980 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			980 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright(c) 2015-2018 Intel Corporation.
 | |
|  *
 | |
|  * This file is provided under a dual BSD/GPLv2 license.  When using or
 | |
|  * redistributing this file, you may do so under either license.
 | |
|  *
 | |
|  * GPL LICENSE SUMMARY
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of version 2 of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * BSD LICENSE
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  *  - Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  - Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *  - Neither the name of Intel Corporation nor the names of its
 | |
|  *    contributors may be used to endorse or promote products derived
 | |
|  *    from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  */
 | |
| #include <asm/page.h>
 | |
| #include <linux/string.h>
 | |
| 
 | |
| #include "mmu_rb.h"
 | |
| #include "user_exp_rcv.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
 | |
| 			    struct exp_tid_set *set,
 | |
| 			    struct hfi1_filedata *fd);
 | |
| static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
 | |
| static int set_rcvarray_entry(struct hfi1_filedata *fd,
 | |
| 			      struct tid_user_buf *tbuf,
 | |
| 			      u32 rcventry, struct tid_group *grp,
 | |
| 			      u16 pageidx, unsigned int npages);
 | |
| static int tid_rb_insert(void *arg, struct mmu_rb_node *node);
 | |
| static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
 | |
| 				    struct tid_rb_node *tnode);
 | |
| static void tid_rb_remove(void *arg, struct mmu_rb_node *node);
 | |
| static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode);
 | |
| static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
 | |
| 			    struct tid_group *grp,
 | |
| 			    unsigned int start, u16 count,
 | |
| 			    u32 *tidlist, unsigned int *tididx,
 | |
| 			    unsigned int *pmapped);
 | |
| static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
 | |
| 			      struct tid_group **grp);
 | |
| static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
 | |
| 
 | |
| static struct mmu_rb_ops tid_rb_ops = {
 | |
| 	.insert = tid_rb_insert,
 | |
| 	.remove = tid_rb_remove,
 | |
| 	.invalidate = tid_rb_invalidate
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Initialize context and file private data needed for Expected
 | |
|  * receive caching. This needs to be done after the context has
 | |
|  * been configured with the eager/expected RcvEntry counts.
 | |
|  */
 | |
| int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
 | |
| 			   struct hfi1_ctxtdata *uctxt)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = uctxt->dd;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock_init(&fd->tid_lock);
 | |
| 	spin_lock_init(&fd->invalid_lock);
 | |
| 
 | |
| 	fd->entry_to_rb = kcalloc(uctxt->expected_count,
 | |
| 				  sizeof(struct rb_node *),
 | |
| 				  GFP_KERNEL);
 | |
| 	if (!fd->entry_to_rb)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
 | |
| 		fd->invalid_tid_idx = 0;
 | |
| 		fd->invalid_tids = kcalloc(uctxt->expected_count,
 | |
| 					   sizeof(*fd->invalid_tids),
 | |
| 					   GFP_KERNEL);
 | |
| 		if (!fd->invalid_tids) {
 | |
| 			kfree(fd->entry_to_rb);
 | |
| 			fd->entry_to_rb = NULL;
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Register MMU notifier callbacks. If the registration
 | |
| 		 * fails, continue without TID caching for this context.
 | |
| 		 */
 | |
| 		ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
 | |
| 					   dd->pport->hfi1_wq,
 | |
| 					   &fd->handler);
 | |
| 		if (ret) {
 | |
| 			dd_dev_info(dd,
 | |
| 				    "Failed MMU notifier registration %d\n",
 | |
| 				    ret);
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * PSM does not have a good way to separate, count, and
 | |
| 	 * effectively enforce a limit on RcvArray entries used by
 | |
| 	 * subctxts (when context sharing is used) when TID caching
 | |
| 	 * is enabled. To help with that, we calculate a per-process
 | |
| 	 * RcvArray entry share and enforce that.
 | |
| 	 * If TID caching is not in use, PSM deals with usage on its
 | |
| 	 * own. In that case, we allow any subctxt to take all of the
 | |
| 	 * entries.
 | |
| 	 *
 | |
| 	 * Make sure that we set the tid counts only after successful
 | |
| 	 * init.
 | |
| 	 */
 | |
| 	spin_lock(&fd->tid_lock);
 | |
| 	if (uctxt->subctxt_cnt && fd->handler) {
 | |
| 		u16 remainder;
 | |
| 
 | |
| 		fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
 | |
| 		remainder = uctxt->expected_count % uctxt->subctxt_cnt;
 | |
| 		if (remainder && fd->subctxt < remainder)
 | |
| 			fd->tid_limit++;
 | |
| 	} else {
 | |
| 		fd->tid_limit = uctxt->expected_count;
 | |
| 	}
 | |
| 	spin_unlock(&fd->tid_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
 | |
| {
 | |
| 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 | |
| 
 | |
| 	/*
 | |
| 	 * The notifier would have been removed when the process'es mm
 | |
| 	 * was freed.
