1555 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1555 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * This file is part of UBIFS.
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Nokia Corporation
 | |
|  *
 | |
|  * Authors: Adrian Hunter
 | |
|  *          Artem Bityutskiy (Битюцкий Артём)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file implements functions needed to recover from unclean un-mounts.
 | |
|  * When UBIFS is mounted, it checks a flag on the master node to determine if
 | |
|  * an un-mount was completed successfully. If not, the process of mounting
 | |
|  * incorporates additional checking and fixing of on-flash data structures.
 | |
|  * UBIFS always cleans away all remnants of an unclean un-mount, so that
 | |
|  * errors do not accumulate. However UBIFS defers recovery if it is mounted
 | |
|  * read-only, and the flash is not modified in that case.
 | |
|  *
 | |
|  * The general UBIFS approach to the recovery is that it recovers from
 | |
|  * corruptions which could be caused by power cuts, but it refuses to recover
 | |
|  * from corruption caused by other reasons. And UBIFS tries to distinguish
 | |
|  * between these 2 reasons of corruptions and silently recover in the former
 | |
|  * case and loudly complain in the latter case.
 | |
|  *
 | |
|  * UBIFS writes only to erased LEBs, so it writes only to the flash space
 | |
|  * containing only 0xFFs. UBIFS also always writes strictly from the beginning
 | |
|  * of the LEB to the end. And UBIFS assumes that the underlying flash media
 | |
|  * writes in @c->max_write_size bytes at a time.
 | |
|  *
 | |
|  * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
 | |
|  * I/O unit corresponding to offset X to contain corrupted data, all the
 | |
|  * following min. I/O units have to contain empty space (all 0xFFs). If this is
 | |
|  * not true, the corruption cannot be the result of a power cut, and UBIFS
 | |
|  * refuses to mount.
 | |
|  */
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/slab.h>
 | |
| #else
 | |
| #include <linux/err.h>
 | |
| #endif
 | |
| #include "ubifs.h"
 | |
| 
 | |
| /**
 | |
|  * is_empty - determine whether a buffer is empty (contains all 0xff).
 | |
|  * @buf: buffer to clean
 | |
|  * @len: length of buffer
 | |
|  *
 | |
|  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
 | |
|  * %0 is returned.
 | |
|  */
 | |
| static int is_empty(void *buf, int len)
 | |
| {
 | |
| 	uint8_t *p = buf;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		if (*p++ != 0xff)
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * first_non_ff - find offset of the first non-0xff byte.
 | |
|  * @buf: buffer to search in
 | |
|  * @len: length of buffer
 | |
|  *
 | |
|  * This function returns offset of the first non-0xff byte in @buf or %-1 if
 | |
|  * the buffer contains only 0xff bytes.
 | |
|  */
 | |
| static int first_non_ff(void *buf, int len)
 | |
| {
 | |
| 	uint8_t *p = buf;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		if (*p++ != 0xff)
 | |
| 			return i;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_master_node - get the last valid master node allowing for corruption.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number
 | |
|  * @pbuf: buffer containing the LEB read, is returned here
 | |
|  * @mst: master node, if found, is returned here
 | |
|  * @cor: corruption, if found, is returned here
 | |
|  *
 | |
|  * This function allocates a buffer, reads the LEB into it, and finds and
 | |
|  * returns the last valid master node allowing for one area of corruption.
 | |
|  * The corrupt area, if there is one, must be consistent with the assumption
 | |
|  * that it is the result of an unclean unmount while the master node was being
 | |
|  * written. Under those circumstances, it is valid to use the previously written
 | |
|  * master node.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
 | |
| 			   struct ubifs_mst_node **mst, void **cor)
 | |
| {
 | |
| 	const int sz = c->mst_node_alsz;
 | |
| 	int err, offs, len;
 | |
| 	void *sbuf, *buf;
 | |
| 
 | |
| 	sbuf = vmalloc(c->leb_size);
 | |
| 	if (!sbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
 | |
| 	if (err && err != -EBADMSG)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/* Find the first position that is definitely not a node */
 | |
| 	offs = 0;
 | |
| 	buf = sbuf;
 | |
| 	len = c->leb_size;
 | |
| 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
 | |
| 		struct ubifs_ch *ch = buf;
 | |
| 
 | |
| 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 | |
| 			break;
 | |
| 		offs += sz;
 | |
| 		buf  += sz;
 | |
| 		len  -= sz;
 | |
| 	}
 | |
| 	/* See if there was a valid master node before that */
 | |
| 	if (offs) {
 | |
| 		int ret;
 | |
| 
 | |
| 		offs -= sz;
 | |
| 		buf  -= sz;
 | |
| 		len  += sz;
 | |
| 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 | |
| 		if (ret != SCANNED_A_NODE && offs) {
 | |
| 			/* Could have been corruption so check one place back */
 | |
| 			offs -= sz;
 | |
| 			buf  -= sz;
 | |
| 			len  += sz;
 | |
| 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 | |
| 			if (ret != SCANNED_A_NODE)
 | |
| 				/*
 | |
| 				 * We accept only one area of corruption because
 | |
| 				 * we are assuming that it was caused while
 | |
| 				 * trying to write a master node.
