936 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			936 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Intel PCH/PCU SPI flash driver.
 | |
|  *
 | |
|  * Copyright (C) 2016, Intel Corporation
 | |
|  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/err.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/iopoll.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| #include <linux/mtd/spi-nor.h>
 | |
| #include <linux/platform_data/intel-spi.h>
 | |
| 
 | |
| #include "intel-spi.h"
 | |
| 
 | |
| /* Offsets are from @ispi->base */
 | |
| #define BFPREG				0x00
 | |
| 
 | |
| #define HSFSTS_CTL			0x04
 | |
| #define HSFSTS_CTL_FSMIE		BIT(31)
 | |
| #define HSFSTS_CTL_FDBC_SHIFT		24
 | |
| #define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT)
 | |
| 
 | |
| #define HSFSTS_CTL_FCYCLE_SHIFT		17
 | |
| #define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
 | |
| /* HW sequencer opcodes */
 | |
| #define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
 | |
| #define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
 | |
| #define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
 | |
| #define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
 | |
| #define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
 | |
| #define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
 | |
| #define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
 | |
| 
 | |
| #define HSFSTS_CTL_FGO			BIT(16)
 | |
| #define HSFSTS_CTL_FLOCKDN		BIT(15)
 | |
| #define HSFSTS_CTL_FDV			BIT(14)
 | |
| #define HSFSTS_CTL_SCIP			BIT(5)
 | |
| #define HSFSTS_CTL_AEL			BIT(2)
 | |
| #define HSFSTS_CTL_FCERR		BIT(1)
 | |
| #define HSFSTS_CTL_FDONE		BIT(0)
 | |
| 
 | |
| #define FADDR				0x08
 | |
| #define DLOCK				0x0c
 | |
| #define FDATA(n)			(0x10 + ((n) * 4))
 | |
| 
 | |
| #define FRACC				0x50
 | |
| 
 | |
| #define FREG(n)				(0x54 + ((n) * 4))
 | |
| #define FREG_BASE_MASK			0x3fff
 | |
| #define FREG_LIMIT_SHIFT		16
 | |
| #define FREG_LIMIT_MASK			(0x03fff << FREG_LIMIT_SHIFT)
 | |
| 
 | |
| /* Offset is from @ispi->pregs */
 | |
| #define PR(n)				((n) * 4)
 | |
| #define PR_WPE				BIT(31)
 | |
| #define PR_LIMIT_SHIFT			16
 | |
| #define PR_LIMIT_MASK			(0x3fff << PR_LIMIT_SHIFT)
 | |
| #define PR_RPE				BIT(15)
 | |
| #define PR_BASE_MASK			0x3fff
 | |
| 
 | |
| /* Offsets are from @ispi->sregs */
 | |
| #define SSFSTS_CTL			0x00
 | |
| #define SSFSTS_CTL_FSMIE		BIT(23)
 | |
| #define SSFSTS_CTL_DS			BIT(22)
 | |
| #define SSFSTS_CTL_DBC_SHIFT		16
 | |
| #define SSFSTS_CTL_SPOP			BIT(11)
 | |
| #define SSFSTS_CTL_ACS			BIT(10)
 | |
| #define SSFSTS_CTL_SCGO			BIT(9)
 | |
| #define SSFSTS_CTL_COP_SHIFT		12
 | |
| #define SSFSTS_CTL_FRS			BIT(7)
 | |
| #define SSFSTS_CTL_DOFRS		BIT(6)
 | |
| #define SSFSTS_CTL_AEL			BIT(4)
 | |
| #define SSFSTS_CTL_FCERR		BIT(3)
 | |
| #define SSFSTS_CTL_FDONE		BIT(2)
 | |
| #define SSFSTS_CTL_SCIP			BIT(0)
 | |
| 
 | |
| #define PREOP_OPTYPE			0x04
 | |
| #define OPMENU0				0x08
 | |
| #define OPMENU1				0x0c
 | |
| 
 | |
| #define OPTYPE_READ_NO_ADDR		0
 | |
| #define OPTYPE_WRITE_NO_ADDR		1
 | |
| #define OPTYPE_READ_WITH_ADDR		2
 | |
| #define OPTYPE_WRITE_WITH_ADDR		3
 | |
| 
 | |
| /* CPU specifics */
 | |
| #define BYT_PR				0x74
