nt9856x/code/hdal/samples/ai_op/ai_op.c
2023-03-28 15:07:53 +08:00

1574 lines
45 KiB
C
Executable File

/**
@brief Source file of vendor ai net sample code.
@file ai_op.c
@ingroup ai_net_sample
@note Nothing.
Copyright Novatek Microelectronics Corp. 2020. All rights reserved.
*/
/*-----------------------------------------------------------------------------*/
/* Including Files */
/*-----------------------------------------------------------------------------*/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include "hdal.h"
#include "hd_debug.h"
#include "vendor_ai.h"
#if defined(_BSP_NA51068_) || defined(_BSP_NA51090_)
#include "vendor_common.h"
#endif
// platform dependent
#if defined(__LINUX)
#include <pthread.h> //for pthread API
#define MAIN(argc, argv) int main(int argc, char** argv)
#define GETCHAR() getchar()
#else
#include <FreeRTOS_POSIX.h>
#include <FreeRTOS_POSIX/pthread.h> //for pthread API
#include <kwrap/util.h> //for sleep API
#define sleep(x) vos_util_delay_ms(1000*(x))
#define msleep(x) vos_util_delay_ms(x)
#define usleep(x) vos_util_delay_us(x)
#include <kwrap/examsys.h> //for MAIN(), GETCHAR() API
#define MAIN(argc, argv) EXAMFUNC_ENTRY(ai_op, argc, argv)
#define GETCHAR() NVT_EXAMSYS_GETCHAR()
#endif
#define DEBUG_MENU 1
#define CHKPNT printf("\033[37mCHK: %s, %s: %d\033[0m\r\n",__FILE__,__func__,__LINE__)
#define DBGH(x) printf("\033[0;35m%s=0x%08X\033[0m\r\n", #x, x)
#define DBGD(x) printf("\033[0;35m%s=%d\033[0m\r\n", #x, x)
///////////////////////////////////////////////////////////////////////////////
#define NET_PATH_ID UINT32
#define VENDOR_AI_CFG 0x000f0000 //vendor ai config
#define AI_RGB_BUFSIZE(w, h) (ALIGN_CEIL_4((w) * HD_VIDEO_PXLFMT_BPP(HD_VIDEO_PXLFMT_RGB888_PLANAR) / 8) * (h))
#define NET_VDO_SIZE_W 1920 //max for net
#define NET_VDO_SIZE_H 1080 //max for net
#define SV_LENGTH 10240
#define SV_FEA_LENGTH 256
#define SCALE_DIM_W 384
#define SCALE_DIM_H 282
#define ALLOC_WORKBUF_BY_USER 1
typedef enum _AI_OP {
AI_OP_FC = 0, //deprecated
AI_OP_PREPROC_YUV2RGB = 1,
AI_OP_PREPROC_YUV2RGB_SCALE = 2,
AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE = 3,
AI_OP_PREPROC_YUV2RGB_MEANSUB_DC = 4,
AI_OP_PREPROC_Y2Y_UV2UV = 5,
AI_OP_FC_LL_MODE = 6,
ENUM_DUMMY4WORD(AI_OP)
} AI_OP;
///////////////////////////////////////////////////////////////////////////////
/*-----------------------------------------------------------------------------*/
/* Type Definitions */
/*-----------------------------------------------------------------------------*/
typedef struct _MEM_PARM {
uintptr_t pa;
uintptr_t va;
UINT32 size;
uintptr_t blk;
} MEM_PARM;
/*-----------------------------------------------------------------------------*/
/* Global Functions */
/*-----------------------------------------------------------------------------*/
#if defined(_BSP_NA51068_) || defined(_BSP_NA51090_)
static HD_RESULT mem_get(MEM_PARM *mem_parm, UINT32 size, UINT32 id)
{
HD_RESULT ret = HD_OK;
if (size == 0) {
printf("mem_alloc fail, size = 0\r\n");
ret = HD_ERR_NG;
goto exit;
}
mem_parm->size = size;
mem_parm->blk = hd_common_mem_get_block(HD_COMMON_MEM_CNN_POOL, mem_parm->size, DDR_ID0);
if (HD_COMMON_MEM_VB_INVALID_BLK == mem_parm->blk) {
printf("hd_common_mem_get_block fail\r\n");
ret = HD_ERR_NG;
goto exit;
}
mem_parm->pa = hd_common_mem_blk2pa(mem_parm->blk);
if (mem_parm->pa == 0) {
printf("hd_common_mem_blk2pa fail, blk = %#lx\r\n", mem_parm->blk);
hd_common_mem_release_block(mem_parm->blk);
ret = HD_ERR_NG;
goto exit;
}
/* Must use "HD_COMMON_MEM_MEM_TYPE_CACHE", or it will cause the cpu layer to perform inefficiently */
mem_parm->va = (UINTPTR)hd_common_mem_mmap(HD_COMMON_MEM_MEM_TYPE_CACHE, mem_parm->pa, mem_parm->size);
if (mem_parm->va == 0) {
ret = HD_ERR_NG;
goto exit;
}
exit:
return ret;
}
static HD_RESULT mem_rel(MEM_PARM *mem_parm)
{
HD_RESULT ret = HD_OK;
if (mem_parm->va) {
ret = hd_common_mem_munmap((void *)mem_parm->va, mem_parm->size);
if (ret != HD_OK) {
printf("hd_common_mem_munmap fail\n");
}
}
ret = hd_common_mem_release_block(mem_parm->blk);
if (ret != HD_OK) {
printf("hd_common_mem_release_block fail\n");
}
return ret;
}
static HD_RESULT mem_alloc(MEM_PARM *mem_parm, CHAR* name, UINT32 size)
{
return mem_get(mem_parm, size, 0);
}
static HD_RESULT mem_free(MEM_PARM *mem_parm)
{
return mem_rel(mem_parm);
}
#else
static HD_RESULT mem_alloc(MEM_PARM *mem_parm, CHAR* name, UINT32 size)
{
HD_RESULT ret = HD_OK;
UINT32 pa = 0;
void *va = NULL;
//alloc private pool
ret = hd_common_mem_alloc(name, &pa, (void**)&va, size, DDR_ID0);
if (ret!= HD_OK) {
return ret;
}
mem_parm->pa = pa;
mem_parm->va = (UINT32)va;
mem_parm->size = size;
mem_parm->blk = (UINT32)-1;
return HD_OK;
}
static HD_RESULT mem_free(MEM_PARM *mem_parm)
{
HD_RESULT ret = HD_OK;
//free private pool
