
| 		 * implies that the PAL code is always aligned on its size,
 | |
| 		 * i.e., the closest matching page size supported by the TLB.
 | |
| 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
 | |
| 		 * it is bigger than 64MB (very unlikely!).  So for now the
 | |
| 		 * following test is enough to determine whether or not we need
 | |
| 		 * a dedicated ITR for the PAL code.
 | |
| 		 */
 | |
| 		if ((vaddr & mask) == (KERNEL_START & mask)) {
 | |
| 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 | |
| 			       __func__);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
 | |
| 			panic("Whoa!  PAL code size bigger than a granule!");
 | |
| 
 | |
| #if EFI_DEBUG
 | |
| 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 | |
| 
 | |
| 		printk(KERN_INFO "CPU %d: mapping PAL code "
 | |
|                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 | |
|                        smp_processor_id(), md->phys_addr,
 | |
|                        md->phys_addr + efi_md_size(md),
 | |
|                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 | |
| #endif
 | |
| 		return __va(md->phys_addr);
 | |
| 	}
 | |
| 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 | |
| 	       __func__);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| static u8 __init palo_checksum(u8 *buffer, u32 length)
 | |
| {
 | |
| 	u8 sum = 0;
 | |
| 	u8 *end = buffer + length;
 | |
| 
 | |
| 	while (buffer < end)
 | |
| 		sum = (u8) (sum + *(buffer++));
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse and handle PALO table which is published at:
 | |
|  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 | |
|  */
 | |
| static void __init handle_palo(unsigned long phys_addr)
 | |
| {
 | |
| 	struct palo_table *palo = __va(phys_addr);
 | |
| 	u8  checksum;
 | |
| 
 | |
| 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 | |
| 		printk(KERN_INFO "PALO signature incorrect.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	checksum = palo_checksum((u8 *)palo, palo->length);
 | |
| 	if (checksum) {
 | |
| 		printk(KERN_INFO "PALO checksum incorrect.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 | |
| }
 | |
| 
 | |
| void
 | |
| efi_map_pal_code (void)
 | |
| {
 | |
| 	void *pal_vaddr = efi_get_pal_addr ();
 | |
| 	u64 psr;
 | |
| 
 | |
| 	if (!pal_vaddr)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cannot write to CRx with PSR.ic=1
 | |
| 	 */
 | |
| 	psr = ia64_clear_ic();
 | |
| 	ia64_itr(0x1, IA64_TR_PALCODE,
 | |
| 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 | |
| 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 | |
| 		 IA64_GRANULE_SHIFT);
 | |
| 	ia64_set_psr(psr);		/* restore psr */
 | |
| }
 | |
| 
 | |
| void __init
 | |
| efi_init (void)
 | |
| {
 | |
| 	void *efi_map_start, *efi_map_end;
 | |
| 	efi_char16_t *c16;
 | |
| 	u64 efi_desc_size;
 | |
| 	char *cp, vendor[100] = "unknown";
 | |
| 	int i;
 | |
| 
 | |
| 	set_bit(EFI_BOOT, &efi.flags);
 | |
| 	set_bit(EFI_64BIT, &efi.flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's too early to be able to use the standard kernel command line
 | |
| 	 * support...
