998 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			998 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <clk.h>
 | |
| #include <dm.h>
 | |
| #include <dt-bindings/memory/rk3368-dmc.h>
 | |
| #include <dt-structs.h>
 | |
| #include <ram.h>
 | |
| #include <regmap.h>
 | |
| #include <syscon.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/arch/clock.h>
 | |
| #include <asm/arch/cru_rk3368.h>
 | |
| #include <asm/arch/grf_rk3368.h>
 | |
| #include <asm/arch/ddr_rk3368.h>
 | |
| #include <asm/arch/sdram.h>
 | |
| #include <asm/arch/sdram_common.h>
 | |
| 
 | |
| struct dram_info {
 | |
| 	struct ram_info info;
 | |
| 	struct clk ddr_clk;
 | |
| 	struct rk3368_cru *cru;
 | |
| 	struct rk3368_grf *grf;
 | |
| 	struct rk3368_ddr_pctl *pctl;
 | |
| 	struct rk3368_ddrphy *phy;
 | |
| 	struct rk3368_pmu_grf *pmugrf;
 | |
| 	struct rk3368_msch *msch;
 | |
| };
 | |
| 
 | |
| struct rk3368_sdram_params {
 | |
| #if CONFIG_IS_ENABLED(OF_PLATDATA)
 | |
| 	struct dtd_rockchip_rk3368_dmc of_plat;
 | |
| #endif
 | |
| 	struct rk3288_sdram_pctl_timing pctl_timing;
 | |
| 	u32 trefi_mem_ddr3;
 | |
| 	struct rk3288_sdram_channel chan;
 | |
| 	struct regmap *map;
 | |
| 	u32 ddr_freq;
 | |
| 	u32 memory_schedule;
 | |
| 	u32 ddr_speed_bin;
 | |
| 	u32 tfaw_mult;
 | |
| };
 | |
| 
 | |
| /* PTCL bits */
 | |
| enum {
 | |
| 	/* PCTL_DFISTCFG0 */
 | |
| 	DFI_INIT_START = BIT(0),
 | |
| 	DFI_DATA_BYTE_DISABLE_EN = BIT(2),
 | |
| 
 | |
| 	/* PCTL_DFISTCFG1 */
 | |
| 	DFI_DRAM_CLK_SR_EN = BIT(0),
 | |
| 	DFI_DRAM_CLK_DPD_EN = BIT(1),
 | |
| 	ODT_LEN_BL8_W_SHIFT = 16,
 | |
| 
 | |
| 	/* PCTL_DFISTCFG2 */
 | |
| 	DFI_PARITY_INTR_EN = BIT(0),
 | |
| 	DFI_PARITY_EN = BIT(1),
 | |
| 
 | |
| 	/* PCTL_DFILPCFG0 */
 | |
| 	TLP_RESP_TIME_SHIFT = 16,
 | |
| 	LP_SR_EN = BIT(8),
 | |
| 	LP_PD_EN = BIT(0),
 | |
| 
 | |
| 	/* PCTL_DFIODTCFG */
 | |
| 	RANK0_ODT_WRITE_SEL = BIT(3),
 | |
| 	RANK1_ODT_WRITE_SEL = BIT(11),
 | |
| 
 | |
| 	/* PCTL_SCFG */
 | |
| 	HW_LOW_POWER_EN = BIT(0),
 | |
| 
 | |
| 	/* PCTL_MCMD */
 | |
| 	START_CMD = BIT(31),
 | |
| 	MCMD_RANK0 = BIT(20),
 | |
| 	MCMD_RANK1 = BIT(21),
 | |
| 	DESELECT_CMD = 0,
 | |
| 	PREA_CMD,
 | |
| 	REF_CMD,
 | |
| 	MRS_CMD,
 | |
| 	ZQCS_CMD,
 | |
| 	ZQCL_CMD,
 | |
| 	RSTL_CMD,
 | |
| 	MRR_CMD	= 8,
 | |
| 	DPDE_CMD,
 | |
| 
 | |
| 	/* PCTL_POWCTL */
 | |
| 	POWER_UP_START = BIT(0),
 | |
| 
 | |
| 	/* PCTL_POWSTAT */
 | |
| 	POWER_UP_DONE = BIT(0),
 | |
| 
 | |
| 	/* PCTL_SCTL */
 | |
| 	INIT_STATE = 0,
 | |
| 	CFG_STATE,
 | |
| 	GO_STATE,
 | |
| 	SLEEP_STATE,
 | |
| 	WAKEUP_STATE,
 | |
| 
 | |
| 	/* PCTL_STAT */
 | |
| 	LP_TRIG_SHIFT = 4,
 | |
| 	LP_TRIG_MASK = 7,
 | |
| 	PCTL_STAT_MSK = 7,
 | |
| 	INIT_MEM = 0,
 | |
| 	CONFIG,
 | |
| 	CONFIG_REQ,
 | |
| 	ACCESS,
 | |
| 	ACCESS_REQ,
 | |
| 	LOW_POWER,
 | |
| 	LOW_POWER_ENTRY_REQ,
 | |
| 	LOW_POWER_EXIT_REQ,
 | |
| 
 | |
| 	/* PCTL_MCFG */
 | |
| 	DDR2_DDR3_BL_8 = BIT(0),
 | |
| 	DDR3_EN = BIT(5),
 | |
| 	TFAW_TRRD_MULT4 = (0 << 18),
 | |
| 	TFAW_TRRD_MULT5 = (1 << 18),
 | |
| 	TFAW_TRRD_MULT6 = (2 << 18),
 | |
| };
 | |
| 
 | |
| #define DDR3_MR0_WR(n) \
 | |
| 	((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9))