ret = hd_common_mem_free(mem_parm->pa, (void *)mem_parm->va);
if (ret!= HD_OK) {
return ret;
}
mem_parm->pa = 0;
mem_parm->va = 0;
mem_parm->size = 0;
mem_parm->blk = (UINT32)-1;
return HD_OK;
}
#endif
static INT32 mem_save(MEM_PARM *mem_parm, const CHAR *filename)
{
FILE *fd;
UINT32 size = 0;
fd = fopen(filename, "wb");
if (!fd) {
printf("ERR: cannot open %s for write!\r\n", filename);
return -1;
}
size = (INT32)fwrite((VOID *)mem_parm->va, 1, mem_parm->size, fd);
if (size != mem_parm->size) {
printf("ERR: write %s with size %ld < wanted %ld?\r\n", filename, size, mem_parm->size);
} else {
printf("write %s with %ld bytes.\r\n", filename, mem_parm->size);
}
if (fd) {
fclose(fd);
}
return size;
}
static VOID mem_fill(MEM_PARM *mem_parm, int mode)
{
UINT32 i = 0;
if (mode == 0) {
// clear
memset((VOID *)mem_parm->va, 1, mem_parm->size);
} else {
// struct timeval time_temp;
// gettimeofday(&time_temp, NULL);
// srand((time_temp.tv_sec - time_temp.tv_sec) * 1000000 + (time_temp.tv_usec - time_temp.tv_usec));
// for(i = 0; i < mem_parm->size; i++)
// {
// ((UINT8 *)mem_parm->va)[i] = rand() & 0xff;
// }
for(i = 0; i < mem_parm->size; i++) {
((INT8 *)mem_parm->va)[i] = (i & 0x07);
}
}
}
static INT32 mem_load(MEM_PARM *mem_parm, const CHAR *filename)
{
FILE *fd;
INT32 size = 0;
fd = fopen(filename, "rb");
if (!fd) {
printf("cannot read %s\r\n", filename);
size = -1;
goto exit;
}
fseek(fd, 0, SEEK_END);
size = ftell(fd);
fseek(fd, 0, SEEK_SET);
// check "ai_in_buf" enough or not
if (mem_parm->size < (UINT32)size) {
printf("ERROR: ai_in_buf(%u) is not enough, input file(%u)\r\n", mem_parm->size, (UINT32)size);
size = -1;
goto exit;
}
if (size < 0) {
printf("getting %s size failed\r\n", filename);
goto exit;
} else if ((INT32)fread((VOID *)mem_parm->va, 1, size, fd) != size) {
printf("read size < %ld\r\n", size);
size = -1;
goto exit;
}
mem_parm->size = size;
// we use cpu to read memory, which needs to deal cache flush.
if(hd_common_mem_flush_cache((VOID *)mem_parm->va, mem_parm->size) != HD_OK) {
printf("flush cache failed.\r\n");
}
exit:
if (fd) {
fclose(fd);
}
return size;
}
/*-----------------------------------------------------------------------------*/
/* Input Functions */
/*-----------------------------------------------------------------------------*/
typedef struct _NET_IN_CONFIG {
CHAR input_filename[256];
UINT32 w;
UINT32 h;
UINT32 c;
UINT32 loff;
UINT32 fmt;
} NET_IN_CONFIG;
typedef struct _NET_IN {
NET_IN_CONFIG in_cfg;
//MEM_PARM input_mem;
UINT32 in_id;
//VENDOR_AI_BUF src_img;
} NET_IN;
static NET_IN *g_in = NULL;
static HD_RESULT input_init(void)
{
HD_RESULT ret = HD_OK;
int i;
for (i = 0; i < 16; i++) {
NET_IN* p_net = g_in + i;
p_net->in_id = i;
}
return ret;
}
static HD_RESULT input_uninit(void)
{
HD_RESULT ret = HD_OK;
return ret;
}
static INT32 input_mem_config(NET_PATH_ID net_path, HD_COMMON_MEM_INIT_CONFIG* p_mem_cfg, void* p_cfg, INT32 i)
{
return i;
}
static HD_RESULT input_set_config(NET_PATH_ID net_path, NET_IN_CONFIG* p_in_cfg)
{
HD_RESULT ret = HD_OK;
NET_IN* p_in = g_in + net_path;
UINT32 proc_id = p_in->in_id;
memcpy((void*)&p_in->in_cfg, (void*)p_in_cfg, sizeof(NET_IN_CONFIG));
printf("proc_id(%u) set in_cfg: file(%s), buf=(%u,%u,%u,%u,%08x)\r\n",
proc_id,
p_in->in_cfg.input_filename,
p_in->in_cfg.w,
p_in->in_cfg.h,
p_in->in_cfg.c,
p_in->in_cfg.loff,
p_in->in_cfg.fmt);
return ret;
}
/*-----------------------------------------------------------------------------*/
/* Network Functions */
/*-----------------------------------------------------------------------------*/
static HD_RESULT network_init(void)
{
HD_RESULT ret = HD_OK;
ret = hd_videoproc_init();
if (ret != HD_OK) {
printf("hd_videoproc_init fail=%d\n", ret);
return ret;
}
ret = vendor_ai_init();
if (ret != HD_OK) {
printf("vendor_ai_init fail=%d\n", ret);
return ret;
}
return ret;
}
static HD_RESULT network_uninit(void)
{
HD_RESULT ret = HD_OK;
ret = hd_videoproc_uninit();
if (ret != HD_OK) {
printf("hd_videoproc_uninit fail=%d\n", ret);
}
ret = vendor_ai_uninit();
if (ret != HD_OK) {
printf("vendor_ai_uninit fail=%d\n", ret);
}
return ret;
}
///////////////////////////////////////////////////////////////////////////////
typedef struct _OP_PROC {
UINT32 proc_id;
int op_opt;
MEM_PARM input_mem;
MEM_PARM weight_mem;
MEM_PARM output_mem;
#if ALLOC_WORKBUF_BY_USER
MEM_PARM work_mem;
#endif
} OP_PROC;
static OP_PROC *g_op = NULL;
static HD_RESULT op_init(void)
{
HD_RESULT ret = HD_OK;
int i;
for (i = 0; i < 16; i++) {
OP_PROC* p_op = g_op + i;
p_op->proc_id = i;
}
return ret;
}
static HD_RESULT op_uninit(void)
{
HD_RESULT ret = HD_OK;
return ret;
}
static HD_RESULT operator_set_config(NET_PATH_ID net_path, int in_op_opt)
{
HD_RESULT ret = HD_OK;
OP_PROC* p_op = g_op + net_path;
p_op->op_opt = in_op_opt;
return ret;
}
