2646 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2646 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
 | |
|  *
 | |
|  * Uses a block device as cache for other block devices; optimized for SSDs.
 | |
|  * All allocation is done in buckets, which should match the erase block size
 | |
|  * of the device.
 | |
|  *
 | |
|  * Buckets containing cached data are kept on a heap sorted by priority;
 | |
|  * bucket priority is increased on cache hit, and periodically all the buckets
 | |
|  * on the heap have their priority scaled down. This currently is just used as
 | |
|  * an LRU but in the future should allow for more intelligent heuristics.
 | |
|  *
 | |
|  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
 | |
|  * counter. Garbage collection is used to remove stale pointers.
 | |
|  *
 | |
|  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
 | |
|  * as keys are inserted we only sort the pages that have not yet been written.
 | |
|  * When garbage collection is run, we resort the entire node.
 | |
|  *
 | |
|  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
 | |
|  */
 | |
| 
 | |
| #include "bcache.h"
 | |
| #include "btree.h"
 | |
| #include "debug.h"
 | |
| #include "extents.h"
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/delay.h>
 | |
| #include <trace/events/bcache.h>
 | |
| 
 | |
| /*
 | |
|  * Todo:
 | |
|  * register_bcache: Return errors out to userspace correctly
 | |
|  *
 | |
|  * Writeback: don't undirty key until after a cache flush
 | |
|  *
 | |
|  * Create an iterator for key pointers
 | |
|  *
 | |
|  * On btree write error, mark bucket such that it won't be freed from the cache
 | |
|  *
 | |
|  * Journalling:
 | |
|  *   Check for bad keys in replay
 | |
|  *   Propagate barriers
 | |
|  *   Refcount journal entries in journal_replay
 | |
|  *
 | |
|  * Garbage collection:
 | |
|  *   Finish incremental gc
 | |
|  *   Gc should free old UUIDs, data for invalid UUIDs
 | |
|  *
 | |
|  * Provide a way to list backing device UUIDs we have data cached for, and
 | |
|  * probably how long it's been since we've seen them, and a way to invalidate
 | |
|  * dirty data for devices that will never be attached again
 | |
|  *
 | |
|  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
 | |
|  * that based on that and how much dirty data we have we can keep writeback
 | |
|  * from being starved
 | |
|  *
 | |
|  * Add a tracepoint or somesuch to watch for writeback starvation
 | |
|  *
 | |
|  * When btree depth > 1 and splitting an interior node, we have to make sure
 | |
|  * alloc_bucket() cannot fail. This should be true but is not completely
 | |
|  * obvious.
 | |
|  *
 | |
|  * Plugging?
 | |
|  *
 | |
|  * If data write is less than hard sector size of ssd, round up offset in open
 | |
|  * bucket to the next whole sector
 | |
|  *
 | |
|  * Superblock needs to be fleshed out for multiple cache devices
 | |
|  *
 | |
|  * Add a sysfs tunable for the number of writeback IOs in flight
 | |
|  *
 | |
|  * Add a sysfs tunable for the number of open data buckets
 | |
|  *
 | |
|  * IO tracking: Can we track when one process is doing io on behalf of another?
 | |
|  * IO tracking: Don't use just an average, weigh more recent stuff higher
 | |
|  *
 | |
|  * Test module load/unload
 | |
|  */
 | |
| 
 | |
| #define MAX_NEED_GC		64
 | |
| #define MAX_SAVE_PRIO		72
 | |
| #define MAX_GC_TIMES		100
 | |
| #define MIN_GC_NODES		100
 | |
| #define GC_SLEEP_MS		100
 | |
| 
 | |
| #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
 | |
| 
 | |
| #define PTR_HASH(c, k)							\
 | |
| 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
 | |
| 
 | |
| #define insert_lock(s, b)	((b)->level <= (s)->lock)
 | |
| 
 | |
| /*
 | |
|  * These macros are for recursing down the btree - they handle the details of
 | |
|  * locking and looking up nodes in the cache for you. They're best treated as
 | |
|  * mere syntax when reading code that uses them.
 | |
|  *
 | |
|  * op->lock determines whether we take a read or a write lock at a given depth.
 | |
|  * If you've got a read lock and find that you need a write lock (i.e. you're
 | |
|  * going to have to split), set op->lock and return -EINTR; btree_root() will
 | |
|  * call you again and you'll have the correct lock.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * btree - recurse down the btree on a specified key
 | |
|  * @fn:		function to call, which will be passed the child node
 | |
|  * @key:	key to recurse on
 | |
|  * @b:		parent btree node
 | |
|  * @op:		pointer to struct btree_op
 | |
|  */
 | |
| #define btree(fn, key, b, op, ...)					\
 | |
| ({									\
 | |
| 	int _r, l = (b)->level - 1;					\
 | |
| 	bool _w = l <= (op)->lock;					\
 | |
| 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
 | |
| 						  _w, b);		\
 | |
| 	if (!IS_ERR(_child)) {						\
 | |
| 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
 | |
| 		rw_unlock(_w, _child);					\
 | |
| 	} else								\
 | |
| 		_r = PTR_ERR(_child);					\
 | |
| 	_r;								\
 | |
| })
 | |
| 
 | |
| /**
 | |
|  * btree_root - call a function on the root of the btree
 | |
|  * @fn:		function to call, which will be passed the child node
 | |
|  * @c:		cache set
 | |
|  * @op:		pointer to struct btree_op
 | |
|  */
 | |
| #define btree_root(fn, c, op, ...)					\
 | |
| ({									\
 | |
| 	int _r = -EINTR;						\
 | |
| 	do {								\
 | |
| 		struct btree *_b = (c)->root;				\
 | |
| 		bool _w = insert_lock(op, _b);				\
 | |
| 		rw_lock(_w, _b, _b->level);				\
 | |
| 		if (_b == (c)->root &&					\
 | |
| 		    _w == insert_lock(op, _b)) {			\
 | |
| 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
 | |
| 		}							\
 | |
| 		rw_unlock(_w, _b);					\
 | |
| 		bch_cannibalize_unlock(c);				\
 | |
| 		if (_r == -EINTR)					\
 | |
| 			schedule();					\
 | |
| 	} while (_r == -EINTR);						\
 | |
| 									\
 | |
| 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
 | |
| 	_r;								\
 | |
| })
 | |
| 
 | |
| static inline struct bset *write_block(struct btree *b)
 | |
| {
 | |
| 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
 | |
| }
 | |
| 
 | |
| static void bch_btree_init_next(struct btree *b)
 | |
| {
 | |
| 	/* If not a leaf node, always sort */
 | |
| 	if (b->level && b->keys.nsets)
 | |
| 		bch_btree_sort(&b->keys, &b->c->sort);
 | |
| 	else
 | |
| 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
 | |
| 
 | |
| 	if (b->written < btree_blocks(b))
 | |
| 		bch_bset_init_next(&b->keys, write_block(b),
 | |
| 				   bset_magic(&b->c->sb));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Btree key manipulation */
 | |
| 
 | |
| void bkey_put(struct cache_set *c, struct bkey *k)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 		if (ptr_available(c, k, i))
 | |
| 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 | |
| }
 | |
| 
 | |
| /* Btree IO */
 | |
| 
 | |
| static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 | |
| {
 | |
| 	uint64_t crc = b->key.ptr[0];
 | |
| 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
 | |
| 
 | |
| 	crc = bch_crc64_update(crc, data, end - data);
 | |
| 	return crc ^ 0xffffffffffffffffULL;
 | |
| }
 | |
| 
 | |
| void bch_btree_node_read_done(struct btree *b)
 | |
| {
 | |
| 	const char *err = "bad btree header";
 | |
| 	struct bset *i = btree_bset_first(b);
 | |
| 	struct btree_iter *iter;
 | |
| 
 | |
| 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
 | |
| 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
 | |
| 	iter->used = 0;
 | |
| 
 | |
| #ifdef CONFIG_BCACHE_DEBUG
 | |
| 	iter->b = &b->keys;
 | |
| #endif
 | |
| 
 | |
| 	if (!i->seq)
 | |
| 		goto err;
 | |
| 
 | |
| 	for (;
 | |
| 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 | |
| 	     i = write_block(b)) {
 | |
| 		err = "unsupported bset version";
 | |
| 		if (i->version > BCACHE_BSET_VERSION)
 | |
| 			goto err;
 | |
| 
 | |
| 		err = "bad btree header";
 | |
| 		if (b->written + set_blocks(i, block_bytes(b->c)) >
 | |
| 		    btree_blocks(b))
 | |
| 			goto err;
 | |
| 
 | |
| 		err = "bad magic";
 | |
| 		if (i->magic != bset_magic(&b->c->sb))
 | |
| 			goto err;
 | |
| 
 | |
| 		err = "bad checksum";
 | |
| 		switch (i->version) {
 | |
| 		case 0:
 | |
| 			if (i->csum != csum_set(i))
 | |
| 				goto err;
 | |
| 			break;
 | |
| 		case BCACHE_BSET_VERSION:
 | |
| 			if (i->csum != btree_csum_set(b, i))
 | |
| 				goto err;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		err = "empty set";
 | |
| 		if (i != b->keys.set[0].data && !i->keys)
 | |
| 			goto err;
 | |
| 
 | |
| 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 | |
| 
 | |
| 		b->written += set_blocks(i, block_bytes(b->c));
 | |
| 	}
 | |
| 
 | |
| 	err = "corrupted btree";
 | |
| 	for (i = write_block(b);
 | |
| 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 | |
| 	     i = ((void *) i) + block_bytes(b->c))
 | |
| 		if (i->seq == b->keys.set[0].data->seq)
 | |
| 			goto err;
 | |
| 
 | |
| 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 | |
| 
 | |
| 	i = b->keys.set[0].data;
 | |
| 	err = "short btree key";
 | |
| 	if (b->keys.set[0].size &&
 | |
| 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (b->written < btree_blocks(b))
 | |
| 		bch_bset_init_next(&b->keys, write_block(b),
 | |
| 				   bset_magic(&b->c->sb));
 | |
| out:
 | |
| 	mempool_free(iter, &b->c->fill_iter);
 | |
| 	return;
 | |
| err:
 | |
| 	set_btree_node_io_error(b);
 | |
| 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 | |
| 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
 | |
| 			    bset_block_offset(b, i), i->keys);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static void btree_node_read_endio(struct bio *bio)
 | |
| {
 | |
| 	struct closure *cl = bio->bi_private;
 | |
| 
 | |
| 	closure_put(cl);
 | |
| }
 | |
| 
 | |
| static void bch_btree_node_read(struct btree *b)
 | |
| {
 | |
| 	uint64_t start_time = local_clock();
 | |
| 	struct closure cl;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	trace_bcache_btree_read(b);
 | |
| 
 | |
| 	closure_init_stack(&cl);
 | |
| 
 | |
| 	bio = bch_bbio_alloc(b->c);
 | |
| 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 | |
| 	bio->bi_end_io	= btree_node_read_endio;
 | |
| 	bio->bi_private	= &cl;
 | |
| 	bio->bi_opf = REQ_OP_READ | REQ_META;
 | |
| 
 | |
| 	bch_bio_map(bio, b->keys.set[0].data);
 | |
| 
 | |
| 	bch_submit_bbio(bio, b->c, &b->key, 0);
 | |
| 	closure_sync(&cl);