 | |
| 				 */
 | |
| 				goto out_err;
 | |
| 		}
 | |
| 		if (ret == SCANNED_A_NODE) {
 | |
| 			struct ubifs_ch *ch = buf;
 | |
| 
 | |
| 			if (ch->node_type != UBIFS_MST_NODE)
 | |
| 				goto out_err;
 | |
| 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
 | |
| 			*mst = buf;
 | |
| 			offs += sz;
 | |
| 			buf  += sz;
 | |
| 			len  -= sz;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Check for corruption */
 | |
| 	if (offs < c->leb_size) {
 | |
| 		if (!is_empty(buf, min_t(int, len, sz))) {
 | |
| 			*cor = buf;
 | |
| 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
 | |
| 		}
 | |
| 		offs += sz;
 | |
| 		buf  += sz;
 | |
| 		len  -= sz;
 | |
| 	}
 | |
| 	/* Check remaining empty space */
 | |
| 	if (offs < c->leb_size)
 | |
| 		if (!is_empty(buf, len))
 | |
| 			goto out_err;
 | |
| 	*pbuf = sbuf;
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	err = -EINVAL;
 | |
| out_free:
 | |
| 	vfree(sbuf);
 | |
| 	*mst = NULL;
 | |
| 	*cor = NULL;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_rcvrd_mst_node - write recovered master node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @mst: master node
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int write_rcvrd_mst_node(struct ubifs_info *c,
 | |
| 				struct ubifs_mst_node *mst)
 | |
| {
 | |
| 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
 | |
| 	__le32 save_flags;
 | |
| 
 | |
| 	dbg_rcvry("recovery");
 | |
| 
 | |
| 	save_flags = mst->flags;
 | |
| 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
 | |
| 
 | |
| 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
 | |
| 	err = ubifs_leb_change(c, lnum, mst, sz);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = ubifs_leb_change(c, lnum + 1, mst, sz);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| out:
 | |
| 	mst->flags = save_flags;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_master_node - recover the master node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function recovers the master node from corruption that may occur due to
 | |
|  * an unclean unmount.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_recover_master_node(struct ubifs_info *c)
 | |
| {
 | |
| 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
 | |
| 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
 | |
| 	const int sz = c->mst_node_alsz;
 | |
| 	int err, offs1, offs2;
 | |
| 
 | |
| 	dbg_rcvry("recovery");
 | |
| 
 | |
| 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	if (mst1) {
 | |
| 		offs1 = (void *)mst1 - buf1;
 | |
| 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
 | |
| 		    (offs1 == 0 && !cor1)) {
 | |
| 			/*
 | |
| 			 * mst1 was written by recovery at offset 0 with no
 | |
| 			 * corruption.
 | |
| 			 */
 | |
| 			dbg_rcvry("recovery recovery");
 | |
| 			mst = mst1;
 | |
| 		} else if (mst2) {
 | |
| 			offs2 = (void *)mst2 - buf2;
 | |
| 			if (offs1 == offs2) {
 | |
| 				/* Same offset, so must be the same */
 | |
| 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
 | |
| 					   (void *)mst2 + UBIFS_CH_SZ,
 | |
| 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
 | |
| 					goto out_err;
 | |
| 				mst = mst1;
 | |
| 			} else if (offs2 + sz == offs1) {
 | |
| 				/* 1st LEB was written, 2nd was not */
 | |
| 				if (cor1)
 | |
| 					goto out_err;
 | |
| 				mst = mst1;
 | |
| 			} else if (offs1 == 0 &&
 | |
| 				   c->leb_size - offs2 - sz < sz) {
 | |
| 				/* 1st LEB was unmapped and written, 2nd not */
 | |
| 				if (cor1)
 | |
| 					goto out_err;
 | |
| 				mst = mst1;
 | |
| 			} else
 | |
| 				goto out_err;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * 2nd LEB was unmapped and about to be written, so
 | |
| 			 * there must be only one master node in the first LEB
 | |
| 			 * and no corruption.
 | |
| 			 */
 | |
| 			if (offs1 != 0 || cor1)
 | |
| 				goto out_err;
 | |
| 			mst = mst1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (!mst2)
 | |
| 			goto out_err;
 | |
| 		/*
 | |
| 		 * 1st LEB was unmapped and about to be written, so there must
 | |
| 		 * be no room left in 2nd LEB.
 | |
| 		 */
 | |
| 		offs2 = (void *)mst2 - buf2;
 | |
| 		if (offs2 + sz + sz <= c->leb_size)
 | |
| 			goto out_err;
 | |
| 		mst = mst2;
 | |
| 	}
 | |
| 
 | |
| 	ubifs_msg(c, "recovered master node from LEB %d",
 | |
| 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
 | |
| 
 | |
| 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
 | |
| 
 | |
| 	if (c->ro_mount) {
 | |
| 		/* Read-only mode. Keep a copy for switching to rw mode */
 | |
| 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
 | |
| 		if (!c->rcvrd_mst_node) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
 | |
| 
 | |
| 		/*
 | |
| 		 * We had to recover the master node, which means there was an
 | |
| 		 * unclean reboot. However, it is possible that the master node
 | |
| 		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
 | |
| 		 * E.g., consider the following chain of events:
 | |
| 		 *
 | |
| 		 * 1. UBIFS was cleanly unmounted, so the master node is clean
 | |
| 		 * 2. UBIFS is being mounted R/W and starts changing the master
 | |
| 		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
 | |
| 		 *    so this LEB ends up with some amount of garbage at the
 | |
| 		 *    end.
 | |
| 		 * 3. UBIFS is being mounted R/O. We reach this place and
 | |
| 		 *    recover the master node from the second LEB
 | |
| 		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
 | |
| 		 *    because we are being mounted R/O. We have to defer the
 | |
| 		 *    operation.
 | |
| 		 * 4. However, this master node (@c->mst_node) is marked as
 | |
| 		 *    clean (since the step 1). And if we just return, the
 | |
| 		 *    mount code will be confused and won't recover the master
 | |
| 		 *    node when it is re-mounter R/W later.
 | |
| 		 *
 | |
| 		 *    Thus, to force the recovery by marking the master node as
 | |
| 		 *    dirty.
 | |
| 		 */
 | |
| 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 | |
| #ifndef __UBOOT__
 | |
| 	} else {
 | |
| 		/* Write the recovered master node */
 | |
| 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
 | |
| 		err = write_rcvrd_mst_node(c, c->mst_node);
 | |
| 		if (err)
 | |
| 			goto out_free;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	vfree(buf2);
 | |
| 	vfree(buf1);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	err = -EINVAL;
 | |
| out_free:
 | |
| 	ubifs_err(c, "failed to recover master node");
 | |
| 	if (mst1) {
 | |
| 		ubifs_err(c, "dumping first master node");
 | |
| 		ubifs_dump_node(c, mst1);
 | |
| 	}
 | |
| 	if (mst2) {
 | |
| 		ubifs_err(c, "dumping second master node");
 | |
| 		ubifs_dump_node(c, mst2);
 | |
| 	}
 | |
| 	vfree(buf2);
 | |
| 	vfree(buf1);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_write_rcvrd_mst_node - write the recovered master node.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function writes the master node that was recovered during mounting in
 | |
|  * read-only mode and must now be written because we are remounting rw.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!c->rcvrd_mst_node)
 | |
| 		return 0;
 | |
| 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 | |
| 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
 | |
| 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	kfree(c->rcvrd_mst_node);
 | |
| 	c->rcvrd_mst_node = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_last_write - determine if an offset was in the last write to a LEB.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @buf: buffer to check
 | |
|  * @offs: offset to check
 | |
|  *
 | |
|  * This function returns %1 if @offs was in the last write to the LEB whose data
 | |
|  * is in @buf, otherwise %0 is returned. The determination is made by checking
 | |
|  * for subsequent empty space starting from the next @c->max_write_size
 | |
|  * boundary.
