1670 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1670 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Scatterlist Cryptographic API.
 | |
|  *
 | |
|  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
 | |
|  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
 | |
|  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
 | |
|  *
 | |
|  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
 | |
|  * and Nettle, by Niels Möller.
 | |
|  * 
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the Free
 | |
|  * Software Foundation; either version 2 of the License, or (at your option) 
 | |
|  * any later version.
 | |
|  *
 | |
|  */
 | |
| #ifndef _LINUX_CRYPTO_H
 | |
| #define _LINUX_CRYPTO_H
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/completion.h>
 | |
| 
 | |
| /*
 | |
|  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
 | |
|  * arbitrary modules to be loaded. Loading from userspace may still need the
 | |
|  * unprefixed names, so retains those aliases as well.
 | |
|  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
 | |
|  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
 | |
|  * expands twice on the same line. Instead, use a separate base name for the
 | |
|  * alias.
 | |
|  */
 | |
| #define MODULE_ALIAS_CRYPTO(name)	\
 | |
| 		__MODULE_INFO(alias, alias_userspace, name);	\
 | |
| 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
 | |
| 
 | |
| /*
 | |
|  * Algorithm masks and types.
 | |
|  */
 | |
| #define CRYPTO_ALG_TYPE_MASK		0x0000000f
 | |
| #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
 | |
| #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
 | |
| #define CRYPTO_ALG_TYPE_AEAD		0x00000003
 | |
| #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
 | |
| #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
 | |
| #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
 | |
| #define CRYPTO_ALG_TYPE_GIVCIPHER	0x00000006
 | |
| #define CRYPTO_ALG_TYPE_KPP		0x00000008
 | |
| #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
 | |
| #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
 | |
| #define CRYPTO_ALG_TYPE_RNG		0x0000000c
 | |
| #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
 | |
| #define CRYPTO_ALG_TYPE_DIGEST		0x0000000e
 | |
| #define CRYPTO_ALG_TYPE_HASH		0x0000000e
 | |
| #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
 | |
| #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
 | |
| 
 | |
| #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
 | |
| #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
 | |
| #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
 | |
| #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
 | |
| 
 | |
| #define CRYPTO_ALG_LARVAL		0x00000010
 | |
| #define CRYPTO_ALG_DEAD			0x00000020
 | |
| #define CRYPTO_ALG_DYING		0x00000040
 | |
| #define CRYPTO_ALG_ASYNC		0x00000080
 | |
| 
 | |
| /*
 | |
|  * Set this bit if and only if the algorithm requires another algorithm of
 | |
|  * the same type to handle corner cases.
 | |
|  */
 | |
| #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
 | |
| 
 | |
| /*
 | |
|  * This bit is set for symmetric key ciphers that have already been wrapped
 | |
|  * with a generic IV generator to prevent them from being wrapped again.
 | |
|  */
 | |
| #define CRYPTO_ALG_GENIV		0x00000200
 | |
| 
 | |
| /*
 | |
|  * Set if the algorithm has passed automated run-time testing.  Note that
 | |
|  * if there is no run-time testing for a given algorithm it is considered
 | |
|  * to have passed.
 | |
|  */
 | |
| 
 | |
| #define CRYPTO_ALG_TESTED		0x00000400
 | |
| 
 | |
| /*
 | |
|  * Set if the algorithm is an instance that is built from templates.
 | |
|  */
 | |
| #define CRYPTO_ALG_INSTANCE		0x00000800
 | |
| 
 | |
| /* Set this bit if the algorithm provided is hardware accelerated but
 | |
|  * not available to userspace via instruction set or so.
 | |
|  */
 | |
| #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
 | |
| 
 | |
| /*
 | |
|  * Mark a cipher as a service implementation only usable by another
 | |
|  * cipher and never by a normal user of the kernel crypto API
 | |
|  */
 | |
| #define CRYPTO_ALG_INTERNAL		0x00002000
 | |
| 
 | |
| /*
 | |
|  * Set if the algorithm has a ->setkey() method but can be used without
 | |
|  * calling it first, i.e. there is a default key.
 | |
|  */
 | |
| #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
 | |
| 
 | |
| /*
 | |
|  * Don't trigger module loading
 | |
|  */
 | |
| #define CRYPTO_NOLOAD			0x00008000
 | |
| 
 | |
| /*
 | |
|  * Transform masks and values (for crt_flags).
 | |
|  */
 | |
| #define CRYPTO_TFM_NEED_KEY		0x00000001
 | |
| 
 | |
| #define CRYPTO_TFM_REQ_MASK		0x000fff00
 | |
| #define CRYPTO_TFM_RES_MASK		0xfff00000
 | |
| 
 | |
| #define CRYPTO_TFM_REQ_WEAK_KEY		0x00000100
 | |
| #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
 | |
| #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
 | |
| #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
 | |
| #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
 | |
| #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
 | |
| #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
 | |
| #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
 | |
| 
 | |
| /*
 | |
|  * Miscellaneous stuff.
 | |
|  */
 | |
| #define CRYPTO_MAX_ALG_NAME		128
 | |
| 
 | |
| /*
 | |
|  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
 | |
|  * declaration) is used to ensure that the crypto_tfm context structure is
 | |
|  * aligned correctly for the given architecture so that there are no alignment
 | |
|  * faults for C data types.  In particular, this is required on platforms such
 | |
|  * as arm where pointers are 32-bit aligned but there are data types such as
 | |
|  * u64 which require 64-bit alignment.
 | |
|  */
 | |
| #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
 | |
| 
 | |
| #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
 | |
| 
 | |
| struct scatterlist;
 | |
| struct crypto_ablkcipher;
 | |
| struct crypto_async_request;
 | |
| struct crypto_blkcipher;
 | |
| struct crypto_tfm;
 | |
| struct crypto_type;
 | |
| struct skcipher_givcrypt_request;
 | |
| 
 | |
| typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
 | |
| 
 | |
| /**
 | |
|  * DOC: Block Cipher Context Data Structures
 | |
|  *
 | |
|  * These data structures define the operating context for each block cipher
 | |
|  * type.
 | |
|  */
 | |
| 
 | |
| struct crypto_async_request {
 | |
| 	struct list_head list;
 | |
| 	crypto_completion_t complete;
 | |
| 	void *data;
 | |
| 	struct crypto_tfm *tfm;
 | |
| 
 | |
| 	u32 flags;
 | |
| };
 | |
| 
 | |
| struct ablkcipher_request {
 | |
| 	struct crypto_async_request base;
 | |
| 
 | |
| 	unsigned int nbytes;
 | |
| 
 | |
| 	void *info;
 | |
| 
 | |
| 	struct scatterlist *src;
 | |
| 	struct scatterlist *dst;
 | |
| 
 | |
| 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 | |
| };
 | |
| 
 | |
| struct blkcipher_desc {
 | |
| 	struct crypto_blkcipher *tfm;
 | |
| 	void *info;
 | |
| 	u32 flags;
 | |
| };
 | |
| 
 | |
| struct cipher_desc {
 | |
| 	struct crypto_tfm *tfm;
 | |
| 	void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 | |
| 	unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
 | |
| 			     const u8 *src, unsigned int nbytes);
 | |
| 	void *info;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * DOC: Block Cipher Algorithm Definitions
 | |
|  *
 | |
|  * These data structures define modular crypto algorithm implementations,
 | |
|  * managed via crypto_register_alg() and crypto_unregister_alg().