 | |
| #define BYT_SSFSTS_CTL			0x90
 | |
| #define BYT_BCR				0xfc
 | |
| #define BYT_BCR_WPD			BIT(0)
 | |
| #define BYT_FREG_NUM			5
 | |
| #define BYT_PR_NUM			5
 | |
| 
 | |
| #define LPT_PR				0x74
 | |
| #define LPT_SSFSTS_CTL			0x90
 | |
| #define LPT_FREG_NUM			5
 | |
| #define LPT_PR_NUM			5
 | |
| 
 | |
| #define BXT_PR				0x84
 | |
| #define BXT_SSFSTS_CTL			0xa0
 | |
| #define BXT_FREG_NUM			12
 | |
| #define BXT_PR_NUM			6
 | |
| 
 | |
| #define LVSCC				0xc4
 | |
| #define UVSCC				0xc8
 | |
| #define ERASE_OPCODE_SHIFT		8
 | |
| #define ERASE_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
 | |
| #define ERASE_64K_OPCODE_SHIFT		16
 | |
| #define ERASE_64K_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
 | |
| 
 | |
| #define INTEL_SPI_TIMEOUT		5000 /* ms */
 | |
| #define INTEL_SPI_FIFO_SZ		64
 | |
| 
 | |
| /**
 | |
|  * struct intel_spi - Driver private data
 | |
|  * @dev: Device pointer
 | |
|  * @info: Pointer to board specific info
 | |
|  * @nor: SPI NOR layer structure
 | |
|  * @base: Beginning of MMIO space
 | |
|  * @pregs: Start of protection registers
 | |
|  * @sregs: Start of software sequencer registers
 | |
|  * @nregions: Maximum number of regions
 | |
|  * @pr_num: Maximum number of protected range registers
 | |
|  * @writeable: Is the chip writeable
 | |
|  * @locked: Is SPI setting locked
 | |
|  * @swseq_reg: Use SW sequencer in register reads/writes
 | |
|  * @swseq_erase: Use SW sequencer in erase operation
 | |
|  * @erase_64k: 64k erase supported
 | |
|  * @atomic_preopcode: Holds preopcode when atomic sequence is requested
 | |
|  * @opcodes: Opcodes which are supported. This are programmed by BIOS
 | |
|  *           before it locks down the controller.
 | |
|  */
 | |
| struct intel_spi {
 | |
| 	struct device *dev;
 | |
| 	const struct intel_spi_boardinfo *info;
 | |
| 	struct spi_nor nor;
 | |
| 	void __iomem *base;
 | |
| 	void __iomem *pregs;
 | |
| 	void __iomem *sregs;
 | |
| 	size_t nregions;
 | |
| 	size_t pr_num;
 | |
| 	bool writeable;
 | |
| 	bool locked;
 | |
| 	bool swseq_reg;
 | |
| 	bool swseq_erase;
 | |
| 	bool erase_64k;
 | |
| 	u8 atomic_preopcode;
 | |
| 	u8 opcodes[8];
 | |
| };
 | |
| 
 | |
| static bool writeable;
 | |
| module_param(writeable, bool, 0);
 | |
| MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
 | |
| 
 | |
| static void intel_spi_dump_regs(struct intel_spi *ispi)
 | |
| {
 | |
| 	u32 value;
 | |
| 	int i;
 | |
| 
 | |
| 	dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
 | |
| 
 | |
| 	value = readl(ispi->base + HSFSTS_CTL);
 | |
| 	dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
 | |
| 	if (value & HSFSTS_CTL_FLOCKDN)
 | |
| 		dev_dbg(ispi->dev, "-> Locked\n");
 | |
| 
 | |
| 	dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
 | |
| 	dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
 | |
| 
 | |
| 	for (i = 0; i < 16; i++)
 | |
| 		dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
 | |
| 			i, readl(ispi->base + FDATA(i)));
 | |
| 
 | |
| 	dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
 | |
| 
 | |
| 	for (i = 0; i < ispi->nregions; i++)
 | |
| 		dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
 | |
| 			readl(ispi->base + FREG(i)));
 | |