 | |
| 	 */
 | |
| 	if (fd->handler) {
 | |
| 		hfi1_mmu_rb_unregister(fd->handler);
 | |
| 	} else {
 | |
| 		if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
 | |
| 			unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
 | |
| 		if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
 | |
| 			unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
 | |
| 	}
 | |
| 
 | |
| 	kfree(fd->invalid_tids);
 | |
| 	fd->invalid_tids = NULL;
 | |
| 
 | |
| 	kfree(fd->entry_to_rb);
 | |
| 	fd->entry_to_rb = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Release pinned receive buffer pages.
 | |
|  *
 | |
|  * @mapped - true if the pages have been DMA mapped. false otherwise.
 | |
|  * @idx - Index of the first page to unpin.
 | |
|  * @npages - No of pages to unpin.
 | |
|  *
 | |
|  * If the pages have been DMA mapped (indicated by mapped parameter), their
 | |
|  * info will be passed via a struct tid_rb_node. If they haven't been mapped,
 | |
|  * their info will be passed via a struct tid_user_buf.
 | |
|  */
 | |
| static void unpin_rcv_pages(struct hfi1_filedata *fd,
 | |
| 			    struct tid_user_buf *tidbuf,
 | |
| 			    struct tid_rb_node *node,
 | |
| 			    unsigned int idx,
 | |
| 			    unsigned int npages,
 | |
| 			    bool mapped)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 	struct hfi1_devdata *dd = fd->uctxt->dd;
 | |
| 
 | |
| 	if (mapped) {
 | |
| 		pci_unmap_single(dd->pcidev, node->dma_addr,
 | |
| 				 node->mmu.len, PCI_DMA_FROMDEVICE);
 | |
| 		pages = &node->pages[idx];
 | |
| 	} else {
 | |
| 		pages = &tidbuf->pages[idx];
 | |
| 	}
 | |
| 	hfi1_release_user_pages(fd->mm, pages, npages, mapped);
 | |
| 	fd->tid_n_pinned -= npages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Pin receive buffer pages.
 | |
|  */
 | |
| static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
 | |
| {
 | |
| 	int pinned;
 | |
| 	unsigned int npages;
 | |
| 	unsigned long vaddr = tidbuf->vaddr;
 | |
| 	struct page **pages = NULL;
 | |
| 	struct hfi1_devdata *dd = fd->uctxt->dd;
 | |
| 
 | |
| 	/* Get the number of pages the user buffer spans */
 | |
| 	npages = num_user_pages(vaddr, tidbuf->length);
 | |
| 	if (!npages)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (npages > fd->uctxt->expected_count) {
 | |
| 		dd_dev_err(dd, "Expected buffer too big\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Verify that access is OK for the user buffer */
 | |
| 	if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
 | |
| 		       npages * PAGE_SIZE)) {
 | |
| 		dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
 | |
| 			   (void *)vaddr, npages);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	/* Allocate the array of struct page pointers needed for pinning */
 | |
| 	pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
 | |
| 	if (!pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pin all the pages of the user buffer. If we can't pin all the
 | |
| 	 * pages, accept the amount pinned so far and program only that.
 | |
| 	 * User space knows how to deal with partially programmed buffers.
 | |
| 	 */
 | |
| 	if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
 | |
| 		kfree(pages);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
 | |
| 	if (pinned <= 0) {
 | |
| 		kfree(pages);
 | |
| 		return pinned;
 | |
| 	}
 | |
| 	tidbuf->pages = pages;
 | |
| 	tidbuf->npages = npages;
 | |
| 	fd->tid_n_pinned += pinned;
 | |
| 	return pinned;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RcvArray entry allocation for Expected Receives is done by the
 | |
|  * following algorithm:
 | |
|  *
 | |
|  * The context keeps 3 lists of groups of RcvArray entries:
 | |
|  *   1. List of empty groups - tid_group_list
 | |
|  *      This list is created during user context creation and
 | |
|  *      contains elements which describe sets (of 8) of empty
 | |
|  *      RcvArray entries.
 | |
|  *   2. List of partially used groups - tid_used_list
 | |
|  *      This list contains sets of RcvArray entries which are
 | |
|  *      not completely used up. Another mapping request could
 | |
|  *      use some of all of the remaining entries.