 | |
|  */
 | |
| static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
 | |
| {
 | |
| 	int empty_offs, check_len;
 | |
| 	uint8_t *p;
 | |
| 
 | |
| 	/*
 | |
| 	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
 | |
| 	 * the last wbuf written. After that should be empty space.
 | |
| 	 */
 | |
| 	empty_offs = ALIGN(offs + 1, c->max_write_size);
 | |
| 	check_len = c->leb_size - empty_offs;
 | |
| 	p = buf + empty_offs - offs;
 | |
| 	return is_empty(p, check_len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * clean_buf - clean the data from an LEB sitting in a buffer.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @buf: buffer to clean
 | |
|  * @lnum: LEB number to clean
 | |
|  * @offs: offset from which to clean
 | |
|  * @len: length of buffer
 | |
|  *
 | |
|  * This function pads up to the next min_io_size boundary (if there is one) and
 | |
|  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
 | |
|  * @c->min_io_size boundary.
 | |
|  */
 | |
| static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
 | |
| 		      int *offs, int *len)
 | |
| {
 | |
| 	int empty_offs, pad_len;
 | |
| 
 | |
| 	lnum = lnum;
 | |
| 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
 | |
| 
 | |
| 	ubifs_assert(!(*offs & 7));
 | |
| 	empty_offs = ALIGN(*offs, c->min_io_size);
 | |
| 	pad_len = empty_offs - *offs;
 | |
| 	ubifs_pad(c, *buf, pad_len);
 | |
| 	*offs += pad_len;
 | |
| 	*buf += pad_len;
 | |
| 	*len -= pad_len;
 | |
| 	memset(*buf, 0xff, c->leb_size - empty_offs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * no_more_nodes - determine if there are no more nodes in a buffer.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @buf: buffer to check
 | |
|  * @len: length of buffer
 | |
|  * @lnum: LEB number of the LEB from which @buf was read
 | |
|  * @offs: offset from which @buf was read
 | |
|  *
 | |
|  * This function ensures that the corrupted node at @offs is the last thing
 | |
|  * written to a LEB. This function returns %1 if more data is not found and
 | |
|  * %0 if more data is found.
 | |
|  */
 | |
| static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
 | |
| 			int lnum, int offs)
 | |
| {
 | |
| 	struct ubifs_ch *ch = buf;
 | |
| 	int skip, dlen = le32_to_cpu(ch->len);
 | |
| 
 | |
| 	/* Check for empty space after the corrupt node's common header */
 | |
| 	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
 | |
| 	if (is_empty(buf + skip, len - skip))
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * The area after the common header size is not empty, so the common
 | |
| 	 * header must be intact. Check it.
 | |
| 	 */
 | |
| 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
 | |
| 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Now we know the corrupt node's length we can skip over it */
 | |
| 	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
 | |
| 	/* After which there should be empty space */
 | |
| 	if (is_empty(buf + skip, len - skip))
 | |
| 		return 1;
 | |
| 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fix_unclean_leb - fix an unclean LEB.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @sleb: scanned LEB information
 | |
|  * @start: offset where scan started
 | |
|  */
 | |
| static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 | |
| 			   int start)
 | |
| {
 | |
| 	int lnum = sleb->lnum, endpt = start;
 | |
| 
 | |
| 	/* Get the end offset of the last node we are keeping */
 | |
| 	if (!list_empty(&sleb->nodes)) {
 | |
| 		struct ubifs_scan_node *snod;
 | |
| 
 | |
| 		snod = list_entry(sleb->nodes.prev,
 | |
| 				  struct ubifs_scan_node, list);
 | |
| 		endpt = snod->offs + snod->len;
 | |
| 	}
 | |
| 
 | |
| 	if (c->ro_mount && !c->remounting_rw) {
 | |
| 		/* Add to recovery list */
 | |
| 		struct ubifs_unclean_leb *ucleb;
 | |
| 
 | |
| 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
 | |
| 			  lnum, start, sleb->endpt);
 | |
| 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
 | |
| 		if (!ucleb)
 | |
| 			return -ENOMEM;
 | |
| 		ucleb->lnum = lnum;
 | |
| 		ucleb->endpt = endpt;
 | |
| 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
 | |
| #ifndef __UBOOT__
 | |
| 	} else {
 | |
| 		/* Write the fixed LEB back to flash */
 | |
| 		int err;
 | |
| 
 | |
| 		dbg_rcvry("fixing LEB %d start %d endpt %d",
 | |
| 			  lnum, start, sleb->endpt);
 | |
| 		if (endpt == 0) {
 | |
| 			err = ubifs_leb_unmap(c, lnum);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		} else {
 | |
| 			int len = ALIGN(endpt, c->min_io_size);
 | |
| 
 | |
| 			if (start) {
 | |
| 				err = ubifs_leb_read(c, lnum, sleb->buf, 0,
 | |
| 						     start, 1);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			}
 | |
| 			/* Pad to min_io_size */
 | |
| 			if (len > endpt) {
 | |
| 				int pad_len = len - ALIGN(endpt, 8);
 | |
| 
 | |
| 				if (pad_len > 0) {
 | |
| 					void *buf = sleb->buf + len - pad_len;
 | |
| 
 | |
| 					ubifs_pad(c, buf, pad_len);
 | |
| 				}
 | |
| 			}
 | |
| 			err = ubifs_leb_change(c, lnum, sleb->buf, len);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * drop_last_group - drop the last group of nodes.
 | |
|  * @sleb: scanned LEB information
 | |
|  * @offs: offset of dropped nodes is returned here
 | |
|  *
 | |
|  * This is a helper function for 'ubifs_recover_leb()' which drops the last
 | |
|  * group of nodes of the scanned LEB.
 | |
|  */
 | |
| static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
 | |
| {
 | |
| 	while (!list_empty(&sleb->nodes)) {
 | |
| 		struct ubifs_scan_node *snod;
 | |
| 		struct ubifs_ch *ch;
 | |
| 
 | |
| 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 | |
| 				  list);
 | |
| 		ch = snod->node;
 | |
| 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
 | |
| 			break;
 | |
| 
 | |
| 		dbg_rcvry("dropping grouped node at %d:%d",
 | |
| 			  sleb->lnum, snod->offs);
 | |
| 		*offs = snod->offs;
 | |
| 		list_del(&snod->list);
 | |
| 		kfree(snod);
 | |
| 		sleb->nodes_cnt -= 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * drop_last_node - drop the last node.
