1862 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1862 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * VFIO PCI config space virtualization
 | |
|  *
 | |
|  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
 | |
|  *     Author: Alex Williamson <alex.williamson@redhat.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * Derived from original vfio:
 | |
|  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
 | |
|  * Author: Tom Lyon, pugs@cisco.com
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This code handles reading and writing of PCI configuration registers.
 | |
|  * This is hairy because we want to allow a lot of flexibility to the
 | |
|  * user driver, but cannot trust it with all of the config fields.
 | |
|  * Tables determine which fields can be read and written, as well as
 | |
|  * which fields are 'virtualized' - special actions and translations to
 | |
|  * make it appear to the user that he has control, when in fact things
 | |
|  * must be negotiated with the underlying OS.
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/vfio.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include "vfio_pci_private.h"
 | |
| 
 | |
| /* Fake capability ID for standard config space */
 | |
| #define PCI_CAP_ID_BASIC	0
 | |
| 
 | |
| #define is_bar(offset)	\
 | |
| 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
 | |
| 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
 | |
| 
 | |
| /*
 | |
|  * Lengths of PCI Config Capabilities
 | |
|  *   0: Removed from the user visible capability list
 | |
|  *   FF: Variable length
 | |
|  */
 | |
| static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
 | |
| 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
 | |
| 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
 | |
| 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
 | |
| 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
 | |
| 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
 | |
| 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
 | |
| 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
 | |
| 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
 | |
| 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
 | |
| 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
 | |
| 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
 | |
| 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
 | |
| 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
 | |
| 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
 | |
| 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
 | |
| 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
 | |
| 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
 | |
| 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
 | |
| 	[PCI_CAP_ID_SATA]	= 0xFF,
 | |
| 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Lengths of PCIe/PCI-X Extended Config Capabilities
 | |
|  *   0: Removed or masked from the user visible capability list
 | |
|  *   FF: Variable length
 | |
|  */
 | |
| static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
 | |
| 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
 | |
| 	[PCI_EXT_CAP_ID_VC]	=	0xFF,
 | |
| 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
 | |
| 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
 | |
| 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
 | |
| 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
 | |
| 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
 | |
| 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
 | |
| 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
 | |
| 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
 | |
| 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
 | |
| 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
 | |
| 	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
 | |
| 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
 | |
| 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
 | |
| 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
 | |
| 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
 | |
| 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
 | |
| 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
 | |
| 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
 | |
| 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
 | |
| 	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
 | |
| 	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
 | |
| 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
 | |
| 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
 | |
| 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
 | |
| 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Read/Write Permission Bits - one bit for each bit in capability
 | |
|  * Any field can be read if it exists, but what is read depends on
 | |
|  * whether the field is 'virtualized', or just pass thru to the
 | |
|  * hardware.  Any virtualized field is also virtualized for writes.
 | |
|  * Writes are only permitted if they have a 1 bit here.
 | |
|  */
 | |
| struct perm_bits {
 | |
| 	u8	*virt;		/* read/write virtual data, not hw */
 | |
| 	u8	*write;		/* writeable bits */
 | |
| 	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
 | |
| 			  struct perm_bits *perm, int offset, __le32 *val);
 | |
| 	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
 | |
| 			   struct perm_bits *perm, int offset, __le32 val);
 | |
| };
 | |
| 
 | |
| #define	NO_VIRT		0
 | |
| #define	ALL_VIRT	0xFFFFFFFFU
 | |
| #define	NO_WRITE	0
 | |
| #define	ALL_WRITE	0xFFFFFFFFU
 | |
| 
 | |
| static int vfio_user_config_read(struct pci_dev *pdev, int offset,
 | |
| 				 __le32 *val, int count)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 	u32 tmp_val = 0;
 | |
| 
 | |
| 	switch (count) {
 | |
| 	case 1:
 | |
| 	{
 | |
| 		u8 tmp;
 | |
| 		ret = pci_user_read_config_byte(pdev, offset, &tmp);
 | |
| 		tmp_val = tmp;
 | |
| 		break;
 | |
| 	}
 | |
| 	case 2:
 | |
| 	{
 | |
| 		u16 tmp;
 | |
| 		ret = pci_user_read_config_word(pdev, offset, &tmp);
 | |
| 		tmp_val = tmp;
 | |
| 		break;
 | |
| 	}
 | |
| 	case 4:
 | |
| 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	*val = cpu_to_le32(tmp_val);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int vfio_user_config_write(struct pci_dev *pdev, int offset,
 | |
| 				  __le32 val, int count)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 	u32 tmp_val = le32_to_cpu(val);
 | |
| 
 | |
| 	switch (count) {
 | |
| 	case 1:
 | |
| 		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		ret = pci_user_write_config_word(pdev, offset, tmp_val);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
 | |
| 				    int count, struct perm_bits *perm,
 | |
| 				    int offset, __le32 *val)
 | |
| {
 | |
| 	__le32 virt = 0;
 | |
| 
 | |
| 	memcpy(val, vdev->vconfig + pos, count);
 | |
| 
 | |
| 	memcpy(&virt, perm->virt + offset, count);
 | |
| 
 | |
| 	/* Any non-virtualized bits? */
 | |
| 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
 | |
| 		struct pci_dev *pdev = vdev->pdev;
 | |
| 		__le32 phys_val = 0;
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		*val = (phys_val & ~virt) | (*val & virt);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
 | |
| 				     int count, struct perm_bits *perm,
 | |
| 				     int offset, __le32 val)
 | |
| {
 | |
| 	__le32 virt = 0, write = 0;
 | |
| 
 | |
| 	memcpy(&write, perm->write + offset, count);
 | |
| 
 | |
| 	if (!write)
 | |
| 		return count; /* drop, no writable bits */
 | |
| 
 | |
| 	memcpy(&virt, perm->virt + offset, count);
 | |
| 
 | |
| 	/* Virtualized and writable bits go to vconfig */
 | |
| 	if (write & virt) {
 | |
| 		__le32 virt_val = 0;
 | |
| 
 | |
| 		memcpy(&virt_val, vdev->vconfig + pos, count);
 | |
| 
 | |
| 		virt_val &= ~(write & virt);
 | |
| 		virt_val |= (val & (write & virt));
 | |
| 
 | |
| 		memcpy(vdev->vconfig + pos, &virt_val, count);
 | |
| 	}
 | |
| 
 | |
| 	/* Non-virtualzed and writable bits go to hardware */
 | |
| 	if (write & ~virt) {
 | |
| 		struct pci_dev *pdev = vdev->pdev;
 | |
| 		__le32 phys_val = 0;
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		phys_val &= ~(write & ~virt);
 | |
| 		phys_val |= (val & (write & ~virt));
 | |
| 
 | |
| 		ret = vfio_user_config_write(pdev, pos, phys_val, count);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Allow direct read from hardware, except for capability next pointer */
 | |
| static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
 | |
| 				   int count, struct perm_bits *perm,
 | |
| 				   int offset, __le32 *val)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
 | |
| 		if (offset < 4)
 | |
| 			memcpy(val, vdev->vconfig + pos, count);
 | |
| 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
 | |
| 		if (offset == PCI_CAP_LIST_ID && count > 1)
 | |
| 			memcpy(val, vdev->vconfig + pos,
 | |
| 			       min(PCI_CAP_FLAGS, count));
 | |
| 		else if (offset == PCI_CAP_LIST_NEXT)
 | |
| 			memcpy(val, vdev->vconfig + pos, 1);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Raw access skips any kind of virtualization */
 | |
| static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
 | |
| 				 int count, struct perm_bits *perm,
 | |
| 				 int offset, __le32 val)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
 | |
| 				int count, struct perm_bits *perm,
 | |
| 				int offset, __le32 *val)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Virt access uses only virtualization */
 | |
| static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
 | |
| 				  int count, struct perm_bits *perm,
 | |
| 				  int offset, __le32 val)
 | |
| {
 | |
| 	memcpy(vdev->vconfig + pos, &val, count);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
 | |
| 				 int count, struct perm_bits *perm,
 | |
| 				 int offset, __le32 *val)
 | |
| {
 | |
| 	memcpy(val, vdev->vconfig + pos, count);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Default capability regions to read-only, no-virtualization */
 | |
| static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
 | |
| 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
 | |
| };
 | |
| static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
 | |
| 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
 | |
| };
 | |
| /*
 | |
|  * Default unassigned regions to raw read-write access.  Some devices
 | |
|  * require this to function as they hide registers between the gaps in
 | |
|  * config space (be2net).  Like MMIO and I/O port registers, we have
 | |
|  * to trust the hardware isolation.
