nt9856x/BSP/linux-kernel/drivers/i2c/busses/i2c-nvt.c
2023-03-28 15:07:53 +08:00

1646 lines
44 KiB
C
Executable File

/*
* Novatek I2C adapter driver.
*
* Copyright (C) 2015 Novatek MicroElectronics Corp.
*
* Updated by Howard Chang Aug 2015
*
* ----------------------------------------------------------------------------
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
* ----------------------------------------------------------------------------
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/clk.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/cpufreq.h>
#include <linux/gpio.h>
#include <linux/spinlock.h>
#include <linux/semaphore.h>
#include <linux/kthread.h>
#include <linux/dma-mapping.h>
#include "plat/i2c_reg.h"
#define DRV_VERSION "1.00.016"
#define NVTIM_I2C_TIMEOUT (msecs_to_jiffies(1000))
#define NVTIM_I2C_WDT_TIME_MS 10 ///< 10ms
struct nvtim_i2c_clk_info {
u16 gsr;
u16 tsr;
u16 clkl;
u16 clkh;
};
struct nvtim_i2c_dev {
struct device *dev;
void __iomem *base;
spinlock_t lock;
struct semaphore sem_lock;
struct completion cmd_complete;
struct clk *clk;
u8 *buf;
size_t buf_len;
u8 addr;
int irq;
int stop;
int flags;
u32 current_bytes;
u32 remain_bytes;
int berr;
int bal;
int bscltimeout;
u8 vd_src;
u32 busfree_interval;
u32 slave_mode; ///< 0:master 1:slave
u32 wdt_time; ///< watchdog time period, ms
struct i2c_adapter adapter;
struct i2c_client *slave;
struct task_struct *slave_watchdog;
struct nvtim_i2c_platform_data *pdata;
};
/* default platform data to use if not supplied in the platform_device */
static struct nvtim_i2c_platform_data nvtim_i2c_platform_data_default = {
.bus_freq = I2C_BUS_CLOCK_100KHZ,
.bus_delay = 0,
.gsr = I2C_DEFAULT_GSR,
.tsr = 1, // I2C_DEFAULT_TSR, // set 1 for backward compatible
.clkl = 0xee, // 100KHz
.clkh = 0xec, // 100KHz
.rtytimes = 0,
.upd_bus_freq_num = 0,
.upd_timeout_ms_num = 0,
.upd_rtytimes_num = 0,
.err_hdl = 0,
};
static inline void nvtim_i2c_write_reg(struct nvtim_i2c_dev *i2c_dev, int reg, u32 val)
{
writel(val, i2c_dev->base + reg);
}
static inline u32 nvtim_i2c_read_reg(struct nvtim_i2c_dev *i2c_dev, int reg)
{
return readl(i2c_dev->base + reg);
}
static u32 nvtim_i2c_get_busclock(u32 *gsr, u32 *clkh, u32 *clkl)
{
return (I2C_SOURCE_CLOCK / (*clkl + *clkh + *gsr + 4));
}
static void nvtim_transceive_bytes(struct nvtim_i2c_dev *dev)
{
dev->current_bytes = (dev->remain_bytes > I2C_BYTE_CNT_4) \
? I2C_BYTE_CNT_4 : dev->remain_bytes;
dev->remain_bytes = (dev->remain_bytes > I2C_BYTE_CNT_4) \
? (dev->remain_bytes - I2C_BYTE_CNT_4) : 0;
}
static void i2c_get_clk_info(struct nvtim_i2c_dev *dev, struct nvtim_i2c_clk_info *clk_info)
{
if (clk_info == NULL) {
dev_err(dev->dev, "clk_info NULL\n");
}
clk_info->gsr = (u16)dev->pdata->gsr;
clk_info->tsr = (u16)dev->pdata->tsr;
clk_info->clkl = (u16)dev->pdata->clkl;
clk_info->clkh = (u16)dev->pdata->clkh;