| 	for (i = 0; i < ispi->pr_num; i++)
 | |
| 		dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
 | |
| 			readl(ispi->pregs + PR(i)));
 | |
| 
 | |
| 	value = readl(ispi->sregs + SSFSTS_CTL);
 | |
| 	dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
 | |
| 	dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
 | |
| 		readl(ispi->sregs + PREOP_OPTYPE));
 | |
| 	dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
 | |
| 	dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));
 | |
| 
 | |
| 	if (ispi->info->type == INTEL_SPI_BYT)
 | |
| 		dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
 | |
| 
 | |
| 	dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
 | |
| 	dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
 | |
| 
 | |
| 	dev_dbg(ispi->dev, "Protected regions:\n");
 | |
| 	for (i = 0; i < ispi->pr_num; i++) {
 | |
| 		u32 base, limit;
 | |
| 
 | |
| 		value = readl(ispi->pregs + PR(i));
 | |
| 		if (!(value & (PR_WPE | PR_RPE)))
 | |
| 			continue;
 | |
| 
 | |
| 		limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
 | |
| 		base = value & PR_BASE_MASK;
 | |
| 
 | |
| 		dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
 | |
| 			 i, base << 12, (limit << 12) | 0xfff,
 | |
| 			 value & PR_WPE ? 'W' : '.',
 | |
| 			 value & PR_RPE ? 'R' : '.');
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(ispi->dev, "Flash regions:\n");
 | |
| 	for (i = 0; i < ispi->nregions; i++) {
 | |
| 		u32 region, base, limit;
 | |
| 
 | |
| 		region = readl(ispi->base + FREG(i));
 | |
| 		base = region & FREG_BASE_MASK;
 | |
| 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
 | |
| 
 | |
| 		if (base >= limit || (i > 0 && limit == 0))
 | |
| 			dev_dbg(ispi->dev, " %02d disabled\n", i);
 | |
| 		else
 | |
| 			dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
 | |
| 				 i, base << 12, (limit << 12) | 0xfff);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
 | |
| 		ispi->swseq_reg ? 'S' : 'H');
 | |
| 	dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
 | |
| 		ispi->swseq_erase ? 'S' : 'H');
 | |
| }
 | |
| 
 | |
| /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
 | |
| static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (size > INTEL_SPI_FIFO_SZ)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	while (size > 0) {
 | |
| 		bytes = min_t(size_t, size, 4);
 | |
| 		memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
 | |
| 		size -= bytes;
 | |
| 		buf += bytes;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
 | |
| static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
 | |
| 				 size_t size)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (size > INTEL_SPI_FIFO_SZ)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	while (size > 0) {
 | |
| 		bytes = min_t(size_t, size, 4);
 | |
| 		memcpy_toio(ispi->base + FDATA(i), buf, bytes);
 | |
| 		size -= bytes;
 | |
| 		buf += bytes;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
 | |
| 				  !(val & HSFSTS_CTL_SCIP), 40,
 | |
| 				  INTEL_SPI_TIMEOUT * 1000);
 | |
| }
 | |
| 
 | |
| static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
 | |
| 				  !(val & SSFSTS_CTL_SCIP), 40,
 | |
| 				  INTEL_SPI_TIMEOUT * 1000);
 | |
| }
 | |
| 
 | |