 | |
| #define DDR3_MR0_CL(n) \
 | |
| 	((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2))
 | |
| #define DDR3_MR0_BL8 \
 | |
| 	(0 << 0)
 | |
| #define DDR3_MR0_DLL_RESET \
 | |
| 	(1 << 8)
 | |
| #define DDR3_MR1_RTT120OHM \
 | |
| 	((0 << 9) | (1 << 6) | (0 << 2))
 | |
| #define DDR3_MR2_TWL(n) \
 | |
| 	(((n - 5) & 0x7) << 3)
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_TPL_BUILD
 | |
| 
 | |
| static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable)
 | |
| {
 | |
| 	if (enable)
 | |
| 		rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
 | |
| 	else
 | |
| 		rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
 | |
| }
 | |
| 
 | |
| static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode)
 | |
| {
 | |
| 	if (ddr3_mode)
 | |
| 		rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
 | |
| 	else
 | |
| 		rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
 | |
| }
 | |
| 
 | |
| static void ddrphy_config(struct rk3368_ddrphy *phy,
 | |
| 			  u32 tcl, u32 tal, u32 tcwl)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Set to DDR3 mode */
 | |
| 	clrsetbits_le32(&phy->reg[1], 0x3, 0x0);
 | |
| 
 | |
| 	/* DDRPHY_REGB: CL, AL */
 | |
| 	clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal);
 | |
| 	/* DDRPHY_REGC: CWL */
 | |
| 	clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl);
 | |
| 
 | |
| 	/* Update drive-strength */
 | |
| 	writel(0xcc, &phy->reg[0x11]);
 | |
| 	writel(0xaa, &phy->reg[0x16]);
 | |
| 	/*
 | |
| 	 * Update NRCOMP/PRCOMP for all 4 channels (for details of all
 | |
| 	 * affected registers refer to the documentation of DDRPHY_REG20
 | |
| 	 * and DDRPHY_REG21 in the RK3368 TRM.
 | |
| 	 */
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		writel(0xcc, &phy->reg[0x20 + i * 0x10]);
 | |
| 		writel(0x44, &phy->reg[0x21 + i * 0x10]);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable write-leveling calibration bypass */
 | |
| 	setbits_le32(&phy->reg[2], BIT(3));
 | |
| }
 | |
| 
 | |
| static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < n / sizeof(u32); i++)
 | |
| 		writel(*src++, dest++);
 | |
| }
 | |
| 
 | |
| static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd)
 | |
| {
 | |
| 	u32 mcmd = START_CMD | cmd | rank;
 | |
| 
 | |
| 	debug("%s: writing %x to MCMD\n", __func__, mcmd);
 | |
| 	writel(mcmd, &pctl->mcmd);
 | |
| 	while (readl(&pctl->mcmd) & START_CMD)
 | |
| 		/* spin */;
 | |
| }
 | |
| 
 | |
| static void send_mrs(struct rk3368_ddr_pctl *pctl,
 | |
| 			    u32 rank, u32 mr_num, u32 mr_data)
 | |
| {
 | |
| 	u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4);
 | |
| 
 | |
| 	debug("%s: writing %x to MCMD\n", __func__, mcmd);
 | |
| 	writel(mcmd, &pctl->mcmd);
 | |
| 	while (readl(&pctl->mcmd) & START_CMD)
 | |
| 		/* spin */;
 | |
| }
 | |
| 
 | |
| static int memory_init(struct rk3368_ddr_pctl *pctl,
 | |
| 		       struct rk3368_sdram_params *params)
 | |
| {
 | |
| 	u32 mr[4];
 | |
| 	const ulong timeout_ms = 500;
 | |
| 	ulong tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and
 | |
| 	 * wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register
 | |
| 	 * of PCTL.
