997 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			997 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * 
 | |
|  * Common boot and setup code.
 | |
|  *
 | |
|  * Copyright (C) 2001 PPC64 Team, IBM Corp
 | |
|  *
 | |
|  *      This program is free software; you can redistribute it and/or
 | |
|  *      modify it under the terms of the GNU General Public License
 | |
|  *      as published by the Free Software Foundation; either version
 | |
|  *      2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/root_dev.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/serial.h>
 | |
| #include <linux/serial_8250.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/nmi.h>
 | |
| 
 | |
| #include <asm/debugfs.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/kdump.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/elf.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/paca.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/dt_cpu_ftrs.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/btext.h>
 | |
| #include <asm/nvram.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/rtas.h>
 | |
| #include <asm/iommu.h>
 | |
| #include <asm/serial.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/xmon.h>
 | |
| #include <asm/udbg.h>
 | |
| #include <asm/kexec.h>
 | |
| #include <asm/code-patching.h>
 | |
| #include <asm/livepatch.h>
 | |
| #include <asm/opal.h>
 | |
| #include <asm/cputhreads.h>
 | |
| #include <asm/hw_irq.h>
 | |
| #include <asm/feature-fixups.h>
 | |
| 
 | |
| #include "setup.h"
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #define DBG(fmt...) udbg_printf(fmt)
 | |
| #else
 | |
| #define DBG(fmt...)
 | |
| #endif
 | |
| 
 | |
| int spinning_secondaries;
 | |
| u64 ppc64_pft_size;
 | |
| 
 | |
| struct ppc64_caches ppc64_caches = {
 | |
| 	.l1d = {
 | |
| 		.block_size = 0x40,
 | |
| 		.log_block_size = 6,
 | |
| 	},
 | |
| 	.l1i = {
 | |
| 		.block_size = 0x40,
 | |
| 		.log_block_size = 6
 | |
| 	},
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(ppc64_caches);
 | |
| 
 | |
| #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
 | |
| void __init setup_tlb_core_data(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		int first = cpu_first_thread_sibling(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we boot via kdump on a non-primary thread,
 | |
| 		 * make sure we point at the thread that actually
 | |
| 		 * set up this TLB.
 | |
| 		 */
 | |
| 		if (cpu_first_thread_sibling(boot_cpuid) == first)
 | |
| 			first = boot_cpuid;
 | |
| 
 | |
| 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have threads, we need either tlbsrx.
 | |
| 		 * or e6500 tablewalk mode, or else TLB handlers
 | |
| 		 * will be racy and could produce duplicate entries.
 | |
| 		 * Should we panic instead?
 | |
| 		 */
 | |
| 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
 | |
| 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
 | |
| 			  book3e_htw_mode != PPC_HTW_E6500,
 | |
| 			  "%s: unsupported MMU configuration\n", __func__);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static char *smt_enabled_cmdline;
 | |
| 
 | |
| /* Look for ibm,smt-enabled OF option */
 | |
| void __init check_smt_enabled(void)
 | |
| {
 | |
| 	struct device_node *dn;
 | |
| 	const char *smt_option;
 | |
| 
 | |
| 	/* Default to enabling all threads */
 | |
| 	smt_enabled_at_boot = threads_per_core;
 | |
| 
 | |
| 	/* Allow the command line to overrule the OF option */
 | |
| 	if (smt_enabled_cmdline) {
 | |
| 		if (!strcmp(smt_enabled_cmdline, "on"))
 | |
| 			smt_enabled_at_boot = threads_per_core;
 | |
| 		else if (!strcmp(smt_enabled_cmdline, "off"))
 | |
| 			smt_enabled_at_boot = 0;
 | |
| 		else {
 | |
| 			int smt;
 | |
| 			int rc;
 | |
| 
 | |
| 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
 | |
| 			if (!rc)
 | |
| 				smt_enabled_at_boot =
 | |
| 					min(threads_per_core, smt);
 | |
| 		}
 | |
| 	} else {
 | |
| 		dn = of_find_node_by_path("/options");
 | |
| 		if (dn) {
 | |
| 			smt_option = of_get_property(dn, "ibm,smt-enabled",
 | |
| 						     NULL);
 | |
| 
 | |
| 			if (smt_option) {
 | |
| 				if (!strcmp(smt_option, "on"))
 | |
| 					smt_enabled_at_boot = threads_per_core;
 | |
| 				else if (!strcmp(smt_option, "off"))
 | |
| 					smt_enabled_at_boot = 0;
 | |
| 			}
 | |
| 
 | |
| 			of_node_put(dn);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Look for smt-enabled= cmdline option */
 | |
| static int __init early_smt_enabled(char *p)
 | |
| {
 | |
| 	smt_enabled_cmdline = p;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("smt-enabled", early_smt_enabled);
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /** Fix up paca fields required for the boot cpu */
 | |
| static void __init fixup_boot_paca(void)
 | |
| {
 | |
| 	/* The boot cpu is started */
 | |
| 	get_paca()->cpu_start = 1;
 | |
| 	/* Allow percpu accesses to work until we setup percpu data */
 | |
| 	get_paca()->data_offset = 0;
 | |
| 	/* Mark interrupts disabled in PACA */
 | |
| 	irq_soft_mask_set(IRQS_DISABLED);
 | |
| }
 | |
| 
 | |
| static void __init configure_exceptions(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Setup the trampolines from the lowmem exception vectors
 | |
| 	 * to the kdump kernel when not using a relocatable kernel.