 | |
|  * @sleb: scanned LEB information
 | |
|  * @offs: offset of dropped nodes is returned here
 | |
|  *
 | |
|  * This is a helper function for 'ubifs_recover_leb()' which drops the last
 | |
|  * node of the scanned LEB.
 | |
|  */
 | |
| static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
 | |
| {
 | |
| 	struct ubifs_scan_node *snod;
 | |
| 
 | |
| 	if (!list_empty(&sleb->nodes)) {
 | |
| 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
 | |
| 				  list);
 | |
| 
 | |
| 		dbg_rcvry("dropping last node at %d:%d",
 | |
| 			  sleb->lnum, snod->offs);
 | |
| 		*offs = snod->offs;
 | |
| 		list_del(&snod->list);
 | |
| 		kfree(snod);
 | |
| 		sleb->nodes_cnt -= 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_leb - scan and recover a LEB.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number
 | |
|  * @offs: offset
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
 | |
|  *         belong to any journal head)
 | |
|  *
 | |
|  * This function does a scan of a LEB, but caters for errors that might have
 | |
|  * been caused by the unclean unmount from which we are attempting to recover.
 | |
|  * Returns the scanned information on success and a negative error code on
 | |
|  * failure.
 | |
|  */
 | |
| struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
 | |
| 					 int offs, void *sbuf, int jhead)
 | |
| {
 | |
| 	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
 | |
| 	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
 | |
| 	struct ubifs_scan_leb *sleb;
 | |
| 	void *buf = sbuf + offs;
 | |
| 
 | |
| 	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
 | |
| 
 | |
| 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
 | |
| 	if (IS_ERR(sleb))
 | |
| 		return sleb;
 | |
| 
 | |
| 	ubifs_assert(len >= 8);
 | |
| 	while (len >= 8) {
 | |
| 		dbg_scan("look at LEB %d:%d (%d bytes left)",
 | |
| 			 lnum, offs, len);
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/*
 | |
| 		 * Scan quietly until there is an error from which we cannot
 | |
| 		 * recover
 | |
| 		 */
 | |
| 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 | |
| 		if (ret == SCANNED_A_NODE) {
 | |
| 			/* A valid node, and not a padding node */
 | |
| 			struct ubifs_ch *ch = buf;
 | |
| 			int node_len;
 | |
| 
 | |
| 			err = ubifs_add_snod(c, sleb, buf, offs);
 | |
| 			if (err)
 | |
| 				goto error;
 | |
| 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
 | |
| 			offs += node_len;
 | |
| 			buf += node_len;
 | |
| 			len -= node_len;
 | |
| 		} else if (ret > 0) {
 | |
| 			/* Padding bytes or a valid padding node */
 | |
| 			offs += ret;
 | |
| 			buf += ret;
 | |
| 			len -= ret;
 | |
| 		} else if (ret == SCANNED_EMPTY_SPACE ||
 | |
| 			   ret == SCANNED_GARBAGE     ||
 | |
| 			   ret == SCANNED_A_BAD_PAD_NODE ||
 | |
| 			   ret == SCANNED_A_CORRUPT_NODE) {
 | |
| 			dbg_rcvry("found corruption (%d) at %d:%d",
 | |
| 				  ret, lnum, offs);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			ubifs_err(c, "unexpected return value %d", ret);
 | |
| 			err = -EINVAL;
 | |
| 			goto error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
 | |
| 		if (!is_last_write(c, buf, offs))
 | |
| 			goto corrupted_rescan;
 | |
| 	} else if (ret == SCANNED_A_CORRUPT_NODE) {
 | |
| 		if (!no_more_nodes(c, buf, len, lnum, offs))
 | |
| 			goto corrupted_rescan;
 | |
| 	} else if (!is_empty(buf, len)) {
 | |
| 		if (!is_last_write(c, buf, offs)) {
 | |
| 			int corruption = first_non_ff(buf, len);
 | |
| 
 | |
| 			/*
 | |
| 			 * See header comment for this file for more
 | |
| 			 * explanations about the reasons we have this check.
 | |
| 			 */
 | |
| 			ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
 | |
| 				  lnum, offs, corruption);
 | |
| 			/* Make sure we dump interesting non-0xFF data */
 | |
| 			offs += corruption;
 | |
| 			buf += corruption;
 | |
| 			goto corrupted;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	min_io_unit = round_down(offs, c->min_io_size);
 | |
| 	if (grouped)
 | |
| 		/*
 | |
| 		 * If nodes are grouped, always drop the incomplete group at
 | |
| 		 * the end.
 | |
| 		 */
 | |
| 		drop_last_group(sleb, &offs);
 | |
| 
 | |
| 	if (jhead == GCHD) {
 | |
| 		/*
 | |
| 		 * If this LEB belongs to the GC head then while we are in the
 | |
| 		 * middle of the same min. I/O unit keep dropping nodes. So
 | |
| 		 * basically, what we want is to make sure that the last min.
 | |
| 		 * I/O unit where we saw the corruption is dropped completely
 | |
| 		 * with all the uncorrupted nodes which may possibly sit there.
 | |
| 		 *
 | |
| 		 * In other words, let's name the min. I/O unit where the
 | |
| 		 * corruption starts B, and the previous min. I/O unit A. The
 | |
| 		 * below code tries to deal with a situation when half of B
 | |
| 		 * contains valid nodes or the end of a valid node, and the
 | |
| 		 * second half of B contains corrupted data or garbage. This
 | |
| 		 * means that UBIFS had been writing to B just before the power
 | |
| 		 * cut happened. I do not know how realistic is this scenario
 | |
| 		 * that half of the min. I/O unit had been written successfully
 | |
| 		 * and the other half not, but this is possible in our 'failure
 | |
| 		 * mode emulation' infrastructure at least.
 | |
| 		 *
 | |
| 		 * So what is the problem, why we need to drop those nodes? Why
 | |
| 		 * can't we just clean-up the second half of B by putting a
 | |
| 		 * padding node there? We can, and this works fine with one
 | |
| 		 * exception which was reproduced with power cut emulation
 | |
| 		 * testing and happens extremely rarely.