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		set_btree_node_io_error(b);
 | |
| 
 | |
| 	bch_bbio_free(bio, b->c);
 | |
| 
 | |
| 	if (btree_node_io_error(b))
 | |
| 		goto err;
 | |
| 
 | |
| 	bch_btree_node_read_done(b);
 | |
| 	bch_time_stats_update(&b->c->btree_read_time, start_time);
 | |
| 
 | |
| 	return;
 | |
| err:
 | |
| 	bch_cache_set_error(b->c, "io error reading bucket %zu",
 | |
| 			    PTR_BUCKET_NR(b->c, &b->key, 0));
 | |
| }
 | |
| 
 | |
| static void btree_complete_write(struct btree *b, struct btree_write *w)
 | |
| {
 | |
| 	if (w->prio_blocked &&
 | |
| 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 | |
| 		wake_up_allocators(b->c);
 | |
| 
 | |
| 	if (w->journal) {
 | |
| 		atomic_dec_bug(w->journal);
 | |
| 		__closure_wake_up(&b->c->journal.wait);
 | |
| 	}
 | |
| 
 | |
| 	w->prio_blocked	= 0;
 | |
| 	w->journal	= NULL;
 | |
| }
 | |
| 
 | |
| static void btree_node_write_unlock(struct closure *cl)
 | |
| {
 | |
| 	struct btree *b = container_of(cl, struct btree, io);
 | |
| 
 | |
| 	up(&b->io_mutex);
 | |
| }
 | |
| 
 | |
| static void __btree_node_write_done(struct closure *cl)
 | |
| {
 | |
| 	struct btree *b = container_of(cl, struct btree, io);
 | |
| 	struct btree_write *w = btree_prev_write(b);
 | |
| 
 | |
| 	bch_bbio_free(b->bio, b->c);
 | |
| 	b->bio = NULL;
 | |
| 	btree_complete_write(b, w);
 | |
| 
 | |
| 	if (btree_node_dirty(b))
 | |
| 		schedule_delayed_work(&b->work, 30 * HZ);
 | |
| 
 | |
| 	closure_return_with_destructor(cl, btree_node_write_unlock);
 | |
| }
 | |
| 
 | |
| static void btree_node_write_done(struct closure *cl)
 | |
| {
 | |
| 	struct btree *b = container_of(cl, struct btree, io);
 | |
| 
 | |
| 	bio_free_pages(b->bio);
 | |
| 	__btree_node_write_done(cl);
 | |
| }
 | |
| 
 | |
| static void btree_node_write_endio(struct bio *bio)
 | |
| {
 | |
| 	struct closure *cl = bio->bi_private;
 | |
| 	struct btree *b = container_of(cl, struct btree, io);
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		set_btree_node_io_error(b);
 | |
| 
 | |
| 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 | |
| 	closure_put(cl);
 | |
| }
 | |
| 
 | |
| static void do_btree_node_write(struct btree *b)
 | |
| {
 | |
| 	struct closure *cl = &b->io;
 | |
| 	struct bset *i = btree_bset_last(b);
 | |
| 	BKEY_PADDED(key) k;
 | |
| 
 | |
| 	i->version	= BCACHE_BSET_VERSION;
 | |
| 	i->csum		= btree_csum_set(b, i);
 | |
| 
 | |
| 	BUG_ON(b->bio);
 | |
| 	b->bio = bch_bbio_alloc(b->c);
 | |
| 
 | |
| 	b->bio->bi_end_io	= btree_node_write_endio;
 | |
| 	b->bio->bi_private	= cl;
 | |
| 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
 | |
| 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
 | |
| 	bch_bio_map(b->bio, i);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're appending to a leaf node, we don't technically need FUA -
 | |
| 	 * this write just needs to be persisted before the next journal write,
 | |
| 	 * which will be marked FLUSH|FUA.
 | |
| 	 *
 | |
| 	 * Similarly if we're writing a new btree root - the pointer is going to
 | |
| 	 * be in the next journal entry.
 | |
| 	 *
 | |
| 	 * But if we're writing a new btree node (that isn't a root) or
 | |
| 	 * appending to a non leaf btree node, we need either FUA or a flush
 | |
| 	 * when we write the parent with the new pointer. FUA is cheaper than a
 | |
| 	 * flush, and writes appending to leaf nodes aren't blocking anything so
 | |
| 	 * just make all btree node writes FUA to keep things sane.
 | |
| 	 */
 | |
| 
 | |
| 	bkey_copy(&k.key, &b->key);
 | |
| 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 | |
| 		       bset_sector_offset(&b->keys, i));
 | |
| 
 | |
| 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 | |
| 		int j;
 | |
| 		struct bio_vec *bv;
 | |
| 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 | |
| 
 | |
| 		bio_for_each_segment_all(bv, b->bio, j)
 | |
| 			memcpy(page_address(bv->bv_page),
 | |
| 			       base + j * PAGE_SIZE, PAGE_SIZE);
 | |
| 
 | |
| 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 | |
| 
 | |
| 		continue_at(cl, btree_node_write_done, NULL);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * No problem for multipage bvec since the bio is
 | |
| 		 * just allocated
 | |
| 		 */
 | |
| 		b->bio->bi_vcnt = 0;
 | |
| 		bch_bio_map(b->bio, i);
 | |
| 
 | |
| 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 | |
| 
 | |
| 		closure_sync(cl);
 | |
| 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __bch_btree_node_write(struct btree *b, struct closure *parent)
 | |
| {
 | |
| 	struct bset *i = btree_bset_last(b);
 | |
| 
 | |
| 	lockdep_assert_held(&b->write_lock);
 | |
| 
 | |
| 	trace_bcache_btree_write(b);
 | |
| 
 | |
| 	BUG_ON(current->bio_list);
 | |
| 	BUG_ON(b->written >= btree_blocks(b));
 | |
| 	BUG_ON(b->written && !i->keys);
 | |
| 	BUG_ON(btree_bset_first(b)->seq != i->seq);
 | |
| 	bch_check_keys(&b->keys, "writing");
 | |
| 
 | |
| 	cancel_delayed_work(&b->work);
 | |
| 
 | |
| 	/* If caller isn't waiting for write, parent refcount is cache set */
 | |
| 	down(&b->io_mutex);
 | |
| 	closure_init(&b->io, parent ?: &b->c->cl);
 | |
| 
 | |
| 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
 | |
| 	change_bit(BTREE_NODE_write_idx, &b->flags);
 | |
| 
 | |
| 	do_btree_node_write(b);
 | |
| 
 | |
| 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
 | |
| 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
 | |
| 
 | |
| 	b->written += set_blocks(i, block_bytes(b->c));
 | |
| }
 | |
| 
 | |
| void bch_btree_node_write(struct btree *b, struct closure *parent)
 | |
| {
 | |
| 	unsigned int nsets = b->keys.nsets;
 | |
| 
 | |
| 	lockdep_assert_held(&b->lock);
 | |
| 
 | |
| 	__bch_btree_node_write(b, parent);
 | |
| 
 | |
| 	/*
 | |
| 	 * do verify if there was more than one set initially (i.e. we did a
 | |
| 	 * sort) and we sorted down to a single set:
 | |
| 	 */
 | |
| 	if (nsets && !b->keys.nsets)
 | |
| 		bch_btree_verify(b);
 | |
| 
 | |
| 	bch_btree_init_next(b);
 | |
| }
 | |
| 
 | |
| static void bch_btree_node_write_sync(struct btree *b)
 | |
| {
 | |
| 	struct closure cl;
 | |
| 
 | |
| 	closure_init_stack(&cl);
 | |
| 
 | |
| 	mutex_lock(&b->write_lock);
 | |
| 	bch_btree_node_write(b, &cl);
 | |
| 	mutex_unlock(&b->write_lock);
 | |
| 
 | |
| 	closure_sync(&cl);
 | |
| }
 | |
| 
 | |
| static void btree_node_write_work(struct work_struct *w)
 | |
| {
 | |
| 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 | |
| 
 | |
| 	mutex_lock(&b->write_lock);
 | |
| 	if (btree_node_dirty(b))
 | |
| 		__bch_btree_node_write(b, NULL);
 | |
| 	mutex_unlock(&b->write_lock);
 | |
| }
 | |
| 
 | |
| static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 | |
| {
 | |
| 	struct bset *i = btree_bset_last(b);
 | |
| 	struct btree_write *w = btree_current_write(b);
 | |
| 
 | |
| 	lockdep_assert_held(&b->write_lock);
 | |
| 
 | |
| 	BUG_ON(!b->written);
 | |
| 	BUG_ON(!i->keys);
 | |
| 
 | |
| 	if (!btree_node_dirty(b))
 | |
| 		schedule_delayed_work(&b->work, 30 * HZ);
 | |
| 
 | |
| 	set_btree_node_dirty(b);
 | |
| 
 | |
| 	if (journal_ref) {
 | |
| 		if (w->journal &&
 | |
| 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 | |
| 			atomic_dec_bug(w->journal);
 | |
| 			w->journal = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (!w->journal) {
 | |
| 			w->journal = journal_ref;
 | |
| 			atomic_inc(w->journal);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Force write if set is too big */
 | |
| 	if (set_bytes(i) > PAGE_SIZE - 48 &&
 | |
| 	    !current->bio_list)
 | |
| 		bch_btree_node_write(b, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Btree in memory cache - allocation/freeing
 | |
|  * mca -> memory cache
 | |
|  */
 | |
| 
 | |
| #define mca_reserve(c)	(((c->root && c->root->level)		\
 | |
| 			  ? c->root->level : 1) * 8 + 16)
 | |
| #define mca_can_free(c)						\
 | |
| 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 | |
| 
 | |
| static void mca_data_free(struct btree *b)
 | |
| {
 | |
| 	BUG_ON(b->io_mutex.count != 1);
 | |
| 
 | |
| 	bch_btree_keys_free(&b->keys);
 | |
| 
 | |
| 	b->c->btree_cache_used--;
 | |
| 	list_move(&b->list, &b->c->btree_cache_freed);
 | |
| }
 | |
| 
 | |
| static void mca_bucket_free(struct btree *b)
 | |
| {
 | |
| 	BUG_ON(btree_node_dirty(b));
 | |
| 
 | |
| 	b->key.ptr[0] = 0;
 | |
| 	hlist_del_init_rcu(&b->hash);
 | |
| 	list_move(&b->list, &b->c->btree_cache_freeable);
 | |
| }
 | |
| 
 | |
| static unsigned int btree_order(struct bkey *k)
 | |
| {
 | |
| 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 | |
| }
 | |
| 
 | |
| static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 | |
| {
 | |
| 	if (!bch_btree_keys_alloc(&b->keys,
 | |
| 				  max_t(unsigned int,
 | |
| 					ilog2(b->c->btree_pages),
 | |
| 					btree_order(k)),
 | |
| 				  gfp)) {
 | |
| 		b->c->btree_cache_used++;
 | |
| 		list_move(&b->list, &b->c->btree_cache);
 | |
| 	} else {
 | |
| 		list_move(&b->list, &b->c->btree_cache_freed);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct btree *mca_bucket_alloc(struct cache_set *c,
 | |
| 				      struct bkey *k, gfp_t gfp)
 | |
| {
 | |
| 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
 | |
| 
 | |
| 	if (!b)
 | |
| 		return NULL;
 | |
| 
 | |
| 	init_rwsem(&b->lock);
 | |
| 	lockdep_set_novalidate_class(&b->lock);
 | |
| 	mutex_init(&b->write_lock);
 | |
| 	lockdep_set_novalidate_class(&b->write_lock);
 | |
| 	INIT_LIST_HEAD(&b->list);
 | |
| 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 | |
| 	b->c = c;
 | |
| 	sema_init(&b->io_mutex, 1);
 | |
| 
 | |
| 	mca_data_alloc(b, k, gfp);
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
 | |
| {
 | |
| 	struct closure cl;
 | |
| 
 | |
| 	closure_init_stack(&cl);
 | |
| 	lockdep_assert_held(&b->c->bucket_lock);
 | |
| 
 | |
| 	if (!down_write_trylock(&b->lock))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 | |
| 
 | |
| 	if (b->keys.page_order < min_order)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (!flush) {
 | |
| 		if (btree_node_dirty(b))
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		if (down_trylock(&b->io_mutex))
 | |
| 			goto out_unlock;
 | |
| 		up(&b->io_mutex);
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	/*
 | |
| 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
 | |
| 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
 | |
| 	 * b->write_lock before checking BTREE_NODE_dirty bit.