static HD_RESULT operator_alloc_out_buf(NET_PATH_ID op_path, NET_PATH_ID in_path)
{
HD_RESULT ret = HD_OK;
OP_PROC* p_op = g_op + op_path;
NET_IN* p_in = g_in + in_path;
UINT32 proc_id = p_op->proc_id;
// alloc result buff
switch (p_op->op_opt) {
case AI_OP_FC: //VENDOR_AI_OP_FC
case AI_OP_FC_LL_MODE:
{
ret = mem_alloc(&p_op->output_mem, "user_out_buf", SV_LENGTH*4);
if (ret != HD_OK) {
printf("proc_id(%u) alloc out_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
else {
printf("proc_id(%u) alloc out_buf OK, size = %d\r\n", proc_id, SV_LENGTH*4);
}
mem_fill(&p_op->output_mem, 1);
mem_save(&p_op->output_mem, "/mnt/sd/user_out_ori.bin");
}
break;
case AI_OP_PREPROC_YUV2RGB_SCALE:
{
ret = mem_alloc(&p_op->output_mem, "user_out_buf", AI_RGB_BUFSIZE(SCALE_DIM_W, SCALE_DIM_H));
if (ret != HD_OK) {
printf("proc_id(%lu) alloc out_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
else {
printf("proc_id(%lu) alloc out_buf OK, size = %d\r\n", proc_id, AI_RGB_BUFSIZE(SCALE_DIM_W, SCALE_DIM_H));
}
}
break;
case AI_OP_PREPROC_YUV2RGB:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_DC:
case AI_OP_PREPROC_Y2Y_UV2UV:
{
if(p_op->op_opt == AI_OP_PREPROC_YUV2RGB_SCALE) {
ret = mem_alloc(&p_op->output_mem, "user_out_buf", AI_RGB_BUFSIZE(SCALE_DIM_W, SCALE_DIM_H));
if (ret != HD_OK) {
printf("proc_id(%u) alloc out_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
else {
printf("proc_id(%u) alloc out_buf OK, size = %d\r\n", proc_id, AI_RGB_BUFSIZE(SCALE_DIM_W, SCALE_DIM_H));
}
}
else {
ret = mem_alloc(&p_op->output_mem, "user_out_buf", AI_RGB_BUFSIZE(p_in->in_cfg.w, p_in->in_cfg.h));
if (ret != HD_OK) {
printf("proc_id(%u) alloc out_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
else {
printf("proc_id(%u) alloc out_buf OK, size = %d\r\n", proc_id, AI_RGB_BUFSIZE(p_in->in_cfg.w, p_in->in_cfg.h));
}
}
}
break;
default:
break;
}
return ret;
}
#if ALLOC_WORKBUF_BY_USER
static HD_RESULT operator_alloc_work_buf(NET_PATH_ID op_path)
{
HD_RESULT ret = HD_OK;
OP_PROC* p_op = g_op + op_path;
UINT32 proc_id = p_op->proc_id;
VENDOR_AI_OP_CFG_MAX wmax;
switch (p_op->op_opt) {
case AI_OP_FC:
{
wmax.op = VENDOR_AI_OP_FC;
ret = vendor_ai_op_get(proc_id, VENDOR_AI_OP_PARAM_CFG_MAX, &wmax);
if (ret != HD_OK) {
printf("proc_id(%u) get work_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
else {
printf("proc_id(%u) work_buf size = %lu\r\n", proc_id, wmax.size);
}
}
break;
case AI_OP_PREPROC_YUV2RGB:
case AI_OP_PREPROC_YUV2RGB_SCALE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_DC:
case AI_OP_PREPROC_Y2Y_UV2UV:
{
wmax.op = VENDOR_AI_OP_PREPROC;
ret = vendor_ai_op_get(proc_id, VENDOR_AI_OP_PARAM_CFG_MAX, &wmax);
if (ret != HD_OK) {
printf("proc_id(%u) get work_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
else {
printf("proc_id(%u) work_buf size = %lu\r\n", proc_id, wmax.size);
}
}
break;
case AI_OP_FC_LL_MODE:
{
wmax.op = VENDOR_AI_OP_LIST;
wmax.max_param[0] = SV_LENGTH;
ret = vendor_ai_op_get(proc_id, VENDOR_AI_OP_PARAM_CFG_MAX, &wmax);
if (ret != HD_OK) {
printf("proc_id(%u) get work_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
else {
printf("proc_id(%u) work_buf size = %lu\r\n", proc_id, wmax.size);
}
}
break;
}
// alloc work buff
ret = mem_alloc(&p_op->work_mem, "op_work_buf", wmax.size);
if (ret != HD_OK) {
printf("proc_id(%u) alloc work_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
return ret;
}
static HD_RESULT operator_free_work_buf(NET_PATH_ID op_path)
{
HD_RESULT ret = HD_OK;
OP_PROC* p_op = g_op + op_path;
// free work buff
mem_free(&p_op->work_mem);
return ret;
}
#endif
static HD_RESULT operator_free_out_buf(NET_PATH_ID op_path)
{
HD_RESULT ret = HD_OK;
OP_PROC* p_op = g_op + op_path;
// free result buff
mem_free(&p_op->output_mem);
return ret;
}
static HD_RESULT operator_open(NET_PATH_ID op_path, NET_PATH_ID in_path)
{
HD_RESULT ret = HD_OK;
OP_PROC* p_op = g_op + op_path;
NET_IN* p_in = g_in + in_path;
UINT32 proc_id = p_op->proc_id;
VENDOR_AI_OP_CFG_WORKBUF wbuf = {0};
// alloc buffer
switch (p_op->op_opt) {
case AI_OP_FC:
case AI_OP_FC_LL_MODE:
{
ret = mem_alloc(&p_op->input_mem, "user_in_buf", SV_FEA_LENGTH);
if (ret != HD_OK) {
printf("proc_id(%u) alloc in_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
ret = mem_alloc(&p_op->weight_mem, "user_weight_buf", SV_LENGTH*SV_FEA_LENGTH);
if (ret != HD_OK) {
printf("proc_id(%u) alloc weight_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
// fill buffer
mem_fill(&p_op->input_mem, 1);
mem_fill(&p_op->weight_mem, 1);
// save buffer
mem_save(&p_op->input_mem, "/mnt/sd/user_in.bin");
mem_save(&p_op->weight_mem, "/mnt/sd/user_weight.bin");
}
break;
case AI_OP_PREPROC_YUV2RGB:
case AI_OP_PREPROC_YUV2RGB_SCALE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_DC:
case AI_OP_PREPROC_Y2Y_UV2UV:
{
if(p_op->op_opt == AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE)