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * struct ablkcipher_alg - asynchronous block cipher definition
 | |
|  * @min_keysize: Minimum key size supported by the transformation. This is the
 | |
|  *		 smallest key length supported by this transformation algorithm.
 | |
|  *		 This must be set to one of the pre-defined values as this is
 | |
|  *		 not hardware specific. Possible values for this field can be
 | |
|  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
 | |
|  * @max_keysize: Maximum key size supported by the transformation. This is the
 | |
|  *		 largest key length supported by this transformation algorithm.
 | |
|  *		 This must be set to one of the pre-defined values as this is
 | |
|  *		 not hardware specific. Possible values for this field can be
 | |
|  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
 | |
|  * @setkey: Set key for the transformation. This function is used to either
 | |
|  *	    program a supplied key into the hardware or store the key in the
 | |
|  *	    transformation context for programming it later. Note that this
 | |
|  *	    function does modify the transformation context. This function can
 | |
|  *	    be called multiple times during the existence of the transformation
 | |
|  *	    object, so one must make sure the key is properly reprogrammed into
 | |
|  *	    the hardware. This function is also responsible for checking the key
 | |
|  *	    length for validity. In case a software fallback was put in place in
 | |
|  *	    the @cra_init call, this function might need to use the fallback if
 | |
|  *	    the algorithm doesn't support all of the key sizes.
 | |
|  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
 | |
|  *	     the supplied scatterlist containing the blocks of data. The crypto
 | |
|  *	     API consumer is responsible for aligning the entries of the
 | |
|  *	     scatterlist properly and making sure the chunks are correctly
 | |
|  *	     sized. In case a software fallback was put in place in the
 | |
|  *	     @cra_init call, this function might need to use the fallback if
 | |
|  *	     the algorithm doesn't support all of the key sizes. In case the
 | |
|  *	     key was stored in transformation context, the key might need to be
 | |
|  *	     re-programmed into the hardware in this function. This function
 | |
|  *	     shall not modify the transformation context, as this function may
 | |
|  *	     be called in parallel with the same transformation object.
 | |
|  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
 | |
|  *	     and the conditions are exactly the same.
 | |
|  * @givencrypt: Update the IV for encryption. With this function, a cipher
 | |
|  *	        implementation may provide the function on how to update the IV
 | |
|  *	        for encryption.
 | |
|  * @givdecrypt: Update the IV for decryption. This is the reverse of
 | |
|  *	        @givencrypt .
 | |
|  * @geniv: The transformation implementation may use an "IV generator" provided
 | |
|  *	   by the kernel crypto API. Several use cases have a predefined
 | |
|  *	   approach how IVs are to be updated. For such use cases, the kernel
 | |
|  *	   crypto API provides ready-to-use implementations that can be
 | |
|  *	   referenced with this variable.
 | |
|  * @ivsize: IV size applicable for transformation. The consumer must provide an
 | |
|  *	    IV of exactly that size to perform the encrypt or decrypt operation.
 | |
|  *
 | |
|  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
 | |
|  * mandatory and must be filled.
 | |
|  */
 | |
| struct ablkcipher_alg {
 | |
| 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
 | |
| 	              unsigned int keylen);
 | |
| 	int (*encrypt)(struct ablkcipher_request *req);
 | |
| 	int (*decrypt)(struct ablkcipher_request *req);
 | |
| 	int (*givencrypt)(struct skcipher_givcrypt_request *req);
 | |
| 	int (*givdecrypt)(struct skcipher_givcrypt_request *req);
 | |
| 
 | |
| 	const char *geniv;
 | |
| 
 | |
| 	unsigned int min_keysize;
 | |
| 	unsigned int max_keysize;
 | |
| 	unsigned int ivsize;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct blkcipher_alg - synchronous block cipher definition
 | |
|  * @min_keysize: see struct ablkcipher_alg
 | |
|  * @max_keysize: see struct ablkcipher_alg
 | |
|  * @setkey: see struct ablkcipher_alg
 | |
|  * @encrypt: see struct ablkcipher_alg
 | |
|  * @decrypt: see struct ablkcipher_alg
 | |
|  * @geniv: see struct ablkcipher_alg
 | |
|  * @ivsize: see struct ablkcipher_alg
 | |
|  *
 | |
|  * All fields except @geniv and @ivsize are mandatory and must be filled.
 | |
|  */
 | |
| struct blkcipher_alg {
 | |
| 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
 | |
| 	              unsigned int keylen);
 | |
| 	int (*encrypt)(struct blkcipher_desc *desc,
 | |
| 		       struct scatterlist *dst, struct scatterlist *src,
 | |
| 		       unsigned int nbytes);
 | |
| 	int (*decrypt)(struct blkcipher_desc *desc,
 | |
| 		       struct scatterlist *dst, struct scatterlist *src,
 | |
| 		       unsigned int nbytes);
 | |
| 
 | |
| 	const char *geniv;
 | |
| 
 | |
| 	unsigned int min_keysize;
 | |
| 	unsigned int max_keysize;
 | |
| 	unsigned int ivsize;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct cipher_alg - single-block symmetric ciphers definition
 | |
|  * @cia_min_keysize: Minimum key size supported by the transformation. This is
 | |
|  *		     the smallest key length supported by this transformation
 | |
|  *		     algorithm. This must be set to one of the pre-defined
 | |
|  *		     values as this is not hardware specific. Possible values
 | |
|  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
 | |
|  *		     include/crypto/
 | |
|  * @cia_max_keysize: Maximum key size supported by the transformation. This is
 | |
|  *		    the largest key length supported by this transformation
 | |
|  *		    algorithm. This must be set to one of the pre-defined values
 | |
|  *		    as this is not hardware specific. Possible values for this
 | |
|  *		    field can be found via git grep "_MAX_KEY_SIZE"
 | |
|  *		    include/crypto/
 | |
|  * @cia_setkey: Set key for the transformation. This function is used to either
 | |
|  *	        program a supplied key into the hardware or store the key in the
 | |
|  *	        transformation context for programming it later. Note that this
 | |
|  *	        function does modify the transformation context. This function
 | |
|  *	        can be called multiple times during the existence of the
 | |
|  *	        transformation object, so one must make sure the key is properly
 | |
|  *	        reprogrammed into the hardware. This function is also
 | |
|  *	        responsible for checking the key length for validity.
 | |
|  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
 | |
|  *		 single block of data, which must be @cra_blocksize big. This
 | |
|  *		 always operates on a full @cra_blocksize and it is not possible
 | |
|  *		 to encrypt a block of smaller size. The supplied buffers must
 | |
|  *		 therefore also be at least of @cra_blocksize size. Both the
 | |
|  *		 input and output buffers are always aligned to @cra_alignmask.
 | |
|  *		 In case either of the input or output buffer supplied by user
 | |
|  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
 | |
|  *		 API will re-align the buffers. The re-alignment means that a
 | |
|  *		 new buffer will be allocated, the data will be copied into the
 | |
|  *		 new buffer, then the processing will happen on the new buffer,
 | |
|  *		 then the data will be copied back into the original buffer and
 | |
|  *		 finally the new buffer will be freed. In case a software
 | |
|  *		 fallback was put in place in the @cra_init call, this function
 | |
|  *		 might need to use the fallback if the algorithm doesn't support
 | |
|  *		 all of the key sizes. In case the key was stored in
 | |
|  *		 transformation context, the key might need to be re-programmed
 | |
|  *		 into the hardware in this function. This function shall not
 | |
|  *		 modify the transformation context, as this function may be
 | |
|  *		 called in parallel with the same transformation object.
 | |
|  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
 | |
|  *		 @cia_encrypt, and the conditions are exactly the same.
 | |
|  *
 | |
|  * All fields are mandatory and must be filled.