 | |
| 	 */
 | |
| 	mutex_lock(&b->write_lock);
 | |
| 	/*
 | |
| 	 * If this btree node is selected in btree_flush_write() by journal
 | |
| 	 * code, delay and retry until the node is flushed by journal code
 | |
| 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
 | |
| 	 */
 | |
| 	if (btree_node_journal_flush(b)) {
 | |
| 		pr_debug("bnode %p is flushing by journal, retry", b);
 | |
| 		mutex_unlock(&b->write_lock);
 | |
| 		udelay(1);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (btree_node_dirty(b))
 | |
| 		__bch_btree_node_write(b, &cl);
 | |
| 	mutex_unlock(&b->write_lock);
 | |
| 
 | |
| 	closure_sync(&cl);
 | |
| 
 | |
| 	/* wait for any in flight btree write */
 | |
| 	down(&b->io_mutex);
 | |
| 	up(&b->io_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| out_unlock:
 | |
| 	rw_unlock(true, b);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static unsigned long bch_mca_scan(struct shrinker *shrink,
 | |
| 				  struct shrink_control *sc)
 | |
| {
 | |
| 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 | |
| 	struct btree *b, *t;
 | |
| 	unsigned long i, nr = sc->nr_to_scan;
 | |
| 	unsigned long freed = 0;
 | |
| 	unsigned int btree_cache_used;
 | |
| 
 | |
| 	if (c->shrinker_disabled)
 | |
| 		return SHRINK_STOP;
 | |
| 
 | |
| 	if (c->btree_cache_alloc_lock)
 | |
| 		return SHRINK_STOP;
 | |
| 
 | |
| 	/* Return -1 if we can't do anything right now */
 | |
| 	if (sc->gfp_mask & __GFP_IO)
 | |
| 		mutex_lock(&c->bucket_lock);
 | |
| 	else if (!mutex_trylock(&c->bucket_lock))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * It's _really_ critical that we don't free too many btree nodes - we
 | |
| 	 * have to always leave ourselves a reserve. The reserve is how we
 | |
| 	 * guarantee that allocating memory for a new btree node can always
 | |
| 	 * succeed, so that inserting keys into the btree can always succeed and
 | |
| 	 * IO can always make forward progress:
 | |
| 	 */
 | |
| 	nr /= c->btree_pages;
 | |
| 	nr = min_t(unsigned long, nr, mca_can_free(c));
 | |
| 
 | |
| 	i = 0;
 | |
| 	btree_cache_used = c->btree_cache_used;
 | |
| 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
 | |
| 		if (nr <= 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (++i > 3 &&
 | |
| 		    !mca_reap(b, 0, false)) {
 | |
| 			mca_data_free(b);
 | |
| 			rw_unlock(true, b);
 | |
| 			freed++;
 | |
| 		}
 | |
| 		nr--;
 | |
| 	}
 | |
| 
 | |
| 	for (;  (nr--) && i < btree_cache_used; i++) {
 | |
| 		if (list_empty(&c->btree_cache))
 | |
| 			goto out;
 | |
| 
 | |
| 		b = list_first_entry(&c->btree_cache, struct btree, list);
 | |
| 		list_rotate_left(&c->btree_cache);
 | |
| 
 | |
| 		if (!b->accessed &&
 | |
| 		    !mca_reap(b, 0, false)) {
 | |
| 			mca_bucket_free(b);
 | |
| 			mca_data_free(b);
 | |
| 			rw_unlock(true, b);
 | |
| 			freed++;
 | |
| 		} else
 | |
| 			b->accessed = 0;
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&c->bucket_lock);
 | |
| 	return freed * c->btree_pages;
 | |
| }
 | |
| 
 | |
| static unsigned long bch_mca_count(struct shrinker *shrink,
 | |
| 				   struct shrink_control *sc)
 | |
| {
 | |
| 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 | |
| 
 | |
| 	if (c->shrinker_disabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (c->btree_cache_alloc_lock)
 | |
| 		return 0;
 | |
| 
 | |
| 	return mca_can_free(c) * c->btree_pages;
 | |
| }
 | |
| 
 | |
| void bch_btree_cache_free(struct cache_set *c)
 | |
| {
 | |
| 	struct btree *b;
 | |
| 	struct closure cl;
 | |
| 
 | |
| 	closure_init_stack(&cl);
 | |
| 
 | |
| 	if (c->shrink.list.next)
 | |
| 		unregister_shrinker(&c->shrink);
 | |
| 
 | |
| 	mutex_lock(&c->bucket_lock);
 | |
| 
 | |
| #ifdef CONFIG_BCACHE_DEBUG
 | |
| 	if (c->verify_data)
 | |
| 		list_move(&c->verify_data->list, &c->btree_cache);
 | |
| 
 | |
| 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
 | |
| #endif
 | |
| 
 | |
| 	list_splice(&c->btree_cache_freeable,
 | |
| 		    &c->btree_cache);
 | |
| 
 | |
| 	while (!list_empty(&c->btree_cache)) {
 | |
| 		b = list_first_entry(&c->btree_cache, struct btree, list);
 | |
| 
 | |
| 		/*
 | |
| 		 * This function is called by cache_set_free(), no I/O
 | |
| 		 * request on cache now, it is unnecessary to acquire
 | |
| 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
 | |
| 		 */
 | |
| 		if (btree_node_dirty(b)) {
 | |
| 			btree_complete_write(b, btree_current_write(b));
 | |
| 			clear_bit(BTREE_NODE_dirty, &b->flags);
 | |
| 		}
 | |
| 		mca_data_free(b);
 | |
| 	}
 | |
| 
 | |
| 	while (!list_empty(&c->btree_cache_freed)) {
 | |
| 		b = list_first_entry(&c->btree_cache_freed,
 | |
| 				     struct btree, list);
 | |
| 		list_del(&b->list);
 | |
| 		cancel_delayed_work_sync(&b->work);
 | |
| 		kfree(b);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&c->bucket_lock);
 | |
| }
 | |
| 
 | |
| int bch_btree_cache_alloc(struct cache_set *c)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < mca_reserve(c); i++)
 | |
| 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 	list_splice_init(&c->btree_cache,
 | |
| 			 &c->btree_cache_freeable);
 | |
| 
 | |
| #ifdef CONFIG_BCACHE_DEBUG
 | |
| 	mutex_init(&c->verify_lock);
 | |
| 
 | |
| 	c->verify_ondisk = (void *)
 | |
| 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
 | |
| 
 | |
| 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 | |
| 
 | |
| 	if (c->verify_data &&
 | |
| 	    c->verify_data->keys.set->data)
 | |
| 		list_del_init(&c->verify_data->list);
 | |
| 	else
 | |
| 		c->verify_data = NULL;
 | |
| #endif
 | |
| 
 | |
| 	c->shrink.count_objects = bch_mca_count;
 | |
| 	c->shrink.scan_objects = bch_mca_scan;
 | |
| 	c->shrink.seeks = 4;
 | |
| 	c->shrink.batch = c->btree_pages * 2;
 | |
| 
 | |
| 	if (register_shrinker(&c->shrink))
 | |
| 		pr_warn("bcache: %s: could not register shrinker",
 | |
| 				__func__);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Btree in memory cache - hash table */
 | |
| 
 | |
| static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 | |
| {
 | |
| 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 | |
| }
 | |
| 
 | |
| static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 | |
| {
 | |
| 	struct btree *b;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 | |
| 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 | |
| 			goto out;
 | |
| 	b = NULL;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 | |
| {
 | |
| 	struct task_struct *old;
 | |
| 
 | |
| 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
 | |
| 	if (old && old != current) {
 | |
| 		if (op)
 | |
| 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
 | |
| 					TASK_UNINTERRUPTIBLE);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 | |
| 				     struct bkey *k)
 | |
| {
 | |
| 	struct btree *b;
 | |
| 
 | |
| 	trace_bcache_btree_cache_cannibalize(c);
 | |
| 
 | |
| 	if (mca_cannibalize_lock(c, op))
 | |
| 		return ERR_PTR(-EINTR);
 | |
| 
 | |
| 	list_for_each_entry_reverse(b, &c->btree_cache, list)
 | |
| 		if (!mca_reap(b, btree_order(k), false))
 | |
| 			return b;
 | |
| 
 | |
| 	list_for_each_entry_reverse(b, &c->btree_cache, list)
 | |
| 		if (!mca_reap(b, btree_order(k), true))
 | |
| 			return b;
 | |
| 
 | |
| 	WARN(1, "btree cache cannibalize failed\n");
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We can only have one thread cannibalizing other cached btree nodes at a time,
 | |
|  * or we'll deadlock. We use an open coded mutex to ensure that, which a
 | |
|  * cannibalize_bucket() will take. This means every time we unlock the root of
 | |
|  * the btree, we need to release this lock if we have it held.