 | |
| 	 */
 | |
| 	for (cp = boot_command_line; *cp; ) {
 | |
| 		if (memcmp(cp, "mem=", 4) == 0) {
 | |
| 			mem_limit = memparse(cp + 4, &cp);
 | |
| 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
 | |
| 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 | |
| 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
 | |
| 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 | |
| 		} else {
 | |
| 			while (*cp != ' ' && *cp)
 | |
| 				++cp;
 | |
| 			while (*cp == ' ')
 | |
| 				++cp;
 | |
| 		}
 | |
| 	}
 | |
| 	if (min_addr != 0UL)
 | |
| 		printk(KERN_INFO "Ignoring memory below %lluMB\n",
 | |
| 		       min_addr >> 20);
 | |
| 	if (max_addr != ~0UL)
 | |
| 		printk(KERN_INFO "Ignoring memory above %lluMB\n",
 | |
| 		       max_addr >> 20);
 | |
| 
 | |
| 	efi.systab = __va(ia64_boot_param->efi_systab);
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify the EFI Table
 | |
| 	 */
 | |
| 	if (efi.systab == NULL)
 | |
| 		panic("Whoa! Can't find EFI system table.\n");
 | |
| 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 | |
| 		panic("Whoa! EFI system table signature incorrect\n");
 | |
| 	if ((efi.systab->hdr.revision >> 16) == 0)
 | |
| 		printk(KERN_WARNING "Warning: EFI system table version "
 | |
| 		       "%d.%02d, expected 1.00 or greater\n",
 | |
| 		       efi.systab->hdr.revision >> 16,
 | |
| 		       efi.systab->hdr.revision & 0xffff);
 | |
| 
 | |
| 	/* Show what we know for posterity */
 | |
| 	c16 = __va(efi.systab->fw_vendor);
 | |
| 	if (c16) {
 | |
| 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
 | |
| 			vendor[i] = *c16++;
 | |
| 		vendor[i] = '\0';
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
 | |
| 	       efi.systab->hdr.revision >> 16,
 | |
| 	       efi.systab->hdr.revision & 0xffff, vendor);
 | |
| 
 | |
| 	palo_phys      = EFI_INVALID_TABLE_ADDR;
 | |
| 
 | |
| 	if (efi_config_init(arch_tables) != 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
 | |
| 		handle_palo(palo_phys);
 | |
| 
 | |
| 	runtime = __va(efi.systab->runtime);
 | |
| 	efi.get_time = phys_get_time;
 | |
| 	efi.set_time = phys_set_time;
 | |
| 	efi.get_wakeup_time = phys_get_wakeup_time;
 | |
| 	efi.set_wakeup_time = phys_set_wakeup_time;
 | |
| 	efi.get_variable = phys_get_variable;
 | |
| 	efi.get_next_variable = phys_get_next_variable;
 | |
| 	efi.set_variable = phys_set_variable;
 | |
| 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 | |
| 	efi.reset_system = phys_reset_system;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| #if EFI_DEBUG
 | |
| 	/* print EFI memory map: */
 | |
| 	{
 | |
| 		efi_memory_desc_t *md;
 | |
| 		void *p;
 | |
| 
 | |
| 		for (i = 0, p = efi_map_start; p < efi_map_end;
 | |
| 		     ++i, p += efi_desc_size)
 | |
| 		{
 | |
| 			const char *unit;
 | |
| 			unsigned long size;
 | |
| 			char buf[64];
 | |
| 
 | |
| 			md = p;
 | |
| 			size = md->num_pages << EFI_PAGE_SHIFT;
 | |
| 
 | |
| 			if ((size >> 40) > 0) {
 | |
| 				size >>= 40;
 | |
| 				unit = "TB";
 | |
| 			} else if ((size >> 30) > 0) {
 | |
| 				size >>= 30;
 | |
| 				unit = "GB";
 | |
| 			} else if ((size >> 20) > 0) {
 | |
| 				size >>= 20;
 | |
| 				unit = "MB";
 | |
| 			} else {
 | |
| 				size >>= 10;
 | |
| 				unit = "KB";
 | |
| 			}
 | |
| 
 | |
| 			printk("mem%02d: %s "
 | |
| 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 | |
| 			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
 | |
| 			       md->phys_addr,
 | |
| 			       md->phys_addr + efi_md_size(md), size, unit);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	efi_map_pal_code();
 | |
| 	efi_enter_virtual_mode();
 | |
| }
 | |
| 
 | |
| void
 | |
| efi_enter_virtual_mode (void)
 | |
| {
 | |
| 	void *efi_map_start, *efi_map_end, *p;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	efi_status_t status;
 | |
| 	u64 efi_desc_size;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 		if (md->attribute & EFI_MEMORY_RUNTIME) {
 | |
| 			/*
 | |
| 			 * Some descriptors have multiple bits set, so the
 | |
| 			 * order of the tests is relevant.