}
static void i2c_set_clk_info(struct nvtim_i2c_dev *dev, struct nvtim_i2c_clk_info clk_info)
{
dev->pdata->gsr = (unsigned int)clk_info.gsr;
dev->pdata->tsr = (unsigned int)clk_info.tsr;
dev->pdata->clkl = (unsigned int)clk_info.clkl;
dev->pdata->clkh = (unsigned int)clk_info.clkh;
}
/*
[input]
dev
input_clock
nvtim_i2c_clk_info.gsr
nvtim_i2c_clk_info.tsr
[output]
nvtim_i2c_clk_info.tsr
nvtim_i2c_clk_info.clkl
nvtim_i2c_clk_info.clkh
*/
static void nvtim_calc_clk_dividers(struct nvtim_i2c_dev *dev, u32 input_clock, struct nvtim_i2c_clk_info *clk_info)
{
u32 gsr, tsr;
u32 clkh, min_clkh;
u32 clkl, min_clkl;
if ((input_clock < I2C_BUS_CLOCK_50KHZ) || \
(input_clock > I2C_BUS_CLOCK_1MHZ)) {
dev_err(dev->dev, "invalid value %d\n", input_clock);
}
gsr = (u32)clk_info->gsr;
clkl = clkh = ((I2C_SOURCE_CLOCK / input_clock) - gsr) >> 1;
while (nvtim_i2c_get_busclock(&gsr, &clkl, &clkh) > input_clock) {
clkl++;
}
/*Standard mode (bus clock <= 100 KHz)*/
if (input_clock <= I2C_BUS_CLOCK_100KHZ) {
/*if Clock low period must >= 4.7 us,*/
/*clock high period must >= 4 us*/
min_clkl = (u32)(((float)I2C_SOURCE_CLOCK / (float)1000000000) \
* (float)4700) + 1;
min_clkh = (u32)(((float)I2C_SOURCE_CLOCK / (float)1000000000) \
* (float)4000) + 1;
} else if (input_clock <= I2C_BUS_CLOCK_400KHZ) {
/*Fast mode (bus clock <= 400 KHz)*/
/*if Clock low period must >= 1.3 us,*/
/*clock high period must >= 0.6 us*/
min_clkl = (u32)(((float)I2C_SOURCE_CLOCK / (float)1000000000) \
* (float)1300) + 1;
min_clkh = (u32)(((float)I2C_SOURCE_CLOCK / (float)1000000000) \
* (float)600) + 1;
} else {
/*Fast mode plus (bus clock <= 1 MHz)*/
/*if Clock low period must >= 0.5 us,*/
/*clock high period must >= 0.26 us*/
min_clkl = (u32)(((float)I2C_SOURCE_CLOCK / (float)1000000000) \
* (float)500) + 1;
min_clkh = (u32)(((float)I2C_SOURCE_CLOCK / (float)1000000000) \
* (float)260) + 1;
}
/*Find correct clock low period*/
if (clkl < min_clkl) {
clkh -= (min_clkl - clkl);
clkl = min_clkl;
}
if (clkl > I2C_CLKLOW_MAX) {
clkl = I2C_CLKLOW_MAX;
}
/*Find correct clock high period*/
if (clkh < min_clkh) {
clkh = min_clkh;
}
if (clkh > I2C_CLKHIGH_MAX) {
clkh = I2C_CLKHIGH_MAX;
}
/*Adjust to real register settings*/
clkl -= 1;
if (clkl < I2C_CLKLOW_MIN) {
clkl = I2C_CLKLOW_MIN;
}
clkh -= 3;
if (clkh < I2C_CLKHIGH_MIN) {
clkh = I2C_CLKHIGH_MIN;
}
while (nvtim_i2c_get_busclock(&gsr, &clkl, &clkh) > input_clock) {
clkl++;
}
/*Fix TSR as 0x1. About 0.1us.*/
tsr = clk_info->tsr;
/*Clock low counter must > (4 + GSR + TSR)*/
if (tsr >= (clkl - 4 - gsr)) {
tsr = clkl - 5 - gsr;
}
/*TSR: 1 ~ 1023*/
if (tsr < I2C_TSR_MIN) {
tsr = I2C_TSR_MIN;
} else if (tsr > I2C_TSR_MAX) {
tsr = I2C_TSR_MAX;
}
clk_info->tsr = (u16)tsr;
clk_info->clkl = (u16)clkl;
clk_info->clkh = (u16)clkh;
dev_dbg(dev->dev, "input_clock = %d (gsr %d tsr %d clkh %d clkl %d)\n"