 | |
|  */
 | |
| static void bch_cannibalize_unlock(struct cache_set *c)
 | |
| {
 | |
| 	if (c->btree_cache_alloc_lock == current) {
 | |
| 		c->btree_cache_alloc_lock = NULL;
 | |
| 		wake_up(&c->btree_cache_wait);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 | |
| 			       struct bkey *k, int level)
 | |
| {
 | |
| 	struct btree *b;
 | |
| 
 | |
| 	BUG_ON(current->bio_list);
 | |
| 
 | |
| 	lockdep_assert_held(&c->bucket_lock);
 | |
| 
 | |
| 	if (mca_find(c, k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* btree_free() doesn't free memory; it sticks the node on the end of
 | |
| 	 * the list. Check if there's any freed nodes there:
 | |
| 	 */
 | |
| 	list_for_each_entry(b, &c->btree_cache_freeable, list)
 | |
| 		if (!mca_reap(b, btree_order(k), false))
 | |
| 			goto out;
 | |
| 
 | |
| 	/* We never free struct btree itself, just the memory that holds the on
 | |
| 	 * disk node. Check the freed list before allocating a new one:
 | |
| 	 */
 | |
| 	list_for_each_entry(b, &c->btree_cache_freed, list)
 | |
| 		if (!mca_reap(b, 0, false)) {
 | |
| 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 | |
| 			if (!b->keys.set[0].data)
 | |
| 				goto err;
 | |
| 			else
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 | |
| 	if (!b)
 | |
| 		goto err;
 | |
| 
 | |
| 	BUG_ON(!down_write_trylock(&b->lock));
 | |
| 	if (!b->keys.set->data)
 | |
| 		goto err;
 | |
| out:
 | |
| 	BUG_ON(b->io_mutex.count != 1);
 | |
| 
 | |
| 	bkey_copy(&b->key, k);
 | |
| 	list_move(&b->list, &c->btree_cache);
 | |
| 	hlist_del_init_rcu(&b->hash);
 | |
| 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 | |
| 
 | |
| 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 | |
| 	b->parent	= (void *) ~0UL;
 | |
| 	b->flags	= 0;
 | |
| 	b->written	= 0;
 | |
| 	b->level	= level;
 | |
| 
 | |
| 	if (!b->level)
 | |
| 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 | |
| 				    &b->c->expensive_debug_checks);
 | |
| 	else
 | |
| 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
 | |
| 				    &b->c->expensive_debug_checks);
 | |
| 
 | |
| 	return b;
 | |
| err:
 | |
| 	if (b)
 | |
| 		rw_unlock(true, b);
 | |
| 
 | |
| 	b = mca_cannibalize(c, op, k);
 | |
| 	if (!IS_ERR(b))
 | |
| 		goto out;
 | |
| 
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
 | |
|  * in from disk if necessary.
 | |
|  *
 | |
|  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
 | |
|  *
 | |
|  * The btree node will have either a read or a write lock held, depending on
 | |
|  * level and op->lock.
 | |
|  */
 | |
| struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
 | |
| 				 struct bkey *k, int level, bool write,
 | |
| 				 struct btree *parent)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct btree *b;
 | |
| 
 | |
| 	BUG_ON(level < 0);
 | |
| retry:
 | |
| 	b = mca_find(c, k);
 | |
| 
 | |
| 	if (!b) {
 | |
| 		if (current->bio_list)
 | |
| 			return ERR_PTR(-EAGAIN);
 | |
| 
 | |
| 		mutex_lock(&c->bucket_lock);
 | |
| 		b = mca_alloc(c, op, k, level);
 | |
| 		mutex_unlock(&c->bucket_lock);
 | |
| 
 | |
| 		if (!b)
 | |
| 			goto retry;
 | |
| 		if (IS_ERR(b))
 | |
| 			return b;
 | |
| 
 | |
| 		bch_btree_node_read(b);
 | |
| 
 | |
| 		if (!write)
 | |
| 			downgrade_write(&b->lock);
 | |
| 	} else {
 | |
| 		rw_lock(write, b, level);
 | |
| 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
 | |
| 			rw_unlock(write, b);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		BUG_ON(b->level != level);
 | |
| 	}
 | |
| 
 | |
| 	if (btree_node_io_error(b)) {
 | |
| 		rw_unlock(write, b);
 | |
| 		return ERR_PTR(-EIO);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!b->written);
 | |
| 
 | |
| 	b->parent = parent;
 | |
| 	b->accessed = 1;
 | |
| 
 | |
| 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
 | |
| 		prefetch(b->keys.set[i].tree);
 | |
| 		prefetch(b->keys.set[i].data);
 | |
| 	}
 | |
| 
 | |
| 	for (; i <= b->keys.nsets; i++)
 | |
| 		prefetch(b->keys.set[i].data);
 | |
| 
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| static void btree_node_prefetch(struct btree *parent, struct bkey *k)
 | |
| {
 | |
| 	struct btree *b;
 | |
| 
 | |
| 	mutex_lock(&parent->c->bucket_lock);
 | |
| 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
 | |
| 	mutex_unlock(&parent->c->bucket_lock);
 | |
| 
 | |
| 	if (!IS_ERR_OR_NULL(b)) {
 | |
| 		b->parent = parent;
 | |
| 		bch_btree_node_read(b);
 | |
| 		rw_unlock(true, b);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Btree alloc */
 | |
| 
 | |
| static void btree_node_free(struct btree *b)
 | |
| {
 | |
| 	trace_bcache_btree_node_free(b);
 | |
| 
 | |
| 	BUG_ON(b == b->c->root);
 | |
| 
 | |
| retry:
 | |
| 	mutex_lock(&b->write_lock);
 | |
| 	/*
 | |
| 	 * If the btree node is selected and flushing in btree_flush_write(),
 | |
| 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
 | |
| 	 * then it is safe to free the btree node here. Otherwise this btree
 | |
| 	 * node will be in race condition.
 | |
| 	 */
 | |
| 	if (btree_node_journal_flush(b)) {
 | |
| 		mutex_unlock(&b->write_lock);
 | |
| 		pr_debug("bnode %p journal_flush set, retry", b);
 | |
| 		udelay(1);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (btree_node_dirty(b)) {
 | |
| 		btree_complete_write(b, btree_current_write(b));
 | |
| 		clear_bit(BTREE_NODE_dirty, &b->flags);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&b->write_lock);
 | |
| 
 | |
| 	cancel_delayed_work(&b->work);
 | |
| 
 | |
| 	mutex_lock(&b->c->bucket_lock);
 | |
| 	bch_bucket_free(b->c, &b->key);
 | |
| 	mca_bucket_free(b);
 | |
| 	mutex_unlock(&b->c->bucket_lock);
 | |
| }
 | |
| 
 | |
| struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
 | |
| 				     int level, bool wait,
 | |
| 				     struct btree *parent)
 | |
| {
 | |
| 	BKEY_PADDED(key) k;
 | |
| 	struct btree *b = ERR_PTR(-EAGAIN);
 | |
| 
 | |
| 	mutex_lock(&c->bucket_lock);
 | |
| retry:
 | |
| 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
 | |
| 		goto err;
 | |
| 
 | |
| 	bkey_put(c, &k.key);
 | |
| 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
 | |
| 
 | |
| 	b = mca_alloc(c, op, &k.key, level);
 | |
| 	if (IS_ERR(b))
 | |
| 		goto err_free;
 | |
| 
 | |
| 	if (!b) {
 | |
| 		cache_bug(c,
 | |
| 			"Tried to allocate bucket that was in btree cache");
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	b->accessed = 1;
 | |
| 	b->parent = parent;
 | |
| 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
 | |
| 
 | |
| 	mutex_unlock(&c->bucket_lock);
 | |
| 
 | |
| 	trace_bcache_btree_node_alloc(b);
 | |
| 	return b;
 | |
| err_free:
 | |
| 	bch_bucket_free(c, &k.key);
 | |
| err:
 | |
| 	mutex_unlock(&c->bucket_lock);
 | |
| 
 | |
| 	trace_bcache_btree_node_alloc_fail(c);
 | |
| 	return b;
 | |
| }
 | |
| 
 | |
| static struct btree *bch_btree_node_alloc(struct cache_set *c,
 | |
| 					  struct btree_op *op, int level,
 | |
| 					  struct btree *parent)
 | |
| {
 | |
| 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
 | |
| }
 | |
| 
 | |
| static struct btree *btree_node_alloc_replacement(struct btree *b,
 | |
| 						  struct btree_op *op)
 | |
| {
 | |
| 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
 | |
| 
 | |
| 	if (!IS_ERR_OR_NULL(n)) {
 | |
| 		mutex_lock(&n->write_lock);
 | |
| 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
 | |
| 		bkey_copy_key(&n->key, &b->key);
 | |
| 		mutex_unlock(&n->write_lock);
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static void make_btree_freeing_key(struct btree *b, struct bkey *k)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	mutex_lock(&b->c->bucket_lock);
 | |
| 
 | |
| 	atomic_inc(&b->c->prio_blocked);
 | |
| 
 | |
| 	bkey_copy(k, &b->key);
 | |
| 	bkey_copy_key(k, &ZERO_KEY);
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 		SET_PTR_GEN(k, i,
 | |
| 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
 | |
| 					PTR_BUCKET(b->c, &b->key, i)));
 | |
| 
 | |
| 	mutex_unlock(&b->c->bucket_lock);
 | |
| }
 | |
| 
 | |
| static int btree_check_reserve(struct btree *b, struct btree_op *op)
 | |
| {
 | |
| 	struct cache_set *c = b->c;
 | |
| 	struct cache *ca;
 | |
| 	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
 | |
| 
 | |
| 	mutex_lock(&c->bucket_lock);
 | |
| 
 | |
| 	for_each_cache(ca, c, i)
 | |
| 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
 | |
| 			if (op)
 | |
| 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
 | |
| 						TASK_UNINTERRUPTIBLE);
 | |
| 			mutex_unlock(&c->bucket_lock);
 | |
| 			return -EINTR;
 | |
| 		}
 | |
| 
 | |
| 	mutex_unlock(&c->bucket_lock);
 | |
| 
 | |
| 	return mca_cannibalize_lock(b->c, op);
 | |
| }
 | |
| 
 | |
| /* Garbage collection */
 | |
| 
 | |
| static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
 | |
| 				    struct bkey *k)
 | |
| {
 | |
| 	uint8_t stale = 0;
 | |
| 	unsigned int i;
 | |
| 	struct bucket *g;
 | |
| 
 | |
| 	/*
 | |
| 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
 | |
| 	 * freed, but since ptr_bad() returns true we'll never actually use them
 | |
| 	 * for anything and thus we don't want mark their pointers here
 | |
| 	 */
 | |
| 	if (!bkey_cmp(k, &ZERO_KEY))
 | |
| 		return stale;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++) {
 | |
| 		if (!ptr_available(c, k, i))
 | |
| 			continue;
 | |
| 
 | |
| 		g = PTR_BUCKET(c, k, i);
 | |
| 
 | |
| 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
 | |
| 			g->last_gc = PTR_GEN(k, i);
 | |
| 
 | |
| 		if (ptr_stale(c, k, i)) {
 | |
| 			stale = max(stale, ptr_stale(c, k, i));
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		cache_bug_on(GC_MARK(g) &&
 | |
| 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
 | |
| 			     c, "inconsistent ptrs: mark = %llu, level = %i",
 | |