 | |
| 		 *
 | |
| 		 * Imagine the file-system is full, we run GC which starts
 | |
| 		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
 | |
| 		 * the current GC head LEB). The @c->gc_lnum is -1, which means
 | |
| 		 * that GC will retain LEB X and will try to continue. Imagine
 | |
| 		 * that LEB X is currently the dirtiest LEB, and the amount of
 | |
| 		 * used space in LEB Y is exactly the same as amount of free
 | |
| 		 * space in LEB X.
 | |
| 		 *
 | |
| 		 * And a power cut happens when nodes are moved from LEB X to
 | |
| 		 * LEB Y. We are here trying to recover LEB Y which is the GC
 | |
| 		 * head LEB. We find the min. I/O unit B as described above.
 | |
| 		 * Then we clean-up LEB Y by padding min. I/O unit. And later
 | |
| 		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
 | |
| 		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
 | |
| 		 * does not match because the amount of valid nodes there does
 | |
| 		 * not fit the free space in LEB Y any more! And this is
 | |
| 		 * because of the padding node which we added to LEB Y. The
 | |
| 		 * user-visible effect of this which I once observed and
 | |
| 		 * analysed is that we cannot mount the file-system with
 | |
| 		 * -ENOSPC error.
 | |
| 		 *
 | |
| 		 * So obviously, to make sure that situation does not happen we
 | |
| 		 * should free min. I/O unit B in LEB Y completely and the last
 | |
| 		 * used min. I/O unit in LEB Y should be A. This is basically
 | |
| 		 * what the below code tries to do.
 | |
| 		 */
 | |
| 		while (offs > min_io_unit)
 | |
| 			drop_last_node(sleb, &offs);
 | |
| 	}
 | |
| 
 | |
| 	buf = sbuf + offs;
 | |
| 	len = c->leb_size - offs;
 | |
| 
 | |
| 	clean_buf(c, &buf, lnum, &offs, &len);
 | |
| 	ubifs_end_scan(c, sleb, lnum, offs);
 | |
| 
 | |
| 	err = fix_unclean_leb(c, sleb, start);
 | |
| 	if (err)
 | |
| 		goto error;
 | |
| 
 | |
| 	return sleb;
 | |
| 
 | |
| corrupted_rescan:
 | |
| 	/* Re-scan the corrupted data with verbose messages */
 | |
| 	ubifs_err(c, "corruption %d", ret);
 | |
| 	ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 | |
| corrupted:
 | |
| 	ubifs_scanned_corruption(c, lnum, offs, buf);
 | |
| 	err = -EUCLEAN;
 | |
| error:
 | |
| 	ubifs_err(c, "LEB %d scanning failed", lnum);
 | |
| 	ubifs_scan_destroy(sleb);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_cs_sqnum - get commit start sequence number.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number of commit start node
 | |
|  * @offs: offset of commit start node
 | |
|  * @cs_sqnum: commit start sequence number is returned here
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
 | |
| 			unsigned long long *cs_sqnum)
 | |
| {
 | |
| 	struct ubifs_cs_node *cs_node = NULL;
 | |
| 	int err, ret;
 | |
| 
 | |
| 	dbg_rcvry("at %d:%d", lnum, offs);
 | |
| 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
 | |
| 	if (!cs_node)
 | |
| 		return -ENOMEM;
 | |
| 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
 | |
| 		goto out_err;
 | |
| 	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
 | |
| 			     UBIFS_CS_NODE_SZ, 0);
 | |
| 	if (err && err != -EBADMSG)
 | |
| 		goto out_free;
 | |
| 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
 | |
| 	if (ret != SCANNED_A_NODE) {
 | |
| 		ubifs_err(c, "Not a valid node");
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
 | |
| 		ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
 | |
| 		ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
 | |
| 			  (unsigned long long)le64_to_cpu(cs_node->cmt_no),
 | |
| 			  c->cmt_no);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
 | |
| 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
 | |
| 	kfree(cs_node);
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	err = -EINVAL;
 | |
| out_free:
 | |
| 	ubifs_err(c, "failed to get CS sqnum");
 | |
| 	kfree(cs_node);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_log_leb - scan and recover a log LEB.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number
 | |
|  * @offs: offset
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function does a scan of a LEB, but caters for errors that might have
 | |
|  * been caused by unclean reboots from which we are attempting to recover
 | |
|  * (assume that only the last log LEB can be corrupted by an unclean reboot).
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
 | |
| 					     int offs, void *sbuf)
 | |
| {
 | |
| 	struct ubifs_scan_leb *sleb;
 | |
| 	int next_lnum;
 | |
| 
 | |
| 	dbg_rcvry("LEB %d", lnum);
 | |
| 	next_lnum = lnum + 1;
 | |
| 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
 | |
| 		next_lnum = UBIFS_LOG_LNUM;
 | |
| 	if (next_lnum != c->ltail_lnum) {
 | |
| 		/*
 | |
| 		 * We can only recover at the end of the log, so check that the
 | |
| 		 * next log LEB is empty or out of date.
 | |
| 		 */
 | |
| 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
 | |
| 		if (IS_ERR(sleb))
 | |
| 			return sleb;
 | |
| 		if (sleb->nodes_cnt) {
 | |
| 			struct ubifs_scan_node *snod;
 | |
| 			unsigned long long cs_sqnum = c->cs_sqnum;
 | |
| 
 | |
| 			snod = list_entry(sleb->nodes.next,
 | |
| 					  struct ubifs_scan_node, list);
 | |
| 			if (cs_sqnum == 0) {
 | |
| 				int err;
 | |
| 
 | |
| 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
 | |
| 				if (err) {
 | |
| 					ubifs_scan_destroy(sleb);
 | |
| 					return ERR_PTR(err);
 | |
| 				}
 | |
| 			}
 | |
| 			if (snod->sqnum > cs_sqnum) {
 | |
| 				ubifs_err(c, "unrecoverable log corruption in LEB %d",
 | |
| 					  lnum);
 | |
| 				ubifs_scan_destroy(sleb);
 | |
| 				return ERR_PTR(-EUCLEAN);
 | |
| 			}
 | |
| 		}
 | |
| 		ubifs_scan_destroy(sleb);
 | |
| 	}
 | |
| 	return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * recover_head - recover a head.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @lnum: LEB number of head to recover
 | |
|  * @offs: offset of head to recover
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function ensures that there is no data on the flash at a head location.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 | |
| {
 | |
| 	int len = c->max_write_size, err;
 | |
| 
 | |
| 	if (offs + len > c->leb_size)
 | |
| 		len = c->leb_size - offs;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Read at the head location and check it is empty flash */
 | |
| 	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
 | |
| 	if (err || !is_empty(sbuf, len)) {
 | |
| 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
 | |
| 		if (offs == 0)
 | |
| 			return ubifs_leb_unmap(c, lnum);
 | |
| 		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		return ubifs_leb_change(c, lnum, sbuf, offs);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_inl_heads - recover index and LPT heads.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function ensures that there is no data on the flash at the index and
 | |
|  * LPT head locations.