 | |
| 	 */
 | |
| 	writel(POWER_UP_START, &pctl->powctl);
 | |
| 
 | |
| 	tmp = get_timer(0);
 | |
| 	do {
 | |
| 		if (get_timer(tmp) > timeout_ms) {
 | |
| 			pr_err("%s: POWER_UP_START did not complete in %ld ms\n",
 | |
| 			      __func__, timeout_ms);
 | |
| 			return -ETIME;
 | |
| 		}
 | |
| 	} while (!(readl(&pctl->powstat) & POWER_UP_DONE));
 | |
| 
 | |
| 	/* Configure MR0 through MR3 */
 | |
| 	mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) |
 | |
| 		DDR3_MR0_CL(params->pctl_timing.tcl) |
 | |
| 		DDR3_MR0_DLL_RESET;
 | |
| 	mr[1] = DDR3_MR1_RTT120OHM;
 | |
| 	mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl);
 | |
| 	mr[3] = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Also see RK3368 Technical Reference Manual:
 | |
| 	 *   "16.6.2 Initialization (DDR3 Initialization Sequence)"
 | |
| 	 */
 | |
| 	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD);
 | |
| 	udelay(1);
 | |
| 	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
 | |
| 	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]);
 | |
| 	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]);
 | |
| 	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]);
 | |
| 	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]);
 | |
| 	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void move_to_config_state(struct rk3368_ddr_pctl *pctl)
 | |
| {
 | |
| 	/*
 | |
| 	 * Also see RK3368 Technical Reference Manual:
 | |
| 	 *   "16.6.1 State transition of PCTL (Moving to Config State)"
 | |
| 	 */
 | |
| 	u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case LOW_POWER:
 | |
| 		writel(WAKEUP_STATE, &pctl->sctl);
 | |
| 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
 | |
| 			/* spin */;
 | |
| 
 | |
| 		/* fall-through */
 | |
| 	case ACCESS:
 | |
| 	case INIT_MEM:
 | |
| 		writel(CFG_STATE, &pctl->sctl);
 | |
| 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
 | |
| 			/* spin */;
 | |
| 		break;
 | |
| 
 | |
| 	case CONFIG:
 | |
| 		return;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void move_to_access_state(struct rk3368_ddr_pctl *pctl)
 | |
| {
 | |
| 	/*
 | |
| 	 * Also see RK3368 Technical Reference Manual:
 | |
| 	 *   "16.6.1 State transition of PCTL (Moving to Access State)"
 | |
| 	 */
 | |
| 	u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case LOW_POWER:
 | |
| 		if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) &
 | |
| 		     LP_TRIG_MASK) == 1)
 | |
| 			return;
 | |
| 
 | |
| 		writel(WAKEUP_STATE, &pctl->sctl);
 | |
| 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
 | |
| 			/* spin */;
 | |
| 
 | |
| 		/* fall-through */
 | |
| 	case INIT_MEM:
 | |
| 		writel(CFG_STATE, &pctl->sctl);
 | |
| 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
 | |
| 			/* spin */;
 | |
| 
 | |
| 		/* fall-through */
 | |
| 	case CONFIG:
 | |
| 		writel(GO_STATE, &pctl->sctl);
 | |
| 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG)
 | |
| 			/* spin */;
 | |
| 		break;
 | |
| 
 | |
| 	case ACCESS:
 | |
| 		return;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ddrctl_reset(struct rk3368_cru *cru)
 | |
| {
 | |
| 	const u32 ctl_reset = BIT(3) | BIT(2);
 | |
| 	const u32 phy_reset = BIT(1) | BIT(0);
 | |
| 
 | |
| 	/*
 | |
| 	 * The PHY reset should be released before the PCTL reset.
 | |
| 	 *
 | |
| 	 * Note that the following sequence (including the number of
 | |
| 	 * us to delay between releasing the PHY and PCTL reset) has
 | |
| 	 * been adapted per feedback received from Rockchips, so do
 | |
| 	 * not try to optimise.
 | |
| 	 */
 | |
| 	rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset);
 | |
| 	udelay(1);
 | |
| 	rk_clrreg(&cru->softrst_con[10], phy_reset);
 | |
| 	udelay(5);
 | |
| 	rk_clrreg(&cru->softrst_con[10], ctl_reset);
 | |
| }
 | |
| 
 | |
| static void ddrphy_reset(struct rk3368_ddrphy *ddrphy)
 | |
| {
 | |
| 	/*
 | |
| 	 * The analog part of the PHY should be release at least 1000
 | |
| 	 * DRAM cycles before the digital part of the PHY (waiting for
 | |
| 	 * 5us will ensure this for a DRAM clock as low as 200MHz).