 | |
| 			 */
 | |
| 			if (md->attribute & EFI_MEMORY_WB) {
 | |
| 				md->virt_addr = (u64) __va(md->phys_addr);
 | |
| 			} else if (md->attribute & EFI_MEMORY_UC) {
 | |
| 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 | |
| 			} else if (md->attribute & EFI_MEMORY_WC) {
 | |
| #if 0
 | |
| 				md->virt_addr = ia64_remap(md->phys_addr,
 | |
| 							   (_PAGE_A |
 | |
| 							    _PAGE_P |
 | |
| 							    _PAGE_D |
 | |
| 							    _PAGE_MA_WC |
 | |
| 							    _PAGE_PL_0 |
 | |
| 							    _PAGE_AR_RW));
 | |
| #else
 | |
| 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 | |
| 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 | |
| #endif
 | |
| 			} else if (md->attribute & EFI_MEMORY_WT) {
 | |
| #if 0
 | |
| 				md->virt_addr = ia64_remap(md->phys_addr,
 | |
| 							   (_PAGE_A |
 | |
| 							    _PAGE_P |
 | |
| 							    _PAGE_D |
 | |
| 							    _PAGE_MA_WT |
 | |
| 							    _PAGE_PL_0 |
 | |
| 							    _PAGE_AR_RW));
 | |
| #else
 | |
| 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 | |
| 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 | |
| #endif
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
 | |
| 			       ia64_boot_param->efi_memmap_size,
 | |
| 			       efi_desc_size,
 | |
| 			       ia64_boot_param->efi_memdesc_version,
 | |
| 			       ia64_boot_param->efi_memmap);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		printk(KERN_WARNING "warning: unable to switch EFI into "
 | |
| 		       "virtual mode (status=%lu)\n", status);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that EFI is in virtual mode, we call the EFI functions more
 | |
| 	 * efficiently:
 | |
| 	 */
 | |
| 	efi.get_time = virt_get_time;
 | |
| 	efi.set_time = virt_set_time;
 | |
| 	efi.get_wakeup_time = virt_get_wakeup_time;
 | |
| 	efi.set_wakeup_time = virt_set_wakeup_time;
 | |
| 	efi.get_variable = virt_get_variable;
 | |
| 	efi.get_next_variable = virt_get_next_variable;
 | |
| 	efi.set_variable = virt_set_variable;
 | |
| 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 | |
| 	efi.reset_system = virt_reset_system;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the EFI memory map looking for the I/O port range.  There can only be
 | |
|  * one entry of this type, other I/O port ranges should be described via ACPI.
 | |
|  */
 | |
| u64
 | |
| efi_get_iobase (void)
 | |
| {
 | |
| 	void *efi_map_start, *efi_map_end, *p;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	u64 efi_desc_size;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 | |
| 			if (md->attribute & EFI_MEMORY_UC)
 | |
| 				return md->phys_addr;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct kern_memdesc *
 | |
| kern_memory_descriptor (unsigned long phys_addr)
 | |
| {
 | |
| 	struct kern_memdesc *md;
 | |
| 
 | |
| 	for (md = kern_memmap; md->start != ~0UL; md++) {
 | |
| 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 | |
| 			 return md;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static efi_memory_desc_t *
 | |
| efi_memory_descriptor (unsigned long phys_addr)
 | |
| {
 | |
| 	void *efi_map_start, *efi_map_end, *p;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	u64 efi_desc_size;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 
 | |
| 		if (phys_addr - md->phys_addr < efi_md_size(md))
 | |
| 			 return md;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int
 | |
| efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 | |
| {
 | |
| 	void *efi_map_start, *efi_map_end, *p;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	u64 efi_desc_size;
 | |
| 	unsigned long end;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	end = phys_addr + size;
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| efi_mem_type (unsigned long phys_addr)
 | |
| {
 | |
| 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 | |
| 
 | |
| 	if (md)
 | |
| 		return md->type;
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| u64
 | |
| efi_mem_attributes (unsigned long phys_addr)
 | |
| {
 | |
| 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 | |
| 
 | |
| 	if (md)
 | |
| 		return md->attribute;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(efi_mem_attributes);
 | |
| 
 | |
| u64
 | |
| efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long end = phys_addr + size;
 | |
| 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 | |
| 	u64 attr;
 | |
| 
 | |
| 	if (!md)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 | |
| 	 * the kernel that firmware needs this region mapped.