 | |
|  *   3. List of full groups - tid_full_list
 | |
|  *      This is the list where sets that are completely used
 | |
|  *      up go.
 | |
|  *
 | |
|  * An attempt to optimize the usage of RcvArray entries is
 | |
|  * made by finding all sets of physically contiguous pages in a
 | |
|  * user's buffer.
 | |
|  * These physically contiguous sets are further split into
 | |
|  * sizes supported by the receive engine of the HFI. The
 | |
|  * resulting sets of pages are stored in struct tid_pageset,
 | |
|  * which describes the sets as:
 | |
|  *    * .count - number of pages in this set
 | |
|  *    * .idx - starting index into struct page ** array
 | |
|  *                    of this set
 | |
|  *
 | |
|  * From this point on, the algorithm deals with the page sets
 | |
|  * described above. The number of pagesets is divided by the
 | |
|  * RcvArray group size to produce the number of full groups
 | |
|  * needed.
 | |
|  *
 | |
|  * Groups from the 3 lists are manipulated using the following
 | |
|  * rules:
 | |
|  *   1. For each set of 8 pagesets, a complete group from
 | |
|  *      tid_group_list is taken, programmed, and moved to
 | |
|  *      the tid_full_list list.
 | |
|  *   2. For all remaining pagesets:
 | |
|  *      2.1 If the tid_used_list is empty and the tid_group_list
 | |
|  *          is empty, stop processing pageset and return only
 | |
|  *          what has been programmed up to this point.
 | |
|  *      2.2 If the tid_used_list is empty and the tid_group_list
 | |
|  *          is not empty, move a group from tid_group_list to
 | |
|  *          tid_used_list.
 | |
|  *      2.3 For each group is tid_used_group, program as much as
 | |
|  *          can fit into the group. If the group becomes fully
 | |
|  *          used, move it to tid_full_list.
 | |
|  */
 | |
| int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
 | |
| 			    struct hfi1_tid_info *tinfo)
 | |
| {
 | |
| 	int ret = 0, need_group = 0, pinned;
 | |
| 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 | |
| 	struct hfi1_devdata *dd = uctxt->dd;
 | |
| 	unsigned int ngroups, pageidx = 0, pageset_count,
 | |
| 		tididx = 0, mapped, mapped_pages = 0;
 | |
| 	u32 *tidlist = NULL;
 | |
| 	struct tid_user_buf *tidbuf;
 | |
| 
 | |
| 	if (!PAGE_ALIGNED(tinfo->vaddr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
 | |
| 	if (!tidbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	tidbuf->vaddr = tinfo->vaddr;
 | |
| 	tidbuf->length = tinfo->length;
 | |
| 	tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
 | |
| 				GFP_KERNEL);
 | |
| 	if (!tidbuf->psets) {
 | |
| 		kfree(tidbuf);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	pinned = pin_rcv_pages(fd, tidbuf);
 | |
| 	if (pinned <= 0) {
 | |
| 		kfree(tidbuf->psets);
 | |
| 		kfree(tidbuf);
 | |
| 		return pinned;
 | |
| 	}
 | |
| 
 | |
| 	/* Find sets of physically contiguous pages */
 | |
| 	tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't need to access this under a lock since tid_used is per
 | |
| 	 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
 | |
| 	 * and hfi1_user_exp_rcv_setup() at the same time.
 | |
| 	 */
 | |
| 	spin_lock(&fd->tid_lock);
 | |
| 	if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
 | |
| 		pageset_count = fd->tid_limit - fd->tid_used;
 | |
| 	else
 | |
| 		pageset_count = tidbuf->n_psets;
 | |
| 	spin_unlock(&fd->tid_lock);
 | |
| 
 | |
| 	if (!pageset_count)
 | |
| 		goto bail;
 | |
| 
 | |
| 	ngroups = pageset_count / dd->rcv_entries.group_size;
 | |
| 	tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
 | |
| 	if (!tidlist) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto nomem;
 | |
| 	}
 | |
| 
 | |
| 	tididx = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * From this point on, we are going to be using shared (between master
 | |
| 	 * and subcontexts) context resources. We need to take the lock.
 | |
| 	 */
 | |
| 	mutex_lock(&uctxt->exp_mutex);
 | |
| 	/*
 | |
| 	 * The first step is to program the RcvArray entries which are complete
 | |
| 	 * groups.