| 			     GC_MARK(g), level);
 | |
| 
 | |
| 		if (level)
 | |
| 			SET_GC_MARK(g, GC_MARK_METADATA);
 | |
| 		else if (KEY_DIRTY(k))
 | |
| 			SET_GC_MARK(g, GC_MARK_DIRTY);
 | |
| 		else if (!GC_MARK(g))
 | |
| 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
 | |
| 
 | |
| 		/* guard against overflow */
 | |
| 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
 | |
| 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
 | |
| 					     MAX_GC_SECTORS_USED));
 | |
| 
 | |
| 		BUG_ON(!GC_SECTORS_USED(g));
 | |
| 	}
 | |
| 
 | |
| 	return stale;
 | |
| }
 | |
| 
 | |
| #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
 | |
| 
 | |
| void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 		if (ptr_available(c, k, i) &&
 | |
| 		    !ptr_stale(c, k, i)) {
 | |
| 			struct bucket *b = PTR_BUCKET(c, k, i);
 | |
| 
 | |
| 			b->gen = PTR_GEN(k, i);
 | |
| 
 | |
| 			if (level && bkey_cmp(k, &ZERO_KEY))
 | |
| 				b->prio = BTREE_PRIO;
 | |
| 			else if (!level && b->prio == BTREE_PRIO)
 | |
| 				b->prio = INITIAL_PRIO;
 | |
| 		}
 | |
| 
 | |
| 	__bch_btree_mark_key(c, level, k);
 | |
| }
 | |
| 
 | |
| void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
 | |
| {
 | |
| 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
 | |
| }
 | |
| 
 | |
| static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
 | |
| {
 | |
| 	uint8_t stale = 0;
 | |
| 	unsigned int keys = 0, good_keys = 0;
 | |
| 	struct bkey *k;
 | |
| 	struct btree_iter iter;
 | |
| 	struct bset_tree *t;
 | |
| 
 | |
| 	gc->nodes++;
 | |
| 
 | |
| 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
 | |
| 		stale = max(stale, btree_mark_key(b, k));
 | |
| 		keys++;
 | |
| 
 | |
| 		if (bch_ptr_bad(&b->keys, k))
 | |
| 			continue;
 | |
| 
 | |
| 		gc->key_bytes += bkey_u64s(k);
 | |
| 		gc->nkeys++;
 | |
| 		good_keys++;
 | |
| 
 | |
| 		gc->data += KEY_SIZE(k);
 | |
| 	}
 | |
| 
 | |
| 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
 | |
| 		btree_bug_on(t->size &&
 | |
| 			     bset_written(&b->keys, t) &&
 | |
| 			     bkey_cmp(&b->key, &t->end) < 0,
 | |
| 			     b, "found short btree key in gc");
 | |
| 
 | |
| 	if (b->c->gc_always_rewrite)
 | |
| 		return true;
 | |
| 
 | |
| 	if (stale > 10)
 | |
| 		return true;
 | |
| 
 | |
| 	if ((keys - good_keys) * 2 > keys)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #define GC_MERGE_NODES	4U
 | |
| 
 | |
| struct gc_merge_info {
 | |
| 	struct btree	*b;
 | |
| 	unsigned int	keys;
 | |
| };
 | |
| 
 | |
| static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
 | |
| 				 struct keylist *insert_keys,
 | |
| 				 atomic_t *journal_ref,
 | |
| 				 struct bkey *replace_key);
 | |
| 
 | |
| static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
 | |
| 			     struct gc_stat *gc, struct gc_merge_info *r)
 | |
| {
 | |
| 	unsigned int i, nodes = 0, keys = 0, blocks;
 | |
| 	struct btree *new_nodes[GC_MERGE_NODES];
 | |
| 	struct keylist keylist;
 | |
| 	struct closure cl;
 | |
| 	struct bkey *k;
 | |
| 
 | |
| 	bch_keylist_init(&keylist);
 | |
| 
 | |
| 	if (btree_check_reserve(b, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	memset(new_nodes, 0, sizeof(new_nodes));
 | |
| 	closure_init_stack(&cl);
 | |
| 
 | |
| 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
 | |
| 		keys += r[nodes++].keys;
 | |
| 
 | |
| 	blocks = btree_default_blocks(b->c) * 2 / 3;
 | |
| 
 | |
| 	if (nodes < 2 ||
 | |
| 	    __set_blocks(b->keys.set[0].data, keys,
 | |
| 			 block_bytes(b->c)) > blocks * (nodes - 1))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < nodes; i++) {
 | |
| 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
 | |
| 		if (IS_ERR_OR_NULL(new_nodes[i]))
 | |
| 			goto out_nocoalesce;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to check the reserve here, after we've allocated our new
 | |
| 	 * nodes, to make sure the insert below will succeed - we also check
 | |
| 	 * before as an optimization to potentially avoid a bunch of expensive
 | |
| 	 * allocs/sorts
 | |
| 	 */
 | |
| 	if (btree_check_reserve(b, NULL))
 | |
| 		goto out_nocoalesce;
 | |
| 
 | |
| 	for (i = 0; i < nodes; i++)
 | |
| 		mutex_lock(&new_nodes[i]->write_lock);
 | |
| 
 | |
| 	for (i = nodes - 1; i > 0; --i) {
 | |
| 		struct bset *n1 = btree_bset_first(new_nodes[i]);
 | |
| 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
 | |
| 		struct bkey *k, *last = NULL;
 | |
| 
 | |
| 		keys = 0;
 | |
| 
 | |
| 		if (i > 1) {
 | |
| 			for (k = n2->start;
 | |
| 			     k < bset_bkey_last(n2);
 | |
| 			     k = bkey_next(k)) {
 | |
| 				if (__set_blocks(n1, n1->keys + keys +
 | |
| 						 bkey_u64s(k),
 | |
| 						 block_bytes(b->c)) > blocks)
 | |
| 					break;
 | |
| 
 | |
| 				last = k;
 | |
| 				keys += bkey_u64s(k);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Last node we're not getting rid of - we're getting
 | |
| 			 * rid of the node at r[0]. Have to try and fit all of
 | |
| 			 * the remaining keys into this node; we can't ensure
 | |
| 			 * they will always fit due to rounding and variable
 | |
| 			 * length keys (shouldn't be possible in practice,
 | |
| 			 * though)
 | |
| 			 */
 | |
| 			if (__set_blocks(n1, n1->keys + n2->keys,
 | |
| 					 block_bytes(b->c)) >
 | |
| 			    btree_blocks(new_nodes[i]))
 | |
| 				goto out_unlock_nocoalesce;
 | |
| 
 | |
| 			keys = n2->keys;
 | |
| 			/* Take the key of the node we're getting rid of */
 | |
| 			last = &r->b->key;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
 | |
| 		       btree_blocks(new_nodes[i]));
 | |
| 
 | |
| 		if (last)
 | |
| 			bkey_copy_key(&new_nodes[i]->key, last);
 | |
| 
 | |
| 		memcpy(bset_bkey_last(n1),
 | |
| 		       n2->start,
 | |
| 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
 | |
| 
 | |
| 		n1->keys += keys;
 | |
| 		r[i].keys = n1->keys;
 | |
| 
 | |
| 		memmove(n2->start,
 | |
| 			bset_bkey_idx(n2, keys),
 | |
| 			(void *) bset_bkey_last(n2) -
 | |
| 			(void *) bset_bkey_idx(n2, keys));
 | |
| 
 | |
| 		n2->keys -= keys;
 | |
| 
 | |
| 		if (__bch_keylist_realloc(&keylist,
 | |
| 					  bkey_u64s(&new_nodes[i]->key)))
 | |
| 			goto out_unlock_nocoalesce;
 | |
| 
 | |
| 		bch_btree_node_write(new_nodes[i], &cl);
 | |
| 		bch_keylist_add(&keylist, &new_nodes[i]->key);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nodes; i++)
 | |
| 		mutex_unlock(&new_nodes[i]->write_lock);
 | |
| 
 | |
| 	closure_sync(&cl);
 | |
| 
 | |
| 	/* We emptied out this node */
 | |
| 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
 | |
| 	btree_node_free(new_nodes[0]);
 | |
| 	rw_unlock(true, new_nodes[0]);
 | |
| 	new_nodes[0] = NULL;
 | |
| 
 | |
| 	for (i = 0; i < nodes; i++) {
 | |
| 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
 | |
| 			goto out_nocoalesce;
 | |
| 
 | |
| 		make_btree_freeing_key(r[i].b, keylist.top);
 | |
| 		bch_keylist_push(&keylist);
 | |
| 	}
 | |
| 
 | |
| 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
 | |
| 	BUG_ON(!bch_keylist_empty(&keylist));
 | |
| 
 | |
| 	for (i = 0; i < nodes; i++) {
 | |
| 		btree_node_free(r[i].b);
 | |
| 		rw_unlock(true, r[i].b);
 | |
| 
 | |
| 		r[i].b = new_nodes[i];
 | |
| 	}
 | |
| 
 | |
| 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
 | |
| 	r[nodes - 1].b = ERR_PTR(-EINTR);
 | |
| 
 | |
| 	trace_bcache_btree_gc_coalesce(nodes);
 | |
| 	gc->nodes--;
 | |
| 
 | |
| 	bch_keylist_free(&keylist);
 | |
| 
 | |
| 	/* Invalidated our iterator */
 | |
| 	return -EINTR;
 | |
| 
 | |
| out_unlock_nocoalesce:
 | |
| 	for (i = 0; i < nodes; i++)
 | |
| 		mutex_unlock(&new_nodes[i]->write_lock);
 | |
| 
 | |
| out_nocoalesce:
 | |
| 	closure_sync(&cl);
 | |
| 	bch_keylist_free(&keylist);
 | |
| 
 | |
| 	while ((k = bch_keylist_pop(&keylist)))
 | |
| 		if (!bkey_cmp(k, &ZERO_KEY))
 | |
| 			atomic_dec(&b->c->prio_blocked);
 | |
| 
 | |
| 	for (i = 0; i < nodes; i++)
 | |
| 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
 | |
| 			btree_node_free(new_nodes[i]);
 | |
| 			rw_unlock(true, new_nodes[i]);
 | |
| 		}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
 | |
| 				 struct btree *replace)
 | |
| {
 | |
| 	struct keylist keys;
 | |
| 	struct btree *n;
 | |
| 
 | |
| 	if (btree_check_reserve(b, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	n = btree_node_alloc_replacement(replace, NULL);
 | |
| 
 | |
| 	/* recheck reserve after allocating replacement node */
 | |
| 	if (btree_check_reserve(b, NULL)) {
 | |
| 		btree_node_free(n);
 | |
| 		rw_unlock(true, n);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	bch_btree_node_write_sync(n);
 | |
| 
 | |
| 	bch_keylist_init(&keys);
 | |
| 	bch_keylist_add(&keys, &n->key);
 | |
| 
 | |
| 	make_btree_freeing_key(replace, keys.top);
 | |
| 	bch_keylist_push(&keys);
 | |
| 
 | |
| 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
 | |
| 	BUG_ON(!bch_keylist_empty(&keys));
 | |
| 
 | |
| 	btree_node_free(replace);
 | |
| 	rw_unlock(true, n);
 | |
| 
 | |
| 	/* Invalidated our iterator */
 | |
| 	return -EINTR;
 | |
| }
 | |
| 
 | |
| static unsigned int btree_gc_count_keys(struct btree *b)
 | |
| {
 | |
| 	struct bkey *k;
 | |
| 	struct btree_iter iter;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
 | |
| 		ret += bkey_u64s(k);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static size_t btree_gc_min_nodes(struct cache_set *c)
 | |
| {
 | |
| 	size_t min_nodes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since incremental GC would stop 100ms when front
 | |
| 	 * side I/O comes, so when there are many btree nodes,
 | |
| 	 * if GC only processes constant (100) nodes each time,
 | |
| 	 * GC would last a long time, and the front side I/Os
 | |
| 	 * would run out of the buckets (since no new bucket
 | |
| 	 * can be allocated during GC), and be blocked again.