| static int intel_spi_init(struct intel_spi *ispi)
 | |
| {
 | |
| 	u32 opmenu0, opmenu1, lvscc, uvscc, val;
 | |
| 	int i;
 | |
| 
 | |
| 	switch (ispi->info->type) {
 | |
| 	case INTEL_SPI_BYT:
 | |
| 		ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
 | |
| 		ispi->pregs = ispi->base + BYT_PR;
 | |
| 		ispi->nregions = BYT_FREG_NUM;
 | |
| 		ispi->pr_num = BYT_PR_NUM;
 | |
| 		ispi->swseq_reg = true;
 | |
| 
 | |
| 		if (writeable) {
 | |
| 			/* Disable write protection */
 | |
| 			val = readl(ispi->base + BYT_BCR);
 | |
| 			if (!(val & BYT_BCR_WPD)) {
 | |
| 				val |= BYT_BCR_WPD;
 | |
| 				writel(val, ispi->base + BYT_BCR);
 | |
| 				val = readl(ispi->base + BYT_BCR);
 | |
| 			}
 | |
| 
 | |
| 			ispi->writeable = !!(val & BYT_BCR_WPD);
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_SPI_LPT:
 | |
| 		ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
 | |
| 		ispi->pregs = ispi->base + LPT_PR;
 | |
| 		ispi->nregions = LPT_FREG_NUM;
 | |
| 		ispi->pr_num = LPT_PR_NUM;
 | |
| 		ispi->swseq_reg = true;
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_SPI_BXT:
 | |
| 		ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
 | |
| 		ispi->pregs = ispi->base + BXT_PR;
 | |
| 		ispi->nregions = BXT_FREG_NUM;
 | |
| 		ispi->pr_num = BXT_PR_NUM;
 | |
| 		ispi->erase_64k = true;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Disable #SMI generation from HW sequencer */
 | |
| 	val = readl(ispi->base + HSFSTS_CTL);
 | |
| 	val &= ~HSFSTS_CTL_FSMIE;
 | |
| 	writel(val, ispi->base + HSFSTS_CTL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine whether erase operation should use HW or SW sequencer.
 | |
| 	 *
 | |
| 	 * The HW sequencer has a predefined list of opcodes, with only the
 | |
| 	 * erase opcode being programmable in LVSCC and UVSCC registers.
 | |
| 	 * If these registers don't contain a valid erase opcode, erase
 | |
| 	 * cannot be done using HW sequencer.
 | |
| 	 */
 | |
| 	lvscc = readl(ispi->base + LVSCC);
 | |
| 	uvscc = readl(ispi->base + UVSCC);
 | |
| 	if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
 | |
| 		ispi->swseq_erase = true;
 | |
| 	/* SPI controller on Intel BXT supports 64K erase opcode */
 | |
| 	if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
 | |
| 		if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
 | |
| 		    !(uvscc & ERASE_64K_OPCODE_MASK))
 | |
| 			ispi->erase_64k = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some controllers can only do basic operations using hardware
 | |
| 	 * sequencer. All other operations are supposed to be carried out
 | |
| 	 * using software sequencer.
 | |
| 	 */
 | |
| 	if (ispi->swseq_reg) {
 | |
| 		/* Disable #SMI generation from SW sequencer */
 | |
| 		val = readl(ispi->sregs + SSFSTS_CTL);
 | |
| 		val &= ~SSFSTS_CTL_FSMIE;
 | |
| 		writel(val, ispi->sregs + SSFSTS_CTL);
 | |
| 	}
 | |
| 
 | |
| 	/* Check controller's lock status */
 | |
| 	val = readl(ispi->base + HSFSTS_CTL);
 | |
| 	ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
 | |
| 
 | |
| 	if (ispi->locked) {
 | |
| 		/*
 | |
| 		 * BIOS programs allowed opcodes and then locks down the
 | |
| 		 * register. So read back what opcodes it decided to support.
 | |
| 		 * That's the set we are going to support as well.