 | |
| 	 */
 | |
| 	setup_kdump_trampoline();
 | |
| 
 | |
| 	/* Under a PAPR hypervisor, we need hypercalls */
 | |
| 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
 | |
| 		/* Enable AIL if possible */
 | |
| 		pseries_enable_reloc_on_exc();
 | |
| 
 | |
| 		/*
 | |
| 		 * Tell the hypervisor that we want our exceptions to
 | |
| 		 * be taken in little endian mode.
 | |
| 		 *
 | |
| 		 * We don't call this for big endian as our calling convention
 | |
| 		 * makes us always enter in BE, and the call may fail under
 | |
| 		 * some circumstances with kdump.
 | |
| 		 */
 | |
| #ifdef __LITTLE_ENDIAN__
 | |
| 		pseries_little_endian_exceptions();
 | |
| #endif
 | |
| 	} else {
 | |
| 		/* Set endian mode using OPAL */
 | |
| 		if (firmware_has_feature(FW_FEATURE_OPAL))
 | |
| 			opal_configure_cores();
 | |
| 
 | |
| 		/* AIL on native is done in cpu_ready_for_interrupts() */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cpu_ready_for_interrupts(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Enable AIL if supported, and we are in hypervisor mode. This
 | |
| 	 * is called once for every processor.
 | |
| 	 *
 | |
| 	 * If we are not in hypervisor mode the job is done once for
 | |
| 	 * the whole partition in configure_exceptions().
 | |
| 	 */
 | |
| 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
 | |
| 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
 | |
| 		unsigned long lpcr = mfspr(SPRN_LPCR);
 | |
| 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set HFSCR:TM based on CPU features:
 | |
| 	 * In the special case of TM no suspend (P9N DD2.1), Linux is
 | |
| 	 * told TM is off via the dt-ftrs but told to (partially) use
 | |
| 	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
 | |
| 	 * will be off from dt-ftrs but we need to turn it on for the
 | |
| 	 * no suspend case.
 | |
| 	 */
 | |
| 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
 | |
| 		if (cpu_has_feature(CPU_FTR_TM_COMP))
 | |
| 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
 | |
| 		else
 | |
| 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
 | |
| 	}
 | |
| 
 | |
| 	/* Set IR and DR in PACA MSR */
 | |
| 	get_paca()->kernel_msr = MSR_KERNEL;
 | |
| }
 | |
| 
 | |
| unsigned long spr_default_dscr = 0;
 | |
| 
 | |
| void __init record_spr_defaults(void)
 | |
| {
 | |
| 	if (early_cpu_has_feature(CPU_FTR_DSCR))
 | |
| 		spr_default_dscr = mfspr(SPRN_DSCR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Early initialization entry point. This is called by head.S
 | |
|  * with MMU translation disabled. We rely on the "feature" of
 | |
|  * the CPU that ignores the top 2 bits of the address in real
 | |
|  * mode so we can access kernel globals normally provided we
 | |
|  * only toy with things in the RMO region. From here, we do
 | |
|  * some early parsing of the device-tree to setup out MEMBLOCK
 | |
|  * data structures, and allocate & initialize the hash table
 | |
|  * and segment tables so we can start running with translation
 | |
|  * enabled.