 | |
| 	 */
 | |
| 	clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2));
 | |
| 	udelay(1);
 | |
| 	setbits_le32(&ddrphy->reg[0], BIT(2));
 | |
| 	udelay(5);
 | |
| 	setbits_le32(&ddrphy->reg[0], BIT(3));
 | |
| }
 | |
| 
 | |
| static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq)
 | |
| {
 | |
| 	u32 dqs_dll_delay;
 | |
| 
 | |
| 	setbits_le32(&ddrphy->reg[0x13], BIT(4));
 | |
| 	clrbits_le32(&ddrphy->reg[0x14], BIT(3));
 | |
| 
 | |
| 	setbits_le32(&ddrphy->reg[0x26], BIT(4));
 | |
| 	clrbits_le32(&ddrphy->reg[0x27], BIT(3));
 | |
| 
 | |
| 	setbits_le32(&ddrphy->reg[0x36], BIT(4));
 | |
| 	clrbits_le32(&ddrphy->reg[0x37], BIT(3));
 | |
| 
 | |
| 	setbits_le32(&ddrphy->reg[0x46], BIT(4));
 | |
| 	clrbits_le32(&ddrphy->reg[0x47], BIT(3));
 | |
| 
 | |
| 	setbits_le32(&ddrphy->reg[0x56], BIT(4));
 | |
| 	clrbits_le32(&ddrphy->reg[0x57], BIT(3));
 | |
| 
 | |
| 	if (freq <= 400000000)
 | |
| 		setbits_le32(&ddrphy->reg[0xa4], 0x1f);
 | |
| 	else
 | |
| 		clrbits_le32(&ddrphy->reg[0xa4], 0x1f);
 | |
| 
 | |
| 	if (freq < 681000000)
 | |
| 		dqs_dll_delay = 3; /* 67.5 degree delay */
 | |
| 	else
 | |
| 		dqs_dll_delay = 2; /* 45 degree delay */
 | |
| 
 | |
| 	writel(dqs_dll_delay, &ddrphy->reg[0x28]);
 | |
| 	writel(dqs_dll_delay, &ddrphy->reg[0x38]);
 | |
| 	writel(dqs_dll_delay, &ddrphy->reg[0x48]);
 | |
| 	writel(dqs_dll_delay, &ddrphy->reg[0x58]);
 | |
| }
 | |
| 
 | |
| static int dfi_cfg(struct rk3368_ddr_pctl *pctl)
 | |
| {
 | |
| 	const ulong timeout_ms = 200;
 | |
| 	ulong tmp;
 | |
| 
 | |
| 	writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0);
 | |
| 
 | |
| 	writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN,
 | |
| 	       &pctl->dfistcfg1);
 | |
| 	writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2);
 | |
| 	writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN,
 | |
| 	       &pctl->dfilpcfg0);
 | |
| 
 | |
| 	writel(1, &pctl->dfitphyupdtype0);
 | |
| 
 | |
| 	writel(0x1f, &pctl->dfitphyrdlat);
 | |
| 	writel(0, &pctl->dfitphywrdata);
 | |
| 	writel(0, &pctl->dfiupdcfg);  /* phyupd and ctrlupd disabled */
 | |
| 
 | |
| 	setbits_le32(&pctl->dfistcfg0, DFI_INIT_START);
 | |
| 
 | |
| 	tmp = get_timer(0);
 | |
| 	do {
 | |
| 		if (get_timer(tmp) > timeout_ms) {
 | |
| 			pr_err("%s: DFI init did not complete within %ld ms\n",
 | |
| 			      __func__, timeout_ms);
 | |
| 			return -ETIME;
 | |
| 		}
 | |
| 	} while ((readl(&pctl->dfiststat0) & 1) == 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline u32 ps_to_tCK(const u32 ps, const ulong freq)
 | |
| {
 | |
| 	const ulong MHz = 1000000;
 | |
| 	return DIV_ROUND_UP(ps * freq, 1000000 * MHz);
 | |
| }
 | |
| 
 | |
| static inline u32 ns_to_tCK(const u32 ns, const ulong freq)
 | |
| {
 | |
| 	return ps_to_tCK(ns * 1000, freq);
 | |
| }
 | |
| 
 | |
| static inline u32 tCK_to_ps(const ulong tCK, const ulong freq)
 | |
| {
 | |
| 	const ulong MHz = 1000000;
 | |
| 	return DIV_ROUND_UP(tCK * 1000000 * MHz, freq);
 | |
| }
 | |
| 
 | |
| static int pctl_calc_timings(struct rk3368_sdram_params *params,
 | |
| 			      ulong freq)
 | |
| {
 | |
| 	struct rk3288_sdram_pctl_timing *pctl_timing = ¶ms->pctl_timing;
 | |
| 	const ulong MHz = 1000000;
 | |
| 	u32 tccd;
 | |
| 	u32 tfaw_as_ps;
 | |
| 
 | |
| 	if (params->ddr_speed_bin != DDR3_1600K) {
 | |
| 		pr_err("%s: unimplemented DDR3 speed bin %d\n",
 | |
| 		      __func__, params->ddr_speed_bin);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */
 | |
| 	pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz);
 | |
| 	pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz);
 | |
| 
 | |
| 	pctl_timing->tinit = 200;                 /* 200 usec                */
 | |
| 	pctl_timing->trsth = 500;                 /* 500 usec                */
 | |
| 	pctl_timing->trefi = 78;                  /* 7.8usec = 78 * 100ns    */
 | |
| 	params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq);
 | |
| 
 | |
| 	if (freq <= (400 * MHz)) {
 | |
| 		pctl_timing->tcl = 6;
 | |
| 		pctl_timing->tcwl = 10;
 | |
| 	} else if (freq <= (533 * MHz)) {
 | |
| 		pctl_timing->tcl = 8;
 | |
| 		pctl_timing->tcwl = 6;
 | |
| 	} else if (freq <= (666 * MHz)) {
 | |
| 		pctl_timing->tcl = 10;
 | |
| 		pctl_timing->tcwl = 7;
 | |
| 	} else {
 | |
| 		pctl_timing->tcl = 11;
 | |
| 		pctl_timing->tcwl = 8;
 | |
| 	}
 | |
| 
 | |
| 	pctl_timing->tmrd = 4;                    /* 4 tCK (all speed bins)  */
 | |
| 	pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */
 | |
| 	pctl_timing->trp = max(4u, ps_to_tCK(13750, freq));
 | |
| 	/*
 | |
| 	 * JESD-79:
 | |
| 	 *   READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL
 | |
| 	 */
 | |
| 	tccd = 4;
 | |
| 	pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl;
 | |
| 	pctl_timing->tal = 0;
 | |
| 	pctl_timing->tras = ps_to_tCK(35000, freq);
 | |