 | |
| 	 * So GC should not process constant nodes, but varied
 | |
| 	 * nodes according to the number of btree nodes, which
 | |
| 	 * realized by dividing GC into constant(100) times,
 | |
| 	 * so when there are many btree nodes, GC can process
 | |
| 	 * more nodes each time, otherwise, GC will process less
 | |
| 	 * nodes each time (but no less than MIN_GC_NODES)
 | |
| 	 */
 | |
| 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
 | |
| 	if (min_nodes < MIN_GC_NODES)
 | |
| 		min_nodes = MIN_GC_NODES;
 | |
| 
 | |
| 	return min_nodes;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int btree_gc_recurse(struct btree *b, struct btree_op *op,
 | |
| 			    struct closure *writes, struct gc_stat *gc)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	bool should_rewrite;
 | |
| 	struct bkey *k;
 | |
| 	struct btree_iter iter;
 | |
| 	struct gc_merge_info r[GC_MERGE_NODES];
 | |
| 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
 | |
| 
 | |
| 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
 | |
| 
 | |
| 	for (i = r; i < r + ARRAY_SIZE(r); i++)
 | |
| 		i->b = ERR_PTR(-EINTR);
 | |
| 
 | |
| 	while (1) {
 | |
| 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
 | |
| 		if (k) {
 | |
| 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
 | |
| 						  true, b);
 | |
| 			if (IS_ERR(r->b)) {
 | |
| 				ret = PTR_ERR(r->b);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			r->keys = btree_gc_count_keys(r->b);
 | |
| 
 | |
| 			ret = btree_gc_coalesce(b, op, gc, r);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (!last->b)
 | |
| 			break;
 | |
| 
 | |
| 		if (!IS_ERR(last->b)) {
 | |
| 			should_rewrite = btree_gc_mark_node(last->b, gc);
 | |
| 			if (should_rewrite) {
 | |
| 				ret = btree_gc_rewrite_node(b, op, last->b);
 | |
| 				if (ret)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 			if (last->b->level) {
 | |
| 				ret = btree_gc_recurse(last->b, op, writes, gc);
 | |
| 				if (ret)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 			bkey_copy_key(&b->c->gc_done, &last->b->key);
 | |
| 
 | |
| 			/*
 | |
| 			 * Must flush leaf nodes before gc ends, since replace
 | |
| 			 * operations aren't journalled
 | |
| 			 */
 | |
| 			mutex_lock(&last->b->write_lock);
 | |
| 			if (btree_node_dirty(last->b))
 | |
| 				bch_btree_node_write(last->b, writes);
 | |
| 			mutex_unlock(&last->b->write_lock);
 | |
| 			rw_unlock(true, last->b);
 | |
| 		}
 | |
| 
 | |
| 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
 | |
| 		r->b = NULL;
 | |
| 
 | |
| 		if (atomic_read(&b->c->search_inflight) &&
 | |
| 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
 | |
| 			gc->nodes_pre =  gc->nodes;
 | |
| 			ret = -EAGAIN;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (need_resched()) {
 | |
| 			ret = -EAGAIN;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = r; i < r + ARRAY_SIZE(r); i++)
 | |
| 		if (!IS_ERR_OR_NULL(i->b)) {
 | |
| 			mutex_lock(&i->b->write_lock);
 | |
| 			if (btree_node_dirty(i->b))
 | |
| 				bch_btree_node_write(i->b, writes);
 | |
| 			mutex_unlock(&i->b->write_lock);
 | |
| 			rw_unlock(true, i->b);
 | |
| 		}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
 | |
| 			     struct closure *writes, struct gc_stat *gc)
 | |
| {
 | |
| 	struct btree *n = NULL;
 | |
| 	int ret = 0;
 | |
| 	bool should_rewrite;
 | |
| 
 | |
| 	should_rewrite = btree_gc_mark_node(b, gc);
 | |
| 	if (should_rewrite) {
 | |
| 		n = btree_node_alloc_replacement(b, NULL);
 | |
| 
 | |
| 		if (!IS_ERR_OR_NULL(n)) {
 | |
| 			bch_btree_node_write_sync(n);
 | |
| 
 | |
| 			bch_btree_set_root(n);
 | |
| 			btree_node_free(b);
 | |
| 			rw_unlock(true, n);
 | |
| 
 | |
| 			return -EINTR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
 | |
| 
 | |
| 	if (b->level) {
 | |
| 		ret = btree_gc_recurse(b, op, writes, gc);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	bkey_copy_key(&b->c->gc_done, &b->key);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void btree_gc_start(struct cache_set *c)
 | |
| {
 | |
| 	struct cache *ca;
 | |
| 	struct bucket *b;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!c->gc_mark_valid)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&c->bucket_lock);
 | |
| 
 | |
| 	c->gc_mark_valid = 0;
 | |
| 	c->gc_done = ZERO_KEY;
 | |
| 
 | |
| 	for_each_cache(ca, c, i)
 | |
| 		for_each_bucket(b, ca) {
 | |
| 			b->last_gc = b->gen;
 | |
| 			if (!atomic_read(&b->pin)) {
 | |
| 				SET_GC_MARK(b, 0);
 | |
| 				SET_GC_SECTORS_USED(b, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	mutex_unlock(&c->bucket_lock);
 | |
| }
 | |
| 
 | |
| static void bch_btree_gc_finish(struct cache_set *c)
 | |
| {
 | |
| 	struct bucket *b;
 | |
| 	struct cache *ca;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	mutex_lock(&c->bucket_lock);
 | |
| 
 | |
| 	set_gc_sectors(c);
 | |
| 	c->gc_mark_valid = 1;
 | |
| 	c->need_gc	= 0;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
 | |
| 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
 | |
| 			    GC_MARK_METADATA);
 | |
| 
 | |
| 	/* don't reclaim buckets to which writeback keys point */
 | |
| 	rcu_read_lock();
 | |
| 	for (i = 0; i < c->devices_max_used; i++) {
 | |
| 		struct bcache_device *d = c->devices[i];
 | |
| 		struct cached_dev *dc;
 | |
| 		struct keybuf_key *w, *n;
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
 | |
| 			continue;
 | |
| 		dc = container_of(d, struct cached_dev, disk);
 | |
| 
 | |
| 		spin_lock(&dc->writeback_keys.lock);
 | |
| 		rbtree_postorder_for_each_entry_safe(w, n,
 | |
| 					&dc->writeback_keys.keys, node)
 | |
| 			for (j = 0; j < KEY_PTRS(&w->key); j++)
 | |
| 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
 | |
| 					    GC_MARK_DIRTY);
 | |
| 		spin_unlock(&dc->writeback_keys.lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	c->avail_nbuckets = 0;
 | |
| 	for_each_cache(ca, c, i) {
 | |
| 		uint64_t *i;
 | |
| 
 | |
| 		ca->invalidate_needs_gc = 0;
 | |
| 
 | |
| 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
 | |
| 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
 | |
| 
 | |
| 		for (i = ca->prio_buckets;
 | |
| 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
 | |
| 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
 | |
| 
 | |
| 		for_each_bucket(b, ca) {
 | |
| 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
 | |
| 
 | |
| 			if (atomic_read(&b->pin))
 | |
| 				continue;
 | |
| 
 | |
| 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
 | |
| 
 | |
| 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
 | |
| 				c->avail_nbuckets++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&c->bucket_lock);
 | |
| }
 | |
| 
 | |
| static void bch_btree_gc(struct cache_set *c)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct gc_stat stats;
 | |
| 	struct closure writes;
 | |
| 	struct btree_op op;
 | |
| 	uint64_t start_time = local_clock();
 | |
| 
 | |
| 	trace_bcache_gc_start(c);
 | |
| 
 | |
| 	memset(&stats, 0, sizeof(struct gc_stat));
 | |
| 	closure_init_stack(&writes);
 | |
| 	bch_btree_op_init(&op, SHRT_MAX);
 | |
| 
 | |
| 	btree_gc_start(c);
 | |
| 
 | |
| 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
 | |
| 	do {
 | |
| 		ret = btree_root(gc_root, c, &op, &writes, &stats);
 | |
| 		closure_sync(&writes);
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (ret == -EAGAIN)
 | |
| 			schedule_timeout_interruptible(msecs_to_jiffies
 | |
| 						       (GC_SLEEP_MS));
 | |
| 		else if (ret)
 | |
| 			pr_warn("gc failed!");
 | |
| 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
 | |
| 
 | |
| 	bch_btree_gc_finish(c);
 | |
| 	wake_up_allocators(c);
 | |
| 
 | |
| 	bch_time_stats_update(&c->btree_gc_time, start_time);
 | |
| 
 | |
| 	stats.key_bytes *= sizeof(uint64_t);
 | |
| 	stats.data	<<= 9;
 | |
| 	bch_update_bucket_in_use(c, &stats);
 | |
| 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
 | |
| 
 | |
| 	trace_bcache_gc_end(c);
 | |
| 
 | |
| 	bch_moving_gc(c);
 | |
| }
 | |
| 
 | |
| static bool gc_should_run(struct cache_set *c)
 | |
| {
 | |
| 	struct cache *ca;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_cache(ca, c, i)
 | |
| 		if (ca->invalidate_needs_gc)
 | |
| 			return true;
 | |
| 
 | |
| 	if (atomic_read(&c->sectors_to_gc) < 0)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int bch_gc_thread(void *arg)
 | |
| {
 | |
| 	struct cache_set *c = arg;
 | |
| 
 | |
| 	while (1) {
 | |
| 		wait_event_interruptible(c->gc_wait,
 | |
| 			   kthread_should_stop() ||
 | |
| 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
 | |
| 			   gc_should_run(c));
 | |
| 
 | |
| 		if (kthread_should_stop() ||
 | |
| 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
 | |
| 			break;
 | |
| 
 | |
| 		set_gc_sectors(c);
 | |
| 		bch_btree_gc(c);
 | |
| 	}
 | |
| 
 | |
| 	wait_for_kthread_stop();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int bch_gc_thread_start(struct cache_set *c)
 | |
| {
 | |
| 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
 | |
| 	return PTR_ERR_OR_ZERO(c->gc_thread);
 | |
| }
 | |
| 
 | |
| /* Initial partial gc */
 | |
| 
 | |
| static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct bkey *k, *p = NULL;
 | |
| 	struct btree_iter iter;
 | |
| 
 | |
| 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
 | |
| 		bch_initial_mark_key(b->c, b->level, k);
 | |
| 
 | |
| 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
 | |
| 
 | |
| 	if (b->level) {
 | |
| 		bch_btree_iter_init(&b->keys, &iter, NULL);
 | |
| 
 | |
| 		do {
 | |
| 			k = bch_btree_iter_next_filter(&iter, &b->keys,
 | |
| 						       bch_ptr_bad);
 | |
| 			if (k) {
 | |
| 				btree_node_prefetch(b, k);
 | |
| 				/*
 | |
| 				 * initiallize c->gc_stats.nodes
 | |
| 				 * for incremental GC
 | |
| 				 */
 | |
| 				b->c->gc_stats.nodes++;
 | |
| 			}
 | |
| 
 | |
| 			if (p)
 | |
| 				ret = btree(check_recurse, p, b, op);
 | |
| 
 | |
| 			p = k;
 | |
| 		} while (p && !ret);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int bch_btree_check(struct cache_set *c)
 | |
| {
 | |
| 	struct btree_op op;
 | |
| 
 | |
| 	bch_btree_op_init(&op, SHRT_MAX);
 | |
| 
 | |
| 	return btree_root(check_recurse, c, &op);
 | |
| }
 | |
| 
 | |
| void bch_initial_gc_finish(struct cache_set *c)
 | |
| {
 | |
| 	struct cache *ca;
 | |
| 	struct bucket *b;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	bch_btree_gc_finish(c);
 | |
| 
 | |
| 	mutex_lock(&c->bucket_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to put some unused buckets directly on the prio freelist in
 | |
| 	 * order to get the allocator thread started - it needs freed buckets in
 | |
| 	 * order to rewrite the prios and gens, and it needs to rewrite prios
 | |
| 	 * and gens in order to free buckets.