 | |
| 	 */
 | |
| 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 | |
| 	do {
 | |
| 		unsigned long md_end = efi_md_end(md);
 | |
| 
 | |
| 		if (end <= md_end)
 | |
| 			return attr;
 | |
| 
 | |
| 		md = efi_memory_descriptor(md_end);
 | |
| 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 | |
| 			return 0;
 | |
| 	} while (md);
 | |
| 	return 0;	/* never reached */
 | |
| }
 | |
| 
 | |
| u64
 | |
| kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long end = phys_addr + size;
 | |
| 	struct kern_memdesc *md;
 | |
| 	u64 attr;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a hack for ioremap calls before we set up kern_memmap.
 | |
| 	 * Maybe we should do efi_memmap_init() earlier instead.
 | |
| 	 */
 | |
| 	if (!kern_memmap) {
 | |
| 		attr = efi_mem_attribute(phys_addr, size);
 | |
| 		if (attr & EFI_MEMORY_WB)
 | |
| 			return EFI_MEMORY_WB;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	md = kern_memory_descriptor(phys_addr);
 | |
| 	if (!md)
 | |
| 		return 0;
 | |
| 
 | |
| 	attr = md->attribute;
 | |
| 	do {
 | |
| 		unsigned long md_end = kmd_end(md);
 | |
| 
 | |
| 		if (end <= md_end)
 | |
| 			return attr;
 | |
| 
 | |
| 		md = kern_memory_descriptor(md_end);
 | |
| 		if (!md || md->attribute != attr)
 | |
| 			return 0;
 | |
| 	} while (md);
 | |
| 	return 0;	/* never reached */
 | |
| }
 | |
| EXPORT_SYMBOL(kern_mem_attribute);
 | |
| 
 | |
| int
 | |
| valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 | |
| {
 | |
| 	u64 attr;
 | |
| 
 | |
| 	/*
 | |
| 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
 | |
| 	 * uses a granule-sized kernel identity mapping.  It's really
 | |
| 	 * only safe to do this for regions in kern_memmap.  For more
 | |
| 	 * details, see Documentation/ia64/aliasing.txt.
 | |
| 	 */
 | |
| 	attr = kern_mem_attribute(phys_addr, size);
 | |
| 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 | |
| {
 | |
| 	unsigned long phys_addr = pfn << PAGE_SHIFT;
 | |
| 	u64 attr;
 | |
| 
 | |
| 	attr = efi_mem_attribute(phys_addr, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
 | |
| 	 * granule, but the entire region we're mapping must support the same
 | |
| 	 * attribute.
 | |
| 	 */
 | |
| 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel firmware doesn't tell us about all the MMIO regions, so
 | |
| 	 * in general we have to allow mmap requests.  But if EFI *does*
 | |
| 	 * tell us about anything inside this region, we should deny it.
 | |
| 	 * The user can always map a smaller region to avoid the overlap.
 | |
| 	 */
 | |
| 	if (efi_memmap_intersects(phys_addr, size))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| pgprot_t
 | |
| phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 | |
| 		     pgprot_t vma_prot)
 | |
| {
 | |
| 	unsigned long phys_addr = pfn << PAGE_SHIFT;
 | |
| 	u64 attr;
 | |
| 
 | |
| 	/*
 | |
| 	 * For /dev/mem mmap, we use user mappings, but if the region is
 | |
| 	 * in kern_memmap (and hence may be covered by a kernel mapping),
 | |
| 	 * we must use the same attribute as the kernel mapping.