 | |
| 	 */
 | |
| 	while (ngroups && uctxt->tid_group_list.count) {
 | |
| 		struct tid_group *grp =
 | |
| 			tid_group_pop(&uctxt->tid_group_list);
 | |
| 
 | |
| 		ret = program_rcvarray(fd, tidbuf, grp,
 | |
| 				       pageidx, dd->rcv_entries.group_size,
 | |
| 				       tidlist, &tididx, &mapped);
 | |
| 		/*
 | |
| 		 * If there was a failure to program the RcvArray
 | |
| 		 * entries for the entire group, reset the grp fields
 | |
| 		 * and add the grp back to the free group list.
 | |
| 		 */
 | |
| 		if (ret <= 0) {
 | |
| 			tid_group_add_tail(grp, &uctxt->tid_group_list);
 | |
| 			hfi1_cdbg(TID,
 | |
| 				  "Failed to program RcvArray group %d", ret);
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		tid_group_add_tail(grp, &uctxt->tid_full_list);
 | |
| 		ngroups--;
 | |
| 		pageidx += ret;
 | |
| 		mapped_pages += mapped;
 | |
| 	}
 | |
| 
 | |
| 	while (pageidx < pageset_count) {
 | |
| 		struct tid_group *grp, *ptr;
 | |
| 		/*
 | |
| 		 * If we don't have any partially used tid groups, check
 | |
| 		 * if we have empty groups. If so, take one from there and
 | |
| 		 * put in the partially used list.
 | |
| 		 */
 | |
| 		if (!uctxt->tid_used_list.count || need_group) {
 | |
| 			if (!uctxt->tid_group_list.count)
 | |
| 				goto unlock;
 | |
| 
 | |
| 			grp = tid_group_pop(&uctxt->tid_group_list);
 | |
| 			tid_group_add_tail(grp, &uctxt->tid_used_list);
 | |
| 			need_group = 0;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * There is an optimization opportunity here - instead of
 | |
| 		 * fitting as many page sets as we can, check for a group
 | |
| 		 * later on in the list that could fit all of them.
 | |
| 		 */
 | |
| 		list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
 | |
| 					 list) {
 | |
| 			unsigned use = min_t(unsigned, pageset_count - pageidx,
 | |
| 					     grp->size - grp->used);
 | |
| 
 | |
| 			ret = program_rcvarray(fd, tidbuf, grp,
 | |
| 					       pageidx, use, tidlist,
 | |
| 					       &tididx, &mapped);
 | |
| 			if (ret < 0) {
 | |
| 				hfi1_cdbg(TID,
 | |
| 					  "Failed to program RcvArray entries %d",
 | |
| 					  ret);
 | |
| 				goto unlock;
 | |
| 			} else if (ret > 0) {
 | |
| 				if (grp->used == grp->size)
 | |
| 					tid_group_move(grp,
 | |
| 						       &uctxt->tid_used_list,
 | |
| 						       &uctxt->tid_full_list);
 | |
| 				pageidx += ret;
 | |
| 				mapped_pages += mapped;
 | |
| 				need_group = 0;
 | |
| 				/* Check if we are done so we break out early */
 | |
| 				if (pageidx >= pageset_count)
 | |
| 					break;
 | |
| 			} else if (WARN_ON(ret == 0)) {
 | |
| 				/*
 | |
| 				 * If ret is 0, we did not program any entries
 | |
| 				 * into this group, which can only happen if
 | |
| 				 * we've screwed up the accounting somewhere.
 | |
| 				 * Warn and try to continue.
 | |
| 				 */
 | |
| 				need_group = 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| unlock:
 | |
| 	mutex_unlock(&uctxt->exp_mutex);
 | |
| nomem:
 | |
| 	hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
 | |
| 		  mapped_pages, ret);
 | |
| 	if (tididx) {
 | |
| 		spin_lock(&fd->tid_lock);
 | |
| 		fd->tid_used += tididx;
 | |
| 		spin_unlock(&fd->tid_lock);
 | |
| 		tinfo->tidcnt = tididx;
 | |
| 		tinfo->length = mapped_pages * PAGE_SIZE;
 | |
| 
 | |
| 		if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
 | |
| 				 tidlist, sizeof(tidlist[0]) * tididx)) {
 | |
| 			/*
 | |
| 			 * On failure to copy to the user level, we need to undo
 | |
| 			 * everything done so far so we don't leak resources.
 | |
| 			 */
 | |
| 			tinfo->tidlist = (unsigned long)&tidlist;
 | |
| 			hfi1_user_exp_rcv_clear(fd, tinfo);
 | |
| 			tinfo->tidlist = 0;
 | |
| 			ret = -EFAULT;
 | |
| 			goto bail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If not everything was mapped (due to insufficient RcvArray entries,
 | |
| 	 * for example), unpin all unmapped pages so we can pin them nex time.