 | |
|  */
 | |
| static struct perm_bits unassigned_perms = {
 | |
| 	.readfn = vfio_raw_config_read,
 | |
| 	.writefn = vfio_raw_config_write
 | |
| };
 | |
| 
 | |
| static struct perm_bits virt_perms = {
 | |
| 	.readfn = vfio_virt_config_read,
 | |
| 	.writefn = vfio_virt_config_write
 | |
| };
 | |
| 
 | |
| static void free_perm_bits(struct perm_bits *perm)
 | |
| {
 | |
| 	kfree(perm->virt);
 | |
| 	kfree(perm->write);
 | |
| 	perm->virt = NULL;
 | |
| 	perm->write = NULL;
 | |
| }
 | |
| 
 | |
| static int alloc_perm_bits(struct perm_bits *perm, int size)
 | |
| {
 | |
| 	/*
 | |
| 	 * Round up all permission bits to the next dword, this lets us
 | |
| 	 * ignore whether a read/write exceeds the defined capability
 | |
| 	 * structure.  We can do this because:
 | |
| 	 *  - Standard config space is already dword aligned
 | |
| 	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
 | |
| 	 *  - Express capabilities defined as dword aligned
 | |
| 	 */
 | |
| 	size = round_up(size, 4);
 | |
| 
 | |
| 	/*
 | |
| 	 * Zero state is
 | |
| 	 * - All Readable, None Writeable, None Virtualized
 | |
| 	 */
 | |
| 	perm->virt = kzalloc(size, GFP_KERNEL);
 | |
| 	perm->write = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!perm->virt || !perm->write) {
 | |
| 		free_perm_bits(perm);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	perm->readfn = vfio_default_config_read;
 | |
| 	perm->writefn = vfio_default_config_write;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper functions for filling in permission tables
 | |
|  */
 | |
| static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
 | |
| {
 | |
| 	p->virt[off] = virt;
 | |
| 	p->write[off] = write;
 | |
| }
 | |
| 
 | |
| /* Handle endian-ness - pci and tables are little-endian */
 | |
| static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
 | |
| {
 | |
| 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
 | |
| 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
 | |
| }
 | |
| 
 | |
| /* Handle endian-ness - pci and tables are little-endian */
 | |
| static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
 | |
| {
 | |
| 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
 | |
| 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restore the *real* BARs after we detect a FLR or backdoor reset.
 | |
|  * (backdoor = some device specific technique that we didn't catch)
 | |
|  */
 | |
| static void vfio_bar_restore(struct vfio_pci_device *vdev)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	u32 *rbar = vdev->rbar;
 | |
| 	u16 cmd;
 | |
| 	int i;
 | |
| 
 | |
| 	if (pdev->is_virtfn)
 | |
| 		return;
 | |
| 
 | |
| 	pr_info("%s: %s reset recovery - restoring bars\n",
 | |
| 		__func__, dev_name(&pdev->dev));
 | |
| 
 | |
| 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
 | |
| 		pci_user_write_config_dword(pdev, i, *rbar);
 | |
| 
 | |
| 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
 | |
| 
 | |
| 	if (vdev->nointx) {
 | |
| 		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
 | |
| 		cmd |= PCI_COMMAND_INTX_DISABLE;
 | |
| 		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
 | |
| {
 | |
| 	unsigned long flags = pci_resource_flags(pdev, bar);
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (flags & IORESOURCE_IO)
 | |
| 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
 | |
| 
 | |
| 	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
 | |
| 
 | |
| 	if (flags & IORESOURCE_PREFETCH)
 | |
| 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
 | |
| 
 | |
| 	if (flags & IORESOURCE_MEM_64)
 | |
| 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
 | |
| 
 | |
| 	return cpu_to_le32(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
 | |
|  * to reflect the hardware capabilities.  This implements BAR sizing.
 | |
|  */
 | |
| static void vfio_bar_fixup(struct vfio_pci_device *vdev)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	int i;
 | |
| 	__le32 *bar;
 | |
| 	u64 mask;
 | |
| 
 | |
| 	bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
 | |
| 
 | |
| 	for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
 | |
| 		if (!pci_resource_start(pdev, i)) {
 | |
| 			*bar = 0; /* Unmapped by host = unimplemented to user */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		mask = ~(pci_resource_len(pdev, i) - 1);
 | |
| 
 | |
| 		*bar &= cpu_to_le32((u32)mask);
 | |
| 		*bar |= vfio_generate_bar_flags(pdev, i);
 | |
| 
 | |
| 		if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
 | |
| 			bar++;
 | |
| 			*bar &= cpu_to_le32((u32)(mask >> 32));
 | |
| 			i++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
 | |
| 
 | |
| 	/*
 | |
| 	 * NB. REGION_INFO will have reported zero size if we weren't able
 | |
| 	 * to read the ROM, but we still return the actual BAR size here if
 | |
| 	 * it exists (or the shadow ROM space).