 | |
|  */
 | |
| struct cipher_alg {
 | |
| 	unsigned int cia_min_keysize;
 | |
| 	unsigned int cia_max_keysize;
 | |
| 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
 | |
| 	                  unsigned int keylen);
 | |
| 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 | |
| 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 | |
| };
 | |
| 
 | |
| struct compress_alg {
 | |
| 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
 | |
| 			    unsigned int slen, u8 *dst, unsigned int *dlen);
 | |
| 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
 | |
| 			      unsigned int slen, u8 *dst, unsigned int *dlen);
 | |
| };
 | |
| 
 | |
| 
 | |
| #define cra_ablkcipher	cra_u.ablkcipher
 | |
| #define cra_blkcipher	cra_u.blkcipher
 | |
| #define cra_cipher	cra_u.cipher
 | |
| #define cra_compress	cra_u.compress
 | |
| 
 | |
| /**
 | |
|  * struct crypto_alg - definition of a cryptograpic cipher algorithm
 | |
|  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
 | |
|  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
 | |
|  *	       used for fine-tuning the description of the transformation
 | |
|  *	       algorithm.
 | |
|  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
 | |
|  *		   of the smallest possible unit which can be transformed with
 | |
|  *		   this algorithm. The users must respect this value.
 | |
|  *		   In case of HASH transformation, it is possible for a smaller
 | |
|  *		   block than @cra_blocksize to be passed to the crypto API for
 | |
|  *		   transformation, in case of any other transformation type, an
 | |
|  * 		   error will be returned upon any attempt to transform smaller
 | |
|  *		   than @cra_blocksize chunks.
 | |
|  * @cra_ctxsize: Size of the operational context of the transformation. This
 | |
|  *		 value informs the kernel crypto API about the memory size
 | |
|  *		 needed to be allocated for the transformation context.
 | |
|  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
 | |
|  *		   buffer containing the input data for the algorithm must be
 | |
|  *		   aligned to this alignment mask. The data buffer for the
 | |
|  *		   output data must be aligned to this alignment mask. Note that
 | |
|  *		   the Crypto API will do the re-alignment in software, but
 | |
|  *		   only under special conditions and there is a performance hit.
 | |
|  *		   The re-alignment happens at these occasions for different
 | |
|  *		   @cra_u types: cipher -- For both input data and output data
 | |
|  *		   buffer; ahash -- For output hash destination buf; shash --
 | |
|  *		   For output hash destination buf.
 | |
|  *		   This is needed on hardware which is flawed by design and
 | |
|  *		   cannot pick data from arbitrary addresses.
 | |
|  * @cra_priority: Priority of this transformation implementation. In case
 | |
|  *		  multiple transformations with same @cra_name are available to
 | |
|  *		  the Crypto API, the kernel will use the one with highest
 | |
|  *		  @cra_priority.
 | |
|  * @cra_name: Generic name (usable by multiple implementations) of the
 | |
|  *	      transformation algorithm. This is the name of the transformation
 | |
|  *	      itself. This field is used by the kernel when looking up the
 | |
|  *	      providers of particular transformation.
 | |
|  * @cra_driver_name: Unique name of the transformation provider. This is the
 | |
|  *		     name of the provider of the transformation. This can be any
 | |
|  *		     arbitrary value, but in the usual case, this contains the
 | |
|  *		     name of the chip or provider and the name of the
 | |
|  *		     transformation algorithm.
 | |
|  * @cra_type: Type of the cryptographic transformation. This is a pointer to
 | |
|  *	      struct crypto_type, which implements callbacks common for all
 | |
|  *	      transformation types. There are multiple options:
 | |
|  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
 | |
|  *	      &crypto_ahash_type, &crypto_rng_type.
 | |
|  *	      This field might be empty. In that case, there are no common
 | |
|  *	      callbacks. This is the case for: cipher, compress, shash.
 | |
|  * @cra_u: Callbacks implementing the transformation. This is a union of
 | |
|  *	   multiple structures. Depending on the type of transformation selected
 | |
|  *	   by @cra_type and @cra_flags above, the associated structure must be
 | |
|  *	   filled with callbacks. This field might be empty. This is the case
 | |
|  *	   for ahash, shash.
 | |
|  * @cra_init: Initialize the cryptographic transformation object. This function
 | |
|  *	      is used to initialize the cryptographic transformation object.
 | |
|  *	      This function is called only once at the instantiation time, right
 | |
|  *	      after the transformation context was allocated. In case the
 | |
|  *	      cryptographic hardware has some special requirements which need to
 | |
|  *	      be handled by software, this function shall check for the precise
 | |
|  *	      requirement of the transformation and put any software fallbacks
 | |
|  *	      in place.
 | |
|  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
 | |
|  *	      counterpart to @cra_init, used to remove various changes set in
 | |
|  *	      @cra_init.
 | |
|  * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
 | |
|  *		      definition. See @struct @ablkcipher_alg.
 | |
|  * @cra_u.blkcipher: Union member which contains a synchronous block cipher
 | |
|  * 		     definition See @struct @blkcipher_alg.
 | |
|  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
 | |
|  *		  definition. See @struct @cipher_alg.
 | |
|  * @cra_u.compress: Union member which contains a (de)compression algorithm.
 | |
|  *		    See @struct @compress_alg.
 | |
|  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
 | |
|  * @cra_list: internally used
 | |
|  * @cra_users: internally used
 | |
|  * @cra_refcnt: internally used
 | |
|  * @cra_destroy: internally used
 | |
|  *
 | |
|  * The struct crypto_alg describes a generic Crypto API algorithm and is common
 | |
|  * for all of the transformations. Any variable not documented here shall not
 | |
|  * be used by a cipher implementation as it is internal to the Crypto API.
 | |
|  */
 | |
| struct crypto_alg {
 | |
| 	struct list_head cra_list;
 | |
| 	struct list_head cra_users;
 | |
| 
 | |
| 	u32 cra_flags;
 | |
| 	unsigned int cra_blocksize;
 | |
| 	unsigned int cra_ctxsize;
 | |
| 	unsigned int cra_alignmask;
 | |
| 
 | |
| 	int cra_priority;
 | |
| 	refcount_t cra_refcnt;
 | |
| 
 | |
| 	char cra_name[CRYPTO_MAX_ALG_NAME];
 | |
| 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
 | |
| 
 | |
| 	const struct crypto_type *cra_type;
 | |
| 
 | |
| 	union {
 | |
| 		struct ablkcipher_alg ablkcipher;
 | |
| 		struct blkcipher_alg blkcipher;
 | |
| 		struct cipher_alg cipher;
 | |
| 		struct compress_alg compress;
 | |
| 	} cra_u;
 | |
| 
 | |
| 	int (*cra_init)(struct crypto_tfm *tfm);
 | |
| 	void (*cra_exit)(struct crypto_tfm *tfm);
 | |
| 	void (*cra_destroy)(struct crypto_alg *alg);
 | |
| 	
 | |
| 	struct module *cra_module;
 | |
| } CRYPTO_MINALIGN_ATTR;
 | |
| 
 | |
| /*
 | |
|  * A helper struct for waiting for completion of async crypto ops
 | |
|  */
 | |
| struct crypto_wait {
 | |
| 	struct completion completion;
 | |
| 	int err;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Macro for declaring a crypto op async wait object on stack
 | |
|  */
 | |
| #define DECLARE_CRYPTO_WAIT(_wait) \
 | |
| 	struct crypto_wait _wait = { \
 | |
| 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
 | |
| 
 | |
| /*
 | |
|  * Async ops completion helper functioons
 | |
|  */
 | |
| void crypto_req_done(struct crypto_async_request *req, int err);
 | |
| 
 | |
| static inline int crypto_wait_req(int err, struct crypto_wait *wait)
 | |
| {
 | |
| 	switch (err) {
 | |
| 	case -EINPROGRESS:
 | |
| 	case -EBUSY:
 | |
| 		wait_for_completion(&wait->completion);
 | |
| 		reinit_completion(&wait->completion);
 | |
| 		err = wait->err;
 | |
| 		break;
 | |
| 	};
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline void crypto_init_wait(struct crypto_wait *wait)
 | |
| {
 | |
| 	init_completion(&wait->completion);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Algorithm registration interface.