ret = mem_alloc(&p_op->input_mem, "user_in_buf", 2*AI_RGB_BUFSIZE(p_in->in_cfg.w, p_in->in_cfg.h));
else
ret = mem_alloc(&p_op->input_mem, "user_in_buf", AI_RGB_BUFSIZE(p_in->in_cfg.w, p_in->in_cfg.h));
if (ret != HD_OK) {
printf("proc_id(%lu) alloc in_buf fail\r\n", proc_id);
return HD_ERR_FAIL;
}
INT32 file_len;
file_len = mem_load(&p_op->input_mem, p_in->in_cfg.input_filename);
if (file_len < 0) {
printf("load buf(%s) fail\r\n", p_in->in_cfg.input_filename);
return HD_ERR_NG;
}
printf("load buf(%s) ok, size = %d\r\n", p_in->in_cfg.input_filename, file_len);
}
break;
default:
{
printf("Unknown op_opt");
return HD_ERR_LIMIT;
}
break;
}
// open
ret = vendor_ai_op_open(op_path);
#if ALLOC_WORKBUF_BY_USER
//alloc work buffer
ret = operator_alloc_work_buf(op_path);
//set work buffer
wbuf.pa = (&p_op->work_mem)->pa;
wbuf.va = (&p_op->work_mem)->va;
wbuf.size = (&p_op->work_mem)->size;
switch (p_op->op_opt) {
case AI_OP_FC:
{
wbuf.op = VENDOR_AI_OP_FC;
}
break;
case AI_OP_PREPROC_YUV2RGB:
case AI_OP_PREPROC_YUV2RGB_SCALE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_DC:
case AI_OP_PREPROC_Y2Y_UV2UV:
{
wbuf.op = VENDOR_AI_OP_PREPROC;
}
break;
case AI_OP_FC_LL_MODE:
{
wbuf.op = VENDOR_AI_OP_LIST;
}
break;
}
ret = vendor_ai_op_set(proc_id, VENDOR_AI_OP_PARAM_CFG_WORKBUF, &wbuf);
#endif
//start
ret = vendor_ai_op_start(op_path);
return ret;
}
static HD_RESULT operator_close(NET_PATH_ID op_path)
{
HD_RESULT ret = HD_OK;
OP_PROC* p_op = g_op + op_path;
//stop
ret = vendor_ai_op_stop(op_path);
#if ALLOC_WORKBUF_BY_USER
//free work buf
ret = operator_free_work_buf(op_path);
#endif
// close
ret = vendor_ai_op_close(op_path);
// free buffer
switch (p_op->op_opt) {
case AI_OP_FC: //VENDOR_AI_OP_FC
case AI_OP_FC_LL_MODE:
{
mem_free(&p_op->input_mem);
mem_free(&p_op->weight_mem);
}
break;
case AI_OP_PREPROC_YUV2RGB:
case AI_OP_PREPROC_YUV2RGB_SCALE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_DC:
case AI_OP_PREPROC_Y2Y_UV2UV:
{
mem_free(&p_op->input_mem);
}
break;
default:
break;
}
return ret;
}
///////////////////////////////////////////////////////////////////////////////
typedef struct _VIDEO_LIVEVIEW {
// (1) input
NET_IN_CONFIG net_in_cfg;
NET_PATH_ID in_path;
// (2) operator
NET_PATH_ID op_path;
int net_op_opt;
pthread_t op_thread_id;
UINT32 op_start;
UINT32 op_exit;
UINT32 op_oneshot;
} VIDEO_LIVEVIEW;
static HD_RESULT init_module(void)
{
HD_RESULT ret;
if ((ret = op_init()) != HD_OK)
return ret;
if ((ret = input_init()) != HD_OK)
return ret;
if ((ret = network_init()) != HD_OK)
return ret;
return HD_OK;
}
static HD_RESULT open_module(VIDEO_LIVEVIEW *p_stream)
{
HD_RESULT ret;
if ((ret = operator_open(p_stream->op_path, p_stream->in_path)) != HD_OK)
return ret;
return HD_OK;
}
static HD_RESULT close_module(VIDEO_LIVEVIEW *p_stream)
{
HD_RESULT ret;
if ((ret = operator_close(p_stream->op_path)) != HD_OK)
return ret;
return HD_OK;
}
static HD_RESULT exit_module(void)
{
HD_RESULT ret;
if ((ret = op_uninit()) != HD_OK)
return ret;
if ((ret = input_uninit()) != HD_OK)
return ret;
if ((ret = network_uninit()) != HD_OK)
return ret;
return HD_OK;
}
///////////////////////////////////////////////////////////////////////////////
static VOID *operator_user_thread(VOID *arg);
static HD_RESULT operator_user_start(VIDEO_LIVEVIEW *p_stream)
{
HD_RESULT ret = HD_OK;
p_stream->op_start = 0;
p_stream->op_exit = 0;
p_stream->op_oneshot = 0;
ret = pthread_create(&p_stream->op_thread_id, NULL, operator_user_thread, (VOID*)(p_stream));
if (ret < 0) {
return HD_ERR_FAIL;
}
p_stream->op_start = 1;
p_stream->op_exit = 0;
p_stream->op_oneshot = 0;
return ret;
}
static HD_RESULT operator_user_oneshot(VIDEO_LIVEVIEW *p_stream)
{
HD_RESULT ret = HD_OK;
p_stream->op_oneshot = 1;
return ret;
}
static HD_RESULT operator_user_stop(VIDEO_LIVEVIEW *p_stream)
{
HD_RESULT ret = HD_OK;
p_stream->op_exit = 1;
pthread_join(p_stream->op_thread_id, NULL);
return ret;
}
static VOID *operator_user_thread(VOID *arg)
{
HD_RESULT ret = HD_OK;
VIDEO_LIVEVIEW *p_stream = (VIDEO_LIVEVIEW*)arg;
OP_PROC* p_op = g_op + p_stream->op_path;
NET_IN* p_in = g_in + p_stream->in_path;
printf("\r\n");
while (p_stream->op_start == 0) sleep(1);
printf("\r\n");
ret = operator_alloc_out_buf(p_stream->op_path, p_stream->in_path);
if (HD_OK != ret) {
printf("proc_id(%u) alloc output fail !!\n", p_stream->op_path);
goto skip;
}
printf("\r\n");
switch (p_op->op_opt) {
case AI_OP_FC:
{
while (p_stream->op_exit == 0) {
if (p_stream->op_oneshot) {
// 2. flush input
ret = hd_common_mem_flush_cache((VOID *)(&p_op->input_mem)->va, (&p_op->input_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
ret = hd_common_mem_flush_cache((VOID *)(&p_op->weight_mem)->va, (&p_op->weight_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