 | |
| 	 */
 | |
| 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
 | |
| 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
 | |
| 		mask |= PCI_ROM_ADDRESS_ENABLE;
 | |
| 		*bar &= cpu_to_le32((u32)mask);
 | |
| 	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
 | |
| 					IORESOURCE_ROM_SHADOW) {
 | |
| 		mask = ~(0x20000 - 1);
 | |
| 		mask |= PCI_ROM_ADDRESS_ENABLE;
 | |
| 		*bar &= cpu_to_le32((u32)mask);
 | |
| 	} else
 | |
| 		*bar = 0;
 | |
| 
 | |
| 	vdev->bardirty = false;
 | |
| }
 | |
| 
 | |
| static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
 | |
| 				  int count, struct perm_bits *perm,
 | |
| 				  int offset, __le32 *val)
 | |
| {
 | |
| 	if (is_bar(offset)) /* pos == offset for basic config */
 | |
| 		vfio_bar_fixup(vdev);
 | |
| 
 | |
| 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
 | |
| 
 | |
| 	/* Mask in virtual memory enable for SR-IOV devices */
 | |
| 	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
 | |
| 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
 | |
| 		u32 tmp_val = le32_to_cpu(*val);
 | |
| 
 | |
| 		tmp_val |= cmd & PCI_COMMAND_MEMORY;
 | |
| 		*val = cpu_to_le32(tmp_val);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Test whether BARs match the value we think they should contain */
 | |
| static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
 | |
| {
 | |
| 	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
 | |
| 	u32 bar;
 | |
| 
 | |
| 	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
 | |
| 		if (vdev->rbar[i]) {
 | |
| 			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
 | |
| 			if (ret || vdev->rbar[i] != bar)
 | |
| 				return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
 | |
| 				   int count, struct perm_bits *perm,
 | |
| 				   int offset, __le32 val)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	__le16 *virt_cmd;
 | |
| 	u16 new_cmd = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
 | |
| 
 | |
| 	if (offset == PCI_COMMAND) {
 | |
| 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
 | |
| 		u16 phys_cmd;
 | |
| 
 | |
| 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		new_cmd = le32_to_cpu(val);
 | |
| 
 | |
| 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
 | |
| 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
 | |
| 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
 | |
| 
 | |
| 		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
 | |
| 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
 | |
| 		new_io = !!(new_cmd & PCI_COMMAND_IO);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the user is writing mem/io enable (new_mem/io) and we
 | |
| 		 * think it's already enabled (virt_mem/io), but the hardware
 | |
| 		 * shows it disabled (phys_mem/io, then the device has
 | |
| 		 * undergone some kind of backdoor reset and needs to be
 | |
| 		 * restored before we allow it to enable the bars.
 | |
| 		 * SR-IOV devices will trigger this, but we catch them later
 | |
| 		 */
 | |
| 		if ((new_mem && virt_mem && !phys_mem) ||
 | |
| 		    (new_io && virt_io && !phys_io) ||
 | |
| 		    vfio_need_bar_restore(vdev))
 | |
| 			vfio_bar_restore(vdev);
 | |
| 	}
 | |
| 
 | |
| 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 | |
| 	if (count < 0)
 | |
| 		return count;
 | |
| 
 | |
| 	/*
 | |
| 	 * Save current memory/io enable bits in vconfig to allow for
 | |
| 	 * the test above next time.
 | |
| 	 */
 | |
| 	if (offset == PCI_COMMAND) {
 | |
| 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
 | |
| 
 | |
| 		*virt_cmd &= cpu_to_le16(~mask);
 | |
| 		*virt_cmd |= cpu_to_le16(new_cmd & mask);
 | |
| 	}
 | |
| 
 | |
| 	/* Emulate INTx disable */
 | |
| 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
 | |
| 		bool virt_intx_disable;
 | |
| 
 | |
| 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
 | |
| 				       PCI_COMMAND_INTX_DISABLE);
 | |
| 
 | |
| 		if (virt_intx_disable && !vdev->virq_disabled) {
 | |
| 			vdev->virq_disabled = true;
 | |
| 			vfio_pci_intx_mask(vdev);
 | |
| 		} else if (!virt_intx_disable && vdev->virq_disabled) {
 | |
| 			vdev->virq_disabled = false;
 | |
| 			vfio_pci_intx_unmask(vdev);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (is_bar(offset))
 | |
| 		vdev->bardirty = true;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Permissions for the Basic PCI Header */
 | |
| static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
 | |
| {
 | |
| 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	perm->readfn = vfio_basic_config_read;
 | |
| 	perm->writefn = vfio_basic_config_write;
 | |
| 
 | |
| 	/* Virtualized for SR-IOV functions, which just have FFFF */
 | |
| 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
 | |
| 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Virtualize INTx disable, we use it internally for interrupt
 | |
| 	 * control and can emulate it for non-PCI 2.3 devices.
 | |
| 	 */
 | |
| 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
 | |
| 
 | |
| 	/* Virtualize capability list, we might want to skip/disable */
 | |
| 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
 | |
| 
 | |
| 	/* No harm to write */
 | |
| 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
 | |
| 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
 | |
| 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
 | |
| 
 | |
| 	/* Virtualize all bars, can't touch the real ones */
 | |
| 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
 | |
| 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
 | |
| 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
 | |
| 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
 | |
| 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
 | |
| 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
 | |
| 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
 | |
| 
 | |
| 	/* Allow us to adjust capability chain */
 | |
| 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
 | |
| 
 | |
| 	/* Sometimes used by sw, just virtualize */
 | |
| 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
 | |
| 
 | |
| 	/* Virtualize interrupt pin to allow hiding INTx */
 | |
| 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
 | |
| 				int count, struct perm_bits *perm,
 | |
| 				int offset, __le32 val)
 | |
| {
 | |
| 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 | |
| 	if (count < 0)
 | |
| 		return count;
 | |
| 
 | |
| 	if (offset == PCI_PM_CTRL) {
 | |
| 		pci_power_t state;
 | |
| 
 | |
| 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
 | |
| 		case 0:
 | |
| 			state = PCI_D0;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			state = PCI_D1;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			state = PCI_D2;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			state = PCI_D3hot;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pci_set_power_state(vdev->pdev, state);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Permissions for the Power Management capability */
 | |
| static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
 | |
| {
 | |
| 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	perm->writefn = vfio_pm_config_write;
 | |
| 
 | |
| 	/*
 | |
| 	 * We always virtualize the next field so we can remove
 | |
| 	 * capabilities from the chain if we want to.