 | |
| 	 *
 | |
| 	 * This is only safe for buckets that have no live data in them, which
 | |
| 	 * there should always be some of.
 | |
| 	 */
 | |
| 	for_each_cache(ca, c, i) {
 | |
| 		for_each_bucket(b, ca) {
 | |
| 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
 | |
| 			    fifo_full(&ca->free[RESERVE_BTREE]))
 | |
| 				break;
 | |
| 
 | |
| 			if (bch_can_invalidate_bucket(ca, b) &&
 | |
| 			    !GC_MARK(b)) {
 | |
| 				__bch_invalidate_one_bucket(ca, b);
 | |
| 				if (!fifo_push(&ca->free[RESERVE_PRIO],
 | |
| 				   b - ca->buckets))
 | |
| 					fifo_push(&ca->free[RESERVE_BTREE],
 | |
| 						  b - ca->buckets);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&c->bucket_lock);
 | |
| }
 | |
| 
 | |
| /* Btree insertion */
 | |
| 
 | |
| static bool btree_insert_key(struct btree *b, struct bkey *k,
 | |
| 			     struct bkey *replace_key)
 | |
| {
 | |
| 	unsigned int status;
 | |
| 
 | |
| 	BUG_ON(bkey_cmp(k, &b->key) > 0);
 | |
| 
 | |
| 	status = bch_btree_insert_key(&b->keys, k, replace_key);
 | |
| 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
 | |
| 		bch_check_keys(&b->keys, "%u for %s", status,
 | |
| 			       replace_key ? "replace" : "insert");
 | |
| 
 | |
| 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
 | |
| 					      status);
 | |
| 		return true;
 | |
| 	} else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| static size_t insert_u64s_remaining(struct btree *b)
 | |
| {
 | |
| 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
 | |
| 
 | |
| 	/*
 | |
| 	 * Might land in the middle of an existing extent and have to split it
 | |
| 	 */
 | |
| 	if (b->keys.ops->is_extents)
 | |
| 		ret -= KEY_MAX_U64S;
 | |
| 
 | |
| 	return max(ret, 0L);
 | |
| }
 | |
| 
 | |
| static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
 | |
| 				  struct keylist *insert_keys,
 | |
| 				  struct bkey *replace_key)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 	int oldsize = bch_count_data(&b->keys);
 | |
| 
 | |
| 	while (!bch_keylist_empty(insert_keys)) {
 | |
| 		struct bkey *k = insert_keys->keys;
 | |
| 
 | |
| 		if (bkey_u64s(k) > insert_u64s_remaining(b))
 | |
| 			break;
 | |
| 
 | |
| 		if (bkey_cmp(k, &b->key) <= 0) {
 | |
| 			if (!b->level)
 | |
| 				bkey_put(b->c, k);
 | |
| 
 | |
| 			ret |= btree_insert_key(b, k, replace_key);
 | |
| 			bch_keylist_pop_front(insert_keys);
 | |
| 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
 | |
| 			BKEY_PADDED(key) temp;
 | |
| 			bkey_copy(&temp.key, insert_keys->keys);
 | |
| 
 | |
| 			bch_cut_back(&b->key, &temp.key);
 | |
| 			bch_cut_front(&b->key, insert_keys->keys);
 | |
| 
 | |
| 			ret |= btree_insert_key(b, &temp.key, replace_key);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		op->insert_collision = true;
 | |
| 
 | |
| 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
 | |
| 
 | |
| 	BUG_ON(bch_count_data(&b->keys) < oldsize);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btree_split(struct btree *b, struct btree_op *op,
 | |
| 		       struct keylist *insert_keys,
 | |
| 		       struct bkey *replace_key)
 | |
| {
 | |
| 	bool split;
 | |
| 	struct btree *n1, *n2 = NULL, *n3 = NULL;
 | |
| 	uint64_t start_time = local_clock();
 | |
| 	struct closure cl;
 | |
| 	struct keylist parent_keys;
 | |
| 
 | |
| 	closure_init_stack(&cl);
 | |
| 	bch_keylist_init(&parent_keys);
 | |
| 
 | |
| 	if (btree_check_reserve(b, op)) {
 | |
| 		if (!b->level)
 | |
| 			return -EINTR;
 | |
| 		else
 | |
| 			WARN(1, "insufficient reserve for split\n");
 | |
| 	}
 | |
| 
 | |
| 	n1 = btree_node_alloc_replacement(b, op);
 | |
| 	if (IS_ERR(n1))
 | |
| 		goto err;
 | |
| 
 | |
| 	split = set_blocks(btree_bset_first(n1),
 | |
| 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
 | |
| 
 | |
| 	if (split) {
 | |
| 		unsigned int keys = 0;
 | |
| 
 | |
| 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
 | |
| 
 | |
| 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
 | |
| 		if (IS_ERR(n2))
 | |
| 			goto err_free1;
 | |
| 
 | |
| 		if (!b->parent) {
 | |
| 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
 | |
| 			if (IS_ERR(n3))
 | |
| 				goto err_free2;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&n1->write_lock);
 | |
| 		mutex_lock(&n2->write_lock);
 | |
| 
 | |
| 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
 | |
| 
 | |
| 		/*
 | |
| 		 * Has to be a linear search because we don't have an auxiliary
 | |
| 		 * search tree yet
 | |
| 		 */
 | |
| 
 | |
| 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
 | |
| 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
 | |
| 							keys));
 | |
| 
 | |
| 		bkey_copy_key(&n1->key,
 | |
| 			      bset_bkey_idx(btree_bset_first(n1), keys));
 | |
| 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
 | |
| 
 | |
| 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
 | |
| 		btree_bset_first(n1)->keys = keys;
 | |
| 
 | |
| 		memcpy(btree_bset_first(n2)->start,
 | |
| 		       bset_bkey_last(btree_bset_first(n1)),
 | |
| 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
 | |
| 
 | |
| 		bkey_copy_key(&n2->key, &b->key);
 | |
| 
 | |
| 		bch_keylist_add(&parent_keys, &n2->key);
 | |
| 		bch_btree_node_write(n2, &cl);
 | |
| 		mutex_unlock(&n2->write_lock);
 | |
| 		rw_unlock(true, n2);
 | |
| 	} else {
 | |
| 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
 | |
| 
 | |
| 		mutex_lock(&n1->write_lock);
 | |
| 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
 | |
| 	}
 | |
| 
 | |
| 	bch_keylist_add(&parent_keys, &n1->key);
 | |
| 	bch_btree_node_write(n1, &cl);
 | |
| 	mutex_unlock(&n1->write_lock);
 | |
| 
 | |
| 	if (n3) {
 | |
| 		/* Depth increases, make a new root */
 | |
| 		mutex_lock(&n3->write_lock);
 | |
| 		bkey_copy_key(&n3->key, &MAX_KEY);
 | |
| 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
 | |
| 		bch_btree_node_write(n3, &cl);
 | |
| 		mutex_unlock(&n3->write_lock);
 | |
| 
 | |
| 		closure_sync(&cl);
 | |
| 		bch_btree_set_root(n3);
 | |
| 		rw_unlock(true, n3);
 | |
| 	} else if (!b->parent) {
 | |
| 		/* Root filled up but didn't need to be split */
 | |
| 		closure_sync(&cl);
 | |
| 		bch_btree_set_root(n1);
 | |
| 	} else {
 | |
| 		/* Split a non root node */
 | |
| 		closure_sync(&cl);
 | |
| 		make_btree_freeing_key(b, parent_keys.top);
 | |
| 		bch_keylist_push(&parent_keys);
 | |
| 
 | |
| 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
 | |
| 		BUG_ON(!bch_keylist_empty(&parent_keys));
 | |
| 	}
 | |
| 
 | |
| 	btree_node_free(b);
 | |
| 	rw_unlock(true, n1);
 | |
| 
 | |
| 	bch_time_stats_update(&b->c->btree_split_time, start_time);
 | |
| 
 | |
| 	return 0;
 | |
| err_free2:
 | |
| 	bkey_put(b->c, &n2->key);
 | |
| 	btree_node_free(n2);
 | |
| 	rw_unlock(true, n2);
 | |
| err_free1:
 | |
| 	bkey_put(b->c, &n1->key);
 | |
| 	btree_node_free(n1);
 | |
| 	rw_unlock(true, n1);
 | |
| err:
 | |
| 	WARN(1, "bcache: btree split failed (level %u)", b->level);
 | |
| 
 | |
| 	if (n3 == ERR_PTR(-EAGAIN) ||
 | |
| 	    n2 == ERR_PTR(-EAGAIN) ||
 | |
| 	    n1 == ERR_PTR(-EAGAIN))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
 | |
| 				 struct keylist *insert_keys,
 | |
| 				 atomic_t *journal_ref,
 | |
| 				 struct bkey *replace_key)
 | |
| {
 | |
| 	struct closure cl;
 | |
| 
 | |
| 	BUG_ON(b->level && replace_key);
 | |
| 
 | |
| 	closure_init_stack(&cl);
 | |
| 
 | |
| 	mutex_lock(&b->write_lock);
 | |
| 
 | |
| 	if (write_block(b) != btree_bset_last(b) &&
 | |
| 	    b->keys.last_set_unwritten)
 | |
| 		bch_btree_init_next(b); /* just wrote a set */
 | |
| 
 | |
| 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
 | |
| 		mutex_unlock(&b->write_lock);
 | |
| 		goto split;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(write_block(b) != btree_bset_last(b));
 | |
| 
 | |
| 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
 | |
| 		if (!b->level)
 | |
| 			bch_btree_leaf_dirty(b, journal_ref);
 | |
| 		else
 | |
| 			bch_btree_node_write(b, &cl);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&b->write_lock);
 | |
| 
 | |
| 	/* wait for btree node write if necessary, after unlock */
 | |
| 	closure_sync(&cl);
 | |
| 
 | |
| 	return 0;
 | |
| split:
 | |
| 	if (current->bio_list) {
 | |
| 		op->lock = b->c->root->level + 1;
 | |
| 		return -EAGAIN;
 | |
| 	} else if (op->lock <= b->c->root->level) {
 | |
| 		op->lock = b->c->root->level + 1;
 | |
| 		return -EINTR;
 | |
| 	} else {
 | |
| 		/* Invalidated all iterators */
 | |
| 		int ret = btree_split(b, op, insert_keys, replace_key);
 | |
| 
 | |
| 		if (bch_keylist_empty(insert_keys))
 | |
| 			return 0;
 | |
| 		else if (!ret)
 | |
| 			return -EINTR;
 | |
| 		return ret;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
 | |
| 			       struct bkey *check_key)
 | |
| {
 | |
| 	int ret = -EINTR;
 | |
| 	uint64_t btree_ptr = b->key.ptr[0];
 | |
| 	unsigned long seq = b->seq;
 | |
| 	struct keylist insert;
 | |
| 	bool upgrade = op->lock == -1;
 | |
| 
 | |
| 	bch_keylist_init(&insert);
 | |
| 
 | |
| 	if (upgrade) {
 | |
| 		rw_unlock(false, b);
 | |
| 		rw_lock(true, b, b->level);
 | |
| 
 | |
| 		if (b->key.ptr[0] != btree_ptr ||
 | |
| 		    b->seq != seq + 1) {
 | |
| 			op->lock = b->level;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	SET_KEY_PTRS(check_key, 1);
 | |
| 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
 | |
| 
 | |
| 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
 | |
| 
 | |