 | |
| 		 */
 | |
| 		opmenu0 = readl(ispi->sregs + OPMENU0);
 | |
| 		opmenu1 = readl(ispi->sregs + OPMENU1);
 | |
| 
 | |
| 		if (opmenu0 && opmenu1) {
 | |
| 			for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
 | |
| 				ispi->opcodes[i] = opmenu0 >> i * 8;
 | |
| 				ispi->opcodes[i + 4] = opmenu1 >> i * 8;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	intel_spi_dump_regs(ispi);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
 | |
| {
 | |
| 	int i;
 | |
| 	int preop;
 | |
| 
 | |
| 	if (ispi->locked) {
 | |
| 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
 | |
| 			if (ispi->opcodes[i] == opcode)
 | |
| 				return i;
 | |
| 
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* The lock is off, so just use index 0 */
 | |
| 	writel(opcode, ispi->sregs + OPMENU0);
 | |
| 	preop = readw(ispi->sregs + PREOP_OPTYPE);
 | |
| 	writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len)
 | |
| {
 | |
| 	u32 val, status;
 | |
| 	int ret;
 | |
| 
 | |
| 	val = readl(ispi->base + HSFSTS_CTL);
 | |
| 	val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
 | |
| 
 | |
| 	switch (opcode) {
 | |
| 	case SPINOR_OP_RDID:
 | |
| 		val |= HSFSTS_CTL_FCYCLE_RDID;
 | |
| 		break;
 | |
| 	case SPINOR_OP_WRSR:
 | |
| 		val |= HSFSTS_CTL_FCYCLE_WRSR;
 | |
| 		break;
 | |
| 	case SPINOR_OP_RDSR:
 | |
| 		val |= HSFSTS_CTL_FCYCLE_RDSR;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (len > INTEL_SPI_FIFO_SZ)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
 | |
| 	val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
 | |
| 	val |= HSFSTS_CTL_FGO;
 | |
| 	writel(val, ispi->base + HSFSTS_CTL);
 | |
| 
 | |
| 	ret = intel_spi_wait_hw_busy(ispi);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	status = readl(ispi->base + HSFSTS_CTL);
 | |
| 	if (status & HSFSTS_CTL_FCERR)
 | |
| 		return -EIO;
 | |
| 	else if (status & HSFSTS_CTL_AEL)
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len,
 | |
| 			      int optype)
 | |
| {
 | |
| 	u32 val = 0, status;
 | |
| 	u8 atomic_preopcode;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = intel_spi_opcode_index(ispi, opcode, optype);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (len > INTEL_SPI_FIFO_SZ)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always clear it after each SW sequencer operation regardless
 | |
| 	 * of whether it is successful or not.
 | |
| 	 */
 | |
| 	atomic_preopcode = ispi->atomic_preopcode;
 | |
| 	ispi->atomic_preopcode = 0;
 | |
| 
 | |
| 	/* Only mark 'Data Cycle' bit when there is data to be transferred */
 | |
| 	if (len > 0)
 | |
| 		val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
 | |
| 	val |= ret << SSFSTS_CTL_COP_SHIFT;
 | |
| 	val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
 | |
| 	val |= SSFSTS_CTL_SCGO;
 | |
| 	if (atomic_preopcode) {
 | |
| 		u16 preop;
 | |
| 
 | |
| 		switch (optype) {
 | |
| 		case OPTYPE_WRITE_NO_ADDR:
 | |
| 		case OPTYPE_WRITE_WITH_ADDR:
 | |
| 			/* Pick matching preopcode for the atomic sequence */
 | |
| 			preop = readw(ispi->sregs + PREOP_OPTYPE);
 | |
| 			if ((preop & 0xff) == atomic_preopcode)
 | |
| 				; /* Do nothing */
 | |
| 			else if ((preop >> 8) == atomic_preopcode)
 | |
| 				val |= SSFSTS_CTL_SPOP;
 | |
| 			else
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			/* Enable atomic sequence */
 | |
| 			val |= SSFSTS_CTL_ACS;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	writel(val, ispi->sregs + SSFSTS_CTL);
 | |
| 
 | |
| 	ret = intel_spi_wait_sw_busy(ispi);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	status = readl(ispi->sregs + SSFSTS_CTL);
 | |
| 	if (status & SSFSTS_CTL_FCERR)
 | |
| 		return -EIO;
 | |
| 	else if (status & SSFSTS_CTL_AEL)
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 | |
| {
 | |
| 	struct intel_spi *ispi = nor->priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Address of the first chip */
 | |
| 	writel(0, ispi->base + FADDR);
 | |
| 
 | |
| 	if (ispi->swseq_reg)
 | |
| 		ret = intel_spi_sw_cycle(ispi, opcode, len,
 | |
| 					 OPTYPE_READ_NO_ADDR);
 | |
| 	else
 | |
| 		ret = intel_spi_hw_cycle(ispi, opcode, len);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return intel_spi_read_block(ispi, buf, len);
 | |
| }
 | |
| 
 | |
| static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 | |
| {
 | |
| 	struct intel_spi *ispi = nor->priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is handled with atomic operation and preop code in Intel
 | |
| 	 * controller so we only verify that it is available. If the
 | |
| 	 * controller is not locked, program the opcode to the PREOP
 | |
| 	 * register for later use.