, input_clock, gsr, tsr, clkh, clkl);
}
/* error handle - bus clear (send 9 clock on SCL) */
static int i2c_nvtim_busclr(struct nvtim_i2c_dev *dev)
{
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, nvtim_i2c_read_reg(dev, I2C_CTRL_REG) | (1 << I2C_CTRL_BUS_CLR_EN));
do {
udelay(1);
} while ((nvtim_i2c_read_reg(dev, I2C_CTRL_REG) & (1 << I2C_CTRL_BUS_CLR_EN)) == (1 << I2C_CTRL_BUS_CLR_EN));
dev_err(dev->dev, "%s\n", __func__);
return 0;
}
/* error handle - module reset */
static int i2c_nvtim_rst_module(struct nvtim_i2c_dev *dev)
{
#define reg_num 0x40
#define reg_sz reg_num >> 2
int i, reg_val[reg_sz] = {0};
/* read ori register, for I2C_RSTN(DO_RESET) */
for (i = 0; i < reg_sz; i++) {
reg_val[i] = nvtim_i2c_read_reg(dev, i << 2);
// dev_err(dev->dev, "0x%.2x=0x%.8x\n", (unsigned int)(i << 2), (unsigned int)reg_val[i]);
}
clk_disable_unprepare(dev->clk);
clk_prepare(dev->clk);
clk_enable(dev->clk);
/* write ori register, for I2C_RSTN(DO_RESET) */
for (i = 0; i < reg_sz; i++) {
nvtim_i2c_write_reg(dev, i << 2, reg_val[i]);
// dev_err(dev->dev, "0x%.2x=0x%.8x\n", (unsigned int)(i << 2), (unsigned int)reg_val[i]);
}
dev_err(dev->dev, "%s: staus 0x%.8x\n", __func__, nvtim_i2c_read_reg(dev, I2C_STS_REG));
return 0;
}
/*This function configures I2C init conditions*/
static int i2c_nvtim_init(struct nvtim_i2c_dev *dev)
{
struct nvtim_i2c_clk_info clk_info = {0};
int rst_module_done = 0;
if (dev->slave_mode) {
/* disable */
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, 0x0);
/* config, PIO mode and response ACK after data receive */
nvtim_i2c_write_reg(dev, I2C_CONFIG_REG, 0x0);
/* clock timing */
i2c_get_clk_info(dev, &clk_info);
if (clk_info.tsr < I2C_TSR_MIN) {
clk_info.tsr = I2C_TSR_MIN;
}
else if (clk_info.tsr > I2C_TSR_MAX) {
clk_info.tsr = I2C_TSR_MAX;
}
if (clk_info.gsr > I2C_GSR_MAX) {
clk_info.gsr = I2C_GSR_MAX;
}
nvtim_i2c_write_reg(dev, I2C_TIMING_REG, clk_info.tsr | (clk_info.gsr << I2C_TIMING_GSR) | (I2C_DEFAULT_SCL_TIMEOUT << I2C_TIMING_SCLTIMEOUT));
nvtim_i2c_write_reg(dev, I2C_BUSCLK_REG, 0x0);
/* busfree time */
nvtim_i2c_write_reg(dev, I2C_BUSFREE_REG, dev->busfree_interval);
/* clear interrupts status */
nvtim_i2c_write_reg(dev, I2C_STS_REG, I2C_ALL_BIT);
/* enable */
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, (BIT(I2C_CTRL_I2C_EN) | \
BIT(I2C_CTRL_DT_INT_EN) | \
BIT(I2C_CTRL_DR_INT_EN) | \
BIT(I2C_CTRL_BERR_INT_EN) | \
BIT(I2C_CTRL_STOP_INT_EN)));
}
else {
/*put I2C into reset*/
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, I2C_CTRL_REG_DEFAULT);
/*compute clock dividers & Set default timeout */
i2c_get_clk_info(dev, &clk_info);
nvtim_calc_clk_dividers(dev, dev->pdata->bus_freq, &clk_info);
i2c_set_clk_info(dev, clk_info);
nvtim_i2c_write_reg(dev, I2C_BUSCLK_REG, clk_info.clkl | (clk_info.clkh << I2C_BUSCLK_HIGH_COUNTER));