| 	pctl_timing->trc = ps_to_tCK(48750, freq);
 | |
| 	pctl_timing->trcd = ps_to_tCK(13750, freq);
 | |
| 	pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq));
 | |
| 	pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq));
 | |
| 	pctl_timing->twr = ps_to_tCK(15000, freq);
 | |
| 	/* The DDR3 mode-register does only support even values for tWR > 8. */
 | |
| 	if (pctl_timing->twr > 8)
 | |
| 		pctl_timing->twr = (pctl_timing->twr + 1) & ~1;
 | |
| 	pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq));
 | |
| 	pctl_timing->texsr = 512;                 /* tEXSR(max) is tDLLLK    */
 | |
| 	pctl_timing->txp = max(3u, ps_to_tCK(6000, freq));
 | |
| 	pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq));
 | |
| 	pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq));
 | |
| 	pctl_timing->tzqcsi = 10000;               /* as used by Rockchip    */
 | |
| 	pctl_timing->tdqs = 1;                     /* fixed for DDR3         */
 | |
| 	pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq));
 | |
| 	pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq));
 | |
| 	pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq));
 | |
| 	pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq));
 | |
| 	pctl_timing->trstl = ns_to_tCK(100, freq);
 | |
| 	pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq));   /* tZQoper */
 | |
| 	pctl_timing->tmrr = 0;
 | |
| 	pctl_timing->tckesr = pctl_timing->tcke + 1;  /* JESD-79: tCKE + 1tCK */
 | |
| 	pctl_timing->tdpd = 0;    /* RK3368 TRM: "allowed values for DDR3: 0" */
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * The controller can represent tFAW as 4x, 5x or 6x tRRD only.
 | |
| 	 * We want to use the smallest multiplier that satisfies the tFAW
 | |
| 	 * requirements of the given speed-bin.  If necessary, we stretch out
 | |
| 	 * tRRD to allow us to operate on a 6x multiplier for tFAW.
 | |
| 	 */
 | |
| 	tfaw_as_ps = 40000;      /* 40ns: tFAW for DDR3-1600K, 2KB page-size */
 | |
| 	if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) {
 | |
| 		/* If tFAW is > 6 x tRRD, we need to stretch tRRD */
 | |
| 		pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq);
 | |
| 		params->tfaw_mult = TFAW_TRRD_MULT6;
 | |
| 	} else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) {
 | |
| 		params->tfaw_mult = TFAW_TRRD_MULT6;
 | |
| 	} else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) {
 | |
| 		params->tfaw_mult = TFAW_TRRD_MULT5;
 | |
| 	} else {
 | |
| 		params->tfaw_mult = TFAW_TRRD_MULT4;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pctl_cfg(struct rk3368_ddr_pctl *pctl,
 | |
| 		     struct rk3368_sdram_params *params,
 | |
| 		     struct rk3368_grf *grf)
 | |
| {
 | |
| 	/* Configure PCTL timing registers */
 | |
| 	params->pctl_timing.trefi |= BIT(31);   /* see PCTL_TREFI */
 | |
| 	copy_to_reg(&pctl->togcnt1u, ¶ms->pctl_timing.togcnt1u,
 | |
| 		    sizeof(params->pctl_timing));
 | |
| 	writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3);
 | |
| 
 | |
| 	/* Set up ODT write selector and ODT write length */
 | |
| 	writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg);
 | |
| 	writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1);
 | |
| 
 | |
| 	/* Set up the CL/CWL-dependent timings of DFI */
 | |
| 	writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen);
 | |
| 	writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat);
 | |
| 
 | |
| 	/* DDR3 */
 | |
| 	writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg);
 | |
| 	writel(0x001c0004, &grf->ddrc0_con0);
 | |
| 
 | |
| 	setbits_le32(&pctl->scfg, HW_LOW_POWER_EN);
 | |
| }
 | |
| 
 | |
| static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl,
 | |
| 				struct rk3368_ddrphy *ddrphy)
 | |
| {
 | |
| 	const u32 trefi = readl(&pctl->trefi);
 | |
| 	const ulong timeout_ms = 500;
 | |
| 	ulong tmp;
 | |
| 
 | |
| 	/* disable auto-refresh */
 | |
| 	writel(0 | BIT(31), &pctl->trefi);
 | |
| 
 | |
| 	clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
 | |
| 	clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21);
 | |
| 
 | |
| 	tmp = get_timer(0);
 | |
| 	do {
 | |
| 		if (get_timer(tmp) > timeout_ms) {
 | |
| 			pr_err("%s: did not complete within %ld ms\n",
 | |
| 			      __func__, timeout_ms);
 | |
| 			return -ETIME;
 | |
| 		}
 | |
| 	} while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf);
 | |
| 
 | |
| 	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
 | |
| 	clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
 | |
| 	/* resume auto-refresh */
 | |
| 	writel(trefi | BIT(31), &pctl->trefi);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sdram_col_row_detect(struct udevice *dev)
 | |
| {
 | |
| 	struct dram_info *priv = dev_get_priv(dev);
 | |
| 	struct rk3368_sdram_params *params = dev_get_platdata(dev);
 | |
| 	struct rk3368_ddr_pctl *pctl = priv->pctl;