ret = hd_common_mem_flush_cache((VOID *)(&p_op->output_mem)->va, (&p_op->output_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
// 3. run OP
{
/*
The code below is the flow of using FC
suppose the input feature size is 256 bytes (defined as SV_FEA_LENGTH)
and the desired output length is 10240 (defined as SV_LENGTH)
the following sample will transpose the input 256 bytes feature (1 byte per element) into 10240*4 bytes feature (4 bytes per element)
fc_init_param is for setting parameter of FC
user should set input/output/weight address
*/
VENDOR_AI_BUF src[2] = {0};
VENDOR_AI_BUF dest[1] = {0};
MEM_PARM* in_buf = &p_op->input_mem;
MEM_PARM* out_buf = &p_op->output_mem;
MEM_PARM* weight_buf = &p_op->weight_mem;
//pprintf("input addr pa = 0x%08X\n", (unsigned int)(in_buf->pa));
//pprintf("output addr pa = 0x%08X\n", (unsigned int)(out_buf->pa));
//pprintf("weight addr pa = 0x%08X\n", (unsigned int)(weight_buf->pa));
//set src1 as 1d tensor
src[0].sign = MAKEFOURCC('A','B','U','F');
src[0].ddr_id = 0;
src[0].va = in_buf->va; //< input address (size = SV_FEA_LENGTH bytes)
src[0].pa = in_buf->pa;
src[0].size = SV_FEA_LENGTH;
src[0].fmt = HD_VIDEO_PXLFMT_AI_SFIXED8(0); //fixpoint s7.0
src[0].width = SV_FEA_LENGTH;
src[0].height = 1;
src[0].channel = 1;
src[0].batch_num = 1;
//set src2 as 2d tensor
src[1].sign = MAKEFOURCC('A','B','U','F');
src[1].ddr_id = 0;
src[1].va = weight_buf->va; //< sv weight address (size = SV_LENGTH*SV_FEA_LENGTH bytes)
src[1].pa = weight_buf->pa;
src[1].size = SV_FEA_LENGTH*SV_LENGTH;
src[1].fmt = HD_VIDEO_PXLFMT_AI_SFIXED8(0); //fixpoint s7.0
src[1].width = SV_FEA_LENGTH;
src[1].height = SV_LENGTH;
src[1].channel = 1;
src[1].batch_num = 1;
//set dest as 1d tensor
dest[0].sign = MAKEFOURCC('A','B','U','F');
dest[0].ddr_id = 0;
dest[0].va = out_buf->va; //< output address (size = SV_LENGTH*4 bytes)
dest[0].pa = out_buf->pa;
dest[0].size = SV_LENGTH*4;
dest[0].fmt = HD_VIDEO_PXLFMT_AI_SFIXED32(0); //fixpoint s31.0
dest[0].width = SV_LENGTH;
dest[0].height = 1;
dest[0].channel = 1;
dest[0].batch_num = 1;
ret = vendor_ai_op_proc(p_stream->op_path, VENDOR_AI_OP_FC, NULL, 2, src, 1, dest);
}
if (ret != 0) {
printf("op inference fail\n");
return 0;
}
p_stream->op_oneshot = FALSE;
printf("inference done!\n");
ret = hd_common_mem_flush_cache((VOID *)(&p_op->output_mem)->va, (&p_op->output_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
mem_save(&p_op->output_mem, "/mnt/sd/op_user_out.bin");
}
usleep(100);
}
}
break;
case AI_OP_FC_LL_MODE:
{
while (p_stream->op_exit == 0) {
if (p_stream->op_oneshot) {
// 2. flush input
ret = hd_common_mem_flush_cache((VOID *)(&p_op->input_mem)->va, (&p_op->input_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
ret = hd_common_mem_flush_cache((VOID *)(&p_op->weight_mem)->va, (&p_op->weight_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
ret = hd_common_mem_flush_cache((VOID *)(&p_op->output_mem)->va, (&p_op->output_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
// 3. run OP
{
/*
The code below is the flow of using FC
suppose the input feature size is 256 bytes (defined as SV_FEA_LENGTH)
and the desired output length is 10240 (defined as SV_LENGTH)
the following sample will transpose the input 256 bytes feature (1 byte per element) into 10240*4 bytes feature (4 bytes per element)
fc_init_param is for setting parameter of FC
user should set input/output/weight address
*/
VENDOR_AI_BUF src[2] = {0};
VENDOR_AI_BUF dest[1] = {0};
MEM_PARM* in_buf = &p_op->input_mem;
MEM_PARM* out_buf = &p_op->output_mem;
MEM_PARM* weight_buf = &p_op->weight_mem;
//pprintf("input addr pa = 0x%08X\n", (unsigned int)(in_buf->pa));
//pprintf("output addr pa = 0x%08X\n", (unsigned int)(out_buf->pa));
//pprintf("weight addr pa = 0x%08X\n", (unsigned int)(weight_buf->pa));
//set src1 as 1d tensor
src[0].sign = MAKEFOURCC('A','B','U','F');
src[0].ddr_id = 0;
src[0].va = in_buf->va; //< input address (size = SV_FEA_LENGTH bytes)
src[0].pa = in_buf->pa; //must 4 bytes align!
src[0].size = SV_FEA_LENGTH;
src[0].fmt = HD_VIDEO_PXLFMT_AI_SFIXED8(0); //fixpoint s7.0
src[0].width = SV_FEA_LENGTH;
src[0].height = 1;
src[0].channel = 1;
src[0].batch_num = 1;
//set src2 as 2d tensor
src[1].sign = MAKEFOURCC('A','B','U','F');
src[1].ddr_id = 0;
src[1].va = weight_buf->va; //< sv weight address (size = SV_LENGTH*SV_FEA_LENGTH bytes)
src[1].pa = weight_buf->pa; //must 4 bytes align!
src[1].size = SV_FEA_LENGTH*SV_LENGTH;
src[1].fmt = HD_VIDEO_PXLFMT_AI_SFIXED8(0); //fixpoint s7.0
src[1].width = SV_FEA_LENGTH;
src[1].height = SV_LENGTH;
src[1].channel = 1;
src[1].batch_num = 1;
//set dest as 1d tensor
dest[0].sign = MAKEFOURCC('A','B','U','F');
dest[0].ddr_id = 0;
dest[0].va = out_buf->va; //< output address (size = SV_LENGTH*4 bytes)
dest[0].pa = out_buf->pa; //must 4 bytes align!