 | |
|  *
 | |
|  * It is this function which will call the probe() callback of
 | |
|  * the various platform types and copy the matching one to the
 | |
|  * global ppc_md structure. Your platform can eventually do
 | |
|  * some very early initializations from the probe() routine, but
 | |
|  * this is not recommended, be very careful as, for example, the
 | |
|  * device-tree is not accessible via normal means at this point.
 | |
|  */
 | |
| 
 | |
| void __init early_setup(unsigned long dt_ptr)
 | |
| {
 | |
| 	static __initdata struct paca_struct boot_paca;
 | |
| 
 | |
| 	/* -------- printk is _NOT_ safe to use here ! ------- */
 | |
| 
 | |
| 	/* Try new device tree based feature discovery ... */
 | |
| 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
 | |
| 		/* Otherwise use the old style CPU table */
 | |
| 		identify_cpu(0, mfspr(SPRN_PVR));
 | |
| 
 | |
| 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
 | |
| 	initialise_paca(&boot_paca, 0);
 | |
| 	setup_paca(&boot_paca);
 | |
| 	fixup_boot_paca();
 | |
| 
 | |
| 	/* -------- printk is now safe to use ------- */
 | |
| 
 | |
| 	/* Enable early debugging if any specified (see udbg.h) */
 | |
| 	udbg_early_init();
 | |
| 
 | |
|  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do early initialization using the flattened device
 | |
| 	 * tree, such as retrieving the physical memory map or
 | |
| 	 * calculating/retrieving the hash table size.
 | |
| 	 */
 | |
| 	early_init_devtree(__va(dt_ptr));
 | |
| 
 | |
| 	/* Now we know the logical id of our boot cpu, setup the paca. */
 | |
| 	if (boot_cpuid != 0) {
 | |
| 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
 | |
| 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
 | |
| 	}
 | |
| 	setup_paca(paca_ptrs[boot_cpuid]);
 | |
| 	fixup_boot_paca();
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure exception handlers. This include setting up trampolines
 | |
| 	 * if needed, setting exception endian mode, etc...
 | |
| 	 */
 | |
| 	configure_exceptions();
 | |
| 
 | |
| 	/* Apply all the dynamic patching */
 | |
| 	apply_feature_fixups();
 | |
| 	setup_feature_keys();
 | |
| 
 | |
| 	/* Initialize the hash table or TLB handling */
 | |
| 	early_init_mmu();
 | |
| 
 | |
| 	/*
 | |
| 	 * After firmware and early platform setup code has set things up,
 | |
| 	 * we note the SPR values for configurable control/performance
 | |
| 	 * registers, and use those as initial defaults.
 | |
| 	 */
 | |
| 	record_spr_defaults();
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, we can let interrupts switch to virtual mode
 | |
| 	 * (the MMU has been setup), so adjust the MSR in the PACA to
 | |
| 	 * have IR and DR set and enable AIL if it exists
 | |
| 	 */
 | |
| 	cpu_ready_for_interrupts();
 | |
| 
 | |
| 	/*
 | |
| 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
 | |
| 	 * will only actually get enabled on the boot cpu much later once
 | |
| 	 * ftrace itself has been initialized.
 | |
| 	 */
 | |
| 	this_cpu_enable_ftrace();
 | |
| 
 | |
| 	DBG(" <- early_setup()\n");
 | |
| 
 | |
| #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
 | |
| 	/*
 | |
| 	 * This needs to be done *last* (after the above DBG() even)
 | |
| 	 *
 | |
| 	 * Right after we return from this function, we turn on the MMU
 | |
| 	 * which means the real-mode access trick that btext does will
 | |
| 	 * no longer work, it needs to switch to using a real MMU
 | |
| 	 * mapping. This call will ensure that it does
 | |
| 	 */
 | |
| 	btext_map();
 | |
| #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| void early_setup_secondary(void)
 | |
| {
 | |
| 	/* Mark interrupts disabled in PACA */
 | |
| 	irq_soft_mask_set(IRQS_DISABLED);
 | |
| 
 | |
| 	/* Initialize the hash table or TLB handling */
 | |
| 	early_init_mmu_secondary();
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, we can let interrupts switch to virtual mode
 | |
| 	 * (the MMU has been setup), so adjust the MSR in the PACA to
 | |
| 	 * have IR and DR set.