 | |
| 	struct rk3368_msch *msch = priv->msch;
 | |
| 	const u32 test_pattern = 0x5aa5f00f;
 | |
| 	int row, col;
 | |
| 	uintptr_t addr;
 | |
| 
 | |
| 	move_to_config_state(pctl);
 | |
| 	writel(6, &msch->ddrconf);
 | |
| 	move_to_access_state(pctl);
 | |
| 
 | |
| 	/* Detect col */
 | |
| 	for (col = 11; col >= 9; col--) {
 | |
| 		writel(0, CONFIG_SYS_SDRAM_BASE);
 | |
| 		addr = CONFIG_SYS_SDRAM_BASE +
 | |
| 			(1 << (col + params->chan.bw - 1));
 | |
| 		writel(test_pattern, addr);
 | |
| 		if ((readl(addr) == test_pattern) &&
 | |
| 		    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (col == 8) {
 | |
| 		pr_err("%s: col detect error\n", __func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	move_to_config_state(pctl);
 | |
| 	writel(15, &msch->ddrconf);
 | |
| 	move_to_access_state(pctl);
 | |
| 
 | |
| 	/* Detect row*/
 | |
| 	for (row = 16; row >= 12; row--) {
 | |
| 		writel(0, CONFIG_SYS_SDRAM_BASE);
 | |
| 		addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1));
 | |
| 		writel(test_pattern, addr);
 | |
| 		if ((readl(addr) == test_pattern) &&
 | |
| 		    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (row == 11) {
 | |
| 		pr_err("%s: row detect error\n", __func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Record results */
 | |
| 	debug("%s: col %d, row %d\n", __func__, col, row);
 | |
| 	params->chan.col = col;
 | |
| 	params->chan.cs0_row = row;
 | |
| 	params->chan.cs1_row = row;
 | |
| 	params->chan.row_3_4 = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int msch_niu_config(struct rk3368_msch *msch,
 | |
| 			   struct rk3368_sdram_params *params)
 | |
| {
 | |
| 	int i;
 | |
| 	const u8 cols =	params->chan.col - ((params->chan.bw == 2) ? 0 : 1);
 | |
| 	const u8 rows = params->chan.cs0_row;
 | |
| 
 | |
| 	/*
 | |
| 	 * The DDR address-translation table always assumes a 32bit
 | |
| 	 * bus and the comparison below takes care of adjusting for
 | |
| 	 * a 16bit bus (i.e. one column-address is consumed).
 | |
| 	 */
 | |
| 	const struct {
 | |
| 		u8 rows;
 | |
| 		u8 columns;
 | |
| 		u8 type;
 | |
| 	} ddrconf_table[] = {
 | |
| 		/*
 | |
| 		 * C-B-R-D patterns are first. For these we require an
 | |
| 		 * exact match for the columns and rows (as there's
 | |
| 		 * one entry per possible configuration).
 | |
| 		 */
 | |
| 		[0] =  { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD },
 | |
| 		[1] =  { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD },
 | |
| 		[2] =  { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD },
 | |
| 		[3] =  { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD },
 | |
| 		[4] =  { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD },
 | |
| 		[5] =  { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD },
 | |
| 		[6] =  { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD },
 | |
| 		[7] =  { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD },
 | |
| 		[8] =  { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD },
 | |
| 		[9] =  { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD },
 | |
| 		[10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD },
 | |
| 		/*
 | |
| 		 * 11 through 13 are C-R-B-D patterns. These are
 | |
| 		 * matched for an exact number of columns and to
 | |
| 		 * ensure that the hardware uses at least as many rows
 | |
| 		 * as the pattern requires (i.e. we make sure that
 | |
| 		 * there's no gaps up until we hit the device/chip-select;
 | |
| 		 * however, these patterns can accept up to 16 rows,
 | |
| 		 * as the row-address continues right after the CS
 | |
| 		 * switching)
 | |
| 		 */
 | |
| 		[11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD },
 | |
| 		[12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD },
 | |
| 		[13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD },
 | |
| 		/*
 | |
| 		 * 14 and 15 are catch-all variants using a C-B-D-R
 | |
| 		 * scheme (i.e. alternating the chip-select every time
 | |
| 		 * C-B overflows) and stuffing the remaining C-bits
 | |
| 		 * into the top. Matching needs to make sure that the
 | |
| 		 * number of columns is either an exact match (i.e. we
 | |
| 		 * can use less the the maximum number of rows) -or-
 | |
| 		 * that the columns exceed what is given in this table
 | |
| 		 * and the rows are an exact match (in which case the
 | |
| 		 * remaining C-bits will be stuffed onto the top after
 | |
| 		 * the device/chip-select switches).
 | |
| 		 */
 | |
| 		[14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR },
 | |
| 		[15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR },
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * For C-B-R-D, we need an exact match (i.e. both for the number of
 | |
| 	 * columns and rows), while for C-B-D-R, only the the number of
 | |
| 	 * columns needs to match.