 | |
|  *
 | |
|  * This deals with the recovery of a half-completed journal commit. UBIFS is
 | |
|  * careful never to overwrite the last version of the index or the LPT. Because
 | |
|  * the index and LPT are wandering trees, data from a half-completed commit will
 | |
|  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
 | |
|  * assumed to be empty and will be unmapped anyway before use, or in the index
 | |
|  * and LPT heads.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	ubifs_assert(!c->ro_mount || c->remounting_rw);
 | |
| 
 | |
| 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
 | |
| 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
 | |
| 
 | |
| 	return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * clean_an_unclean_leb - read and write a LEB to remove corruption.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @ucleb: unclean LEB information
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function reads a LEB up to a point pre-determined by the mount recovery,
 | |
|  * checks the nodes, and writes the result back to the flash, thereby cleaning
 | |
|  * off any following corruption, or non-fatal ECC errors.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| static int clean_an_unclean_leb(struct ubifs_info *c,
 | |
| 				struct ubifs_unclean_leb *ucleb, void *sbuf)
 | |
| {
 | |
| 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
 | |
| 	void *buf = sbuf;
 | |
| 
 | |
| 	dbg_rcvry("LEB %d len %d", lnum, len);
 | |
| 
 | |
| 	if (len == 0) {
 | |
| 		/* Nothing to read, just unmap it */
 | |
| 		return ubifs_leb_unmap(c, lnum);
 | |
| 	}
 | |
| 
 | |
| 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
 | |
| 	if (err && err != -EBADMSG)
 | |
| 		return err;
 | |
| 
 | |
| 	while (len >= 8) {
 | |
| 		int ret;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/* Scan quietly until there is an error */
 | |
| 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
 | |
| 
 | |
| 		if (ret == SCANNED_A_NODE) {
 | |
| 			/* A valid node, and not a padding node */
 | |
| 			struct ubifs_ch *ch = buf;
 | |
| 			int node_len;
 | |
| 
 | |
| 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
 | |
| 			offs += node_len;
 | |
| 			buf += node_len;
 | |
| 			len -= node_len;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ret > 0) {
 | |
| 			/* Padding bytes or a valid padding node */
 | |
| 			offs += ret;
 | |
| 			buf += ret;
 | |
| 			len -= ret;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ret == SCANNED_EMPTY_SPACE) {
 | |
| 			ubifs_err(c, "unexpected empty space at %d:%d",
 | |
| 				  lnum, offs);
 | |
| 			return -EUCLEAN;
 | |
| 		}
 | |
| 
 | |
| 		if (quiet) {
 | |
| 			/* Redo the last scan but noisily */
 | |
| 			quiet = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ubifs_scanned_corruption(c, lnum, offs, buf);
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	/* Pad to min_io_size */
 | |
| 	len = ALIGN(ucleb->endpt, c->min_io_size);
 | |
| 	if (len > ucleb->endpt) {
 | |
| 		int pad_len = len - ALIGN(ucleb->endpt, 8);
 | |
| 
 | |
| 		if (pad_len > 0) {
 | |
| 			buf = c->sbuf + len - pad_len;
 | |
| 			ubifs_pad(c, buf, pad_len);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Write back the LEB atomically */
 | |
| 	err = ubifs_leb_change(c, lnum, sbuf, len);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_rcvry("cleaned LEB %d", lnum);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @sbuf: LEB-sized buffer to use
 | |
|  *
 | |
|  * This function cleans a LEB identified during recovery that needs to be
 | |
|  * written but was not because UBIFS was mounted read-only. This happens when
 | |
|  * remounting to read-write mode.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
 | |
| {
 | |
| 	dbg_rcvry("recovery");
 | |
| 	while (!list_empty(&c->unclean_leb_list)) {
 | |
| 		struct ubifs_unclean_leb *ucleb;
 | |
| 		int err;
 | |
| 
 | |
| 		ucleb = list_entry(c->unclean_leb_list.next,
 | |
| 				   struct ubifs_unclean_leb, list);
 | |
| 		err = clean_an_unclean_leb(c, ucleb, sbuf);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		list_del(&ucleb->list);
 | |
| 		kfree(ucleb);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| /**
 | |
|  * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
 | |
|  * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
 | |
|  * zero in case of success and a negative error code in case of failure.
 | |
|  */
 | |
| static int grab_empty_leb(struct ubifs_info *c)
 | |
| {
 | |
| 	int lnum, err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note, it is very important to first search for an empty LEB and then
 | |
| 	 * run the commit, not vice-versa. The reason is that there might be
 | |
| 	 * only one empty LEB at the moment, the one which has been the
 | |
| 	 * @c->gc_lnum just before the power cut happened. During the regular
 | |
| 	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
 | |
| 	 * one but GC can grab it. But at this moment this single empty LEB is
 | |
| 	 * not marked as taken, so if we run commit - what happens? Right, the
 | |
| 	 * commit will grab it and write the index there. Remember that the
 | |
| 	 * index always expands as long as there is free space, and it only
 | |
| 	 * starts consolidating when we run out of space.
 | |
| 	 *
 | |
| 	 * IOW, if we run commit now, we might not be able to find a free LEB
 | |
| 	 * after this.
 | |
| 	 */
 | |
| 	lnum = ubifs_find_free_leb_for_idx(c);
 | |
| 	if (lnum < 0) {
 | |
| 		ubifs_err(c, "could not find an empty LEB");
 | |
| 		ubifs_dump_lprops(c);
 | |
| 		ubifs_dump_budg(c, &c->bi);
 | |
| 		return lnum;
 | |
| 	}
 | |
| 
 | |
| 	/* Reset the index flag */
 | |
| 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
 | |
| 				  LPROPS_INDEX, 0);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	c->gc_lnum = lnum;
 | |
| 	dbg_rcvry("found empty LEB %d, run commit", lnum);
 | |
| 
 | |
| 	return ubifs_run_commit(c);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * Out-of-place garbage collection requires always one empty LEB with which to
 | |
|  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
 | |
|  * written to the master node on unmounting. In the case of an unclean unmount
 | |
|  * the value of gc_lnum recorded in the master node is out of date and cannot
 | |
|  * be used. Instead, recovery must allocate an empty LEB for this purpose.
