396 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			396 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
 | |
|  *
 | |
|  * Copyright (C) 2011-2012 International Business Machines Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; version 2 only.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  *
 | |
|  * Author: Kent Yoder <yoder1@us.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <crypto/internal/hash.h>
 | |
| #include <crypto/aes.h>
 | |
| #include <crypto/algapi.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <asm/vio.h>
 | |
| 
 | |
| #include "nx_csbcpb.h"
 | |
| #include "nx.h"
 | |
| 
 | |
| 
 | |
| struct xcbc_state {
 | |
| 	u8 state[AES_BLOCK_SIZE];
 | |
| 	unsigned int count;
 | |
| 	u8 buffer[AES_BLOCK_SIZE];
 | |
| };
 | |
| 
 | |
| static int nx_xcbc_set_key(struct crypto_shash *desc,
 | |
| 			   const u8            *in_key,
 | |
| 			   unsigned int         key_len)
 | |
| {
 | |
| 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
 | |
| 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
 | |
| 
 | |
| 	switch (key_len) {
 | |
| 	case AES_KEYSIZE_128:
 | |
| 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Based on RFC 3566, for a zero-length message:
 | |
|  *
 | |
|  * n = 1
 | |
|  * K1 = E(K, 0x01010101010101010101010101010101)
 | |
|  * K3 = E(K, 0x03030303030303030303030303030303)
 | |
|  * E[0] = 0x00000000000000000000000000000000
 | |
|  * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
 | |
|  * E[1] = (K1, M[1] ^ E[0] ^ K3)
 | |
|  * Tag = M[1]
 | |
|  */
 | |
| static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
 | |
| {
 | |
| 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 | |
| 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
 | |
| 	struct nx_sg *in_sg, *out_sg;
 | |
| 	u8 keys[2][AES_BLOCK_SIZE];
 | |
| 	u8 key[32];
 | |
| 	int rc = 0;
 | |
| 	int len;
 | |
| 
 | |
| 	/* Change to ECB mode */
 | |
| 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
 | |
| 	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
 | |
| 	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
 | |
| 	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
 | |
| 
 | |
| 	/* K1 and K3 base patterns */
 | |
| 	memset(keys[0], 0x01, sizeof(keys[0]));
 | |
| 	memset(keys[1], 0x03, sizeof(keys[1]));
 | |
| 
 | |
| 	len = sizeof(keys);
 | |
| 	/* Generate K1 and K3 encrypting the patterns */
 | |
| 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
 | |
| 				 nx_ctx->ap->sglen);
 | |
| 
 | |
| 	if (len != sizeof(keys))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
 | |
| 				  nx_ctx->ap->sglen);
 | |
| 
 | |
| 	if (len != sizeof(keys))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
 | |
| 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
 | |
| 
 | |
| 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
 | |
| 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	atomic_inc(&(nx_ctx->stats->aes_ops));
 | |
| 
 | |
| 	/* XOr K3 with the padding for a 0 length message */
 | |
| 	keys[1][0] ^= 0x80;
 | |
| 
 | |
| 	len = sizeof(keys[1]);
 | |
| 
 | |
| 	/* Encrypt the final result */
 | |
| 	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
 | |
| 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
 | |
| 				 nx_ctx->ap->sglen);
 | |
| 
 | |
| 	if (len != sizeof(keys[1]))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	len = AES_BLOCK_SIZE;
 | |
| 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
 | |
| 				  nx_ctx->ap->sglen);
 | |
| 
 | |
| 	if (len != AES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
 | |
| 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
 | |
| 
 | |
| 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
 | |
| 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	atomic_inc(&(nx_ctx->stats->aes_ops));
 | |
| 
 | |
| out:
 | |
| 	/* Restore XCBC mode */
 | |
| 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
 | |
| 	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
 | |
| 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
 | |
| 	int err;
 | |
| 
 | |
| 	err = nx_crypto_ctx_aes_xcbc_init(tfm);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
 | |
| 
 | |
| 	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
 | |
| 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nx_xcbc_init(struct shash_desc *desc)
 | |
| {
 | |
| 	struct xcbc_state *sctx = shash_desc_ctx(desc);
 | |
| 
 | |
| 	memset(sctx, 0, sizeof *sctx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nx_xcbc_update(struct shash_desc *desc,
 | |
| 			  const u8          *data,
 | |
| 			  unsigned int       len)
 | |
| {
 | |
| 	struct xcbc_state *sctx = shash_desc_ctx(desc);
 | |
| 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 | |
| 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
 | |
| 	struct nx_sg *in_sg;
 | |
| 	struct nx_sg *out_sg;
 | |
| 	u32 to_process = 0, leftover, total;
 | |
| 	unsigned int max_sg_len;
 | |
| 	unsigned long irq_flags;
 | |
| 	int rc = 0;
 | |
| 	int data_len;
 | |
| 
 | |
| 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
 | |
| 
 | |
| 
 | |
| 	total = sctx->count + len;
 | |
| 
 | |
| 	/* 2 cases for total data len:
 | |
| 	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
 | |
| 	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
 | |
| 	 */
 | |
| 	if (total <= AES_BLOCK_SIZE) {
 | |
| 		memcpy(sctx->buffer + sctx->count, data, len);
 | |
| 		sctx->count += len;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	in_sg = nx_ctx->in_sg;
 | |
| 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
 | |
| 				nx_ctx->ap->sglen);
 | |
| 	max_sg_len = min_t(u64, max_sg_len,
 | |
| 				nx_ctx->ap->databytelen/NX_PAGE_SIZE);
 | |
| 
 | |
| 	data_len = AES_BLOCK_SIZE;
 | |
| 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
 | |
| 				  &len, nx_ctx->ap->sglen);
 | |
| 
 | |
| 	if (data_len != AES_BLOCK_SIZE) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
 | |
| 
 | |
| 	do {
 | |
| 		to_process = total - to_process;
 | |
| 		to_process = to_process & ~(AES_BLOCK_SIZE - 1);
 | |
| 
 | |
| 		leftover = total - to_process;
 | |
| 
 | |
| 		/* the hardware will not accept a 0 byte operation for this
 | |
| 		 * algorithm and the operation MUST be finalized to be correct.