 | |
|  */
 | |
| int crypto_register_alg(struct crypto_alg *alg);
 | |
| int crypto_unregister_alg(struct crypto_alg *alg);
 | |
| int crypto_register_algs(struct crypto_alg *algs, int count);
 | |
| int crypto_unregister_algs(struct crypto_alg *algs, int count);
 | |
| 
 | |
| /*
 | |
|  * Algorithm query interface.
 | |
|  */
 | |
| int crypto_has_alg(const char *name, u32 type, u32 mask);
 | |
| 
 | |
| /*
 | |
|  * Transforms: user-instantiated objects which encapsulate algorithms
 | |
|  * and core processing logic.  Managed via crypto_alloc_*() and
 | |
|  * crypto_free_*(), as well as the various helpers below.
 | |
|  */
 | |
| 
 | |
| struct ablkcipher_tfm {
 | |
| 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
 | |
| 	              unsigned int keylen);
 | |
| 	int (*encrypt)(struct ablkcipher_request *req);
 | |
| 	int (*decrypt)(struct ablkcipher_request *req);
 | |
| 
 | |
| 	struct crypto_ablkcipher *base;
 | |
| 
 | |
| 	unsigned int ivsize;
 | |
| 	unsigned int reqsize;
 | |
| };
 | |
| 
 | |
| struct blkcipher_tfm {
 | |
| 	void *iv;
 | |
| 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
 | |
| 		      unsigned int keylen);
 | |
| 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
 | |
| 		       struct scatterlist *src, unsigned int nbytes);
 | |
| 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
 | |
| 		       struct scatterlist *src, unsigned int nbytes);
 | |
| };
 | |
| 
 | |
| struct cipher_tfm {
 | |
| 	int (*cit_setkey)(struct crypto_tfm *tfm,
 | |
| 	                  const u8 *key, unsigned int keylen);
 | |
| 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 | |
| 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 | |
| };
 | |
| 
 | |
| struct compress_tfm {
 | |
| 	int (*cot_compress)(struct crypto_tfm *tfm,
 | |
| 	                    const u8 *src, unsigned int slen,
 | |
| 	                    u8 *dst, unsigned int *dlen);
 | |
| 	int (*cot_decompress)(struct crypto_tfm *tfm,
 | |
| 	                      const u8 *src, unsigned int slen,
 | |
| 	                      u8 *dst, unsigned int *dlen);
 | |
| };
 | |
| 
 | |
| #define crt_ablkcipher	crt_u.ablkcipher
 | |
| #define crt_blkcipher	crt_u.blkcipher
 | |
| #define crt_cipher	crt_u.cipher
 | |
| #define crt_compress	crt_u.compress
 | |
| 
 | |
| struct crypto_tfm {
 | |
| 
 | |
| 	u32 crt_flags;
 | |
| 	
 | |
| 	union {
 | |
| 		struct ablkcipher_tfm ablkcipher;
 | |
| 		struct blkcipher_tfm blkcipher;
 | |
| 		struct cipher_tfm cipher;
 | |
| 		struct compress_tfm compress;
 | |
| 	} crt_u;
 | |
| 
 | |
| 	void (*exit)(struct crypto_tfm *tfm);
 | |
| 	
 | |
| 	struct crypto_alg *__crt_alg;
 | |
| 
 | |
| 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
 | |
| };
 | |
| 
 | |
| struct crypto_ablkcipher {
 | |
| 	struct crypto_tfm base;
 | |
| };
 | |
| 
 | |
| struct crypto_blkcipher {
 | |
| 	struct crypto_tfm base;
 | |
| };
 | |
| 
 | |
| struct crypto_cipher {
 | |
| 	struct crypto_tfm base;
 | |
| };
 | |
| 
 | |
| struct crypto_comp {
 | |
| 	struct crypto_tfm base;
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	CRYPTOA_UNSPEC,
 | |
| 	CRYPTOA_ALG,
 | |
| 	CRYPTOA_TYPE,
 | |
| 	CRYPTOA_U32,
 | |
| 	__CRYPTOA_MAX,
 | |
| };
 | |
| 
 | |
| #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
 | |
| 
 | |
| /* Maximum number of (rtattr) parameters for each template. */
 | |
| #define CRYPTO_MAX_ATTRS 32
 | |
| 
 | |
| struct crypto_attr_alg {
 | |
| 	char name[CRYPTO_MAX_ALG_NAME];
 | |
| };
 | |
| 
 | |
| struct crypto_attr_type {
 | |
| 	u32 type;
 | |
| 	u32 mask;
 | |
| };
 | |
| 
 | |
| struct crypto_attr_u32 {
 | |
| 	u32 num;
 | |
| };
 | |
| 
 | |
| /* 
 | |
|  * Transform user interface.
 | |
|  */
 | |
|  
 | |
| struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
 | |
| void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
 | |
| 
 | |
| static inline void crypto_free_tfm(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return crypto_destroy_tfm(tfm, tfm);
 | |
| }
 | |
| 
 | |
| int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
 | |
| 
 | |
| /*
 | |
|  * Transform helpers which query the underlying algorithm.
 | |
|  */
 | |
| static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return tfm->__crt_alg->cra_name;
 | |
| }
 | |
| 
 | |
| static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return tfm->__crt_alg->cra_driver_name;
 | |
| }
 | |
| 
 | |
| static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return tfm->__crt_alg->cra_priority;
 | |
| }
 | |
| 
 | |
| static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
 | |
| }
 | |
| 
 | |
| static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return tfm->__crt_alg->cra_blocksize;
 | |
| }
 | |
| 
 | |
| static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return tfm->__crt_alg->cra_alignmask;
 | |
| }
 | |
| 
 | |
| static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return tfm->crt_flags;
 | |
| }
 | |
| 
 | |
| static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
 | |
| {
 | |
| 	tfm->crt_flags |= flags;
 | |
| }
 | |
| 
 | |
| static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
 | |
| {
 | |
| 	tfm->crt_flags &= ~flags;
 | |
| }
 | |
| 
 | |
| static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return tfm->__crt_ctx;
 | |
| }
 | |
| 
 | |
| static inline unsigned int crypto_tfm_ctx_alignment(void)
 | |
| {
 | |
| 	struct crypto_tfm *tfm;
 | |
| 	return __alignof__(tfm->__crt_ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * API wrappers.
 | |
|  */
 | |
| static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
 | |
| 	struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return (struct crypto_ablkcipher *)tfm;
 | |
| }
 | |
| 
 | |
| static inline u32 crypto_skcipher_type(u32 type)
 | |
| {
 | |
| 	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
 | |
| 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| static inline u32 crypto_skcipher_mask(u32 mask)
 | |
| {
 | |
| 	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
 | |
| 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * DOC: Asynchronous Block Cipher API
 | |
|  *
 | |
|  * Asynchronous block cipher API is used with the ciphers of type
 | |
|  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
 | |
|  *
 | |
|  * Asynchronous cipher operations imply that the function invocation for a
 | |
|  * cipher request returns immediately before the completion of the operation.