 | |
| 	 */
 | |
| 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Power management is defined *per function*, so we can let
 | |
| 	 * the user change power state, but we trap and initiate the
 | |
| 	 * change ourselves, so the state bits are read-only.
 | |
| 	 */
 | |
| 	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
 | |
| 				 int count, struct perm_bits *perm,
 | |
| 				 int offset, __le32 val)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
 | |
| 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
 | |
| 	u16 addr;
 | |
| 	u32 data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write through to emulation.  If the write includes the upper byte
 | |
| 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
 | |
| 	 * have work to do.
 | |
| 	 */
 | |
| 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 | |
| 	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
 | |
| 	    offset + count <= PCI_VPD_ADDR + 1)
 | |
| 		return count;
 | |
| 
 | |
| 	addr = le16_to_cpu(*paddr);
 | |
| 
 | |
| 	if (addr & PCI_VPD_ADDR_F) {
 | |
| 		data = le32_to_cpu(*pdata);
 | |
| 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
 | |
| 			return count;
 | |
| 	} else {
 | |
| 		data = 0;
 | |
| 		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
 | |
| 			return count;
 | |
| 		*pdata = cpu_to_le32(data);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
 | |
| 	 * signal completion.  If an error occurs above, we assume that not
 | |
| 	 * toggling this bit will induce a driver timeout.
 | |
| 	 */
 | |
| 	addr ^= PCI_VPD_ADDR_F;
 | |
| 	*paddr = cpu_to_le16(addr);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Permissions for Vital Product Data capability */
 | |
| static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
 | |
| {
 | |
| 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	perm->writefn = vfio_vpd_config_write;
 | |
| 
 | |
| 	/*
 | |
| 	 * We always virtualize the next field so we can remove
 | |
| 	 * capabilities from the chain if we want to.
 | |
| 	 */
 | |
| 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Both the address and data registers are virtualized to
 | |
| 	 * enable access through the pci_vpd_read/write functions
 | |
| 	 */
 | |
| 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
 | |
| 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Permissions for PCI-X capability */
 | |
| static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
 | |
| {
 | |
| 	/* Alloc 24, but only 8 are used in v0 */
 | |
| 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 | |
| 
 | |
| 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
 | |
| 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
 | |
| 				 int count, struct perm_bits *perm,
 | |
| 				 int offset, __le32 val)
 | |
| {
 | |
| 	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
 | |
| 				  offset + PCI_EXP_DEVCTL);
 | |
| 	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
 | |
| 
 | |
| 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 | |
| 	if (count < 0)
 | |
| 		return count;
 | |
| 
 | |
| 	/*
 | |
| 	 * The FLR bit is virtualized, if set and the device supports PCIe
 | |
| 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
 | |
| 	 * requires it to be always read as zero.  NB, reset_function might
 | |
| 	 * not use a PCIe FLR, we don't have that level of granularity.
 | |
| 	 */
 | |
| 	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
 | |
| 		u32 cap;
 | |
| 		int ret;
 | |
| 
 | |
| 		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
 | |
| 
 | |
| 		ret = pci_user_read_config_dword(vdev->pdev,
 | |
| 						 pos - offset + PCI_EXP_DEVCAP,
 | |
| 						 &cap);
 | |
| 
 | |
| 		if (!ret && (cap & PCI_EXP_DEVCAP_FLR))
 | |
| 			pci_try_reset_function(vdev->pdev);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * MPS is virtualized to the user, writes do not change the physical
 | |
| 	 * register since determining a proper MPS value requires a system wide
 | |
| 	 * device view.  The MRRS is largely independent of MPS, but since the
 | |
| 	 * user does not have that system-wide view, they might set a safe, but
 | |
| 	 * inefficiently low value.  Here we allow writes through to hardware,
 | |
| 	 * but we set the floor to the physical device MPS setting, so that
 | |
| 	 * we can at least use full TLPs, as defined by the MPS value.
 | |
| 	 *
 | |
| 	 * NB, if any devices actually depend on an artificially low MRRS
 | |
| 	 * setting, this will need to be revisited, perhaps with a quirk
 | |
| 	 * though pcie_set_readrq().
 | |
| 	 */
 | |
| 	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
 | |
| 		readrq = 128 <<
 | |
| 			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
 | |
| 		readrq = max(readrq, pcie_get_mps(vdev->pdev));
 | |
| 
 | |
| 		pcie_set_readrq(vdev->pdev, readrq);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Permissions for PCI Express capability */
 | |
| static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
 | |
| {
 | |
| 	/* Alloc largest of possible sizes */
 | |
| 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	perm->writefn = vfio_exp_config_write;
 | |
| 
 | |
| 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow writes to device control fields, except devctl_phantom,
 | |
| 	 * which could confuse IOMMU, MPS, which can break communication
 | |
| 	 * with other physical devices, and the ARI bit in devctl2, which
 | |
| 	 * is set at probe time.  FLR and MRRS get virtualized via our
 | |
| 	 * writefn.
 | |
| 	 */
 | |
| 	p_setw(perm, PCI_EXP_DEVCTL,
 | |
| 	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
 | |
| 	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
 | |
| 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
 | |
| 				int count, struct perm_bits *perm,
 | |
| 				int offset, __le32 val)
 | |
| {
 | |
| 	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
 | |
| 
 | |
| 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 | |
| 	if (count < 0)
 | |
| 		return count;
 | |
| 
 | |
| 	/*
 | |
| 	 * The FLR bit is virtualized, if set and the device supports AF
 | |
| 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
 | |
| 	 * requires it to be always read as zero.  NB, reset_function might
 | |
| 	 * not use an AF FLR, we don't have that level of granularity.
 | |
| 	 */
 | |
| 	if (*ctrl & PCI_AF_CTRL_FLR) {
 | |
| 		u8 cap;
 | |
| 		int ret;
 | |
| 
 | |
| 		*ctrl &= ~PCI_AF_CTRL_FLR;
 | |
| 
 | |
| 		ret = pci_user_read_config_byte(vdev->pdev,
 | |
| 						pos - offset + PCI_AF_CAP,
 | |
| 						&cap);
 | |
| 
 | |
| 		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP))
 | |
| 			pci_try_reset_function(vdev->pdev);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* Permissions for Advanced Function capability */
 | |
| static int __init init_pci_cap_af_perm(struct perm_bits *perm)
 | |
| {
 | |
| 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	perm->writefn = vfio_af_config_write;
 | |
| 
 | |
| 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 | |
| 	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Permissions for Advanced Error Reporting extended capability */
 | |
| static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
 | |
| {
 | |
| 	u32 mask;
 | |
| 
 | |
| 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Virtualize the first dword of all express capabilities
 | |
| 	 * because it includes the next pointer.  This lets us later
 | |
| 	 * remove capabilities from the chain if we need to.