 | |
|  * However, there may not be enough empty space, in which case it must be
 | |
|  * possible to GC the dirtiest LEB into the GC head LEB.
 | |
|  *
 | |
|  * This function also runs the commit which causes the TNC updates from
 | |
|  * size-recovery and orphans to be written to the flash. That is important to
 | |
|  * ensure correct replay order for subsequent mounts.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_rcvry_gc_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 | |
| 	struct ubifs_lprops lp;
 | |
| 	int err;
 | |
| 
 | |
| 	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
 | |
| 
 | |
| 	c->gc_lnum = -1;
 | |
| 	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
 | |
| 		return grab_empty_leb(c);
 | |
| 
 | |
| 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
 | |
| 	if (err) {
 | |
| 		if (err != -ENOSPC)
 | |
| 			return err;
 | |
| 
 | |
| 		dbg_rcvry("could not find a dirty LEB");
 | |
| 		return grab_empty_leb(c);
 | |
| 	}
 | |
| 
 | |
| 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
 | |
| 	ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
 | |
| 
 | |
| 	/*
 | |
| 	 * We run the commit before garbage collection otherwise subsequent
 | |
| 	 * mounts will see the GC and orphan deletion in a different order.
 | |
| 	 */
 | |
| 	dbg_rcvry("committing");
 | |
| 	err = ubifs_run_commit(c);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_rcvry("GC'ing LEB %d", lp.lnum);
 | |
| 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 | |
| 	err = ubifs_garbage_collect_leb(c, &lp);
 | |
| 	if (err >= 0) {
 | |
| 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
 | |
| 
 | |
| 		if (err2)
 | |
| 			err = err2;
 | |
| 	}
 | |
| 	mutex_unlock(&wbuf->io_mutex);
 | |
| 	if (err < 0) {
 | |
| 		ubifs_err(c, "GC failed, error %d", err);
 | |
| 		if (err == -EAGAIN)
 | |
| 			err = -EINVAL;
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	ubifs_assert(err == LEB_RETAINED);
 | |
| 	if (err != LEB_RETAINED)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = ubifs_leb_unmap(c, c->gc_lnum);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dbg_rcvry("allocated LEB %d for GC", lp.lnum);
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| int ubifs_rcvry_gc_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * struct size_entry - inode size information for recovery.
 | |
|  * @rb: link in the RB-tree of sizes
 | |
|  * @inum: inode number
 | |
|  * @i_size: size on inode
 | |
|  * @d_size: maximum size based on data nodes
 | |
|  * @exists: indicates whether the inode exists
 | |
|  * @inode: inode if pinned in memory awaiting rw mode to fix it
 | |
|  */
 | |
| struct size_entry {
 | |
| 	struct rb_node rb;
 | |
| 	ino_t inum;
 | |
| 	loff_t i_size;
 | |
| 	loff_t d_size;
 | |
| 	int exists;
 | |
| 	struct inode *inode;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * add_ino - add an entry to the size tree.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: inode number
 | |
|  * @i_size: size on inode
 | |
|  * @d_size: maximum size based on data nodes
 | |
|  * @exists: indicates whether the inode exists
 | |
|  */
 | |
| static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
 | |
| 		   loff_t d_size, int exists)
 | |
| {
 | |
| 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
 | |
| 	struct size_entry *e;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		e = rb_entry(parent, struct size_entry, rb);
 | |
| 		if (inum < e->inum)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else
 | |
| 			p = &(*p)->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
 | |
| 	if (!e)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	e->inum = inum;
 | |
| 	e->i_size = i_size;
 | |
| 	e->d_size = d_size;
 | |
| 	e->exists = exists;
 | |
| 
 | |
| 	rb_link_node(&e->rb, parent, p);
 | |
| 	rb_insert_color(&e->rb, &c->size_tree);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_ino - find an entry on the size tree.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: inode number
 | |
|  */
 | |
| static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
 | |
| {
 | |
| 	struct rb_node *p = c->size_tree.rb_node;
 | |
| 	struct size_entry *e;
 | |
| 
 | |
| 	while (p) {
 | |
| 		e = rb_entry(p, struct size_entry, rb);
 | |
| 		if (inum < e->inum)
 | |
| 			p = p->rb_left;
 | |
| 		else if (inum > e->inum)
 | |
| 			p = p->rb_right;
 | |
| 		else
 | |
| 			return e;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * remove_ino - remove an entry from the size tree.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @inum: inode number
 | |
|  */
 | |
| static void remove_ino(struct ubifs_info *c, ino_t inum)
 | |
| {
 | |
| 	struct size_entry *e = find_ino(c, inum);
 | |
| 
 | |
| 	if (!e)
 | |
| 		return;
 | |
| 	rb_erase(&e->rb, &c->size_tree);
 | |
| 	kfree(e);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_destroy_size_tree - free resources related to the size tree.
 | |
|  * @c: UBIFS file-system description object
 | |
|  */
 | |
| void ubifs_destroy_size_tree(struct ubifs_info *c)
 | |
| {
 | |
| 	struct size_entry *e, *n;
 | |
| 
 | |
| 	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
 | |
| 		if (e->inode)
 | |
| 			iput(e->inode);
 | |
| 		kfree(e);
 | |
| 	}
 | |
| 
 | |
| 	c->size_tree = RB_ROOT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @key: node key
 | |
|  * @deletion: node is for a deletion
 | |
|  * @new_size: inode size
 | |
|  *
 | |
|  * This function has two purposes:
 | |
|  *     1) to ensure there are no data nodes that fall outside the inode size
 | |
|  *     2) to ensure there are no data nodes for inodes that do not exist
 | |
|  * To accomplish those purposes, a rb-tree is constructed containing an entry
 | |
|  * for each inode number in the journal that has not been deleted, and recording
 | |
|  * the size from the inode node, the maximum size of any data node (also altered
 | |
|  * by truncations) and a flag indicating a inode number for which no inode node
 | |
|  * was present in the journal.