| 	bch_keylist_add(&insert, check_key);
 | |
| 
 | |
| 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
 | |
| 
 | |
| 	BUG_ON(!ret && !bch_keylist_empty(&insert));
 | |
| out:
 | |
| 	if (upgrade)
 | |
| 		downgrade_write(&b->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct btree_insert_op {
 | |
| 	struct btree_op	op;
 | |
| 	struct keylist	*keys;
 | |
| 	atomic_t	*journal_ref;
 | |
| 	struct bkey	*replace_key;
 | |
| };
 | |
| 
 | |
| static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
 | |
| {
 | |
| 	struct btree_insert_op *op = container_of(b_op,
 | |
| 					struct btree_insert_op, op);
 | |
| 
 | |
| 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
 | |
| 					op->journal_ref, op->replace_key);
 | |
| 	if (ret && !bch_keylist_empty(op->keys))
 | |
| 		return ret;
 | |
| 	else
 | |
| 		return MAP_DONE;
 | |
| }
 | |
| 
 | |
| int bch_btree_insert(struct cache_set *c, struct keylist *keys,
 | |
| 		     atomic_t *journal_ref, struct bkey *replace_key)
 | |
| {
 | |
| 	struct btree_insert_op op;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(current->bio_list);
 | |
| 	BUG_ON(bch_keylist_empty(keys));
 | |
| 
 | |
| 	bch_btree_op_init(&op.op, 0);
 | |
| 	op.keys		= keys;
 | |
| 	op.journal_ref	= journal_ref;
 | |
| 	op.replace_key	= replace_key;
 | |
| 
 | |
| 	while (!ret && !bch_keylist_empty(keys)) {
 | |
| 		op.op.lock = 0;
 | |
| 		ret = bch_btree_map_leaf_nodes(&op.op, c,
 | |
| 					       &START_KEY(keys->keys),
 | |
| 					       btree_insert_fn);
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		struct bkey *k;
 | |
| 
 | |
| 		pr_err("error %i", ret);
 | |
| 
 | |
| 		while ((k = bch_keylist_pop(keys)))
 | |
| 			bkey_put(c, k);
 | |
| 	} else if (op.op.insert_collision)
 | |
| 		ret = -ESRCH;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void bch_btree_set_root(struct btree *b)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	struct closure cl;
 | |
| 
 | |
| 	closure_init_stack(&cl);
 | |
| 
 | |
| 	trace_bcache_btree_set_root(b);
 | |
| 
 | |
| 	BUG_ON(!b->written);
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(&b->key); i++)
 | |
| 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
 | |
| 
 | |
| 	mutex_lock(&b->c->bucket_lock);
 | |
| 	list_del_init(&b->list);
 | |
| 	mutex_unlock(&b->c->bucket_lock);
 | |
| 
 | |
| 	b->c->root = b;
 | |
| 
 | |
| 	bch_journal_meta(b->c, &cl);
 | |
| 	closure_sync(&cl);
 | |
| }
 | |
| 
 | |
| /* Map across nodes or keys */
 | |
| 
 | |
| static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
 | |
| 				       struct bkey *from,
 | |
| 				       btree_map_nodes_fn *fn, int flags)
 | |
| {
 | |
| 	int ret = MAP_CONTINUE;
 | |
| 
 | |
| 	if (b->level) {
 | |
| 		struct bkey *k;
 | |
| 		struct btree_iter iter;
 | |
| 
 | |
| 		bch_btree_iter_init(&b->keys, &iter, from);
 | |
| 
 | |
| 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
 | |
| 						       bch_ptr_bad))) {
 | |
| 			ret = btree(map_nodes_recurse, k, b,
 | |
| 				    op, from, fn, flags);
 | |
| 			from = NULL;
 | |
| 
 | |
| 			if (ret != MAP_CONTINUE)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!b->level || flags == MAP_ALL_NODES)
 | |
| 		ret = fn(op, b);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
 | |
| 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
 | |
| {
 | |
| 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
 | |
| }
 | |
| 
 | |
| static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
 | |
| 				      struct bkey *from, btree_map_keys_fn *fn,
 | |
| 				      int flags)
 | |
| {
 | |
| 	int ret = MAP_CONTINUE;
 | |
| 	struct bkey *k;
 | |
| 	struct btree_iter iter;
 | |
| 
 | |
| 	bch_btree_iter_init(&b->keys, &iter, from);
 | |
| 
 | |
| 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
 | |
| 		ret = !b->level
 | |
| 			? fn(op, b, k)
 | |
| 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
 | |
| 		from = NULL;
 | |
| 
 | |
| 		if (ret != MAP_CONTINUE)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!b->level && (flags & MAP_END_KEY))
 | |
| 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
 | |
| 				     KEY_OFFSET(&b->key), 0));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
 | |
| 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
 | |
| {
 | |
| 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
 | |
| }
 | |
| 
 | |
| /* Keybuf code */
 | |
| 
 | |
| static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
 | |
| {
 | |
| 	/* Overlapping keys compare equal */
 | |
| 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
 | |
| 		return -1;
 | |
| 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
 | |
| 					    struct keybuf_key *r)
 | |
| {
 | |
| 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
 | |
| }
 | |
| 
 | |
| struct refill {
 | |
| 	struct btree_op	op;
 | |
| 	unsigned int	nr_found;
 | |
| 	struct keybuf	*buf;
 | |
| 	struct bkey	*end;
 | |
| 	keybuf_pred_fn	*pred;
 | |
| };
 | |
| 
 | |
| static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
 | |
| 			    struct bkey *k)
 | |
| {
 | |
| 	struct refill *refill = container_of(op, struct refill, op);
 | |
| 	struct keybuf *buf = refill->buf;
 | |
| 	int ret = MAP_CONTINUE;
 | |
| 
 | |
| 	if (bkey_cmp(k, refill->end) > 0) {
 | |
| 		ret = MAP_DONE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!KEY_SIZE(k)) /* end key */
 | |
| 		goto out;
 | |
| 
 | |
| 	if (refill->pred(buf, k)) {
 | |
| 		struct keybuf_key *w;
 | |
| 
 | |
| 		spin_lock(&buf->lock);
 | |
| 
 | |
| 		w = array_alloc(&buf->freelist);
 | |
| 		if (!w) {
 | |
| 			spin_unlock(&buf->lock);
 | |
| 			return MAP_DONE;
 | |
| 		}
 | |
| 
 | |
| 		w->private = NULL;
 | |
| 		bkey_copy(&w->key, k);
 | |
| 
 | |
| 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
 | |
| 			array_free(&buf->freelist, w);
 | |
| 		else
 | |
| 			refill->nr_found++;
 | |
| 
 | |
| 		if (array_freelist_empty(&buf->freelist))
 | |
| 			ret = MAP_DONE;
 | |
| 
 | |
| 		spin_unlock(&buf->lock);
 | |
| 	}
 | |
| out:
 | |
| 	buf->last_scanned = *k;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
 | |
| 		       struct bkey *end, keybuf_pred_fn *pred)
 | |
| {
 | |
| 	struct bkey start = buf->last_scanned;
 | |
| 	struct refill refill;
 | |
| 
 | |
| 	cond_resched();
 | |
| 
 | |
| 	bch_btree_op_init(&refill.op, -1);
 | |
| 	refill.nr_found	= 0;
 | |
| 	refill.buf	= buf;
 | |
| 	refill.end	= end;
 | |
| 	refill.pred	= pred;
 | |
| 
 | |
| 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
 | |
| 			   refill_keybuf_fn, MAP_END_KEY);
 | |
| 
 | |
| 	trace_bcache_keyscan(refill.nr_found,
 | |
| 			     KEY_INODE(&start), KEY_OFFSET(&start),
 | |
| 			     KEY_INODE(&buf->last_scanned),
 | |
| 			     KEY_OFFSET(&buf->last_scanned));
 | |
| 
 | |
| 	spin_lock(&buf->lock);
 | |
| 
 | |
| 	if (!RB_EMPTY_ROOT(&buf->keys)) {
 | |
| 		struct keybuf_key *w;
 | |
| 
 | |
| 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
 | |
| 		buf->start	= START_KEY(&w->key);
 | |
| 
 | |
| 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
 | |
| 		buf->end	= w->key;
 | |
| 	} else {
 | |
| 		buf->start	= MAX_KEY;
 | |
| 		buf->end	= MAX_KEY;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&buf->lock);
 | |
| }
 | |
| 
 | |
| static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
 | |
| {
 | |
| 	rb_erase(&w->node, &buf->keys);
 | |
| 	array_free(&buf->freelist, w);
 | |
| }
 | |
| 
 | |
| void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
 | |
| {
 | |
| 	spin_lock(&buf->lock);
 | |
| 	__bch_keybuf_del(buf, w);
 | |
| 	spin_unlock(&buf->lock);
 | |
| }
 | |
| 
 | |
| bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
 | |
| 				  struct bkey *end)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 	struct keybuf_key *p, *w, s;
 | |
| 
 | |
| 	s.key = *start;
 | |
| 
 | |
| 	if (bkey_cmp(end, &buf->start) <= 0 ||
 | |
| 	    bkey_cmp(start, &buf->end) >= 0)
 | |
| 		return false;
 | |
| 
 | |
| 	spin_lock(&buf->lock);
 | |
| 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
 | |
| 
 | |
| 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
 | |
| 		p = w;
 | |
| 		w = RB_NEXT(w, node);
 | |
| 
 | |
| 		if (p->private)
 | |
| 			ret = true;
 | |
| 		else
 | |
| 			__bch_keybuf_del(buf, p);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&buf->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
 | |
| {
 | |
| 	struct keybuf_key *w;
 | |
| 
 | |
| 	spin_lock(&buf->lock);
 | |
| 
 | |
| 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
 | |
| 
 | |
| 	while (w && w->private)
 | |
| 		w = RB_NEXT(w, node);
 | |
| 
 | |
| 	if (w)
 | |
| 		w->private = ERR_PTR(-EINTR);
 | |
| 
 | |
| 	spin_unlock(&buf->lock);
 | |
| 	return w;
 | |
| }
 | |
| 
 | |
| struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
 | |
| 					  struct keybuf *buf,
 | |
| 					  struct bkey *end,
 | |
| 					  keybuf_pred_fn *pred)
 | |
| {
 | |
| 	struct keybuf_key *ret;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = bch_keybuf_next(buf);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
 | |
| 			pr_debug("scan finished");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		bch_refill_keybuf(c, buf, end, pred);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void bch_keybuf_init(struct keybuf *buf)
 | |
| {
 | |
| 	buf->last_scanned	= MAX_KEY;
 | |
| 	buf->keys		= RB_ROOT;
 | |
| 
 | |
| 	spin_lock_init(&buf->lock);
 | |
| 	array_allocator_init(&buf->freelist);
 | |
| }
 | 