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) {
 | |
| 		bool match = false;
 | |
| 
 | |
| 		/* If this entry if for a different matcher, then skip it */
 | |
| 		if (ddrconf_table[i].type != params->memory_schedule)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Match according to the rules (exact/inexact/at-least)
 | |
| 		 * documented in the ddrconf_table above.
 | |
| 		 */
 | |
| 		switch (params->memory_schedule) {
 | |
| 		case DMC_MSCH_CBRD:
 | |
| 			match = (ddrconf_table[i].columns == cols) &&
 | |
| 				(ddrconf_table[i].rows == rows);
 | |
| 			break;
 | |
| 
 | |
| 		case DMC_MSCH_CRBD:
 | |
| 			match = (ddrconf_table[i].columns == cols) &&
 | |
| 				(ddrconf_table[i].rows <= rows);
 | |
| 			break;
 | |
| 
 | |
| 		case DMC_MSCH_CBDR:
 | |
| 			match = (ddrconf_table[i].columns == cols) ||
 | |
| 				((ddrconf_table[i].columns <= cols) &&
 | |
| 				 (ddrconf_table[i].rows == rows));
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (match) {
 | |
| 			debug("%s: setting ddrconf 0x%x\n", __func__, i);
 | |
| 			writel(i, &msch->ddrconf);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pr_err("%s: ddrconf (NIU config) not found\n", __func__);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void dram_all_config(struct udevice *dev)
 | |
| {
 | |
| 	struct dram_info *priv = dev_get_priv(dev);
 | |
| 	struct rk3368_pmu_grf *pmugrf = priv->pmugrf;
 | |
| 	struct rk3368_sdram_params *params = dev_get_platdata(dev);
 | |
| 	const struct rk3288_sdram_channel *info = ¶ms->chan;
 | |
| 	u32 sys_reg = 0;
 | |
| 	const int chan = 0;
 | |
| 
 | |
| 	sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT;
 | |
| 	sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT;
 | |
| 
 | |
| 	sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan);
 | |
| 	sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan);
 | |
| 	sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan);
 | |
| 	sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan);
 | |
| 	sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan);
 | |
| 	sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan);
 | |
| 	sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan);
 | |
| 	sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan);
 | |
| 	sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan);
 | |
| 
 | |
| 	writel(sys_reg, &pmugrf->os_reg[2]);
 | |
| }
 | |
| 
 | |
| static int setup_sdram(struct udevice *dev)
 | |
| {
 | |
| 	struct dram_info *priv = dev_get_priv(dev);
 | |
| 	struct rk3368_sdram_params *params = dev_get_platdata(dev);
 | |
| 
 | |
| 	struct rk3368_ddr_pctl *pctl = priv->pctl;
 | |
| 	struct rk3368_ddrphy *ddrphy = priv->phy;
 | |
| 	struct rk3368_cru *cru = priv->cru;
 | |
| 	struct rk3368_grf *grf = priv->grf;
 | |
| 	struct rk3368_msch *msch = priv->msch;
 | |
| 
 | |
| 	int ret;
 | |
| 
 | |
| 	/* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */
 | |
| 	ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq);
 | |
| 	if (ret < 0) {
 | |
| 		debug("%s: could not set DDR clock: %d\n", __func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Update the read-latency for the RK3368 */
 | |
| 	writel(0x32, &msch->readlatency);
 | |
| 
 | |
| 	/* Initialise the DDR PCTL and DDR PHY */
 | |
| 	ddrctl_reset(cru);
 | |
| 	ddrphy_reset(ddrphy);
 | |
| 	ddrphy_config_delays(ddrphy, params->ddr_freq);
 | |
| 	dfi_cfg(pctl);
 | |
| 	/* Configure relative system information of grf_ddrc0_con0 register */
 | |
| 	ddr_set_ddr3_mode(grf, true);
 | |
| 	ddr_set_noc_spr_err_stall(grf, true);
 | |
| 	/* Calculate timings */
 | |
| 	pctl_calc_timings(params, params->ddr_freq);
 | |
| 	/* Initialise the device timings in protocol controller */
 | |
| 	pctl_cfg(pctl, params, grf);
 | |
| 	/* Configure AL, CL ... information of PHY registers */
 | |
| 	ddrphy_config(ddrphy,
 | |
| 		      params->pctl_timing.tcl,
 | |
| 		      params->pctl_timing.tal,
 | |
| 		      params->pctl_timing.tcwl);
 | |
| 
 | |
| 	/* Initialize DRAM and configure with mode-register values */
 | |
| 	ret = memory_init(pctl, params);
 | |
| 	if (ret)
 | |
| 		goto error;
 | |
| 
 | |
| 	move_to_config_state(pctl);
 | |
| 	/* Perform data-training */
 | |
| 	ddrphy_data_training(pctl, ddrphy);
 | |
| 	move_to_access_state(pctl);
 | |
| 
 | |
| 	/* TODO(prt): could detect rank in training... */
 | |
| 	params->chan.rank = 2;
 | |
| 	/* TODO(prt): bus width is not auto-detected (yet)... */
 | |