 | |
| 	 */
 | |
| 	cpu_ready_for_interrupts();
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| void panic_smp_self_stop(void)
 | |
| {
 | |
| 	hard_irq_disable();
 | |
| 	spin_begin();
 | |
| 	while (1)
 | |
| 		spin_cpu_relax();
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
 | |
| static bool use_spinloop(void)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
 | |
| 		/*
 | |
| 		 * See comments in head_64.S -- not all platforms insert
 | |
| 		 * secondaries at __secondary_hold and wait at the spin
 | |
| 		 * loop.
 | |
| 		 */
 | |
| 		if (firmware_has_feature(FW_FEATURE_OPAL))
 | |
| 			return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When book3e boots from kexec, the ePAPR spin table does
 | |
| 	 * not get used.
 | |
| 	 */
 | |
| 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
 | |
| }
 | |
| 
 | |
| void smp_release_cpus(void)
 | |
| {
 | |
| 	unsigned long *ptr;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!use_spinloop())
 | |
| 		return;
 | |
| 
 | |
| 	DBG(" -> smp_release_cpus()\n");
 | |
| 
 | |
| 	/* All secondary cpus are spinning on a common spinloop, release them
 | |
| 	 * all now so they can start to spin on their individual paca
 | |
| 	 * spinloops. For non SMP kernels, the secondary cpus never get out
 | |
| 	 * of the common spinloop.
 | |
| 	 */
 | |
| 
 | |
| 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
 | |
| 			- PHYSICAL_START);
 | |
| 	*ptr = ppc_function_entry(generic_secondary_smp_init);
 | |
| 
 | |
| 	/* And wait a bit for them to catch up */
 | |
| 	for (i = 0; i < 100000; i++) {
 | |
| 		mb();
 | |
| 		HMT_low();
 | |
| 		if (spinning_secondaries == 0)
 | |
| 			break;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
 | |
| 
 | |
| 	DBG(" <- smp_release_cpus()\n");
 | |
| }
 | |
| #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
 | |
| 
 | |
| /*
 | |
|  * Initialize some remaining members of the ppc64_caches and systemcfg
 | |
|  * structures
 | |
|  * (at least until we get rid of them completely). This is mostly some
 | |
|  * cache informations about the CPU that will be used by cache flush
 | |
|  * routines and/or provided to userland
 | |
|  */
 | |
| 
 | |
| static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
 | |
| 			    u32 bsize, u32 sets)
 | |
| {
 | |
| 	info->size = size;
 | |
| 	info->sets = sets;
 | |
| 	info->line_size = lsize;
 | |
| 	info->block_size = bsize;
 | |
| 	info->log_block_size = __ilog2(bsize);
 | |
| 	if (bsize)
 | |
| 		info->blocks_per_page = PAGE_SIZE / bsize;
 | |
| 	else
 | |
| 		info->blocks_per_page = 0;
 | |
| 
 | |
| 	if (sets == 0)
 | |
| 		info->assoc = 0xffff;
 | |
| 	else
 | |
| 		info->assoc = size / (sets * lsize);
 | |
| }
 | |
| 
 | |
| static bool __init parse_cache_info(struct device_node *np,
 | |
| 				    bool icache,
 | |
| 				    struct ppc_cache_info *info)
 | |
| {
 | |
| 	static const char *ipropnames[] __initdata = {
 | |
| 		"i-cache-size",
 | |
| 		"i-cache-sets",
 | |
| 		"i-cache-block-size",
 | |
| 		"i-cache-line-size",
 | |
| 	};
 | |
| 	static const char *dpropnames[] __initdata = {
 | |
| 		"d-cache-size",
 | |
| 		"d-cache-sets",
 | |
| 		"d-cache-block-size",
 | |
| 		"d-cache-line-size",
 | |
| 	};
 | |
| 	const char **propnames = icache ? ipropnames : dpropnames;
 | |
| 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
 | |
| 	u32 size, lsize, bsize, sets;
 | |
| 	bool success = true;
 | |
| 
 | |
| 	size = 0;
 | |
| 	sets = -1u;
 | |
| 	lsize = bsize = cur_cpu_spec->dcache_bsize;
 | |
| 	sizep = of_get_property(np, propnames[0], NULL);
 | |
| 	if (sizep != NULL)
 | |
| 		size = be32_to_cpu(*sizep);
 | |
| 	setsp = of_get_property(np, propnames[1], NULL);
 | |
| 	if (setsp != NULL)
 | |
| 		sets = be32_to_cpu(*setsp);
 | |
| 	bsizep = of_get_property(np, propnames[2], NULL);
 | |
| 	lsizep = of_get_property(np, propnames[3], NULL);
 | |
| 	if (bsizep == NULL)
 | |
| 		bsizep = lsizep;
 | |
| 	if (lsizep != NULL)
 | |
| 		lsize = be32_to_cpu(*lsizep);
 | |
| 	if (bsizep != NULL)
 | |
| 		bsize = be32_to_cpu(*bsizep);
 | |
| 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
 | |
| 		success = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * OF is weird .. it represents fully associative caches
 | |
| 	 * as "1 way" which doesn't make much sense and doesn't
 | |
| 	 * leave room for direct mapped. We'll assume that 0
 | |
| 	 * in OF means direct mapped for that reason.