 | |
| 	 */
 | |
| 	if (mapped_pages != pinned)
 | |
| 		unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
 | |
| 				(pinned - mapped_pages), false);
 | |
| bail:
 | |
| 	kfree(tidbuf->psets);
 | |
| 	kfree(tidlist);
 | |
| 	kfree(tidbuf->pages);
 | |
| 	kfree(tidbuf);
 | |
| 	return ret > 0 ? 0 : ret;
 | |
| }
 | |
| 
 | |
| int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
 | |
| 			    struct hfi1_tid_info *tinfo)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 | |
| 	u32 *tidinfo;
 | |
| 	unsigned tididx;
 | |
| 
 | |
| 	if (unlikely(tinfo->tidcnt > fd->tid_used))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
 | |
| 			      sizeof(tidinfo[0]) * tinfo->tidcnt);
 | |
| 	if (IS_ERR(tidinfo))
 | |
| 		return PTR_ERR(tidinfo);
 | |
| 
 | |
| 	mutex_lock(&uctxt->exp_mutex);
 | |
| 	for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
 | |
| 		ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
 | |
| 		if (ret) {
 | |
| 			hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
 | |
| 				  ret);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_lock(&fd->tid_lock);
 | |
| 	fd->tid_used -= tididx;
 | |
| 	spin_unlock(&fd->tid_lock);
 | |
| 	tinfo->tidcnt = tididx;
 | |
| 	mutex_unlock(&uctxt->exp_mutex);
 | |
| 
 | |
| 	kfree(tidinfo);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
 | |
| 			      struct hfi1_tid_info *tinfo)
 | |
| {
 | |
| 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 | |
| 	unsigned long *ev = uctxt->dd->events +
 | |
| 		(uctxt_offset(uctxt) + fd->subctxt);
 | |
| 	u32 *array;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * copy_to_user() can sleep, which will leave the invalid_lock
 | |
| 	 * locked and cause the MMU notifier to be blocked on the lock
 | |
| 	 * for a long time.
 | |
| 	 * Copy the data to a local buffer so we can release the lock.
 | |
| 	 */
 | |
| 	array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
 | |
| 	if (!array)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	spin_lock(&fd->invalid_lock);
 | |
| 	if (fd->invalid_tid_idx) {
 | |
| 		memcpy(array, fd->invalid_tids, sizeof(*array) *
 | |
| 		       fd->invalid_tid_idx);
 | |
| 		memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
 | |
| 		       fd->invalid_tid_idx);
 | |
| 		tinfo->tidcnt = fd->invalid_tid_idx;
 | |
| 		fd->invalid_tid_idx = 0;
 | |
| 		/*
 | |
| 		 * Reset the user flag while still holding the lock.
 | |
| 		 * Otherwise, PSM can miss events.
 | |
| 		 */
 | |
| 		clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
 | |
| 	} else {
 | |
| 		tinfo->tidcnt = 0;
 | |
| 	}
 | |
| 	spin_unlock(&fd->invalid_lock);
 | |
| 
 | |
| 	if (tinfo->tidcnt) {
 | |
| 		if (copy_to_user((void __user *)tinfo->tidlist,
 | |
| 				 array, sizeof(*array) * tinfo->tidcnt))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 	kfree(array);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
 | |
| {
 | |
| 	unsigned pagecount, pageidx, setcount = 0, i;
 | |
| 	unsigned long pfn, this_pfn;
 | |
| 	struct page **pages = tidbuf->pages;
 | |
| 	struct tid_pageset *list = tidbuf->psets;
 | |
| 
 | |
| 	if (!npages)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Look for sets of physically contiguous pages in the user buffer.
 | |
| 	 * This will allow us to optimize Expected RcvArray entry usage by
 | |
| 	 * using the bigger supported sizes.
 | |
| 	 */
 | |
| 	pfn = page_to_pfn(pages[0]);
 | |
| 	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
 | |
| 		this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the pfn's are not sequential, pages are not physically
 | |
| 		 * contiguous.
 | |
| 		 */
 | |
| 		if (this_pfn != ++pfn) {
 | |
| 			/*
 | |
| 			 * At this point we have to loop over the set of
 | |
| 			 * physically contiguous pages and break them down it
 | |
| 			 * sizes supported by the HW.
 | |
| 			 * There are two main constraints:
 | |
| 			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
 | |
| 			 *        If the total set size is bigger than that
 | |
| 			 *        program only a MAX_EXPECTED_BUFFER chunk.