 | |
| 	 */
 | |
| 	attr = kern_mem_attribute(phys_addr, size);
 | |
| 	if (attr & EFI_MEMORY_WB)
 | |
| 		return pgprot_cacheable(vma_prot);
 | |
| 	else if (attr & EFI_MEMORY_UC)
 | |
| 		return pgprot_noncached(vma_prot);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some chipsets don't support UC access to memory.  If
 | |
| 	 * WB is supported, we prefer that.
 | |
| 	 */
 | |
| 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 | |
| 		return pgprot_cacheable(vma_prot);
 | |
| 
 | |
| 	return pgprot_noncached(vma_prot);
 | |
| }
 | |
| 
 | |
| int __init
 | |
| efi_uart_console_only(void)
 | |
| {
 | |
| 	efi_status_t status;
 | |
| 	char *s, name[] = "ConOut";
 | |
| 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 | |
| 	efi_char16_t *utf16, name_utf16[32];
 | |
| 	unsigned char data[1024];
 | |
| 	unsigned long size = sizeof(data);
 | |
| 	struct efi_generic_dev_path *hdr, *end_addr;
 | |
| 	int uart = 0;
 | |
| 
 | |
| 	/* Convert to UTF-16 */
 | |
| 	utf16 = name_utf16;
 | |
| 	s = name;
 | |
| 	while (*s)
 | |
| 		*utf16++ = *s++ & 0x7f;
 | |
| 	*utf16 = 0;
 | |
| 
 | |
| 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		printk(KERN_ERR "No EFI %s variable?\n", name);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	hdr = (struct efi_generic_dev_path *) data;
 | |
| 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 | |
| 	while (hdr < end_addr) {
 | |
| 		if (hdr->type == EFI_DEV_MSG &&
 | |
| 		    hdr->sub_type == EFI_DEV_MSG_UART)
 | |
| 			uart = 1;
 | |
| 		else if (hdr->type == EFI_DEV_END_PATH ||
 | |
| 			  hdr->type == EFI_DEV_END_PATH2) {
 | |
| 			if (!uart)
 | |
| 				return 0;
 | |
| 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 | |
| 				return 1;
 | |
| 			uart = 0;
 | |
| 		}
 | |
| 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 | |
| 	}
 | |
| 	printk(KERN_ERR "Malformed %s value\n", name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look for the first granule aligned memory descriptor memory
 | |
|  * that is big enough to hold EFI memory map. Make sure this
 | |
|  * descriptor is at least granule sized so it does not get trimmed
 | |
|  */
 | |
| struct kern_memdesc *
 | |
| find_memmap_space (void)
 | |
| {
 | |
| 	u64	contig_low=0, contig_high=0;
 | |
| 	u64	as = 0, ae;
 | |
| 	void *efi_map_start, *efi_map_end, *p, *q;
 | |
| 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
 | |
| 	u64	space_needed, efi_desc_size;
 | |
| 	unsigned long total_mem = 0;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
 | |
| 	 * (if every entry has a WB part in the middle, and UC head and tail),
 | |
| 	 * plus one for the end marker.