 | |
| 	 *
 | |
| 	 * When hardware sequencer is used there is no need to program
 | |
| 	 * any opcodes (it handles them automatically as part of a command).
 | |
| 	 */
 | |
| 	if (opcode == SPINOR_OP_WREN) {
 | |
| 		u16 preop;
 | |
| 
 | |
| 		if (!ispi->swseq_reg)
 | |
| 			return 0;
 | |
| 
 | |
| 		preop = readw(ispi->sregs + PREOP_OPTYPE);
 | |
| 		if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
 | |
| 			if (ispi->locked)
 | |
| 				return -EINVAL;
 | |
| 			writel(opcode, ispi->sregs + PREOP_OPTYPE);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This enables atomic sequence on next SW sycle. Will
 | |
| 		 * be cleared after next operation.
 | |
| 		 */
 | |
| 		ispi->atomic_preopcode = opcode;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	writel(0, ispi->base + FADDR);
 | |
| 
 | |
| 	/* Write the value beforehand */
 | |
| 	ret = intel_spi_write_block(ispi, buf, len);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ispi->swseq_reg)
 | |
| 		return intel_spi_sw_cycle(ispi, opcode, len,
 | |
| 					  OPTYPE_WRITE_NO_ADDR);
 | |
| 	return intel_spi_hw_cycle(ispi, opcode, len);
 | |
| }
 | |
| 
 | |
| static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
 | |
| 			      u_char *read_buf)
 | |
| {
 | |
| 	struct intel_spi *ispi = nor->priv;
 | |
| 	size_t block_size, retlen = 0;
 | |
| 	u32 val, status;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Atomic sequence is not expected with HW sequencer reads. Make
 | |
| 	 * sure it is cleared regardless.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(ispi->atomic_preopcode))
 | |
| 		ispi->atomic_preopcode = 0;
 | |
| 
 | |
| 	switch (nor->read_opcode) {
 | |
| 	case SPINOR_OP_READ:
 | |
| 	case SPINOR_OP_READ_FAST:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
 | |
| 
 | |
| 		/* Read cannot cross 4K boundary */
 | |
| 		block_size = min_t(loff_t, from + block_size,
 | |
| 				   round_up(from + 1, SZ_4K)) - from;
 | |
| 
 | |
| 		writel(from, ispi->base + FADDR);
 | |
| 
 | |
| 		val = readl(ispi->base + HSFSTS_CTL);
 | |
| 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
 | |
| 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
 | |
| 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
 | |
| 		val |= HSFSTS_CTL_FCYCLE_READ;
 | |
| 		val |= HSFSTS_CTL_FGO;
 | |
| 		writel(val, ispi->base + HSFSTS_CTL);
 | |
| 
 | |
| 		ret = intel_spi_wait_hw_busy(ispi);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		status = readl(ispi->base + HSFSTS_CTL);
 | |
| 		if (status & HSFSTS_CTL_FCERR)
 | |
| 			ret = -EIO;
 | |
| 		else if (status & HSFSTS_CTL_AEL)
 | |
| 			ret = -EACCES;
 | |
| 
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(ispi->dev, "read error: %llx: %#x\n", from,
 | |
| 				status);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		ret = intel_spi_read_block(ispi, read_buf, block_size);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		len -= block_size;
 | |
| 		from += block_size;
 | |
| 		retlen += block_size;
 | |
| 		read_buf += block_size;
 | |
| 	}
 | |
| 
 | |
| 	return retlen;
 | |
| }
 | |
| 
 | |
| static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
 | |
| 			       const u_char *write_buf)
 | |
| {
 | |
| 	struct intel_spi *ispi = nor->priv;
 | |
| 	size_t block_size, retlen = 0;
 | |
| 	u32 val, status;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	/* Not needed with HW sequencer write, make sure it is cleared */
 | |
| 	ispi->atomic_preopcode = 0;
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
 | |
| 
 | |
| 		/* Write cannot cross 4K boundary */
 | |
| 		block_size = min_t(loff_t, to + block_size,
 | |
| 				   round_up(to + 1, SZ_4K)) - to;
 | |
| 
 | |
| 		writel(to, ispi->base + FADDR);
 | |