 | |
| 			 *     2. The buffer size has to be a power of two. If
 | |
| 			 *        it is not, round down to the closes power of
 | |
| 			 *        2 and program that size.
 | |
| 			 */
 | |
| 			while (pagecount) {
 | |
| 				int maxpages = pagecount;
 | |
| 				u32 bufsize = pagecount * PAGE_SIZE;
 | |
| 
 | |
| 				if (bufsize > MAX_EXPECTED_BUFFER)
 | |
| 					maxpages =
 | |
| 						MAX_EXPECTED_BUFFER >>
 | |
| 						PAGE_SHIFT;
 | |
| 				else if (!is_power_of_2(bufsize))
 | |
| 					maxpages =
 | |
| 						rounddown_pow_of_two(bufsize) >>
 | |
| 						PAGE_SHIFT;
 | |
| 
 | |
| 				list[setcount].idx = pageidx;
 | |
| 				list[setcount].count = maxpages;
 | |
| 				pagecount -= maxpages;
 | |
| 				pageidx += maxpages;
 | |
| 				setcount++;
 | |
| 			}
 | |
| 			pageidx = i;
 | |
| 			pagecount = 1;
 | |
| 			pfn = this_pfn;
 | |
| 		} else {
 | |
| 			pagecount++;
 | |
| 		}
 | |
| 	}
 | |
| 	return setcount;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * program_rcvarray() - program an RcvArray group with receive buffers
 | |
|  * @fd: filedata pointer
 | |
|  * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
 | |
|  *	  virtual address, buffer length, page pointers, pagesets (array of
 | |
|  *	  struct tid_pageset holding information on physically contiguous
 | |
|  *	  chunks from the user buffer), and other fields.
 | |
|  * @grp: RcvArray group
 | |
|  * @start: starting index into sets array
 | |
|  * @count: number of struct tid_pageset's to program
 | |
|  * @tidlist: the array of u32 elements when the information about the
 | |
|  *           programmed RcvArray entries is to be encoded.
 | |
|  * @tididx: starting offset into tidlist
 | |
|  * @pmapped: (output parameter) number of pages programmed into the RcvArray
 | |
|  *           entries.
 | |
|  *
 | |
|  * This function will program up to 'count' number of RcvArray entries from the
 | |
|  * group 'grp'. To make best use of write-combining writes, the function will
 | |
|  * perform writes to the unused RcvArray entries which will be ignored by the
 | |
|  * HW. Each RcvArray entry will be programmed with a physically contiguous
 | |
|  * buffer chunk from the user's virtual buffer.
 | |
|  *
 | |
|  * Return:
 | |
|  * -EINVAL if the requested count is larger than the size of the group,
 | |
|  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
 | |
|  * number of RcvArray entries programmed.
 | |
|  */
 | |
| static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
 | |
| 			    struct tid_group *grp,
 | |
| 			    unsigned int start, u16 count,
 | |
| 			    u32 *tidlist, unsigned int *tididx,
 | |
| 			    unsigned int *pmapped)
 | |
| {
 | |
| 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 | |
| 	struct hfi1_devdata *dd = uctxt->dd;
 | |
| 	u16 idx;
 | |
| 	u32 tidinfo = 0, rcventry, useidx = 0;
 | |
| 	int mapped = 0;
 | |
| 
 | |
| 	/* Count should never be larger than the group size */
 | |
| 	if (count > grp->size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Find the first unused entry in the group */
 | |
| 	for (idx = 0; idx < grp->size; idx++) {
 | |
| 		if (!(grp->map & (1 << idx))) {
 | |
| 			useidx = idx;
 | |
| 			break;
 | |
| 		}
 | |
| 		rcv_array_wc_fill(dd, grp->base + idx);
 | |
| 	}
 | |
| 
 | |
| 	idx = 0;
 | |
| 	while (idx < count) {
 | |
| 		u16 npages, pageidx, setidx = start + idx;
 | |
| 		int ret = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this entry in the group is used, move to the next one.
 | |
| 		 * If we go past the end of the group, exit the loop.