 | |
| 	 */
 | |
| 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
 | |
| 
 | |
| 	/* Writable bits mask */
 | |
| 	mask =	PCI_ERR_UNC_UND |		/* Undefined */
 | |
| 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
 | |
| 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
 | |
| 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
 | |
| 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
 | |
| 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
 | |
| 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
 | |
| 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
 | |
| 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
 | |
| 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
 | |
| 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
 | |
| 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
 | |
| 		PCI_ERR_UNC_ACSV |		/* ACS Violation */
 | |
| 		PCI_ERR_UNC_INTN |		/* internal error */
 | |
| 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
 | |
| 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
 | |
| 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
 | |
| 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
 | |
| 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
 | |
| 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
 | |
| 
 | |
| 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
 | |
| 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
 | |
| 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
 | |
| 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
 | |
| 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
 | |
| 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
 | |
| 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
 | |
| 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
 | |
| 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
 | |
| 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
 | |
| 
 | |
| 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
 | |
| 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
 | |
| 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Permissions for Power Budgeting extended capability */
 | |
| static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
 | |
| {
 | |
| 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
 | |
| 
 | |
| 	/* Writing the data selector is OK, the info is still read-only */
 | |
| 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the shared permission tables
 | |
|  */
 | |
| void vfio_pci_uninit_perm_bits(void)
 | |
| {
 | |
| 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
 | |
| 
 | |
| 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
 | |
| 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
 | |
| 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
 | |
| 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
 | |
| 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
 | |
| 
 | |
| 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
 | |
| 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
 | |
| }
 | |
| 
 | |
| int __init vfio_pci_init_perm_bits(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Basic config space */
 | |
| 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
 | |
| 
 | |
| 	/* Capabilities */
 | |
| 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
 | |
| 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
 | |
| 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
 | |
| 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
 | |
| 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
 | |
| 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
 | |
| 
 | |
| 	/* Extended capabilities */
 | |
| 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
 | |
| 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
 | |
| 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
 | |
| 
 | |
| 	if (ret)
 | |
| 		vfio_pci_uninit_perm_bits();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
 | |
| {
 | |
| 	u8 cap;
 | |
| 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
 | |
| 						 PCI_STD_HEADER_SIZEOF;
 | |
| 	cap = vdev->pci_config_map[pos];
 | |
| 
 | |
| 	if (cap == PCI_CAP_ID_BASIC)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* XXX Can we have to abutting capabilities of the same type? */
 | |
| 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
 | |
| 		pos--;
 | |
| 
 | |
| 	return pos;
 | |
| }
 | |
| 
 | |
| static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
 | |
| 				int count, struct perm_bits *perm,
 | |
| 				int offset, __le32 *val)
 | |
| {
 | |
| 	/* Update max available queue size from msi_qmax */
 | |
| 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
 | |
| 		__le16 *flags;
 | |
| 		int start;
 | |
| 
 | |
| 		start = vfio_find_cap_start(vdev, pos);
 | |
| 
 | |
| 		flags = (__le16 *)&vdev->vconfig[start];
 | |
| 
 | |
| 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
 | |
| 		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
 | |
| 	}
 | |
| 
 | |
| 	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
 | |
| }
 | |
| 
 | |
| static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
 | |
| 				 int count, struct perm_bits *perm,
 | |
| 				 int offset, __le32 val)
 | |
| {
 | |
| 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 | |
| 	if (count < 0)
 | |
| 		return count;
 | |
| 
 | |
| 	/* Fixup and write configured queue size and enable to hardware */
 | |
| 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
 | |
| 		__le16 *pflags;
 | |
| 		u16 flags;
 | |
| 		int start, ret;
 | |
| 
 | |
| 		start = vfio_find_cap_start(vdev, pos);
 | |
| 
 | |
| 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
 | |
| 
 | |
| 		flags = le16_to_cpu(*pflags);
 | |
| 
 | |
| 		/* MSI is enabled via ioctl */
 | |
| 		if  (!is_msi(vdev))
 | |
| 			flags &= ~PCI_MSI_FLAGS_ENABLE;
 | |
| 
 | |
| 		/* Check queue size */
 | |
| 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
 | |
| 			flags &= ~PCI_MSI_FLAGS_QSIZE;
 | |
| 			flags |= vdev->msi_qmax << 4;
 | |
| 		}
 | |
| 
 | |
| 		/* Write back to virt and to hardware */
 | |
| 		*pflags = cpu_to_le16(flags);
 | |
| 		ret = pci_user_write_config_word(vdev->pdev,
 | |
| 						 start + PCI_MSI_FLAGS,
 | |
| 						 flags);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MSI determination is per-device, so this routine gets used beyond
 | |
|  * initialization time. Don't add __init
 | |
|  */
 | |
| static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
 | |
| {
 | |
| 	if (alloc_perm_bits(perm, len))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	perm->readfn = vfio_msi_config_read;
 | |
| 	perm->writefn = vfio_msi_config_write;
 | |
| 
 | |
| 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 | |
| 
 | |
| 	/*
 | |
| 	 * The upper byte of the control register is reserved,
 | |
| 	 * just setup the lower byte.
 | |
| 	 */
 | |
| 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
 | |
| 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
 | |
| 	if (flags & PCI_MSI_FLAGS_64BIT) {
 | |
| 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
 | |
| 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
 | |
| 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
 | |
| 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
 | |
| 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
 | |
| 		}
 | |
| 	} else {
 | |
| 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
 | |
| 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
 | |
| 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
 | |
| 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
 | |
| static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	int len, ret;
 | |
| 	u16 flags;
 | |
| 
 | |
| 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
 | |
| 	if (ret)
 | |
| 		return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 	len = 10; /* Minimum size */
 | |
| 	if (flags & PCI_MSI_FLAGS_64BIT)
 | |
| 		len += 4;
 | |
| 	if (flags & PCI_MSI_FLAGS_MASKBIT)
 | |
| 		len += 10;
 | |
| 
 | |
| 	if (vdev->msi_perm)
 | |
| 		return len;
 | |
| 
 | |
| 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
 | |
| 	if (!vdev->msi_perm)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
 | |
| 	if (ret) {
 | |
| 		kfree(vdev->msi_perm);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /* Determine extended capability length for VC (2 & 9) and MFVC */
 | |
| static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	u32 tmp;
 | |
| 	int ret, evcc, phases, vc_arb;
 | |
| 	int len = PCI_CAP_VC_BASE_SIZEOF;
 | |
| 
 | |
| 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
 | |
| 	if (ret)
 | |
| 		return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
 | |
| 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
 | |
| 	if (ret)
 | |
| 		return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 	if (tmp & PCI_VC_CAP2_128_PHASE)
 | |
| 		phases = 128;
 | |
| 	else if (tmp & PCI_VC_CAP2_64_PHASE)
 | |
| 		phases = 64;
 | |
| 	else if (tmp & PCI_VC_CAP2_32_PHASE)
 | |
| 		phases = 32;
 | |
| 	else
 | |
| 		phases = 0;
 | |
| 
 | |
| 	vc_arb = phases * 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * Port arbitration tables are root & switch only;
 | |
| 	 * function arbitration tables are function 0 only.