 | |
|  * The cipher request is scheduled as a separate kernel thread and therefore
 | |
|  * load-balanced on the different CPUs via the process scheduler. To allow
 | |
|  * the kernel crypto API to inform the caller about the completion of a cipher
 | |
|  * request, the caller must provide a callback function. That function is
 | |
|  * invoked with the cipher handle when the request completes.
 | |
|  *
 | |
|  * To support the asynchronous operation, additional information than just the
 | |
|  * cipher handle must be supplied to the kernel crypto API. That additional
 | |
|  * information is given by filling in the ablkcipher_request data structure.
 | |
|  *
 | |
|  * For the asynchronous block cipher API, the state is maintained with the tfm
 | |
|  * cipher handle. A single tfm can be used across multiple calls and in
 | |
|  * parallel. For asynchronous block cipher calls, context data supplied and
 | |
|  * only used by the caller can be referenced the request data structure in
 | |
|  * addition to the IV used for the cipher request. The maintenance of such
 | |
|  * state information would be important for a crypto driver implementer to
 | |
|  * have, because when calling the callback function upon completion of the
 | |
|  * cipher operation, that callback function may need some information about
 | |
|  * which operation just finished if it invoked multiple in parallel. This
 | |
|  * state information is unused by the kernel crypto API.
 | |
|  */
 | |
| 
 | |
| static inline struct crypto_tfm *crypto_ablkcipher_tfm(
 | |
| 	struct crypto_ablkcipher *tfm)
 | |
| {
 | |
| 	return &tfm->base;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_free_ablkcipher() - zeroize and free cipher handle
 | |
|  * @tfm: cipher handle to be freed
 | |
|  */
 | |
| static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
 | |
| {
 | |
| 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
 | |
|  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 | |
|  *	      ablkcipher
 | |
|  * @type: specifies the type of the cipher
 | |
|  * @mask: specifies the mask for the cipher
 | |
|  *
 | |
|  * Return: true when the ablkcipher is known to the kernel crypto API; false
 | |
|  *	   otherwise
 | |
|  */
 | |
| static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
 | |
| 					u32 mask)
 | |
| {
 | |
| 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
 | |
| 			      crypto_skcipher_mask(mask));
 | |
| }
 | |
| 
 | |
| static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
 | |
| 	struct crypto_ablkcipher *tfm)
 | |
| {
 | |
| 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_ablkcipher_ivsize() - obtain IV size
 | |
|  * @tfm: cipher handle
 | |
|  *
 | |
|  * The size of the IV for the ablkcipher referenced by the cipher handle is
 | |
|  * returned. This IV size may be zero if the cipher does not need an IV.
 | |
|  *
 | |
|  * Return: IV size in bytes
 | |
|  */
 | |
| static inline unsigned int crypto_ablkcipher_ivsize(
 | |
| 	struct crypto_ablkcipher *tfm)
 | |
| {
 | |
| 	return crypto_ablkcipher_crt(tfm)->ivsize;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_ablkcipher_blocksize() - obtain block size of cipher
 | |
|  * @tfm: cipher handle
 | |
|  *
 | |
|  * The block size for the ablkcipher referenced with the cipher handle is
 | |
|  * returned. The caller may use that information to allocate appropriate
 | |
|  * memory for the data returned by the encryption or decryption operation
 | |
|  *
 | |
|  * Return: block size of cipher
 | |
|  */
 | |
| static inline unsigned int crypto_ablkcipher_blocksize(
 | |
| 	struct crypto_ablkcipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline unsigned int crypto_ablkcipher_alignmask(
 | |
| 	struct crypto_ablkcipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
 | |
| 					       u32 flags)
 | |
| {
 | |
| 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
 | |
| }
 | |
| 
 | |
| static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
 | |
| 						 u32 flags)
 | |
| {
 | |
| 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_ablkcipher_setkey() - set key for cipher
 | |
|  * @tfm: cipher handle
 | |
|  * @key: buffer holding the key
 | |
|  * @keylen: length of the key in bytes
 | |
|  *
 | |
|  * The caller provided key is set for the ablkcipher referenced by the cipher
 | |
|  * handle.
 | |
|  *
 | |
|  * Note, the key length determines the cipher type. Many block ciphers implement
 | |
|  * different cipher modes depending on the key size, such as AES-128 vs AES-192
 | |
|  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 | |
|  * is performed.
 | |
|  *
 | |
|  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 | |
|  */
 | |
| static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
 | |
| 					   const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
 | |
| 
 | |
| 	return crt->setkey(crt->base, key, keylen);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
 | |
|  * @req: ablkcipher_request out of which the cipher handle is to be obtained
 | |
|  *
 | |
|  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
 | |
|  * data structure.
 | |
|  *
 | |
|  * Return: crypto_ablkcipher handle
 | |
|  */
 | |
| static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
 | |
| 	struct ablkcipher_request *req)
 | |
| {
 | |
| 	return __crypto_ablkcipher_cast(req->base.tfm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_ablkcipher_encrypt() - encrypt plaintext
 | |
|  * @req: reference to the ablkcipher_request handle that holds all information
 | |
|  *	 needed to perform the cipher operation
 | |
|  *
 | |
|  * Encrypt plaintext data using the ablkcipher_request handle. That data
 | |
|  * structure and how it is filled with data is discussed with the
 | |
|  * ablkcipher_request_* functions.
 | |
|  *
 | |
|  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 | |
|  */
 | |
| static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
 | |
| {
 | |
| 	struct ablkcipher_tfm *crt =
 | |
| 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
 | |
| 	return crt->encrypt(req);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_ablkcipher_decrypt() - decrypt ciphertext
 | |
|  * @req: reference to the ablkcipher_request handle that holds all information
 | |
|  *	 needed to perform the cipher operation
 | |
|  *
 | |
|  * Decrypt ciphertext data using the ablkcipher_request handle. That data
 | |
|  * structure and how it is filled with data is discussed with the
 | |
|  * ablkcipher_request_* functions.
 | |
|  *
 | |
|  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 | |
|  */
 | |
| static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
 | |
| {
 | |
| 	struct ablkcipher_tfm *crt =
 | |
| 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
 | |
| 	return crt->decrypt(req);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * DOC: Asynchronous Cipher Request Handle
 | |
|  *
 | |
|  * The ablkcipher_request data structure contains all pointers to data
 | |
|  * required for the asynchronous cipher operation. This includes the cipher
 | |
|  * handle (which can be used by multiple ablkcipher_request instances), pointer
 | |
|  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 | |
|  * as a handle to the ablkcipher_request_* API calls in a similar way as
 | |
|  * ablkcipher handle to the crypto_ablkcipher_* API calls.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
 | |
|  * @tfm: cipher handle
 | |
|  *
 | |
|  * Return: number of bytes
 | |
|  */
 | |
| static inline unsigned int crypto_ablkcipher_reqsize(
 | |
| 	struct crypto_ablkcipher *tfm)
 | |
| {
 | |
| 	return crypto_ablkcipher_crt(tfm)->reqsize;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ablkcipher_request_set_tfm() - update cipher handle reference in request
 | |
|  * @req: request handle to be modified
 | |
|  * @tfm: cipher handle that shall be added to the request handle
 | |
|  *
 | |
|  * Allow the caller to replace the existing ablkcipher handle in the request
 | |
|  * data structure with a different one.
 | |
|  */
 | |
| static inline void ablkcipher_request_set_tfm(
 | |
| 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
 | |
| {
 | |
| 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
 | |
| }
 | |
| 
 | |
| static inline struct ablkcipher_request *ablkcipher_request_cast(
 | |
| 	struct crypto_async_request *req)
 | |
| {
 | |
| 	return container_of(req, struct ablkcipher_request, base);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ablkcipher_request_alloc() - allocate request data structure
 | |
|  * @tfm: cipher handle to be registered with the request
 | |
|  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 | |
|  *
 | |
|  * Allocate the request data structure that must be used with the ablkcipher
 | |
|  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
 | |
|  * handle is registered in the request data structure.