dest[0].size = SV_LENGTH*4;
dest[0].fmt = HD_VIDEO_PXLFMT_AI_SFIXED32(0); //fixpoint s31.0
dest[0].width = SV_LENGTH;
dest[0].height = 1;
dest[0].channel = 1;
dest[0].batch_num = 1;
ret = vendor_ai_op_add(p_stream->op_path, VENDOR_AI_OP_LIST, NULL, 2, src, 1, dest);
if (ret != HD_OK) {
printf("proc_id(%u) vendor_ai_op_add fail\r\n", p_stream->op_path);
}
ret = hd_common_mem_flush_cache((VOID *)(&p_op->work_mem)->va, (&p_op->work_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
ret = vendor_ai_op_proc(p_stream->op_path, VENDOR_AI_OP_LIST, NULL, 0, NULL, 0, NULL);
if (ret != HD_OK) {
printf("proc_id(%u) vendor_ai_op_proc for run fc ll fail\r\n", p_stream->op_path);
}
}
p_stream->op_oneshot = FALSE;
printf("inference done!\n");
ret = hd_common_mem_flush_cache((VOID *)(&p_op->output_mem)->va, (&p_op->output_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
mem_save(&p_op->output_mem, "/mnt/sd/op_user_out.bin");
}
usleep(100);
}
}
break;
/*current support preproc function
[format]
Y -> Y
UV -> UV
RGB -> RGB
YUV -> RGB
[param]
meansub plane mode: (using p_out_sub in VENDOR_AI_OP_PREPROC_PARAM)
meansub dc mode: (using p_out_sub in VENDOR_AI_OP_PREPROC_PARAM)
Bilinear Scaling down: (using scale_dim in VENDOR_AI_OP_PREPROC_PARAM)
*/
case AI_OP_PREPROC_YUV2RGB:
case AI_OP_PREPROC_YUV2RGB_SCALE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE:
case AI_OP_PREPROC_YUV2RGB_MEANSUB_DC:
{
while (p_stream->op_exit == 0) {
if (p_stream->op_oneshot) {
ret = hd_common_mem_flush_cache((VOID *)(&p_op->input_mem)->va, (&p_op->input_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
ret = hd_common_mem_flush_cache((VOID *)(&p_op->output_mem)->va, (&p_op->output_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
// 3. run OP
{
VENDOR_AI_BUF src[2] = {0};
VENDOR_AI_BUF dest[3] = {0};
MEM_PARM* in_buf = &p_op->input_mem;
MEM_PARM* out_buf = &p_op->output_mem;
NET_IN_CONFIG in_cfg = p_in->in_cfg;
VENDOR_AI_OP_PREPROC_PARAM p_parm = {0};
//set src1 as 1d tensor
src[0].sign = MAKEFOURCC('A','B','U','F');
src[0].ddr_id = 0;
src[0].va = in_buf->va; //< input address
src[0].pa = in_buf->pa; //must 2 bytes align!
src[0].size = in_cfg.loff * in_cfg.h;
src[0].fmt = HD_VIDEO_PXLFMT_Y8;
src[0].width = in_cfg.w;
src[0].height = in_cfg.h;
src[0].line_ofs = in_cfg.loff;
src[0].channel = 1;
src[0].batch_num = 1;
//set src2 as 1d tensor
src[1].sign = MAKEFOURCC('A','B','U','F');
src[1].ddr_id = 0;
src[1].va = in_buf->va + src[0].size; //< input address
src[1].pa = in_buf->pa + src[0].size; //must 2 bytes align!
src[1].size = in_cfg.loff * in_cfg.h;
src[1].fmt = HD_VIDEO_PXLFMT_UV;
src[1].width = in_cfg.w;
src[1].height = in_cfg.h;
src[1].line_ofs = in_cfg.loff;
src[1].channel = 1;
src[1].batch_num = 1;
if(p_op->op_opt == AI_OP_PREPROC_YUV2RGB_SCALE) {
//set dest1 as 1d tensor
dest[0].sign = MAKEFOURCC('A','B','U','F');
dest[0].ddr_id = 0;
dest[0].va = out_buf->va; //< output address
dest[0].pa = out_buf->pa;
dest[0].size = SCALE_DIM_W * SCALE_DIM_H;
dest[0].fmt = HD_VIDEO_PXLFMT_R8;
dest[0].width = SCALE_DIM_W;
dest[0].height = SCALE_DIM_H;
dest[0].line_ofs = SCALE_DIM_W;
dest[0].channel = 1;
dest[0].batch_num = 1;
//set dest2 as 1d tensor
dest[1].sign = MAKEFOURCC('A','B','U','F');
dest[1].ddr_id = 0;
dest[1].va = out_buf->va + dest[0].size; //< output address
dest[1].pa = out_buf->pa + dest[0].size;
dest[1].size = SCALE_DIM_W * SCALE_DIM_H;
dest[1].fmt = HD_VIDEO_PXLFMT_G8;
dest[1].width = SCALE_DIM_W;
dest[1].height = SCALE_DIM_H;
dest[1].line_ofs = SCALE_DIM_W;
dest[1].channel = 1;
dest[1].batch_num = 1;
//set dest3 as 1d tensor
dest[2].sign = MAKEFOURCC('A','B','U','F');
dest[2].ddr_id = 0;
dest[2].va = out_buf->va + 2*dest[0].size; //< output address
dest[2].pa = out_buf->pa + 2*dest[0].size;
dest[2].size = SCALE_DIM_W * SCALE_DIM_H;
dest[2].fmt = HD_VIDEO_PXLFMT_B8;
dest[2].width = SCALE_DIM_W;
dest[2].height = SCALE_DIM_H;
dest[2].line_ofs = SCALE_DIM_W;
dest[2].channel = 1;
dest[2].batch_num = 1;
}
else {
//set dest1 as 1d tensor
dest[0].sign = MAKEFOURCC('A','B','U','F');
dest[0].ddr_id = 0;
dest[0].va = out_buf->va; //< output address
dest[0].pa = out_buf->pa;
dest[0].size = in_cfg.loff * in_cfg.h;
dest[0].fmt = HD_VIDEO_PXLFMT_R8;
dest[0].width = in_cfg.w;
dest[0].height = in_cfg.h;
dest[0].line_ofs = in_cfg.w;
dest[0].channel = 1;
dest[0].batch_num = 1;
//set dest2 as 1d tensor
dest[1].sign = MAKEFOURCC('A','B','U','F');
dest[1].ddr_id = 0;
dest[1].va = out_buf->va + dest[0].size; //< output address
dest[1].pa = out_buf->pa + dest[0].size;
dest[1].size = in_cfg.loff * in_cfg.h;