 | |
| 	 */
 | |
| 	space_needed = sizeof(kern_memdesc_t) *
 | |
| 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 		if (!efi_wb(md)) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pmd == NULL || !efi_wb(pmd) ||
 | |
| 		    efi_md_end(pmd) != md->phys_addr) {
 | |
| 			contig_low = GRANULEROUNDUP(md->phys_addr);
 | |
| 			contig_high = efi_md_end(md);
 | |
| 			for (q = p + efi_desc_size; q < efi_map_end;
 | |
| 			     q += efi_desc_size) {
 | |
| 				check_md = q;
 | |
| 				if (!efi_wb(check_md))
 | |
| 					break;
 | |
| 				if (contig_high != check_md->phys_addr)
 | |
| 					break;
 | |
| 				contig_high = efi_md_end(check_md);
 | |
| 			}
 | |
| 			contig_high = GRANULEROUNDDOWN(contig_high);
 | |
| 		}
 | |
| 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Round ends inward to granule boundaries */
 | |
| 		as = max(contig_low, md->phys_addr);
 | |
| 		ae = min(contig_high, efi_md_end(md));
 | |
| 
 | |
| 		/* keep within max_addr= and min_addr= command line arg */
 | |
| 		as = max(as, min_addr);
 | |
| 		ae = min(ae, max_addr);
 | |
| 		if (ae <= as)
 | |
| 			continue;
 | |
| 
 | |
| 		/* avoid going over mem= command line arg */
 | |
| 		if (total_mem + (ae - as) > mem_limit)
 | |
| 			ae -= total_mem + (ae - as) - mem_limit;
 | |
| 
 | |
| 		if (ae <= as)
 | |
| 			continue;
 | |
| 
 | |
| 		if (ae - as > space_needed)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (p >= efi_map_end)
 | |
| 		panic("Can't allocate space for kernel memory descriptors");
 | |
| 
 | |
| 	return __va(as);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the EFI memory map and gather all memory available for kernel
 | |
|  * to use.  We can allocate partial granules only if the unavailable
 | |
|  * parts exist, and are WB.
 | |
|  */
 | |
| unsigned long
 | |
| efi_memmap_init(u64 *s, u64 *e)
 | |
| {
 | |
| 	struct kern_memdesc *k, *prev = NULL;
 | |
| 	u64	contig_low=0, contig_high=0;
 | |
| 	u64	as, ae, lim;
 | |
| 	void *efi_map_start, *efi_map_end, *p, *q;
 | |
| 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
 | |
| 	u64	efi_desc_size;
 | |
| 	unsigned long total_mem = 0;
 | |
| 
 | |
| 	k = kern_memmap = find_memmap_space();
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 		if (!efi_wb(md)) {
 | |
| 			if (efi_uc(md) &&
 | |
| 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
 | |
| 			     md->type == EFI_BOOT_SERVICES_DATA)) {
 | |
| 				k->attribute = EFI_MEMORY_UC;
 | |
| 				k->start = md->phys_addr;
 | |
| 				k->num_pages = md->num_pages;
 | |
| 				k++;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (pmd == NULL || !efi_wb(pmd) ||
 | |
| 		    efi_md_end(pmd) != md->phys_addr) {
 | |
| 			contig_low = GRANULEROUNDUP(md->phys_addr);
 | |
| 			contig_high = efi_md_end(md);
 | |
| 			for (q = p + efi_desc_size; q < efi_map_end;
 | |
| 			     q += efi_desc_size) {
 | |
| 				check_md = q;
 | |
| 				if (!efi_wb(check_md))
 | |
| 					break;
 | |
| 				if (contig_high != check_md->phys_addr)
 | |
| 					break;
 | |
| 				contig_high = efi_md_end(check_md);
 | |
| 			}
 | |
| 			contig_high = GRANULEROUNDDOWN(contig_high);
 | |
| 		}
 | |
| 		if (!is_memory_available(md))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Round ends inward to granule boundaries
 | |
| 		 * Give trimmings to uncached allocator
 | |
| 		 */
 | |
| 		if (md->phys_addr < contig_low) {
 | |
| 			lim = min(efi_md_end(md), contig_low);
 | |
| 			if (efi_uc(md)) {
 | |
| 				if (k > kern_memmap &&
 | |
| 				    (k-1)->attribute == EFI_MEMORY_UC &&
 | |
| 				    kmd_end(k-1) == md->phys_addr) {