 | |
| 	 */
 | |
| 	if (sets == 1)
 | |
| 		sets = 0;
 | |
| 	else if (sets == 0)
 | |
| 		sets = 1;
 | |
| 
 | |
| 	init_cache_info(info, size, lsize, bsize, sets);
 | |
| 
 | |
| 	return success;
 | |
| }
 | |
| 
 | |
| void __init initialize_cache_info(void)
 | |
| {
 | |
| 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
 | |
| 	u32 pvr;
 | |
| 
 | |
| 	DBG(" -> initialize_cache_info()\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * All shipping POWER8 machines have a firmware bug that
 | |
| 	 * puts incorrect information in the device-tree. This will
 | |
| 	 * be (hopefully) fixed for future chips but for now hard
 | |
| 	 * code the values if we are running on one of these
 | |
| 	 */
 | |
| 	pvr = PVR_VER(mfspr(SPRN_PVR));
 | |
| 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
 | |
| 	    pvr == PVR_POWER8NVL) {
 | |
| 						/* size    lsize   blk  sets */
 | |
| 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
 | |
| 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
 | |
| 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
 | |
| 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
 | |
| 	} else
 | |
| 		cpu = of_find_node_by_type(NULL, "cpu");
 | |
| 
 | |
| 	/*
 | |
| 	 * We're assuming *all* of the CPUs have the same
 | |
| 	 * d-cache and i-cache sizes... -Peter
 | |
| 	 */
 | |
| 	if (cpu) {
 | |
| 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
 | |
| 			DBG("Argh, can't find dcache properties !\n");
 | |
| 
 | |
| 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
 | |
| 			DBG("Argh, can't find icache properties !\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to find the L2 and L3 if any. Assume they are
 | |
| 		 * unified and use the D-side properties.
 | |
| 		 */
 | |
| 		l2 = of_find_next_cache_node(cpu);
 | |
| 		of_node_put(cpu);
 | |
| 		if (l2) {
 | |
| 			parse_cache_info(l2, false, &ppc64_caches.l2);
 | |
| 			l3 = of_find_next_cache_node(l2);
 | |
| 			of_node_put(l2);
 | |
| 		}
 | |
| 		if (l3) {
 | |
| 			parse_cache_info(l3, false, &ppc64_caches.l3);
 | |
| 			of_node_put(l3);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* For use by binfmt_elf */
 | |
| 	dcache_bsize = ppc64_caches.l1d.block_size;
 | |
| 	icache_bsize = ppc64_caches.l1i.block_size;
 | |
| 
 | |
| 	cur_cpu_spec->dcache_bsize = dcache_bsize;
 | |
| 	cur_cpu_spec->icache_bsize = icache_bsize;
 | |
| 
 | |
| 	DBG(" <- initialize_cache_info()\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This returns the limit below which memory accesses to the linear
 | |
|  * mapping are guarnateed not to cause an architectural exception (e.g.,
 | |
|  * TLB or SLB miss fault).