nvtim_i2c_write_reg(dev, I2C_TIMING_REG, clk_info.tsr | (clk_info.gsr << I2C_TIMING_GSR) | (I2C_DEFAULT_SCL_TIMEOUT << I2C_TIMING_SCLTIMEOUT));
/*Set busfree time*/
nvtim_i2c_write_reg(dev, I2C_BUSFREE_REG, dev->busfree_interval);
/*clear interrupts sts*/
nvtim_i2c_write_reg(dev, I2C_STS_REG, I2C_ALL_BIT);
/*Enable interrupts*/
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, I2C_INTR_ALL);
/*
I2C error handle
*/
// NVT_I2C_AUTO_BUCLEAR (must send befor reset i2c module)
if ((dev->pdata->err_hdl & NVT_I2C_AUTO_BUCLEAR_BIT) == NVT_I2C_AUTO_BUCLEAR_BIT) {
i2c_nvtim_busclr(dev);
i2c_nvtim_rst_module(dev); // avoid dummy clk in transfer after busclr [NA51090-844]
rst_module_done = 1;
}
// NVT_I2C_AUTO_RSTMDL
if ((dev->pdata->err_hdl & NVT_I2C_AUTO_RSTMDL_BIT) == NVT_I2C_AUTO_RSTMDL_BIT) {
if (rst_module_done) {
// already resest
} else {
i2c_nvtim_rst_module(dev);
}
}
}
return 0;
}
/*Waiting for bus not busy*/
static int i2c_nvtim_wait_bus_not_busy(struct nvtim_i2c_dev *dev,
char allow_sleep)
{
u32 timeout = I2C_POLLING_TIMEOUT;
u32 busfree, busbusy;
do {
timeout--;
busbusy = nvtim_i2c_read_reg(dev, I2C_STS_REG);
busfree = busbusy >> I2C_STS_BUSFREE;
busbusy &= BIT(I2C_STS_BUSBUSY);
if (allow_sleep) {
schedule_timeout(1);
}
} while (((busfree == 0) || (busbusy == 1)) && timeout);
if (timeout) {
return 0;
} else {
return -EBUSY;
}
}
static void i2c_nvtim_handle_nack(struct nvtim_i2c_dev *dev)
{
u32 timeout, reg;
/*Configure controller to send STOP condition*/
nvtim_i2c_write_reg(dev, I2C_CONFIG_REG, ~I2C_ALL_BIT | \
BIT(I2C_CONFIG_STOP_GEN0) | BIT(I2C_CONFIG_PIO_DATASIZE));
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, \
nvtim_i2c_read_reg(dev, I2C_CTRL_REG) | BIT(I2C_CTRL_TB_EN));
/*Wait for STOP condition sent, controller back to idle*/
timeout = I2C_POLLING_TIMEOUT;
do {
timeout--;
reg = nvtim_i2c_read_reg(dev, I2C_STS_REG);
reg = (reg & (1 << I2C_STS_BUSY));
reg = reg >> I2C_STS_BUSY;
} while ((reg == 1) && timeout);
if (timeout == 0)
dev_err(dev->dev, "Receive NACK, send STOP, \
wait for ready timeout!\r\n");
}
static void nvtim_set_data(struct nvtim_i2c_dev *dev)
{
u32 byte_shift, reg, config_reg;
config_reg = ~I2C_ALL_BIT;
reg = I2C_DATA_REG_DEFAULT;
if (dev->buf_len != 0) {
config_reg |= (dev->current_bytes << I2C_CONFIG_PIO_DATASIZE);
byte_shift = 0;
if ((dev->remain_bytes + dev->current_bytes) == (dev->buf_len + 1)) {
reg = (dev->addr << 1);
config_reg |= BIT(I2C_START_GEN_SHIFT);
byte_shift++;
}
for (; byte_shift < dev->current_bytes; byte_shift++) {
reg |= (*dev->buf & I2C_DATA_MASK) << (I2C_DATA_SHIFT * byte_shift);
dev->buf++;
}
/*Set the stop byte, note that stop byte count from 0*/
if ((dev->remain_bytes == 0) && (dev->stop) && (dev->buf_len != 0)) {
config_reg |= BIT(I2C_STOP_GEN_SHIFT + (dev->current_bytes - 1));
}
} else { /* support i2cdetect (1 byte addr scan) */
config_reg |= ((dev->current_bytes + 1) << I2C_CONFIG_PIO_DATASIZE);