 | |
|  *
 | |
|  * Note that there is still the possibility that there are data nodes that have
 | |
|  * been committed that are beyond the inode size, however the only way to find
 | |
|  * them would be to scan the entire index. Alternatively, some provision could
 | |
|  * be made to record the size of inodes at the start of commit, which would seem
 | |
|  * very cumbersome for a scenario that is quite unlikely and the only negative
 | |
|  * consequence of which is wasted space.
 | |
|  *
 | |
|  * This functions returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
 | |
| 			     int deletion, loff_t new_size)
 | |
| {
 | |
| 	ino_t inum = key_inum(c, key);
 | |
| 	struct size_entry *e;
 | |
| 	int err;
 | |
| 
 | |
| 	switch (key_type(c, key)) {
 | |
| 	case UBIFS_INO_KEY:
 | |
| 		if (deletion)
 | |
| 			remove_ino(c, inum);
 | |
| 		else {
 | |
| 			e = find_ino(c, inum);
 | |
| 			if (e) {
 | |
| 				e->i_size = new_size;
 | |
| 				e->exists = 1;
 | |
| 			} else {
 | |
| 				err = add_ino(c, inum, new_size, 0, 1);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 	case UBIFS_DATA_KEY:
 | |
| 		e = find_ino(c, inum);
 | |
| 		if (e) {
 | |
| 			if (new_size > e->d_size)
 | |
| 				e->d_size = new_size;
 | |
| 		} else {
 | |
| 			err = add_ino(c, inum, 0, new_size, 0);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 		break;
 | |
| 	case UBIFS_TRUN_KEY:
 | |
| 		e = find_ino(c, inum);
 | |
| 		if (e)
 | |
| 			e->d_size = new_size;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| /**
 | |
|  * fix_size_in_place - fix inode size in place on flash.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @e: inode size information for recovery
 | |
|  */
 | |
| static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
 | |
| {
 | |
| 	struct ubifs_ino_node *ino = c->sbuf;
 | |
| 	unsigned char *p;
 | |
| 	union ubifs_key key;
 | |
| 	int err, lnum, offs, len;
 | |
| 	loff_t i_size;
 | |
| 	uint32_t crc;
 | |
| 
 | |
| 	/* Locate the inode node LEB number and offset */
 | |
| 	ino_key_init(c, &key, e->inum);
 | |
| 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * If the size recorded on the inode node is greater than the size that
 | |
| 	 * was calculated from nodes in the journal then don't change the inode.
 | |
| 	 */
 | |
| 	i_size = le64_to_cpu(ino->size);
 | |
| 	if (i_size >= e->d_size)
 | |
| 		return 0;
 | |
| 	/* Read the LEB */
 | |
| 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	/* Change the size field and recalculate the CRC */
 | |
| 	ino = c->sbuf + offs;
 | |
| 	ino->size = cpu_to_le64(e->d_size);
 | |
| 	len = le32_to_cpu(ino->ch.len);
 | |
| 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
 | |
| 	ino->ch.crc = cpu_to_le32(crc);
 | |
| 	/* Work out where data in the LEB ends and free space begins */
 | |
| 	p = c->sbuf;
 | |
| 	len = c->leb_size - 1;
 | |
| 	while (p[len] == 0xff)
 | |
| 		len -= 1;
 | |
| 	len = ALIGN(len + 1, c->min_io_size);
 | |
| 	/* Atomically write the fixed LEB back again */
 | |
| 	err = ubifs_leb_change(c, lnum, c->sbuf, len);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
 | |
| 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
 | |
| 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
 | |
| 	return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * ubifs_recover_size - recover inode size.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function attempts to fix inode size discrepancies identified by the
 | |
|  * 'ubifs_recover_size_accum()' function.
 | |
|  *
 | |
|  * This functions returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int ubifs_recover_size(struct ubifs_info *c)
 | |
| {
 | |
| 	struct rb_node *this = rb_first(&c->size_tree);
 | |
| 
 | |
| 	while (this) {
 | |
| 		struct size_entry *e;
 | |
| 		int err;
 | |
| 
 | |
| 		e = rb_entry(this, struct size_entry, rb);
 | |
| 		if (!e->exists) {
 | |
| 			union ubifs_key key;
 | |
| 
 | |
| 			ino_key_init(c, &key, e->inum);
 | |
| 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
 | |
| 			if (err && err != -ENOENT)
 | |
| 				return err;
 | |
| 			if (err == -ENOENT) {
 | |
| 				/* Remove data nodes that have no inode */
 | |
| 				dbg_rcvry("removing ino %lu",
 | |
| 					  (unsigned long)e->inum);
 | |
| 				err = ubifs_tnc_remove_ino(c, e->inum);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			} else {
 | |
| 				struct ubifs_ino_node *ino = c->sbuf;
 | |
| 
 | |
| 				e->exists = 1;
 | |
| 				e->i_size = le64_to_cpu(ino->size);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (e->exists && e->i_size < e->d_size) {
 | |
| 			if (c->ro_mount) {
 | |
| 				/* Fix the inode size and pin it in memory */
 | |
| 				struct inode *inode;
 | |
| 				struct ubifs_inode *ui;
 | |
| 
 | |
| 				ubifs_assert(!e->inode);
 | |
| 
 | |
| 				inode = ubifs_iget(c->vfs_sb, e->inum);
 | |
| 				if (IS_ERR(inode))
 | |
| 					return PTR_ERR(inode);
 | |
| 
 | |
| 				ui = ubifs_inode(inode);
 | |
| 				if (inode->i_size < e->d_size) {
 | |
| 					dbg_rcvry("ino %lu size %lld -> %lld",
 | |
| 						  (unsigned long)e->inum,
 | |
| 						  inode->i_size, e->d_size);
 | |
| 					inode->i_size = e->d_size;
 | |
| 					ui->ui_size = e->d_size;
 | |
| 					ui->synced_i_size = e->d_size;
 | |
| 					e->inode = inode;
 | |
| 					this = rb_next(this);
 | |
| 					continue;
 | |
| 				}
 | |
| 				iput(inode);
 | |
| #ifndef __UBOOT__
 | |
| 			} else {
 | |
| 				/* Fix the size in place */
 | |
| 				err = fix_size_in_place(c, e);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 				if (e->inode)
 | |
| 					iput(e->inode);
 | |
| #endif
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		this = rb_next(this);
 | |
| 		rb_erase(&e->rb, &c->size_tree);
 | |
| 		kfree(e);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | 