 | |
|  *
 | |
|  * Return: allocated request handle in case of success, or NULL if out of memory
 | |
|  */
 | |
| static inline struct ablkcipher_request *ablkcipher_request_alloc(
 | |
| 	struct crypto_ablkcipher *tfm, gfp_t gfp)
 | |
| {
 | |
| 	struct ablkcipher_request *req;
 | |
| 
 | |
| 	req = kmalloc(sizeof(struct ablkcipher_request) +
 | |
| 		      crypto_ablkcipher_reqsize(tfm), gfp);
 | |
| 
 | |
| 	if (likely(req))
 | |
| 		ablkcipher_request_set_tfm(req, tfm);
 | |
| 
 | |
| 	return req;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ablkcipher_request_free() - zeroize and free request data structure
 | |
|  * @req: request data structure cipher handle to be freed
 | |
|  */
 | |
| static inline void ablkcipher_request_free(struct ablkcipher_request *req)
 | |
| {
 | |
| 	kzfree(req);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ablkcipher_request_set_callback() - set asynchronous callback function
 | |
|  * @req: request handle
 | |
|  * @flags: specify zero or an ORing of the flags
 | |
|  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 | |
|  *	   increase the wait queue beyond the initial maximum size;
 | |
|  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 | |
|  * @compl: callback function pointer to be registered with the request handle
 | |
|  * @data: The data pointer refers to memory that is not used by the kernel
 | |
|  *	  crypto API, but provided to the callback function for it to use. Here,
 | |
|  *	  the caller can provide a reference to memory the callback function can
 | |
|  *	  operate on. As the callback function is invoked asynchronously to the
 | |
|  *	  related functionality, it may need to access data structures of the
 | |
|  *	  related functionality which can be referenced using this pointer. The
 | |
|  *	  callback function can access the memory via the "data" field in the
 | |
|  *	  crypto_async_request data structure provided to the callback function.
 | |
|  *
 | |
|  * This function allows setting the callback function that is triggered once the
 | |
|  * cipher operation completes.
 | |
|  *
 | |
|  * The callback function is registered with the ablkcipher_request handle and
 | |
|  * must comply with the following template::
 | |
|  *
 | |
|  *	void callback_function(struct crypto_async_request *req, int error)
 | |
|  */
 | |
| static inline void ablkcipher_request_set_callback(
 | |
| 	struct ablkcipher_request *req,
 | |
| 	u32 flags, crypto_completion_t compl, void *data)
 | |
| {
 | |
| 	req->base.complete = compl;
 | |
| 	req->base.data = data;
 | |
| 	req->base.flags = flags;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ablkcipher_request_set_crypt() - set data buffers
 | |
|  * @req: request handle
 | |
|  * @src: source scatter / gather list
 | |
|  * @dst: destination scatter / gather list
 | |
|  * @nbytes: number of bytes to process from @src
 | |
|  * @iv: IV for the cipher operation which must comply with the IV size defined
 | |
|  *      by crypto_ablkcipher_ivsize
 | |
|  *
 | |
|  * This function allows setting of the source data and destination data
 | |
|  * scatter / gather lists.
 | |
|  *
 | |
|  * For encryption, the source is treated as the plaintext and the
 | |
|  * destination is the ciphertext. For a decryption operation, the use is
 | |
|  * reversed - the source is the ciphertext and the destination is the plaintext.
 | |
|  */
 | |
| static inline void ablkcipher_request_set_crypt(
 | |
| 	struct ablkcipher_request *req,
 | |
| 	struct scatterlist *src, struct scatterlist *dst,
 | |
| 	unsigned int nbytes, void *iv)
 | |
| {
 | |
| 	req->src = src;
 | |
| 	req->dst = dst;
 | |
| 	req->nbytes = nbytes;
 | |
| 	req->info = iv;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * DOC: Synchronous Block Cipher API
 | |
|  *
 | |
|  * The synchronous block cipher API is used with the ciphers of type
 | |
|  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
 | |
|  *
 | |
|  * Synchronous calls, have a context in the tfm. But since a single tfm can be
 | |
|  * used in multiple calls and in parallel, this info should not be changeable
 | |
|  * (unless a lock is used). This applies, for example, to the symmetric key.
 | |
|  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
 | |
|  * structure for synchronous blkcipher api. So, its the only state info that can
 | |
|  * be kept for synchronous calls without using a big lock across a tfm.
 | |
|  *
 | |
|  * The block cipher API allows the use of a complete cipher, i.e. a cipher
 | |
|  * consisting of a template (a block chaining mode) and a single block cipher
 | |
|  * primitive (e.g. AES).
 | |
|  *
 | |
|  * The plaintext data buffer and the ciphertext data buffer are pointed to
 | |
|  * by using scatter/gather lists. The cipher operation is performed
 | |
|  * on all segments of the provided scatter/gather lists.
 | |
|  *
 | |
|  * The kernel crypto API supports a cipher operation "in-place" which means that
 | |
|  * the caller may provide the same scatter/gather list for the plaintext and
 | |
|  * cipher text. After the completion of the cipher operation, the plaintext
 | |
|  * data is replaced with the ciphertext data in case of an encryption and vice
 | |
|  * versa for a decryption. The caller must ensure that the scatter/gather lists
 | |
|  * for the output data point to sufficiently large buffers, i.e. multiples of
 | |
|  * the block size of the cipher.
 | |
|  */
 | |
| 
 | |
| static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
 | |
| 	struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return (struct crypto_blkcipher *)tfm;
 | |
| }
 | |
| 
 | |
| static inline struct crypto_blkcipher *crypto_blkcipher_cast(
 | |
| 	struct crypto_tfm *tfm)
 | |
| {
 | |
| 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
 | |
| 	return __crypto_blkcipher_cast(tfm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
 | |
|  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 | |
|  *	      blkcipher cipher
 | |
|  * @type: specifies the type of the cipher
 | |
|  * @mask: specifies the mask for the cipher
 | |
|  *
 | |
|  * Allocate a cipher handle for a block cipher. The returned struct
 | |
|  * crypto_blkcipher is the cipher handle that is required for any subsequent
 | |
|  * API invocation for that block cipher.
 | |
|  *
 | |
|  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 | |
|  *	   of an error, PTR_ERR() returns the error code.
 | |
|  */
 | |
| static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
 | |
| 	const char *alg_name, u32 type, u32 mask)
 | |
| {
 | |
| 	type &= ~CRYPTO_ALG_TYPE_MASK;
 | |
| 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
 | |
| 	mask |= CRYPTO_ALG_TYPE_MASK;
 | |
| 
 | |
| 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
 | |
| }
 | |
| 
 | |
| static inline struct crypto_tfm *crypto_blkcipher_tfm(
 | |
| 	struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	return &tfm->base;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_free_blkcipher() - zeroize and free the block cipher handle
 | |
|  * @tfm: cipher handle to be freed
 | |
|  */
 | |
| static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_has_blkcipher() - Search for the availability of a block cipher
 | |
|  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 | |
|  *	      block cipher
 | |
|  * @type: specifies the type of the cipher
 | |
|  * @mask: specifies the mask for the cipher
 | |
|  *
 | |
|  * Return: true when the block cipher is known to the kernel crypto API; false
 | |
|  *	   otherwise
 | |
|  */
 | |
| static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
 | |
| {
 | |
| 	type &= ~CRYPTO_ALG_TYPE_MASK;
 | |
| 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
 | |
| 	mask |= CRYPTO_ALG_TYPE_MASK;
 | |
| 
 | |
| 	return crypto_has_alg(alg_name, type, mask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
 | |
|  * @tfm: cipher handle
 | |
|  *
 | |
|  * Return: The character string holding the name of the cipher
 | |
|  */
 | |
| static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline struct blkcipher_tfm *crypto_blkcipher_crt(
 | |
| 	struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
 | |
| }
 | |
| 
 | |
| static inline struct blkcipher_alg *crypto_blkcipher_alg(
 | |
| 	struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_ivsize() - obtain IV size
 | |
|  * @tfm: cipher handle
 | |
|  *
 | |
|  * The size of the IV for the block cipher referenced by the cipher handle is
 | |
|  * returned. This IV size may be zero if the cipher does not need an IV.