 | |
| 		 */
 | |
| 		if (useidx >= grp->size) {
 | |
| 			break;
 | |
| 		} else if (grp->map & (1 << useidx)) {
 | |
| 			rcv_array_wc_fill(dd, grp->base + useidx);
 | |
| 			useidx++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		rcventry = grp->base + useidx;
 | |
| 		npages = tbuf->psets[setidx].count;
 | |
| 		pageidx = tbuf->psets[setidx].idx;
 | |
| 
 | |
| 		ret = set_rcvarray_entry(fd, tbuf,
 | |
| 					 rcventry, grp, pageidx,
 | |
| 					 npages);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		mapped += npages;
 | |
| 
 | |
| 		tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
 | |
| 			EXP_TID_SET(LEN, npages);
 | |
| 		tidlist[(*tididx)++] = tidinfo;
 | |
| 		grp->used++;
 | |
| 		grp->map |= 1 << useidx++;
 | |
| 		idx++;
 | |
| 	}
 | |
| 
 | |
| 	/* Fill the rest of the group with "blank" writes */
 | |
| 	for (; useidx < grp->size; useidx++)
 | |
| 		rcv_array_wc_fill(dd, grp->base + useidx);
 | |
| 	*pmapped = mapped;
 | |
| 	return idx;
 | |
| }
 | |
| 
 | |
| static int set_rcvarray_entry(struct hfi1_filedata *fd,
 | |
| 			      struct tid_user_buf *tbuf,
 | |
| 			      u32 rcventry, struct tid_group *grp,
 | |
| 			      u16 pageidx, unsigned int npages)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 | |
| 	struct tid_rb_node *node;
 | |
| 	struct hfi1_devdata *dd = uctxt->dd;
 | |
| 	dma_addr_t phys;
 | |
| 	struct page **pages = tbuf->pages + pageidx;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the node first so we can handle a potential
 | |
| 	 * failure before we've programmed anything.
 | |
| 	 */
 | |
| 	node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
 | |
| 		       GFP_KERNEL);
 | |
| 	if (!node)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	phys = pci_map_single(dd->pcidev,
 | |
| 			      __va(page_to_phys(pages[0])),
 | |
| 			      npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
 | |
| 	if (dma_mapping_error(&dd->pcidev->dev, phys)) {
 | |
| 		dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
 | |
| 			   phys);
 | |
| 		kfree(node);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	node->mmu.addr = tbuf->vaddr + (pageidx * PAGE_SIZE);
 | |
| 	node->mmu.len = npages * PAGE_SIZE;
 | |
| 	node->phys = page_to_phys(pages[0]);
 | |
| 	node->npages = npages;
 | |
| 	node->rcventry = rcventry;
 | |
| 	node->dma_addr = phys;
 | |
| 	node->grp = grp;
 | |
| 	node->freed = false;
 | |
| 	memcpy(node->pages, pages, sizeof(struct page *) * npages);
 | |
| 
 | |
| 	if (!fd->handler)
 | |
| 		ret = tid_rb_insert(fd, &node->mmu);
 | |
| 	else
 | |
| 		ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
 | |
| 			  node->rcventry, node->mmu.addr, node->phys, ret);
 | |
| 		pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
 | |
| 				 PCI_DMA_FROMDEVICE);
 | |
| 		kfree(node);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
 | |
| 	trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
 | |
| 			       node->mmu.addr, node->phys, phys);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
 | |
| 			      struct tid_group **grp)
 | |
| {
 | |
| 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 | |
| 	struct hfi1_devdata *dd = uctxt->dd;
 | |
| 	struct tid_rb_node *node;
 | |
| 	u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
 | |
| 	u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
 | |
| 
 | |
| 	if (tididx >= uctxt->expected_count) {
 | |
| 		dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
 | |
| 			   tididx, uctxt->ctxt);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (tidctrl == 0x3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rcventry = tididx + (tidctrl - 1);
 | |
| 
 | |
| 	node = fd->entry_to_rb[rcventry];
 | |
| 	if (!node || node->rcventry != (uctxt->expected_base + rcventry))
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	if (grp)
 | |
| 		*grp = node->grp;
 | |
| 
 | |
| 	if (!fd->handler)
 | |
| 		cacheless_tid_rb_remove(fd, node);
 | |
| 	else
 | |
| 		hfi1_mmu_rb_remove(fd->handler, &node->mmu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
 | |
| {
 | |
| 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 | |
| 	struct hfi1_devdata *dd = uctxt->dd;
 | |
| 
 | |
| 	trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
 | |
| 				 node->npages, node->mmu.addr, node->phys,
 | |
| 				 node->dma_addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure device has seen the write before we unpin the
 | |
| 	 * pages.
 | |
| 	 */
 | |
| 	hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
 | |
| 
 | |
| 	unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
 | |
| 
 | |
| 	node->grp->used--;
 | |
| 	node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
 | |
| 
 | |
| 	if (node->grp->used == node->grp->size - 1)
 | |
| 		tid_group_move(node->grp, &uctxt->tid_full_list,
 | |
| 			       &uctxt->tid_used_list);
 | |
| 	else if (!node->grp->used)
 | |
| 		tid_group_move(node->grp, &uctxt->tid_used_list,
 | |
| 			       &uctxt->tid_group_list);
 | |
| 	kfree(node);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
 | |
|  * clearing nodes in the non-cached case.