reg = (dev->addr << 1);
config_reg |= BIT(I2C_START_GEN_SHIFT);
reg |= ((0 & I2C_DATA_MASK) << I2C_DATA_SHIFT);
config_reg |= BIT(I2C_STOP_GEN_SHIFT + 1);
}
/*Config controller*/
nvtim_i2c_write_reg(dev, I2C_CONFIG_REG, config_reg);
/*Write data*/
nvtim_i2c_write_reg(dev, I2C_DATA_REG, reg);
/*Control bits*/
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, \
nvtim_i2c_read_reg(dev, I2C_CTRL_REG) | BIT(I2C_CTRL_TB_EN));
}
static void nvtim_set_rxconfig(struct nvtim_i2c_dev *dev)
{
u32 config_reg, reg;
/*Set default value*/
config_reg = ~I2C_ALL_BIT;
/*Set data size*/
config_reg |= dev->current_bytes << I2C_CONFIG_PIO_DATASIZE;
if ((dev->remain_bytes + dev->current_bytes) == (dev->buf_len + 1)) {
reg = (dev->addr << 1) | I2C_READ_BIT;
config_reg |= BIT(I2C_START_GEN_SHIFT);
/*Write data*/
nvtim_i2c_write_reg(dev, I2C_DATA_REG, reg);
}
/*Set the stop byte, note that stop byte count from 0*/
if ((dev->remain_bytes == 0) && (dev->stop)) {
config_reg |= BIT(I2C_STOP_GEN_SHIFT + (dev->current_bytes - 1)) \
| BIT(I2C_NACK_GEN_SHIFT + (dev->current_bytes - 1));
}
/*Config controller*/
nvtim_i2c_write_reg(dev, I2C_CONFIG_REG, config_reg);
/*Control bits*/
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, \
nvtim_i2c_read_reg(dev, I2C_CTRL_REG) | BIT(I2C_CTRL_TB_EN));
}
static void nvtim_get_rxdata(struct nvtim_i2c_dev *dev)
{
u32 byte_shift, reg;
byte_shift = 0;
if ((dev->remain_bytes + dev->current_bytes) == (dev->buf_len + 1)) {
byte_shift++;
}
for (; byte_shift < dev->current_bytes; byte_shift++) {
reg = nvtim_i2c_read_reg(dev, I2C_DATA_REG);
*dev->buf = (reg >> (I2C_DATA_SHIFT * byte_shift)) & I2C_DATA_MASK;
dev->buf++;
}
}
static void
nvt_i2c_config(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
struct nvtim_i2c_dev *dev = i2c_get_adapdata(adap);
if (msgs[0].flags & NVT_I2C_VD_SRC) {
dev->vd_src = msgs[0].buf[0];
//printk("%s dev->vd_src = %d\n", __func__, dev->vd_src);
}
if (msgs[0].flags & NVT_I2C_BUSFREE_VAL) {
dev->busfree_interval = msgs[0].buf[0] | (msgs[0].buf[1] << 8) | (msgs[0].buf[2] << 16);
nvtim_i2c_write_reg(dev, I2C_BUSFREE_REG, dev->busfree_interval);
//printk("%s dev->busfree_interval = 0x%x\n", __func__, dev->busfree_interval);
}
/* NVT_I2C_SET_CFG_FLG */
if (msgs[0].flags == NVT_I2C_SET_CFG_FLG) {
/* check msg len */
if (msgs[0].len < 1) {
dev_err(dev->dev, "%s: len %d error\n", __func__, msgs[0].len);
return;
}
if ((msgs[0].buf[0] == NVT_I2C_AUTO_RSTMDL) || (msgs[0].buf[0] == NVT_I2C_AUTO_BUCLEAR)) {
if (msgs[0].len < 2) {
dev_err(dev->dev, "%s: len %d error\n", __func__, msgs[0].len);
return;
}
}
/* parse buffer data and set cfg */
if (msgs[0].buf[0] == NVT_I2C_AUTO_RSTMDL) {
if (msgs[0].buf[1] == 0) {
dev->pdata->err_hdl &= ~(NVT_I2C_AUTO_RSTMDL_BIT);
} else {
dev->pdata->err_hdl |= NVT_I2C_AUTO_RSTMDL_BIT;
}
}
if (msgs[0].buf[0] == NVT_I2C_AUTO_BUCLEAR) {