 | |
| 		 * So if we happen to get an update that falls on a block sized
 | |
| 		 * boundary, we must save off the last block to finalize with
 | |
| 		 * later. */
 | |
| 		if (!leftover) {
 | |
| 			to_process -= AES_BLOCK_SIZE;
 | |
| 			leftover = AES_BLOCK_SIZE;
 | |
| 		}
 | |
| 
 | |
| 		if (sctx->count) {
 | |
| 			data_len = sctx->count;
 | |
| 			in_sg = nx_build_sg_list(nx_ctx->in_sg,
 | |
| 						(u8 *) sctx->buffer,
 | |
| 						&data_len,
 | |
| 						max_sg_len);
 | |
| 			if (data_len != sctx->count) {
 | |
| 				rc = -EINVAL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		data_len = to_process - sctx->count;
 | |
| 		in_sg = nx_build_sg_list(in_sg,
 | |
| 					(u8 *) data,
 | |
| 					&data_len,
 | |
| 					max_sg_len);
 | |
| 
 | |
| 		if (data_len != to_process - sctx->count) {
 | |
| 			rc = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
 | |
| 					sizeof(struct nx_sg);
 | |
| 
 | |
| 		/* we've hit the nx chip previously and we're updating again,
 | |
| 		 * so copy over the partial digest */
 | |
| 		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
 | |
| 			memcpy(csbcpb->cpb.aes_xcbc.cv,
 | |
| 				csbcpb->cpb.aes_xcbc.out_cv_mac,
 | |
| 				AES_BLOCK_SIZE);
 | |
| 		}
 | |
| 
 | |
| 		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
 | |
| 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
 | |
| 			rc = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
 | |
| 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 | |
| 		if (rc)
 | |
| 			goto out;
 | |
| 
 | |
| 		atomic_inc(&(nx_ctx->stats->aes_ops));
 | |
| 
 | |
| 		/* everything after the first update is continuation */
 | |
| 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
 | |
| 
 | |
| 		total -= to_process;
 | |
| 		data += to_process - sctx->count;
 | |
| 		sctx->count = 0;
 | |
| 		in_sg = nx_ctx->in_sg;
 | |
| 	} while (leftover > AES_BLOCK_SIZE);
 | |
| 
 | |
| 	/* copy the leftover back into the state struct */
 | |
| 	memcpy(sctx->buffer, data, leftover);
 | |
| 	sctx->count = leftover;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
 | |
| {
 | |
| 	struct xcbc_state *sctx = shash_desc_ctx(desc);
 | |
| 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 | |
| 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
 | |
| 	struct nx_sg *in_sg, *out_sg;
 | |
| 	unsigned long irq_flags;
 | |
| 	int rc = 0;
 | |
| 	int len;
 | |
| 
 | |
| 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
 | |
| 
 | |
| 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
 | |
| 		/* we've hit the nx chip previously, now we're finalizing,
 | |
| 		 * so copy over the partial digest */
 | |
| 		memcpy(csbcpb->cpb.aes_xcbc.cv,
 | |
| 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
 | |
| 	} else if (sctx->count == 0) {
 | |
| 		/*
 | |
| 		 * we've never seen an update, so this is a 0 byte op. The
 | |
| 		 * hardware cannot handle a 0 byte op, so just ECB to
 | |
| 		 * generate the hash.
 | |
| 		 */
 | |
| 		rc = nx_xcbc_empty(desc, out);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* final is represented by continuing the operation and indicating that
 | |
| 	 * this is not an intermediate operation */
 | |
| 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
 | |
| 
 | |
| 	len = sctx->count;
 | |
| 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
 | |
| 				 &len, nx_ctx->ap->sglen);
 | |
| 
 | |
| 	if (len != sctx->count) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	len = AES_BLOCK_SIZE;
 | |
| 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
 | |
| 				  nx_ctx->ap->sglen);
 | |
| 
 | |
| 	if (len != AES_BLOCK_SIZE) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
 | |
| 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
 | |
| 
 | |
| 	if (!nx_ctx->op.outlen) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
 | |
| 			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	atomic_inc(&(nx_ctx->stats->aes_ops));
 | |
| 
 | |
| 	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| struct shash_alg nx_shash_aes_xcbc_alg = {
 | |
| 	.digestsize = AES_BLOCK_SIZE,
 | |
| 	.init       = nx_xcbc_init,
 | |
| 	.update     = nx_xcbc_update,
 | |
| 	.final      = nx_xcbc_final,
 | |
| 	.setkey     = nx_xcbc_set_key,
 | |
| 	.descsize   = sizeof(struct xcbc_state),
 | |
| 	.statesize  = sizeof(struct xcbc_state),
 | |
| 	.base       = {
 | |
| 		.cra_name        = "xcbc(aes)",
 | |
| 		.cra_driver_name = "xcbc-aes-nx",
 | |
| 		.cra_priority    = 300,
 | |
| 		.cra_blocksize   = AES_BLOCK_SIZE,
 | |
| 		.cra_module      = THIS_MODULE,
 | |
| 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
 | |
| 		.cra_init        = nx_crypto_ctx_aes_xcbc_init2,
 | |
| 		.cra_exit        = nx_crypto_ctx_exit,
 | |
| 	}
 | |
| };
 | 