dest[1].fmt = HD_VIDEO_PXLFMT_G8;
dest[1].width = in_cfg.w;
dest[1].height = in_cfg.h;
dest[1].line_ofs = in_cfg.w;
dest[1].channel = 1;
dest[1].batch_num = 1;
//set dest3 as 1d tensor
dest[2].sign = MAKEFOURCC('A','B','U','F');
dest[2].ddr_id = 0;
dest[2].va = out_buf->va + 2*dest[0].size; //< output address
dest[2].pa = out_buf->pa + 2*dest[0].size;
dest[2].size = in_cfg.loff * in_cfg.h;
dest[2].fmt = HD_VIDEO_PXLFMT_B8;
dest[2].width = in_cfg.w;
dest[2].height = in_cfg.h;
dest[2].line_ofs = in_cfg.w;
dest[2].channel = 1;
dest[2].batch_num = 1;
}
// set func parameter
//scale
if (p_op->op_opt == AI_OP_PREPROC_YUV2RGB_SCALE) {
p_parm.scale_dim.w = SCALE_DIM_W;
p_parm.scale_dim.h = SCALE_DIM_H;
}
// plane mode
if (p_op->op_opt == AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE) {
memset((VOID *)(in_buf->va + src[0].size*3), 0x80808080, src[0].size*3); //clear buffer for sub
ret = hd_common_mem_flush_cache((VOID *)(in_buf->va + src[0].size*3), src[0].size*3);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
p_parm.p_out_sub.pa = in_buf->pa + 3*src[0].size;
p_parm.p_out_sub.va = in_buf->va + 3*src[0].size;
p_parm.p_out_sub.width = in_cfg.w;
p_parm.p_out_sub.height = in_cfg.h;
p_parm.p_out_sub.line_ofs = in_cfg.w*3;
}
// dc mode
if (p_op->op_opt == AI_OP_PREPROC_YUV2RGB_MEANSUB_DC) {
p_parm.out_sub_color[0] = 128;
p_parm.out_sub_color[1] = 127;
p_parm.out_sub_color[2] = 126;
}
ret = vendor_ai_op_proc(p_stream->op_path, VENDOR_AI_OP_PREPROC, &p_parm, 2, src, 3, dest);
}
if (ret != 0) {
printf("op inference fail\n");
return 0;
}
p_stream->op_oneshot = FALSE;
printf("inference done!\n");
ret = hd_common_mem_flush_cache((VOID *)(&p_op->output_mem)->va, (&p_op->output_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
mem_save(&p_op->output_mem, "/mnt/sd/op_user_out.bin");
}
usleep(100);
}
}
break;
case AI_OP_PREPROC_Y2Y_UV2UV:
{
while (p_stream->op_exit == 0) {
if (p_stream->op_oneshot) {
ret = hd_common_mem_flush_cache((VOID *)(&p_op->input_mem)->va, (&p_op->input_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
ret = hd_common_mem_flush_cache((VOID *)(&p_op->output_mem)->va, (&p_op->output_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
// 3. run OP
VENDOR_AI_BUF src[2] = {0};
VENDOR_AI_BUF dest[2] = {0};
MEM_PARM* in_buf = &p_op->input_mem;
MEM_PARM* out_buf = &p_op->output_mem;
NET_IN_CONFIG in_cfg = p_in->in_cfg;
VENDOR_AI_OP_PREPROC_PARAM p_parm = {0};
//set src1 as 1d tensor
src[0].sign = MAKEFOURCC('A','B','U','F');
src[0].ddr_id = 0;
src[0].va = in_buf->va; //< input address
src[0].pa = in_buf->pa;
src[0].size = in_cfg.loff * in_cfg.h;
src[0].fmt = HD_VIDEO_PXLFMT_Y8;
src[0].width = in_cfg.w;
src[0].height = in_cfg.h;
src[0].line_ofs = in_cfg.loff;
src[0].channel = 1;
src[0].batch_num = 1;
//set src2 as 1d tensor
src[1].sign = MAKEFOURCC('A','B','U','F');
src[1].ddr_id = 0;
src[1].va = in_buf->va + src[0].size; //< input address
src[1].pa = in_buf->pa + src[0].size; //must 2 bytes align!
src[1].size = in_cfg.loff * in_cfg.h;
src[1].fmt = HD_VIDEO_PXLFMT_UV;
src[1].width = in_cfg.w/2;
src[1].height = in_cfg.h/2;
src[1].line_ofs = in_cfg.w;
src[1].channel = 1;
src[1].batch_num = 1;
//set dest1 as 1d tensor
dest[0].sign = MAKEFOURCC('A','B','U','F');
dest[0].ddr_id = 0;
dest[0].va = out_buf->va; //< output address
dest[0].pa = out_buf->pa;
dest[0].size = SCALE_DIM_W * SCALE_DIM_H;
dest[0].fmt = HD_VIDEO_PXLFMT_Y8;
dest[0].width = SCALE_DIM_W;
dest[0].height = SCALE_DIM_H;
dest[0].line_ofs = SCALE_DIM_W;
dest[0].channel = 1;
dest[0].batch_num = 1;
//set dest2 as 1d tensor
dest[1].sign = MAKEFOURCC('A','B','U','F');
dest[1].ddr_id = 0;
dest[1].va = out_buf->va + dest[0].size; //< output address
dest[1].pa = out_buf->pa + dest[0].size;
dest[1].size = SCALE_DIM_W * SCALE_DIM_H / 2;
dest[1].fmt = HD_VIDEO_PXLFMT_UV;
dest[1].width = SCALE_DIM_W/2;
dest[1].height = SCALE_DIM_H/2;
dest[1].line_ofs = SCALE_DIM_W;
dest[1].channel = 1;
dest[1].batch_num = 1;
// set func parameter
//scale
p_parm.scale_dim.w = SCALE_DIM_W;
p_parm.scale_dim.h = SCALE_DIM_H;
ret = vendor_ai_op_proc(p_stream->op_path, VENDOR_AI_OP_PREPROC, &p_parm, 1, src, 1, dest);
p_parm.scale_dim.w = SCALE_DIM_W/2;
p_parm.scale_dim.h = SCALE_DIM_H/2;
ret = vendor_ai_op_proc(p_stream->op_path, VENDOR_AI_OP_PREPROC, &p_parm, 1, src+1, 1, dest+1);
if (ret != 0) {
printf("op inference fail\n");
return 0;
}
p_stream->op_oneshot = FALSE;
printf("inference done!\n");
ret = hd_common_mem_flush_cache((VOID *)(&p_op->output_mem)->va, (&p_op->output_mem)->size);
if(HD_OK != ret) {