 | |
| 	 * In either case, we'll never let user write them so
 | |
| 	 * we don't care how big they are
 | |
| 	 */
 | |
| 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
 | |
| 	if (vc_arb) {
 | |
| 		len = round_up(len, 16);
 | |
| 		len += vc_arb / 8;
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	u32 dword;
 | |
| 	u16 word;
 | |
| 	u8 byte;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (cap) {
 | |
| 	case PCI_CAP_ID_MSI:
 | |
| 		return vfio_msi_cap_len(vdev, pos);
 | |
| 	case PCI_CAP_ID_PCIX:
 | |
| 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
 | |
| 		if (ret)
 | |
| 			return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 		if (PCI_X_CMD_VERSION(word)) {
 | |
| 			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
 | |
| 				/* Test for extended capabilities */
 | |
| 				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
 | |
| 						      &dword);
 | |
| 				vdev->extended_caps = (dword != 0);
 | |
| 			}
 | |
| 			return PCI_CAP_PCIX_SIZEOF_V2;
 | |
| 		} else
 | |
| 			return PCI_CAP_PCIX_SIZEOF_V0;
 | |
| 	case PCI_CAP_ID_VNDR:
 | |
| 		/* length follows next field */
 | |
| 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
 | |
| 		if (ret)
 | |
| 			return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 		return byte;
 | |
| 	case PCI_CAP_ID_EXP:
 | |
| 		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
 | |
| 			/* Test for extended capabilities */
 | |
| 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
 | |
| 			vdev->extended_caps = (dword != 0);
 | |
| 		}
 | |
| 
 | |
| 		/* length based on version and type */
 | |
| 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
 | |
| 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
 | |
| 				return 0xc; /* "All Devices" only, no link */
 | |
| 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
 | |
| 		} else {
 | |
| 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
 | |
| 				return 0x2c; /* No link */
 | |
| 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
 | |
| 		}
 | |
| 	case PCI_CAP_ID_HT:
 | |
| 		ret = pci_read_config_byte(pdev, pos + 3, &byte);
 | |
| 		if (ret)
 | |
| 			return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 		return (byte & HT_3BIT_CAP_MASK) ?
 | |
| 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
 | |
| 	case PCI_CAP_ID_SATA:
 | |
| 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
 | |
| 		if (ret)
 | |
| 			return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 		byte &= PCI_SATA_REGS_MASK;
 | |
| 		if (byte == PCI_SATA_REGS_INLINE)
 | |
| 			return PCI_SATA_SIZEOF_LONG;
 | |
| 		else
 | |
| 			return PCI_SATA_SIZEOF_SHORT;
 | |
| 	default:
 | |
| 		pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
 | |
| 			dev_name(&pdev->dev), __func__, cap, pos);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	u8 byte;
 | |
| 	u32 dword;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (ecap) {
 | |
| 	case PCI_EXT_CAP_ID_VNDR:
 | |
| 		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
 | |
| 		if (ret)
 | |
| 			return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
 | |
| 	case PCI_EXT_CAP_ID_VC:
 | |
| 	case PCI_EXT_CAP_ID_VC9:
 | |
| 	case PCI_EXT_CAP_ID_MFVC:
 | |
| 		return vfio_vc_cap_len(vdev, epos);
 | |
| 	case PCI_EXT_CAP_ID_ACS:
 | |
| 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
 | |
| 		if (ret)
 | |
| 			return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 		if (byte & PCI_ACS_EC) {
 | |
| 			int bits;
 | |
| 
 | |
| 			ret = pci_read_config_byte(pdev,
 | |
| 						   epos + PCI_ACS_EGRESS_BITS,
 | |
| 						   &byte);
 | |
| 			if (ret)
 | |
| 				return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 			bits = byte ? round_up(byte, 32) : 256;
 | |
| 			return 8 + (bits / 8);
 | |
| 		}
 | |
| 		return 8;
 | |
| 
 | |
| 	case PCI_EXT_CAP_ID_REBAR:
 | |
| 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
 | |
| 		if (ret)
 | |
| 			return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 		byte &= PCI_REBAR_CTRL_NBAR_MASK;
 | |
| 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
 | |
| 
 | |
| 		return 4 + (byte * 8);
 | |
| 	case PCI_EXT_CAP_ID_DPA:
 | |
| 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
 | |
| 		if (ret)
 | |
| 			return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
 | |
| 		return PCI_DPA_BASE_SIZEOF + byte + 1;
 | |
| 	case PCI_EXT_CAP_ID_TPH:
 | |
| 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
 | |
| 		if (ret)
 | |
| 			return pcibios_err_to_errno(ret);
 | |
| 
 | |
| 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
 | |
| 			int sts;
 | |
| 
 | |
| 			sts = dword & PCI_TPH_CAP_ST_MASK;
 | |
| 			sts >>= PCI_TPH_CAP_ST_SHIFT;
 | |
| 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
 | |
| 		}
 | |
| 		return PCI_TPH_BASE_SIZEOF;
 | |
| 	default:
 | |
| 		pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
 | |
| 			dev_name(&pdev->dev), __func__, ecap, epos);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
 | |
| 				   int offset, int size)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We try to read physical config space in the largest chunks
 | |
| 	 * we can, assuming that all of the fields support dword access.
 | |
| 	 * pci_save_state() makes this same assumption and seems to do ok.