 | |
| 					(k-1)->num_pages +=
 | |
| 						(lim - md->phys_addr)
 | |
| 						>> EFI_PAGE_SHIFT;
 | |
| 				} else {
 | |
| 					k->attribute = EFI_MEMORY_UC;
 | |
| 					k->start = md->phys_addr;
 | |
| 					k->num_pages = (lim - md->phys_addr)
 | |
| 						>> EFI_PAGE_SHIFT;
 | |
| 					k++;
 | |
| 				}
 | |
| 			}
 | |
| 			as = contig_low;
 | |
| 		} else
 | |
| 			as = md->phys_addr;
 | |
| 
 | |
| 		if (efi_md_end(md) > contig_high) {
 | |
| 			lim = max(md->phys_addr, contig_high);
 | |
| 			if (efi_uc(md)) {
 | |
| 				if (lim == md->phys_addr && k > kern_memmap &&
 | |
| 				    (k-1)->attribute == EFI_MEMORY_UC &&
 | |
| 				    kmd_end(k-1) == md->phys_addr) {
 | |
| 					(k-1)->num_pages += md->num_pages;
 | |
| 				} else {
 | |
| 					k->attribute = EFI_MEMORY_UC;
 | |
| 					k->start = lim;
 | |
| 					k->num_pages = (efi_md_end(md) - lim)
 | |
| 						>> EFI_PAGE_SHIFT;
 | |
| 					k++;
 | |
| 				}
 | |
| 			}
 | |
| 			ae = contig_high;
 | |
| 		} else
 | |
| 			ae = efi_md_end(md);
 | |
| 
 | |
| 		/* keep within max_addr= and min_addr= command line arg */
 | |
| 		as = max(as, min_addr);
 | |
| 		ae = min(ae, max_addr);
 | |
| 		if (ae <= as)
 | |
| 			continue;
 | |
| 
 | |
| 		/* avoid going over mem= command line arg */
 | |
| 		if (total_mem + (ae - as) > mem_limit)
 | |
| 			ae -= total_mem + (ae - as) - mem_limit;
 | |
| 
 | |
| 		if (ae <= as)
 | |
| 			continue;
 | |
| 		if (prev && kmd_end(prev) == md->phys_addr) {
 | |
| 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
 | |
| 			total_mem += ae - as;
 | |
| 			continue;
 | |
| 		}
 | |
| 		k->attribute = EFI_MEMORY_WB;
 | |
| 		k->start = as;
 | |
| 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
 | |
| 		total_mem += ae - as;
 | |
| 		prev = k++;
 | |
| 	}
 | |
| 	k->start = ~0L; /* end-marker */
 | |
| 
 | |
| 	/* reserve the memory we are using for kern_memmap */
 | |
| 	*s = (u64)kern_memmap;
 | |
| 	*e = (u64)++k;
 | |
| 
 | |
| 	return total_mem;
 | |
| }
 | |
| 
 | |
| void
 | |
| efi_initialize_iomem_resources(struct resource *code_resource,
 | |
| 			       struct resource *data_resource,
 | |
| 			       struct resource *bss_resource)
 | |
| {
 | |
| 	struct resource *res;
 | |
| 	void *efi_map_start, *efi_map_end, *p;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	u64 efi_desc_size;
 | |
| 	char *name;
 | |
| 	unsigned long flags, desc;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	res = NULL;
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 
 | |
| 		if (md->num_pages == 0) /* should not happen */
 | |
| 			continue;
 | |
| 
 | |
| 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 | |
| 		desc = IORES_DESC_NONE;
 | |
| 
 | |
| 		switch (md->type) {
 | |
| 
 | |
| 			case EFI_MEMORY_MAPPED_IO:
 | |
| 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
 | |
| 				continue;
 | |
| 
 | |
| 			case EFI_LOADER_CODE:
 | |
| 			case EFI_LOADER_DATA:
 | |
| 			case EFI_BOOT_SERVICES_DATA:
 | |
| 			case EFI_BOOT_SERVICES_CODE:
 | |
| 			case EFI_CONVENTIONAL_MEMORY:
 | |
| 				if (md->attribute & EFI_MEMORY_WP) {
 | |
| 					name = "System ROM";
 | |
| 					flags |= IORESOURCE_READONLY;
 | |
| 				} else if (md->attribute == EFI_MEMORY_UC) {
 | |
| 					name = "Uncached RAM";
 | |
| 				} else {
 | |
| 					name = "System RAM";
 | |
| 					flags |= IORESOURCE_SYSRAM;
 | |
| 				}
 | |
| 				break;
 | |
| 
 | |
| 			case EFI_ACPI_MEMORY_NVS:
 | |
| 				name = "ACPI Non-volatile Storage";
 | |
| 				desc = IORES_DESC_ACPI_NV_STORAGE;
 | |
| 				break;
 | |
| 
 | |
| 			case EFI_UNUSABLE_MEMORY:
 | |