 | |
|  *
 | |
|  * This is used to allocate PACAs and various interrupt stacks that
 | |
|  * that are accessed early in interrupt handlers that must not cause
 | |
|  * re-entrant interrupts.
 | |
|  */
 | |
| __init u64 ppc64_bolted_size(void)
 | |
| {
 | |
| #ifdef CONFIG_PPC_BOOK3E
 | |
| 	/* Freescale BookE bolts the entire linear mapping */
 | |
| 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
 | |
| 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
 | |
| 		return linear_map_top;
 | |
| 	/* Other BookE, we assume the first GB is bolted */
 | |
| 	return 1ul << 30;
 | |
| #else
 | |
| 	/* BookS radix, does not take faults on linear mapping */
 | |
| 	if (early_radix_enabled())
 | |
| 		return ULONG_MAX;
 | |
| 
 | |
| 	/* BookS hash, the first segment is bolted */
 | |
| 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
 | |
| 		return 1UL << SID_SHIFT_1T;
 | |
| 	return 1UL << SID_SHIFT;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void *__init alloc_stack(unsigned long limit, int cpu)
 | |
| {
 | |
| 	unsigned long pa;
 | |
| 
 | |
| 	pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
 | |
| 					early_cpu_to_node(cpu), MEMBLOCK_NONE);
 | |
| 	if (!pa) {
 | |
| 		pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
 | |
| 		if (!pa)
 | |
| 			panic("cannot allocate stacks");
 | |
| 	}
 | |
| 
 | |
| 	return __va(pa);
 | |
| }
 | |
| 
 | |
| void __init irqstack_early_init(void)
 | |
| {
 | |
| 	u64 limit = ppc64_bolted_size();
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Interrupt stacks must be in the first segment since we
 | |
| 	 * cannot afford to take SLB misses on them. They are not
 | |
| 	 * accessed in realmode.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		softirq_ctx[i] = alloc_stack(limit, i);
 | |
| 		hardirq_ctx[i] = alloc_stack(limit, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3E
 | |
| void __init exc_lvl_early_init(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		void *sp;
 | |
| 
 | |
| 		sp = alloc_stack(ULONG_MAX, i);
 | |
| 		critirq_ctx[i] = sp;
 | |
| 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
 | |
| 
 | |
| 		sp = alloc_stack(ULONG_MAX, i);
 | |
| 		dbgirq_ctx[i] = sp;
 | |
| 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
 | |
| 
 | |
| 		sp = alloc_stack(ULONG_MAX, i);
 | |
| 		mcheckirq_ctx[i] = sp;
 | |
| 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
 | |
| 		patch_exception(0x040, exc_debug_debug_book3e);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Emergency stacks are used for a range of things, from asynchronous
 | |
|  * NMIs (system reset, machine check) to synchronous, process context.
 | |
|  * We set preempt_count to zero, even though that isn't necessarily correct. To
 | |
|  * get the right value we'd need to copy it from the previous thread_info, but
 | |
|  * doing that might fault causing more problems.
 | |
|  * TODO: what to do with accounting?
 | |
|  */
 | |
| static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
 | |
| {
 | |
| 	ti->task = NULL;
 | |
| 	ti->cpu = cpu;
 | |
| 	ti->preempt_count = 0;
 | |
| 	ti->local_flags = 0;
 | |
| 	ti->flags = 0;
 | |
| 	klp_init_thread_info(ti);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stack space used when we detect a bad kernel stack pointer, and
 | |
|  * early in SMP boots before relocation is enabled. Exclusive emergency
 | |
|  * stack for machine checks.
 | |
|  */
 | |
| void __init emergency_stack_init(void)
 | |
| {
 | |
| 	u64 limit;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Emergency stacks must be under 256MB, we cannot afford to take
 | |
| 	 * SLB misses on them. The ABI also requires them to be 128-byte
 | |
| 	 * aligned.
 | |
| 	 *
 | |
| 	 * Since we use these as temporary stacks during secondary CPU
 | |
| 	 * bringup, machine check, system reset, and HMI, we need to get
 | |
| 	 * at them in real mode. This means they must also be within the RMO
 | |
| 	 * region.
 | |
| 	 *
 | |
| 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
 | |
| 	 * initialized in kernel/irq.c. These are initialized here in order
 | |
| 	 * to have emergency stacks available as early as possible.