| 
 | |
| 		val = readl(ispi->base + HSFSTS_CTL);
 | |
| 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
 | |
| 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
 | |
| 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
 | |
| 		val |= HSFSTS_CTL_FCYCLE_WRITE;
 | |
| 
 | |
| 		ret = intel_spi_write_block(ispi, write_buf, block_size);
 | |
| 		if (ret) {
 | |
| 			dev_err(ispi->dev, "failed to write block\n");
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		/* Start the write now */
 | |
| 		val |= HSFSTS_CTL_FGO;
 | |
| 		writel(val, ispi->base + HSFSTS_CTL);
 | |
| 
 | |
| 		ret = intel_spi_wait_hw_busy(ispi);
 | |
| 		if (ret) {
 | |
| 			dev_err(ispi->dev, "timeout\n");
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		status = readl(ispi->base + HSFSTS_CTL);
 | |
| 		if (status & HSFSTS_CTL_FCERR)
 | |
| 			ret = -EIO;
 | |
| 		else if (status & HSFSTS_CTL_AEL)
 | |
| 			ret = -EACCES;
 | |
| 
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(ispi->dev, "write error: %llx: %#x\n", to,
 | |
| 				status);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		len -= block_size;
 | |
| 		to += block_size;
 | |
| 		retlen += block_size;
 | |
| 		write_buf += block_size;
 | |
| 	}
 | |
| 
 | |
| 	return retlen;
 | |
| }
 | |
| 
 | |
| static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
 | |
| {
 | |
| 	size_t erase_size, len = nor->mtd.erasesize;
 | |
| 	struct intel_spi *ispi = nor->priv;
 | |
| 	u32 val, status, cmd;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* If the hardware can do 64k erase use that when possible */
 | |
| 	if (len >= SZ_64K && ispi->erase_64k) {
 | |
| 		cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
 | |
| 		erase_size = SZ_64K;
 | |
| 	} else {
 | |
| 		cmd = HSFSTS_CTL_FCYCLE_ERASE;
 | |
| 		erase_size = SZ_4K;
 | |
| 	}
 | |
| 
 | |
| 	if (ispi->swseq_erase) {
 | |
| 		while (len > 0) {
 | |
| 			writel(offs, ispi->base + FADDR);
 | |
| 
 | |
| 			ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
 | |
| 						 0, OPTYPE_WRITE_WITH_ADDR);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			offs += erase_size;
 | |
| 			len -= erase_size;
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Not needed with HW sequencer erase, make sure it is cleared */
 | |
| 	ispi->atomic_preopcode = 0;
 | |
| 
 | |
| 	while (len > 0) {
 | |
| 		writel(offs, ispi->base + FADDR);
 | |
| 
 | |
| 		val = readl(ispi->base + HSFSTS_CTL);
 | |
| 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
 | |
| 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
 | |
| 		val |= cmd;
 | |
| 		val |= HSFSTS_CTL_FGO;
 | |
| 		writel(val, ispi->base + HSFSTS_CTL);
 | |
| 
 | |
| 		ret = intel_spi_wait_hw_busy(ispi);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		status = readl(ispi->base + HSFSTS_CTL);
 | |
| 		if (status & HSFSTS_CTL_FCERR)
 | |
| 			return -EIO;
 | |
| 		else if (status & HSFSTS_CTL_AEL)
 | |
| 			return -EACCES;
 | |
| 
 | |
| 		offs += erase_size;
 | |
| 		len -= erase_size;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool intel_spi_is_protected(const struct intel_spi *ispi,
 | |
| 				   unsigned int base, unsigned int limit)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ispi->pr_num; i++) {
 | |
| 		u32 pr_base, pr_limit, pr_value;
 | |
| 
 | |
| 		pr_value = readl(ispi->pregs + PR(i));
 | |
| 		if (!(pr_value & (PR_WPE | PR_RPE)))
 | |
| 			continue;
 | |
| 
 | |
| 		pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
 | |
| 		pr_base = pr_value & PR_BASE_MASK;
 | |
| 
 | |
| 		if (pr_base >= base && pr_limit <= limit)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There will be a single partition holding all enabled flash regions. We
 | |
|  * call this "BIOS".