printf("flush cache failed.\n");
}
mem_save(&p_op->output_mem, "/mnt/sd/op_user_out.bin");
}
usleep(100);
}
}
break;
default:
break;
}
ret = operator_free_out_buf(p_stream->op_path);
if (HD_OK != ret) {
printf("proc_id(%u) free output fail !!\n", p_stream->op_path);
goto skip;
}
skip:
return 0;
}
/*-----------------------------------------------------------------------------*/
/* Interface Functions */
/*-----------------------------------------------------------------------------*/
MAIN(argc, argv)
{
VIDEO_LIVEVIEW stream[2] = {0}; //0: net proc, 1: op path
HD_COMMON_MEM_INIT_CONFIG mem_cfg = {0};
INT32 idx;
HD_RESULT ret;
INT key;
NET_IN_CONFIG in_cfg = {
.input_filename = "/mnt/sd/jpg/YUV420_SP_W512H376.bin",
.w = 512,
.h = 376,
.c = 2,
.loff = 512,
.fmt = HD_VIDEO_PXLFMT_YUV420
};
if(argc < 2){
printf("usage : ai_op (op_opt)\n"
"op-opt:\n"
"0 FC\n"
"1 PREPROC (YUV2RGB)\n"
"2 PREPROC (YUV2RGB & scale)\n"
"3 PREPROC (YUV2RGB & meansub_plane)\n"
"4 PREPROC (YUV2RGB & meansub_dc)\n"
"5 PREPROC (Y2Y_UV2UV)\n"
"6 FC (LL MODE)\n");
return -1;
}
idx = 1;
// parse operator config
if (argc > idx) {
sscanf(argv[idx++], "%d", &stream[0].net_op_opt);
}
printf("\r\n\r\n");
// malloc for g_in & g_op
g_in = (NET_IN *)malloc(sizeof(NET_IN)*16);
g_op = (OP_PROC *)malloc(sizeof(OP_PROC)*16);
if ((g_in == NULL) || (g_op == NULL)) {
printf("fail to malloc g_in/g_op\n");
goto exit;
}
stream[0].op_path = 1;
stream[0].in_path = 1;
if (stream[0].net_op_opt == AI_OP_FC)
printf("Run FC!\r\n");
else if (stream[0].net_op_opt == AI_OP_PREPROC_YUV2RGB)
printf("Run PREPROC (YUV2RGB)!\r\n");
else if (stream[0].net_op_opt == AI_OP_PREPROC_YUV2RGB_SCALE)
printf("Run PREPROC (YUV2RGB & scale)!\r\n");
else if (stream[0].net_op_opt == AI_OP_PREPROC_YUV2RGB_MEANSUB_PLANE)
printf("Run PREPROC (YUV2RGB & meansub_plane)!\r\n");
else if (stream[0].net_op_opt == AI_OP_PREPROC_YUV2RGB_MEANSUB_DC)
printf("Run PREPROC (YUV2RGB & meansub_dc)!\r\n");
else if (stream[0].net_op_opt == AI_OP_PREPROC_Y2Y_UV2UV)
printf("Run PREPROC (Y2Y_UV2UV)!\r\n");
else if (stream[0].net_op_opt == AI_OP_FC_LL_MODE)
printf("Run FC (LL MODE)!\r\n");
else {
printf("Unknown op-opt = %d",stream[0].net_op_opt);
return -1;
}
// init hdal
ret = hd_common_init(0);
if (ret != HD_OK) {
printf("hd_common_init fail=%d\n", ret);
goto exit;
}
#if defined(_BSP_NA51055_) || defined(_BSP_NA51089_)
// set project config for AI
hd_common_sysconfig(0, (1<<16), 0, VENDOR_AI_CFG); //enable AI engine
#else
ret = vendor_common_clear_pool_blk(HD_COMMON_MEM_CNN_POOL, 0);
if (ret != HD_OK) {
printf("vendor_common_clear_pool_blk fail=%d\n", ret);
goto exit;
}
#endif
// init mem
if(stream[0].net_op_opt != AI_OP_FC && stream[0].net_op_opt != AI_OP_FC_LL_MODE) { //for preproc
INT32 idx = 0; // mempool index
input_mem_config(stream[0].in_path, &mem_cfg, 0, idx);
}
#if defined(_BSP_NA51055_) || defined(_BSP_NA51089_)
ret = hd_common_mem_init(&mem_cfg);
if (HD_OK != ret) {
printf("hd_common_mem_init err: %d\r\n", ret);
goto exit;
}
#endif
// init all modules
ret = init_module();
if (ret != HD_OK) {
printf("init fail=%d\n", ret);
goto exit;
}
if(stream[0].net_op_opt != AI_OP_FC && stream[0].net_op_opt != AI_OP_FC_LL_MODE) { //for preproc
// set open config
ret = input_set_config(stream[0].in_path, &in_cfg);
if (HD_OK != ret) {
printf("proc_id(%u) input_set_config fail=%d\n", stream[0].in_path, ret);
goto exit;
}
}
// set operator config
ret = operator_set_config(stream[0].op_path, stream[0].net_op_opt);
if (HD_OK != ret) {
printf("proc_id(%u) operator_set_config fail=%d\n", stream[0].in_path, ret);
goto exit;
}
// open video_liveview modules
ret = open_module(&stream[0]);
if (ret != HD_OK) {
printf("open fail=%d\n", ret);
goto exit;
}
// start
operator_user_start(&stream[0]);
printf("Enter q to quit\n");
printf("Enter r to run once\n");
do {
key = GETCHAR();
if (key == 'r') {
operator_user_oneshot(&stream[0]);
continue;
}
if (key == 'q' || key == 0x3) {
break;
}
} while(1);
// stop
operator_user_stop(&stream[0]);
exit:
// close video_liveview modules
ret = close_module(&stream[0]);
if (ret != HD_OK) {
printf("close fail=%d\n", ret);
}
// uninit all modules
ret = exit_module();
if (ret != HD_OK) {
printf("exit fail=%d\n", ret);
}
#if defined(_BSP_NA51055_) || defined(_BSP_NA51089_)
// uninit memory
ret = hd_common_mem_uninit();
if (ret != HD_OK) {
printf("mem fail=%d\n", ret);
}
#endif
// uninit hdal
ret = hd_common_uninit();
if (ret != HD_OK) {
printf("common fail=%d\n", ret);
}
// free g_in & g_op
if (g_in) free(g_in);
if (g_op) free(g_op);
return ret;
}