 | |
| 	 */
 | |
| 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct thread_info *ti;
 | |
| 
 | |
| 		ti = alloc_stack(limit, i);
 | |
| 		memset(ti, 0, THREAD_SIZE);
 | |
| 		emerg_stack_init_thread_info(ti, i);
 | |
| 		paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| 		/* emergency stack for NMI exception handling. */
 | |
| 		ti = alloc_stack(limit, i);
 | |
| 		memset(ti, 0, THREAD_SIZE);
 | |
| 		emerg_stack_init_thread_info(ti, i);
 | |
| 		paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
 | |
| 
 | |
| 		/* emergency stack for machine check exception handling. */
 | |
| 		ti = alloc_stack(limit, i);
 | |
| 		memset(ti, 0, THREAD_SIZE);
 | |
| 		emerg_stack_init_thread_info(ti, i);
 | |
| 		paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| #define PCPU_DYN_SIZE		()
 | |
| 
 | |
| static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
 | |
| {
 | |
| 	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
 | |
| 				    __pa(MAX_DMA_ADDRESS));
 | |
| }
 | |
| 
 | |
| static void __init pcpu_fc_free(void *ptr, size_t size)
 | |
| {
 | |
| 	free_bootmem(__pa(ptr), size);
 | |
| }
 | |
| 
 | |
| static int pcpu_cpu_distance(unsigned int from, unsigned int to)
 | |
| {
 | |
| 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
 | |
| 		return LOCAL_DISTANCE;
 | |
| 	else
 | |
| 		return REMOTE_DISTANCE;
 | |
| }
 | |
| 
 | |
| unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
 | |
| EXPORT_SYMBOL(__per_cpu_offset);
 | |
| 
 | |
| void __init setup_per_cpu_areas(void)
 | |
| {
 | |
| 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
 | |
| 	size_t atom_size;
 | |
| 	unsigned long delta;
 | |
| 	unsigned int cpu;
 | |
| 	int rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
 | |
| 	 * to group units.  For larger mappings, use 1M atom which
 | |
| 	 * should be large enough to contain a number of units.
 | |
| 	 */
 | |
| 	if (mmu_linear_psize == MMU_PAGE_4K)
 | |
| 		atom_size = PAGE_SIZE;
 | |
| 	else
 | |
| 		atom_size = 1 << 20;
 | |
| 
 | |
| 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
 | |
| 				    pcpu_fc_alloc, pcpu_fc_free);
 | |
| 	if (rc < 0)
 | |
| 		panic("cannot initialize percpu area (err=%d)", rc);
 | |
| 
 | |
| 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
 | |
| 	for_each_possible_cpu(cpu) {
 | |
|                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
 | |
| 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 | |
| unsigned long memory_block_size_bytes(void)
 | |
| {
 | |
| 	if (ppc_md.memory_block_size)
 | |
| 		return ppc_md.memory_block_size();
 | |
| 
 | |
| 	return MIN_MEMORY_BLOCK_SIZE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
 | |
| struct ppc_pci_io ppc_pci_io;
 | |
| EXPORT_SYMBOL(ppc_pci_io);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
 | |
| u64 hw_nmi_get_sample_period(int watchdog_thresh)
 | |
| {
 | |
| 	return ppc_proc_freq * watchdog_thresh;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The perf based hardlockup detector breaks PMU event based branches, so
 | |
|  * disable it by default. Book3S has a soft-nmi hardlockup detector based
 | |
|  * on the decrementer interrupt, so it does not suffer from this problem.
 | |
|  *
 | |
|  * It is likely to get false positives in VM guests, so disable it there
 | |
|  * by default too.
 | |
|  */
 | |
| static int __init disable_hardlockup_detector(void)
 | |
| {
 | |
| #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
 | |
| 	hardlockup_detector_disable();
 | |
| #else
 | |
| 	if (firmware_has_feature(FW_FEATURE_LPAR))
 | |
| 		hardlockup_detector_disable();
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(disable_hardlockup_detector);
 | |
| 
 | |
| #ifdef CONFIG_PPC_BOOK3S_64
 | |
| static enum l1d_flush_type enabled_flush_types;
 | |
| static void *l1d_flush_fallback_area;
 | |
| static bool no_rfi_flush;
 | |
| bool rfi_flush;
 | |
| 
 | |
| static int __init handle_no_rfi_flush(char *p)
 | |
| {
 | |
| 	pr_info("rfi-flush: disabled on command line.");
 | |
| 	no_rfi_flush = true;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("no_rfi_flush", handle_no_rfi_flush);
 | |
| 
 | |
| /*
 | |
|  * The RFI flush is not KPTI, but because users will see doco that says to use
 | |
|  * nopti we hijack that option here to also disable the RFI flush.