 | |
|  */
 | |
| static void intel_spi_fill_partition(struct intel_spi *ispi,
 | |
| 				     struct mtd_partition *part)
 | |
| {
 | |
| 	u64 end;
 | |
| 	int i;
 | |
| 
 | |
| 	memset(part, 0, sizeof(*part));
 | |
| 
 | |
| 	/* Start from the mandatory descriptor region */
 | |
| 	part->size = 4096;
 | |
| 	part->name = "BIOS";
 | |
| 
 | |
| 	/*
 | |
| 	 * Now try to find where this partition ends based on the flash
 | |
| 	 * region registers.
 | |
| 	 */
 | |
| 	for (i = 1; i < ispi->nregions; i++) {
 | |
| 		u32 region, base, limit;
 | |
| 
 | |
| 		region = readl(ispi->base + FREG(i));
 | |
| 		base = region & FREG_BASE_MASK;
 | |
| 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
 | |
| 
 | |
| 		if (base >= limit || limit == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If any of the regions have protection bits set, make the
 | |
| 		 * whole partition read-only to be on the safe side.
 | |
| 		 */
 | |
| 		if (intel_spi_is_protected(ispi, base, limit))
 | |
| 			ispi->writeable = false;
 | |
| 
 | |
| 		end = (limit << 12) + 4096;
 | |
| 		if (end > part->size)
 | |
| 			part->size = end;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct intel_spi *intel_spi_probe(struct device *dev,
 | |
| 	struct resource *mem, const struct intel_spi_boardinfo *info)
 | |
| {
 | |
| 	const struct spi_nor_hwcaps hwcaps = {
 | |
| 		.mask = SNOR_HWCAPS_READ |
 | |
| 			SNOR_HWCAPS_READ_FAST |
 | |
| 			SNOR_HWCAPS_PP,
 | |
| 	};
 | |
| 	struct mtd_partition part;
 | |
| 	struct intel_spi *ispi;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!info || !mem)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
 | |
| 	if (!ispi)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ispi->base = devm_ioremap_resource(dev, mem);
 | |
| 	if (IS_ERR(ispi->base))
 | |
| 		return ERR_CAST(ispi->base);
 | |
| 
 | |
| 	ispi->dev = dev;
 | |
| 	ispi->info = info;
 | |
| 	ispi->writeable = info->writeable;
 | |
| 
 | |
| 	ret = intel_spi_init(ispi);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	ispi->nor.dev = ispi->dev;
 | |
| 	ispi->nor.priv = ispi;
 | |
| 	ispi->nor.read_reg = intel_spi_read_reg;
 | |
| 	ispi->nor.write_reg = intel_spi_write_reg;
 | |
| 	ispi->nor.read = intel_spi_read;
 | |
| 	ispi->nor.write = intel_spi_write;
 | |
| 	ispi->nor.erase = intel_spi_erase;
 | |
| 
 | |
| 	ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
 | |
| 	if (ret) {
 | |
| 		dev_info(dev, "failed to locate the chip\n");
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	intel_spi_fill_partition(ispi, &part);
 | |
| 
 | |
| 	/* Prevent writes if not explicitly enabled */
 | |
| 	if (!ispi->writeable || !writeable)
 | |
| 		ispi->nor.mtd.flags &= ~MTD_WRITEABLE;
 | |
| 
 | |
| 	ret = mtd_device_register(&ispi->nor.mtd, &part, 1);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	return ispi;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(intel_spi_probe);
 | |
| 
 | |
| int intel_spi_remove(struct intel_spi *ispi)
 | |
| {
 | |
| 	return mtd_device_unregister(&ispi->nor.mtd);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(intel_spi_remove);
 | |
| 
 | |
| MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
 | |
| MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
 | |
| MODULE_LICENSE("GPL v2");
 | 