 | |
|  *
 | |
|  * Return: IV size in bytes
 | |
|  */
 | |
| static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	return crypto_blkcipher_alg(tfm)->ivsize;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_blocksize() - obtain block size of cipher
 | |
|  * @tfm: cipher handle
 | |
|  *
 | |
|  * The block size for the block cipher referenced with the cipher handle is
 | |
|  * returned. The caller may use that information to allocate appropriate
 | |
|  * memory for the data returned by the encryption or decryption operation.
 | |
|  *
 | |
|  * Return: block size of cipher
 | |
|  */
 | |
| static inline unsigned int crypto_blkcipher_blocksize(
 | |
| 	struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline unsigned int crypto_blkcipher_alignmask(
 | |
| 	struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
 | |
| 					      u32 flags)
 | |
| {
 | |
| 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
 | |
| }
 | |
| 
 | |
| static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
 | |
| 						u32 flags)
 | |
| {
 | |
| 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_setkey() - set key for cipher
 | |
|  * @tfm: cipher handle
 | |
|  * @key: buffer holding the key
 | |
|  * @keylen: length of the key in bytes
 | |
|  *
 | |
|  * The caller provided key is set for the block cipher referenced by the cipher
 | |
|  * handle.
 | |
|  *
 | |
|  * Note, the key length determines the cipher type. Many block ciphers implement
 | |
|  * different cipher modes depending on the key size, such as AES-128 vs AES-192
 | |
|  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 | |
|  * is performed.
 | |
|  *
 | |
|  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 | |
|  */
 | |
| static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
 | |
| 					  const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
 | |
| 						 key, keylen);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_encrypt() - encrypt plaintext
 | |
|  * @desc: reference to the block cipher handle with meta data
 | |
|  * @dst: scatter/gather list that is filled by the cipher operation with the
 | |
|  *	ciphertext
 | |
|  * @src: scatter/gather list that holds the plaintext
 | |
|  * @nbytes: number of bytes of the plaintext to encrypt.
 | |
|  *
 | |
|  * Encrypt plaintext data using the IV set by the caller with a preceding
 | |
|  * call of crypto_blkcipher_set_iv.
 | |
|  *
 | |
|  * The blkcipher_desc data structure must be filled by the caller and can
 | |
|  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
 | |
|  * with the block cipher handle; desc.flags is filled with either
 | |
|  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
 | |
|  *
 | |
|  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 | |
|  */
 | |
| static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
 | |
| 					   struct scatterlist *dst,
 | |
| 					   struct scatterlist *src,
 | |
| 					   unsigned int nbytes)
 | |
| {
 | |
| 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
 | |
| 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
 | |
|  * @desc: reference to the block cipher handle with meta data
 | |
|  * @dst: scatter/gather list that is filled by the cipher operation with the
 | |
|  *	ciphertext
 | |
|  * @src: scatter/gather list that holds the plaintext
 | |
|  * @nbytes: number of bytes of the plaintext to encrypt.
 | |
|  *
 | |
|  * Encrypt plaintext data with the use of an IV that is solely used for this
 | |
|  * cipher operation. Any previously set IV is not used.
 | |
|  *
 | |
|  * The blkcipher_desc data structure must be filled by the caller and can
 | |
|  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
 | |
|  * with the block cipher handle; desc.info is filled with the IV to be used for
 | |
|  * the current operation; desc.flags is filled with either
 | |
|  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
 | |
|  *
 | |
|  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 | |
|  */
 | |
| static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
 | |
| 					      struct scatterlist *dst,
 | |
| 					      struct scatterlist *src,
 | |
| 					      unsigned int nbytes)
 | |
| {
 | |
| 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_decrypt() - decrypt ciphertext
 | |
|  * @desc: reference to the block cipher handle with meta data
 | |
|  * @dst: scatter/gather list that is filled by the cipher operation with the
 | |
|  *	plaintext
 | |
|  * @src: scatter/gather list that holds the ciphertext
 | |
|  * @nbytes: number of bytes of the ciphertext to decrypt.
 | |
|  *
 | |
|  * Decrypt ciphertext data using the IV set by the caller with a preceding
 | |
|  * call of crypto_blkcipher_set_iv.
 | |
|  *
 | |
|  * The blkcipher_desc data structure must be filled by the caller as documented
 | |
|  * for the crypto_blkcipher_encrypt call above.
 | |
|  *
 | |
|  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 | |
|  *
 | |
|  */
 | |
| static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
 | |
| 					   struct scatterlist *dst,
 | |
| 					   struct scatterlist *src,
 | |
| 					   unsigned int nbytes)
 | |
| {
 | |
| 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
 | |
| 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
 | |
|  * @desc: reference to the block cipher handle with meta data
 | |
|  * @dst: scatter/gather list that is filled by the cipher operation with the
 | |
|  *	plaintext
 | |
|  * @src: scatter/gather list that holds the ciphertext
 | |
|  * @nbytes: number of bytes of the ciphertext to decrypt.
 | |
|  *
 | |
|  * Decrypt ciphertext data with the use of an IV that is solely used for this
 | |
|  * cipher operation. Any previously set IV is not used.
 | |
|  *
 | |
|  * The blkcipher_desc data structure must be filled by the caller as documented
 | |
|  * for the crypto_blkcipher_encrypt_iv call above.
 | |
|  *
 | |
|  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 | |
|  */
 | |
| static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
 | |
| 					      struct scatterlist *dst,
 | |
| 					      struct scatterlist *src,
 | |
| 					      unsigned int nbytes)
 | |
| {
 | |
| 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_set_iv() - set IV for cipher
 | |
|  * @tfm: cipher handle
 | |
|  * @src: buffer holding the IV
 | |
|  * @len: length of the IV in bytes
 | |
|  *
 | |
|  * The caller provided IV is set for the block cipher referenced by the cipher
 | |
|  * handle.
 | |
|  */
 | |
| static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
 | |
| 					   const u8 *src, unsigned int len)
 | |
| {
 | |
| 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_blkcipher_get_iv() - obtain IV from cipher
 | |
|  * @tfm: cipher handle
 | |
|  * @dst: buffer filled with the IV
 | |
|  * @len: length of the buffer dst
 | |
|  *
 | |
|  * The caller can obtain the IV set for the block cipher referenced by the
 | |
|  * cipher handle and store it into the user-provided buffer. If the buffer
 | |
|  * has an insufficient space, the IV is truncated to fit the buffer.
 | |
|  */
 | |
| static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
 | |
| 					   u8 *dst, unsigned int len)
 | |
| {
 | |
| 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * DOC: Single Block Cipher API
 | |
|  *
 | |
|  * The single block cipher API is used with the ciphers of type
 | |
|  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
 | |
|  *
 | |
|  * Using the single block cipher API calls, operations with the basic cipher
 | |
|  * primitive can be implemented. These cipher primitives exclude any block
 | |
|  * chaining operations including IV handling.