 | |
|  */
 | |
| static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
 | |
| 			    struct exp_tid_set *set,
 | |
| 			    struct hfi1_filedata *fd)
 | |
| {
 | |
| 	struct tid_group *grp, *ptr;
 | |
| 	int i;
 | |
| 
 | |
| 	list_for_each_entry_safe(grp, ptr, &set->list, list) {
 | |
| 		list_del_init(&grp->list);
 | |
| 
 | |
| 		for (i = 0; i < grp->size; i++) {
 | |
| 			if (grp->map & (1 << i)) {
 | |
| 				u16 rcventry = grp->base + i;
 | |
| 				struct tid_rb_node *node;
 | |
| 
 | |
| 				node = fd->entry_to_rb[rcventry -
 | |
| 							  uctxt->expected_base];
 | |
| 				if (!node || node->rcventry != rcventry)
 | |
| 					continue;
 | |
| 
 | |
| 				cacheless_tid_rb_remove(fd, node);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Always return 0 from this function.  A non-zero return indicates that the
 | |
|  * remove operation will be called and that memory should be unpinned.
 | |
|  * However, the driver cannot unpin out from under PSM.  Instead, retain the
 | |
|  * memory (by returning 0) and inform PSM that the memory is going away.  PSM
 | |
|  * will call back later when it has removed the memory from its list.
 | |
|  */
 | |
| static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
 | |
| {
 | |
| 	struct hfi1_filedata *fdata = arg;
 | |
| 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
 | |
| 	struct tid_rb_node *node =
 | |
| 		container_of(mnode, struct tid_rb_node, mmu);
 | |
| 
 | |
| 	if (node->freed)
 | |
| 		return 0;
 | |
| 
 | |
| 	trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
 | |
| 				 node->rcventry, node->npages, node->dma_addr);
 | |
| 	node->freed = true;
 | |
| 
 | |
| 	spin_lock(&fdata->invalid_lock);
 | |
| 	if (fdata->invalid_tid_idx < uctxt->expected_count) {
 | |
| 		fdata->invalid_tids[fdata->invalid_tid_idx] =
 | |
| 			rcventry2tidinfo(node->rcventry - uctxt->expected_base);
 | |
| 		fdata->invalid_tids[fdata->invalid_tid_idx] |=
 | |
| 			EXP_TID_SET(LEN, node->npages);
 | |
| 		if (!fdata->invalid_tid_idx) {
 | |
| 			unsigned long *ev;
 | |
| 
 | |
| 			/*
 | |
| 			 * hfi1_set_uevent_bits() sets a user event flag
 | |
| 			 * for all processes. Because calling into the
 | |
| 			 * driver to process TID cache invalidations is
 | |
| 			 * expensive and TID cache invalidations are
 | |
| 			 * handled on a per-process basis, we can
 | |
| 			 * optimize this to set the flag only for the
 | |
| 			 * process in question.
 | |
| 			 */
 | |
| 			ev = uctxt->dd->events +
 | |
| 				(uctxt_offset(uctxt) + fdata->subctxt);
 | |
| 			set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
 | |
| 		}
 | |
| 		fdata->invalid_tid_idx++;
 | |
| 	}
 | |
| 	spin_unlock(&fdata->invalid_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
 | |
| {
 | |
| 	struct hfi1_filedata *fdata = arg;
 | |
| 	struct tid_rb_node *tnode =
 | |
| 		container_of(node, struct tid_rb_node, mmu);
 | |
| 	u32 base = fdata->uctxt->expected_base;
 | |
| 
 | |
| 	fdata->entry_to_rb[tnode->rcventry - base] = tnode;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
 | |
| 				    struct tid_rb_node *tnode)
 | |
| {
 | |
| 	u32 base = fdata->uctxt->expected_base;
 | |
| 
 | |
| 	fdata->entry_to_rb[tnode->rcventry - base] = NULL;
 | |
| 	clear_tid_node(fdata, tnode);
 | |
| }
 | |
| 
 | |
| static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
 | |
| {
 | |
| 	struct hfi1_filedata *fdata = arg;
 | |
| 	struct tid_rb_node *tnode =
 | |
| 		container_of(node, struct tid_rb_node, mmu);
 | |
| 
 | |
| 	cacheless_tid_rb_remove(fdata, tnode);
 | |
| }
 | 