 | |
|  */
 | |
| static int __init handle_no_pti(char *p)
 | |
| {
 | |
| 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
 | |
| 	handle_no_rfi_flush(NULL);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nopti", handle_no_pti);
 | |
| 
 | |
| static void do_nothing(void *unused)
 | |
| {
 | |
| 	/*
 | |
| 	 * We don't need to do the flush explicitly, just enter+exit kernel is
 | |
| 	 * sufficient, the RFI exit handlers will do the right thing.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| void rfi_flush_enable(bool enable)
 | |
| {
 | |
| 	if (enable) {
 | |
| 		do_rfi_flush_fixups(enabled_flush_types);
 | |
| 		on_each_cpu(do_nothing, NULL, 1);
 | |
| 	} else
 | |
| 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
 | |
| 
 | |
| 	rfi_flush = enable;
 | |
| }
 | |
| 
 | |
| static void __ref init_fallback_flush(void)
 | |
| {
 | |
| 	u64 l1d_size, limit;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/* Only allocate the fallback flush area once (at boot time). */
 | |
| 	if (l1d_flush_fallback_area)
 | |
| 		return;
 | |
| 
 | |
| 	l1d_size = ppc64_caches.l1d.size;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is no d-cache-size property in the device tree, l1d_size
 | |
| 	 * could be zero. That leads to the loop in the asm wrapping around to
 | |
| 	 * 2^64-1, and then walking off the end of the fallback area and
 | |
| 	 * eventually causing a page fault which is fatal. Just default to
 | |
| 	 * something vaguely sane.
 | |
| 	 */
 | |
| 	if (!l1d_size)
 | |
| 		l1d_size = (64 * 1024);
 | |
| 
 | |
| 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
 | |
| 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
 | |
| 	 * reliably avoid the prefetcher.
 | |
| 	 */
 | |
| 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
 | |
| 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct paca_struct *paca = paca_ptrs[cpu];
 | |
| 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
 | |
| 		paca->l1d_flush_size = l1d_size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void setup_rfi_flush(enum l1d_flush_type types, bool enable)
 | |
| {
 | |
| 	if (types & L1D_FLUSH_FALLBACK) {
 | |
| 		pr_info("rfi-flush: fallback displacement flush available\n");
 | |
| 		init_fallback_flush();
 | |
| 	}
 | |
| 
 | |
| 	if (types & L1D_FLUSH_ORI)
 | |
| 		pr_info("rfi-flush: ori type flush available\n");
 | |
| 
 | |
| 	if (types & L1D_FLUSH_MTTRIG)
 | |
| 		pr_info("rfi-flush: mttrig type flush available\n");
 | |
| 
 | |
| 	enabled_flush_types = types;
 | |
| 
 | |
| 	if (!no_rfi_flush && !cpu_mitigations_off())
 | |
| 		rfi_flush_enable(enable);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| static int rfi_flush_set(void *data, u64 val)
 | |
| {
 | |
| 	bool enable;
 | |
| 
 | |
| 	if (val == 1)
 | |
| 		enable = true;
 | |
| 	else if (val == 0)
 | |
| 		enable = false;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Only do anything if we're changing state */
 | |
| 	if (enable != rfi_flush)
 | |
| 		rfi_flush_enable(enable);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rfi_flush_get(void *data, u64 *val)
 | |
| {
 | |
| 	*val = rfi_flush ? 1 : 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
 | |
| 
 | |
| static __init int rfi_flush_debugfs_init(void)
 | |
| {
 | |
| 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
 | |
| 	return 0;
 | |
| }
 | |
| device_initcall(rfi_flush_debugfs_init);
 | |
| #endif
 | |
| #endif /* CONFIG_PPC_BOOK3S_64 */
 | 