| 	params->chan.bw = 2;  /* 32bit wide bus */
 | |
| 	params->chan.dbw = params->chan.dbw;  /* 32bit wide bus */
 | |
| 
 | |
| 	/* DDR3 is always 8 bank */
 | |
| 	params->chan.bk = 3;
 | |
| 	/* Detect col and row number */
 | |
| 	ret = sdram_col_row_detect(dev);
 | |
| 	if (ret)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* Configure NIU DDR configuration */
 | |
| 	ret = msch_niu_config(msch, params);
 | |
| 	if (ret)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* set up OS_REG to communicate w/ next stage and OS */
 | |
| 	dram_all_config(dev);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	printf("DRAM init failed!\n");
 | |
| 	hang();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int rk3368_dmc_ofdata_to_platdata(struct udevice *dev)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| #if !CONFIG_IS_ENABLED(OF_PLATDATA)
 | |
| 	struct rk3368_sdram_params *plat = dev_get_platdata(dev);
 | |
| 
 | |
| 	ret = regmap_init_mem(dev_ofnode(dev), &plat->map);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #if CONFIG_IS_ENABLED(OF_PLATDATA)
 | |
| static int conv_of_platdata(struct udevice *dev)
 | |
| {
 | |
| 	struct rk3368_sdram_params *plat = dev_get_platdata(dev);
 | |
| 	struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat;
 | |
| 
 | |
| 	plat->ddr_freq = of_plat->rockchip_ddr_frequency;
 | |
| 	plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin;
 | |
| 	plat->memory_schedule = of_plat->rockchip_memory_schedule;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int rk3368_dmc_probe(struct udevice *dev)
 | |
| {
 | |
| #ifdef CONFIG_TPL_BUILD
 | |
| 	struct rk3368_sdram_params *plat = dev_get_platdata(dev);
 | |
| 	struct rk3368_ddr_pctl *pctl;
 | |
| 	struct rk3368_ddrphy *ddrphy;
 | |
| 	struct rk3368_cru *cru;
 | |
| 	struct rk3368_grf *grf;
 | |
| 	struct rk3368_msch *msch;
 | |
| 	int ret;
 | |
| 	struct udevice *dev_clk;
 | |
| #endif
 | |
| 	struct dram_info *priv = dev_get_priv(dev);
 | |
| 
 | |
| #if CONFIG_IS_ENABLED(OF_PLATDATA)
 | |
| 	ret = conv_of_platdata(dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| #endif
 | |
| 
 | |
| 	priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
 | |
| 	debug("%s: pmugrf=%p\n", __func__, priv->pmugrf);
 | |
| 
 | |
| #ifdef CONFIG_TPL_BUILD
 | |
| 	pctl = (struct rk3368_ddr_pctl *)plat->of_plat.reg[0];
 | |
| 	ddrphy = (struct rk3368_ddrphy *)plat->of_plat.reg[2];
 | |
| 	msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH);
 | |
| 	grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
 | |
| 
 | |
| 	priv->pctl = pctl;
 | |
| 	priv->phy = ddrphy;
 | |
| 	priv->msch = msch;
 | |
| 	priv->grf = grf;
 | |
| 
 | |
| 	ret = rockchip_get_clk(&dev_clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	priv->ddr_clk.id = CLK_DDR;
 | |
| 	ret = clk_request(dev_clk, &priv->ddr_clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	cru = rockchip_get_cru();
 | |
| 	priv->cru = cru;
 | |
| 	if (IS_ERR(priv->cru))
 | |
| 		return PTR_ERR(priv->cru);
 | |
| 
 | |
| 	ret = setup_sdram(dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| #endif
 | |
| 
 | |
| 	priv->info.base = 0;
 | |
| 	priv->info.size =
 | |
| 		rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]);
 | |
| 
 | |
| 	/*
 | |
| 	* we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff
 | |
| 	* is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is
 | |
| 	* inaccessible for some IP controller.
 | |
| 	*/
 | |
| 	priv->info.size = min(priv->info.size, (size_t)0xfe000000);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info)
 | |
| {
 | |
| 	struct dram_info *priv = dev_get_priv(dev);
 | |
| 
 | |
| 	*info = priv->info;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct ram_ops rk3368_dmc_ops = {
 | |
| 	.get_info = rk3368_dmc_get_info,
 | |
| };
 | |
| 
 | |
| 
 | |
| static const struct udevice_id rk3368_dmc_ids[] = {
 | |
| 	{ .compatible = "rockchip,rk3368-dmc" },
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| U_BOOT_DRIVER(dmc_rk3368) = {
 | |
| 	.name = "rockchip_rk3368_dmc",
 | |
| 	.id = UCLASS_RAM,
 | |
| 	.of_match = rk3368_dmc_ids,
 | |
| 	.ops = &rk3368_dmc_ops,
 | |
| 	.probe = rk3368_dmc_probe,
 | |
| 	.priv_auto_alloc_size = sizeof(struct dram_info),
 | |
| 	.ofdata_to_platdata = rk3368_dmc_ofdata_to_platdata,
 | |
| 	.probe = rk3368_dmc_probe,
 | |
| 	.priv_auto_alloc_size = sizeof(struct dram_info),
 | |
| 	.platdata_auto_alloc_size = sizeof(struct rk3368_sdram_params),
 | |
| };
 | 