| 				name = "reserved";
 | |
| 				flags |= IORESOURCE_DISABLED;
 | |
| 				break;
 | |
| 
 | |
| 			case EFI_PERSISTENT_MEMORY:
 | |
| 				name = "Persistent Memory";
 | |
| 				desc = IORES_DESC_PERSISTENT_MEMORY;
 | |
| 				break;
 | |
| 
 | |
| 			case EFI_RESERVED_TYPE:
 | |
| 			case EFI_RUNTIME_SERVICES_CODE:
 | |
| 			case EFI_RUNTIME_SERVICES_DATA:
 | |
| 			case EFI_ACPI_RECLAIM_MEMORY:
 | |
| 			default:
 | |
| 				name = "reserved";
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if ((res = kzalloc(sizeof(struct resource),
 | |
| 				   GFP_KERNEL)) == NULL) {
 | |
| 			printk(KERN_ERR
 | |
| 			       "failed to allocate resource for iomem\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		res->name = name;
 | |
| 		res->start = md->phys_addr;
 | |
| 		res->end = md->phys_addr + efi_md_size(md) - 1;
 | |
| 		res->flags = flags;
 | |
| 		res->desc = desc;
 | |
| 
 | |
| 		if (insert_resource(&iomem_resource, res) < 0)
 | |
| 			kfree(res);
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * We don't know which region contains
 | |
| 			 * kernel data so we try it repeatedly and
 | |
| 			 * let the resource manager test it.
 | |
| 			 */
 | |
| 			insert_resource(res, code_resource);
 | |
| 			insert_resource(res, data_resource);
 | |
| 			insert_resource(res, bss_resource);
 | |
| #ifdef CONFIG_KEXEC
 | |
|                         insert_resource(res, &efi_memmap_res);
 | |
|                         insert_resource(res, &boot_param_res);
 | |
| 			if (crashk_res.end > crashk_res.start)
 | |
| 				insert_resource(res, &crashk_res);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KEXEC
 | |
| /* find a block of memory aligned to 64M exclude reserved regions
 | |
|    rsvd_regions are sorted
 | |
|  */
 | |
| unsigned long __init
 | |
| kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 start, end;
 | |
| 	u64 alignment = 1UL << _PAGE_SIZE_64M;
 | |
| 	void *efi_map_start, *efi_map_end, *p;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	u64 efi_desc_size;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 		if (!efi_wb(md))
 | |
| 			continue;
 | |
| 		start = ALIGN(md->phys_addr, alignment);
 | |
| 		end = efi_md_end(md);
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
 | |
| 				if (__pa(r[i].start) > start + size)
 | |
| 					return start;
 | |
| 				start = ALIGN(__pa(r[i].end), alignment);
 | |
| 				if (i < n-1 &&
 | |
| 				    __pa(r[i+1].start) < start + size)
 | |
| 					continue;
 | |
| 				else
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (end > start + size)
 | |
| 			return start;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_WARNING
 | |
| 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
 | |
| 	return ~0UL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CRASH_DUMP
 | |
| /* locate the size find a the descriptor at a certain address */
 | |
| unsigned long __init
 | |
| vmcore_find_descriptor_size (unsigned long address)
 | |
| {
 | |
| 	void *efi_map_start, *efi_map_end, *p;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	u64 efi_desc_size;
 | |
| 	unsigned long ret = 0;
 | |
| 
 | |
| 	efi_map_start = __va(ia64_boot_param->efi_memmap);
 | |
| 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 | |
| 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
 | |
| 
 | |
| 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 | |
| 		md = p;
 | |
| 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
 | |
| 		    && md->phys_addr == address) {
 | |
| 			ret = efi_md_size(md);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | 