 | |
|  *
 | |
|  * The purpose of this single block cipher API is to support the implementation
 | |
|  * of templates or other concepts that only need to perform the cipher operation
 | |
|  * on one block at a time. Templates invoke the underlying cipher primitive
 | |
|  * block-wise and process either the input or the output data of these cipher
 | |
|  * operations.
 | |
|  */
 | |
| 
 | |
| static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return (struct crypto_cipher *)tfm;
 | |
| }
 | |
| 
 | |
| static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
 | |
| 	return __crypto_cipher_cast(tfm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_alloc_cipher() - allocate single block cipher handle
 | |
|  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 | |
|  *	     single block cipher
 | |
|  * @type: specifies the type of the cipher
 | |
|  * @mask: specifies the mask for the cipher
 | |
|  *
 | |
|  * Allocate a cipher handle for a single block cipher. The returned struct
 | |
|  * crypto_cipher is the cipher handle that is required for any subsequent API
 | |
|  * invocation for that single block cipher.
 | |
|  *
 | |
|  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 | |
|  *	   of an error, PTR_ERR() returns the error code.
 | |
|  */
 | |
| static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
 | |
| 							u32 type, u32 mask)
 | |
| {
 | |
| 	type &= ~CRYPTO_ALG_TYPE_MASK;
 | |
| 	type |= CRYPTO_ALG_TYPE_CIPHER;
 | |
| 	mask |= CRYPTO_ALG_TYPE_MASK;
 | |
| 
 | |
| 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
 | |
| }
 | |
| 
 | |
| static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
 | |
| {
 | |
| 	return &tfm->base;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_free_cipher() - zeroize and free the single block cipher handle
 | |
|  * @tfm: cipher handle to be freed
 | |
|  */
 | |
| static inline void crypto_free_cipher(struct crypto_cipher *tfm)
 | |
| {
 | |
| 	crypto_free_tfm(crypto_cipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_has_cipher() - Search for the availability of a single block cipher
 | |
|  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 | |
|  *	     single block cipher
 | |
|  * @type: specifies the type of the cipher
 | |
|  * @mask: specifies the mask for the cipher
 | |
|  *
 | |
|  * Return: true when the single block cipher is known to the kernel crypto API;
 | |
|  *	   false otherwise
 | |
|  */
 | |
| static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
 | |
| {
 | |
| 	type &= ~CRYPTO_ALG_TYPE_MASK;
 | |
| 	type |= CRYPTO_ALG_TYPE_CIPHER;
 | |
| 	mask |= CRYPTO_ALG_TYPE_MASK;
 | |
| 
 | |
| 	return crypto_has_alg(alg_name, type, mask);
 | |
| }
 | |
| 
 | |
| static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
 | |
| {
 | |
| 	return &crypto_cipher_tfm(tfm)->crt_cipher;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_cipher_blocksize() - obtain block size for cipher
 | |
|  * @tfm: cipher handle
 | |
|  *
 | |
|  * The block size for the single block cipher referenced with the cipher handle
 | |
|  * tfm is returned. The caller may use that information to allocate appropriate
 | |
|  * memory for the data returned by the encryption or decryption operation
 | |
|  *
 | |
|  * Return: block size of cipher
 | |
|  */
 | |
| static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
 | |
| {
 | |
| 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
 | |
| 					   u32 flags)
 | |
| {
 | |
| 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
 | |
| }
 | |
| 
 | |
| static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
 | |
| 					     u32 flags)
 | |
| {
 | |
| 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_cipher_setkey() - set key for cipher
 | |
|  * @tfm: cipher handle
 | |
|  * @key: buffer holding the key
 | |
|  * @keylen: length of the key in bytes
 | |
|  *
 | |
|  * The caller provided key is set for the single block cipher referenced by the
 | |
|  * cipher handle.
 | |
|  *
 | |
|  * Note, the key length determines the cipher type. Many block ciphers implement
 | |
|  * different cipher modes depending on the key size, such as AES-128 vs AES-192
 | |
|  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 | |
|  * is performed.
 | |
|  *
 | |
|  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 | |
|  */
 | |
| static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
 | |
|                                        const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
 | |
| 						  key, keylen);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
 | |
|  * @tfm: cipher handle
 | |
|  * @dst: points to the buffer that will be filled with the ciphertext
 | |
|  * @src: buffer holding the plaintext to be encrypted
 | |
|  *
 | |
|  * Invoke the encryption operation of one block. The caller must ensure that
 | |
|  * the plaintext and ciphertext buffers are at least one block in size.
 | |
|  */
 | |
| static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
 | |
| 					     u8 *dst, const u8 *src)
 | |
| {
 | |
| 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
 | |
| 						dst, src);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
 | |
|  * @tfm: cipher handle
 | |
|  * @dst: points to the buffer that will be filled with the plaintext
 | |
|  * @src: buffer holding the ciphertext to be decrypted
 | |
|  *
 | |
|  * Invoke the decryption operation of one block. The caller must ensure that
 | |
|  * the plaintext and ciphertext buffers are at least one block in size.
 | |
|  */
 | |
| static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
 | |
| 					     u8 *dst, const u8 *src)
 | |
| {
 | |
| 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
 | |
| 						dst, src);
 | |
| }
 | |
| 
 | |
| static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return (struct crypto_comp *)tfm;
 | |
| }
 | |
| 
 | |
| static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
 | |
| 	       CRYPTO_ALG_TYPE_MASK);
 | |
| 	return __crypto_comp_cast(tfm);
 | |
| }
 | |
| 
 | |
| static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
 | |
| 						    u32 type, u32 mask)
 | |
| {
 | |
| 	type &= ~CRYPTO_ALG_TYPE_MASK;
 | |
| 	type |= CRYPTO_ALG_TYPE_COMPRESS;
 | |
| 	mask |= CRYPTO_ALG_TYPE_MASK;
 | |
| 
 | |
| 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
 | |
| }
 | |
| 
 | |
| static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
 | |
| {
 | |
| 	return &tfm->base;
 | |
| }
 | |
| 
 | |
| static inline void crypto_free_comp(struct crypto_comp *tfm)
 | |
| {
 | |
| 	crypto_free_tfm(crypto_comp_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
 | |
| {
 | |
| 	type &= ~CRYPTO_ALG_TYPE_MASK;
 | |
| 	type |= CRYPTO_ALG_TYPE_COMPRESS;
 | |
| 	mask |= CRYPTO_ALG_TYPE_MASK;
 | |
| 
 | |
| 	return crypto_has_alg(alg_name, type, mask);
 | |
| }
 | |
| 
 | |
| static inline const char *crypto_comp_name(struct crypto_comp *tfm)
 | |
| {
 | |
| 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
 | |
| }
 | |
| 
 | |
| static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
 | |
| {
 | |
| 	return &crypto_comp_tfm(tfm)->crt_compress;
 | |
| }
 | |
| 
 | |
| static inline int crypto_comp_compress(struct crypto_comp *tfm,
 | |
|                                        const u8 *src, unsigned int slen,
 | |
|                                        u8 *dst, unsigned int *dlen)
 | |
| {
 | |
| 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
 | |
| 						  src, slen, dst, dlen);
 | |
| }
 | |
| 
 | |
| static inline int crypto_comp_decompress(struct crypto_comp *tfm,
 | |
|                                          const u8 *src, unsigned int slen,
 | |
|                                          u8 *dst, unsigned int *dlen)
 | |
| {
 | |
| 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
 | |
| 						    src, slen, dst, dlen);
 | |
| }
 | |
| 
 | |
| #endif	/* _LINUX_CRYPTO_H */
 | |
| 
 | 