 | |
| 	 */
 | |
| 	while (size) {
 | |
| 		int filled;
 | |
| 
 | |
| 		if (size >= 4 && !(offset % 4)) {
 | |
| 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
 | |
| 			u32 dword;
 | |
| 
 | |
| 			ret = pci_read_config_dword(pdev, offset, &dword);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			*dwordp = cpu_to_le32(dword);
 | |
| 			filled = 4;
 | |
| 		} else if (size >= 2 && !(offset % 2)) {
 | |
| 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
 | |
| 			u16 word;
 | |
| 
 | |
| 			ret = pci_read_config_word(pdev, offset, &word);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			*wordp = cpu_to_le16(word);
 | |
| 			filled = 2;
 | |
| 		} else {
 | |
| 			u8 *byte = &vdev->vconfig[offset];
 | |
| 			ret = pci_read_config_byte(pdev, offset, byte);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			filled = 1;
 | |
| 		}
 | |
| 
 | |
| 		offset += filled;
 | |
| 		size -= filled;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int vfio_cap_init(struct vfio_pci_device *vdev)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	u8 *map = vdev->pci_config_map;
 | |
| 	u16 status;
 | |
| 	u8 pos, *prev, cap;
 | |
| 	int loops, ret, caps = 0;
 | |
| 
 | |
| 	/* Any capabilities? */
 | |
| 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!(status & PCI_STATUS_CAP_LIST))
 | |
| 		return 0; /* Done */
 | |
| 
 | |
| 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Mark the previous position in case we want to skip a capability */
 | |
| 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
 | |
| 
 | |
| 	/* We can bound our loop, capabilities are dword aligned */
 | |
| 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
 | |
| 	while (pos && loops--) {
 | |
| 		u8 next;
 | |
| 		int i, len = 0;
 | |
| 
 | |
| 		ret = pci_read_config_byte(pdev, pos, &cap);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = pci_read_config_byte(pdev,
 | |
| 					   pos + PCI_CAP_LIST_NEXT, &next);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (cap <= PCI_CAP_ID_MAX) {
 | |
| 			len = pci_cap_length[cap];
 | |
| 			if (len == 0xFF) { /* Variable length */
 | |
| 				len = vfio_cap_len(vdev, cap, pos);
 | |
| 				if (len < 0)
 | |
| 					return len;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!len) {
 | |
| 			pr_info("%s: %s hiding cap 0x%x\n",
 | |
| 				__func__, dev_name(&pdev->dev), cap);
 | |
| 			*prev = next;
 | |
| 			pos = next;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Sanity check, do we overlap other capabilities? */
 | |
| 		for (i = 0; i < len; i++) {
 | |
| 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
 | |
| 				continue;
 | |
| 
 | |
| 			pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
 | |
| 				__func__, dev_name(&pdev->dev),
 | |
| 				pos + i, map[pos + i], cap);
 | |
| 		}
 | |
| 
 | |
| 		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
 | |
| 
 | |
| 		memset(map + pos, cap, len);
 | |
| 		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
 | |
| 		pos = next;
 | |
| 		caps++;
 | |
| 	}
 | |
| 
 | |
| 	/* If we didn't fill any capabilities, clear the status flag */
 | |
| 	if (!caps) {
 | |
| 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
 | |
| 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vfio_ecap_init(struct vfio_pci_device *vdev)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	u8 *map = vdev->pci_config_map;
 | |
| 	u16 epos;
 | |
| 	__le32 *prev = NULL;
 | |
| 	int loops, ret, ecaps = 0;
 | |
| 
 | |
| 	if (!vdev->extended_caps)
 | |
| 		return 0;
 | |
| 
 | |
| 	epos = PCI_CFG_SPACE_SIZE;
 | |
| 
 | |
| 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
 | |
| 
 | |
| 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
 | |
| 		u32 header;
 | |
| 		u16 ecap;
 | |
| 		int i, len = 0;
 | |
| 		bool hidden = false;
 | |
| 
 | |
| 		ret = pci_read_config_dword(pdev, epos, &header);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ecap = PCI_EXT_CAP_ID(header);
 | |
| 
 | |
| 		if (ecap <= PCI_EXT_CAP_ID_MAX) {
 | |
| 			len = pci_ext_cap_length[ecap];
 | |
| 			if (len == 0xFF) {
 | |
| 				len = vfio_ext_cap_len(vdev, ecap, epos);
 | |
| 				if (len < 0)
 | |
| 					return ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!len) {
 | |
| 			pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
 | |
| 				__func__, dev_name(&pdev->dev), ecap, epos);
 | |
| 
 | |
| 			/* If not the first in the chain, we can skip over it */
 | |
| 			if (prev) {
 | |
| 				u32 val = epos = PCI_EXT_CAP_NEXT(header);
 | |
| 				*prev &= cpu_to_le32(~(0xffcU << 20));
 | |
| 				*prev |= cpu_to_le32(val << 20);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Otherwise, fill in a placeholder, the direct
 | |
| 			 * readfn will virtualize this automatically
 | |
| 			 */
 | |
| 			len = PCI_CAP_SIZEOF;
 | |
| 			hidden = true;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < len; i++) {
 | |
| 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
 | |
| 				continue;
 | |
| 
 | |
| 			pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
 | |
| 				__func__, dev_name(&pdev->dev),
 | |
| 				epos + i, map[epos + i], ecap);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Even though ecap is 2 bytes, we're currently a long way
 | |
| 		 * from exceeding 1 byte capabilities.  If we ever make it
 | |
| 		 * up to 0xFE we'll need to up this to a two-byte, byte map.
 | |
| 		 */
 | |
| 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
 | |
| 
 | |
| 		memset(map + epos, ecap, len);
 | |
| 		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we're just using this capability to anchor the list,
 | |
| 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
 | |
| 		 * indicates to use cap id = 0, version = 0, next = 0 if
 | |
| 		 * ecaps are absent, hope users check all the way to next.
 | |
| 		 */
 | |
| 		if (hidden)
 | |
| 			*(__le32 *)&vdev->vconfig[epos] &=
 | |
| 				cpu_to_le32((0xffcU << 20));
 | |
| 		else
 | |
| 			ecaps++;
 | |
| 
 | |
| 		prev = (__le32 *)&vdev->vconfig[epos];
 | |
| 		epos = PCI_EXT_CAP_NEXT(header);
 | |
| 	}
 | |
| 
 | |
| 	if (!ecaps)
 | |
| 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Nag about hardware bugs, hopefully to have vendors fix them, but at least
 | |
|  * to collect a list of dependencies for the VF INTx pin quirk below.
 | |
|  */
 | |
| static const struct pci_device_id known_bogus_vf_intx_pin[] = {
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * For each device we allocate a pci_config_map that indicates the
 | |
|  * capability occupying each dword and thus the struct perm_bits we
 | |
|  * use for read and write.  We also allocate a virtualized config
 | |
|  * space which tracks reads and writes to bits that we emulate for
 | |
|  * the user.  Initial values filled from device.
 | |
|  *
 | |
|  * Using shared struct perm_bits between all vfio-pci devices saves
 | |
|  * us from allocating cfg_size buffers for virt and write for every
 | |
|  * device.  We could remove vconfig and allocate individual buffers
 | |
|  * for each area requiring emulated bits, but the array of pointers
 | |
|  * would be comparable in size (at least for standard config space).