if (msgs[0].buf[1] == 0) {
dev->pdata->err_hdl &= ~(NVT_I2C_AUTO_BUCLEAR_BIT);
} else {
dev->pdata->err_hdl |= NVT_I2C_AUTO_BUCLEAR_BIT;
}
}
}
}
static int
i2c_nvtim_xfer_msg_vd(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
struct nvtim_i2c_dev *dev = i2c_get_adapdata(adap);
int i, ret = 0, length = 0;
char *pbuf, *phead;
dma_addr_t dma;
dev->berr = 0;
dev->bal = 0;
dev->bscltimeout = 0;
reinit_completion(&dev->cmd_complete);
for (i = 0; i < num; i++) {
if (msgs[0].len != msgs[i].len) {
printk(KERN_ALERT "failed to send different size cmd for vd sync\n");
return num;
}
length += msgs[i].len;
}
phead = pbuf = kmalloc(length + num, GFP_KERNEL | __GFP_ZERO);
length = 0;
for (i = 0; i < num; i++) {
*(pbuf + length) = msgs[i].addr << 1;
length++;
memcpy(pbuf + length, msgs[i].buf, msgs[i].len);
length += msgs[i].len;
}
dma = dma_map_single(dev->dev, pbuf, length, DMA_TO_DEVICE);
if (dma_mapping_error(dev->dev, dma)) {
printk(KERN_ALERT "failed to do the dma map\n");
kfree(pbuf);
return - ENOMEM;
}
nvtim_i2c_write_reg(dev, I2C_CONFIG_REG, BIT(I2C_CONFIG_ACCESSMODE));
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, \
nvtim_i2c_read_reg(dev, I2C_CTRL_REG) | ((dev->vd_src - 1) << I2C_CTRL_DMA_VD_SRC) | BIT(I2C_CTRL_DMA_VD_SYNC));
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, \
nvtim_i2c_read_reg(dev, I2C_CTRL_REG) | BIT(I2C_CTRL_DMAED_INT_EN) | BIT(I2C_CTRL_DMA_RCWRITE));
// write start addr
nvtim_i2c_write_reg(dev, I2C_DMA_START_ADDR_REG, __pa(pbuf));
nvtim_i2c_write_reg(dev, I2C_DMA_SIZE_REG, length);
nvtim_i2c_write_reg(dev, I2C_DMA_DB, (msgs[0].len + 1) | (1 << 24));
/*Control bits*/
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, \
nvtim_i2c_read_reg(dev, I2C_CTRL_REG) | BIT(I2C_CTRL_DMA_DIR) | BIT(I2C_CTRL_DMA_EN));
ret = wait_for_completion_timeout(&dev->cmd_complete, dev->adapter.timeout);
//restore setting
nvtim_i2c_write_reg(dev, I2C_CONFIG_REG, 0x0);
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, \
nvtim_i2c_read_reg(dev, I2C_CTRL_REG) & ~(BIT(I2C_CTRL_DMAED_INT_EN) | BIT(I2C_CTRL_DMA_RCWRITE) | BIT(I2C_CTRL_DMA_VD_SYNC)));
if (dev->berr) {
dev_err(dev->dev, "%s(%d) NACK!\n", __func__, __LINE__);
i2c_nvtim_handle_nack(dev);
i2c_nvtim_init(dev);
kfree(pbuf);
return -EREMOTEIO;
}
if (dev->bal) {
dev_err(dev->dev, "%s(%d) arbitration lost!\n", __func__, __LINE__);
i2c_nvtim_init(dev);
kfree(pbuf);
return -EREMOTEIO;
}
if (dev->bscltimeout) {
dev_err(dev->dev, "%s(%d) scl low timeout !\n", __func__, __LINE__);
i2c_nvtim_init(dev);
kfree(pbuf);
return -EREMOTEIO;
}
kfree(pbuf);
if (!ret) {
dev_err(dev->dev, "i2c transfer timed out(%d)\n", __LINE__);
i2c_nvtim_init(dev);
dev->buf_len = 0;
return -ETIMEDOUT;
}
if (ret < 0) {
return ret;
} else {
return num;
}
}
/*
* Low level master read/write transaction. This function is called
* from i2c_nvtim_xfer.