 | |
|  */
 | |
| int vfio_config_init(struct vfio_pci_device *vdev)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	u8 *map, *vconfig;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Config space, caps and ecaps are all dword aligned, so we could
 | |
| 	 * use one byte per dword to record the type.  However, there are
 | |
| 	 * no requiremenst on the length of a capability, so the gap between
 | |
| 	 * capabilities needs byte granularity.
 | |
| 	 */
 | |
| 	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
 | |
| 	if (!map)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
 | |
| 	if (!vconfig) {
 | |
| 		kfree(map);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	vdev->pci_config_map = map;
 | |
| 	vdev->vconfig = vconfig;
 | |
| 
 | |
| 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
 | |
| 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
 | |
| 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
 | |
| 
 | |
| 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	vdev->bardirty = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX can we just pci_load_saved_state/pci_restore_state?
 | |
| 	 * may need to rebuild vconfig after that
 | |
| 	 */
 | |
| 
 | |
| 	/* For restore after reset */
 | |
| 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
 | |
| 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
 | |
| 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
 | |
| 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
 | |
| 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
 | |
| 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
 | |
| 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
 | |
| 
 | |
| 	if (pdev->is_virtfn) {
 | |
| 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
 | |
| 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
 | |
| 
 | |
| 		/*
 | |
| 		 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
 | |
| 		 * does not apply to VFs and VFs must implement this register
 | |
| 		 * as read-only with value zero.  Userspace is not readily able
 | |
| 		 * to identify whether a device is a VF and thus that the pin
 | |
| 		 * definition on the device is bogus should it violate this
 | |
| 		 * requirement.  We already virtualize the pin register for
 | |
| 		 * other purposes, so we simply need to replace the bogus value
 | |
| 		 * and consider VFs when we determine INTx IRQ count.
 | |
| 		 */
 | |
| 		if (vconfig[PCI_INTERRUPT_PIN] &&
 | |
| 		    !pci_match_id(known_bogus_vf_intx_pin, pdev))
 | |
| 			pci_warn(pdev,
 | |
| 				 "Hardware bug: VF reports bogus INTx pin %d\n",
 | |
| 				 vconfig[PCI_INTERRUPT_PIN]);
 | |
| 
 | |
| 		vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
 | |
| 		vconfig[PCI_INTERRUPT_PIN] = 0;
 | |
| 
 | |
| 	ret = vfio_cap_init(vdev);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = vfio_ecap_init(vdev);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	kfree(map);
 | |
| 	vdev->pci_config_map = NULL;
 | |
| 	kfree(vconfig);
 | |
| 	vdev->vconfig = NULL;
 | |
| 	return pcibios_err_to_errno(ret);
 | |
| }
 | |
| 
 | |
| void vfio_config_free(struct vfio_pci_device *vdev)
 | |
| {
 | |
| 	kfree(vdev->vconfig);
 | |
| 	vdev->vconfig = NULL;
 | |
| 	kfree(vdev->pci_config_map);
 | |
| 	vdev->pci_config_map = NULL;
 | |
| 	kfree(vdev->msi_perm);
 | |
| 	vdev->msi_perm = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the remaining number of bytes in a dword that match the given
 | |
|  * position.  Stop at either the end of the capability or the dword boundary.
 | |
|  */
 | |
| static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
 | |
| 					   loff_t pos)
 | |
| {
 | |
| 	u8 cap = vdev->pci_config_map[pos];
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
 | |
| 		/* nop */;
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
 | |
| 				 size_t count, loff_t *ppos, bool iswrite)
 | |
| {
 | |
| 	struct pci_dev *pdev = vdev->pdev;
 | |
| 	struct perm_bits *perm;
 | |
| 	__le32 val = 0;
 | |
| 	int cap_start = 0, offset;
 | |
| 	u8 cap_id;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
 | |
| 	    *ppos + count > pdev->cfg_size)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Chop accesses into aligned chunks containing no more than a
 | |
| 	 * single capability.  Caller increments to the next chunk.
 | |
| 	 */
 | |
| 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
 | |
| 	if (count >= 4 && !(*ppos % 4))
 | |
| 		count = 4;
 | |
| 	else if (count >= 2 && !(*ppos % 2))
 | |
| 		count = 2;
 | |
| 	else
 | |
| 		count = 1;
 | |
| 
 | |
| 	ret = count;
 | |
| 
 | |
| 	cap_id = vdev->pci_config_map[*ppos];
 | |
| 
 | |
| 	if (cap_id == PCI_CAP_ID_INVALID) {
 | |
| 		perm = &unassigned_perms;
 | |
| 		cap_start = *ppos;
 | |
| 	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
 | |
| 		perm = &virt_perms;
 | |
| 		cap_start = *ppos;
 | |
| 	} else {
 | |
| 		if (*ppos >= PCI_CFG_SPACE_SIZE) {
 | |
| 			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
 | |
| 
 | |
| 			perm = &ecap_perms[cap_id];
 | |
| 			cap_start = vfio_find_cap_start(vdev, *ppos);
 | |
| 		} else {
 | |
| 			WARN_ON(cap_id > PCI_CAP_ID_MAX);
 | |
| 
 | |
| 			perm = &cap_perms[cap_id];
 | |
| 
 | |
| 			if (cap_id == PCI_CAP_ID_MSI)
 | |
| 				perm = vdev->msi_perm;
 | |
| 
 | |
| 			if (cap_id > PCI_CAP_ID_BASIC)
 | |
| 				cap_start = vfio_find_cap_start(vdev, *ppos);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
 | |
| 	WARN_ON(cap_start > *ppos);
 | |
| 
 | |
| 	offset = *ppos - cap_start;
 | |
| 
 | |
| 	if (iswrite) {
 | |
| 		if (!perm->writefn)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (copy_from_user(&val, buf, count))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
 | |
| 	} else {
 | |
| 		if (perm->readfn) {
 | |
| 			ret = perm->readfn(vdev, *ppos, count,
 | |
| 					   perm, offset, &val);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		if (copy_to_user(buf, &val, count))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
 | |
| 			   size_t count, loff_t *ppos, bool iswrite)
 | |
| {
 | |
| 	size_t done = 0;
 | |
| 	int ret = 0;
 | |
| 	loff_t pos = *ppos;
 | |
| 
 | |
| 	pos &= VFIO_PCI_OFFSET_MASK;
 | |
| 
 | |
| 	while (count) {
 | |
| 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		count -= ret;
 | |
| 		done += ret;
 | |
| 		buf += ret;
 | |
| 		pos += ret;
 | |
| 	}
 | |
| 
 | |
| 	*ppos += done;
 | |
| 
 | |
| 	return done;
 | |
| }
 | 