*/
static int i2c_nvtim_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg, int stop)
{
struct nvtim_i2c_dev *dev = i2c_get_adapdata(adap);
struct nvtim_i2c_platform_data *pdata = dev->pdata;
int ret;
/* Introduce a delay, required for some boards (e.g nvtim EVM) */
if (pdata->bus_delay) {
udelay(pdata->bus_delay);
}
dev->addr = msg->addr;
dev->buf = msg->buf;
dev->buf_len = msg->len;
dev->flags = msg->flags;
dev->berr = 0;
dev->bal = 0;
dev->bscltimeout = 0;
dev->stop = stop;
reinit_completion(&dev->cmd_complete);
dev->remain_bytes = dev->buf_len + 1;
do {
nvtim_transceive_bytes(dev);
if (msg->flags & I2C_M_RD) {
nvtim_set_rxconfig(dev);
} else {
nvtim_set_data(dev);
}
ret = wait_for_completion_timeout(&dev->cmd_complete, dev->adapter.timeout);
if (dev->berr) {
dev_err(dev->dev, "%s(%d) NACK!\n",__func__,__LINE__);
i2c_nvtim_handle_nack(dev);
i2c_nvtim_init(dev);
return -EREMOTEIO;
}
if (dev->bal) {
dev_err(dev->dev, "%s(%d) arbitration lost!\n", __func__, __LINE__);
i2c_nvtim_init(dev);
return -EREMOTEIO;
}
if (dev->bscltimeout) {
dev_err(dev->dev, "%s(%d) scl low timeout !\n", __func__, __LINE__);
i2c_nvtim_init(dev);
return -EREMOTEIO;
}
} while (dev->remain_bytes > 0);
/*Disable Controller*/
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, \
nvtim_i2c_read_reg(dev, I2C_CTRL_REG) & ~BIT(I2C_CTRL_TB_EN));
if (!ret) {
dev_err(dev->dev, "i2c transfer timed out(%d) jiffies(%d)\n", __LINE__, dev->adapter.timeout);
i2c_nvtim_init(dev);
dev->buf_len = 0;
return -ETIMEDOUT;
}
if (ret < 0) {
return ret;
} else {
return msg->len;
}
dev_err(dev->dev, "i2c transfer failed\n");
return -EIO;
}
static int i2c_upd_freq_dtsi(struct nvtim_i2c_dev *dev, __u16 slv_addr)
{
int i, is_upd = 0;
if (dev->pdata == NULL) {
dev_err(dev->dev, "%s: pdata NULL\n", __func__);
return is_upd;
}
if (dev->pdata->upd_bus_freq_num == 0) {
return is_upd;
}
for (i = 0; i < dev->pdata->upd_bus_freq_num; i++) {
if (dev->pdata->upd_bus_freq_slvaddr[i] == slv_addr) {
if (dev->pdata->upd_freq_hz[i] != dev->pdata->bus_freq) {
// update bus frequency by slv_addr
nvtim_i2c_write_reg(dev, I2C_BUSCLK_REG, dev->pdata->upd_freq_clkl[i] | (dev->pdata->upd_freq_clkh[i] << I2C_BUSCLK_HIGH_COUNTER));
nvtim_i2c_write_reg(dev, I2C_TIMING_REG, dev->pdata->upd_freq_tsr[i] | (dev->pdata->upd_freq_gsr[i] << I2C_TIMING_GSR) | (I2C_DEFAULT_SCL_TIMEOUT << I2C_TIMING_SCLTIMEOUT));
is_upd = 1;
}
break;
}
}
return is_upd;
}
static void i2c_upd_freq_dft(struct nvtim_i2c_dev *dev)
{
if (dev->pdata == NULL) {
dev_err(dev->dev, "%s: pdata NULL\n", __func__);
return;
}
nvtim_i2c_write_reg(dev, I2C_BUSCLK_REG, dev->pdata->clkl | (dev->pdata->clkh << I2C_BUSCLK_HIGH_COUNTER));
nvtim_i2c_write_reg(dev, I2C_TIMING_REG, dev->pdata->tsr | (dev->pdata->gsr << I2C_TIMING_GSR) | (I2C_DEFAULT_SCL_TIMEOUT << I2C_TIMING_SCLTIMEOUT));
}
static int i2c_upd_timeout_dtsi(struct nvtim_i2c_dev *dev, __u16 slv_addr)
{
int i, is_upd = 0;
if (dev->pdata == NULL) {
dev_err(dev->dev, "%s: pdata NULL\n", __func__);
return is_upd;
}
if (dev->pdata->upd_timeout_ms_num == 0) {
return is_upd;
}
for (i = 0; i < dev->pdata->upd_timeout_ms_num; i++) {
if (dev->pdata->upd_timeout_slvaddr[i] == slv_addr) {
if (dev->pdata->upd_timeout_ms[i] != dev->adapter.timeout) {
// update timeout by slv_addr
dev->adapter.timeout = msecs_to_jiffies(dev->pdata->upd_timeout_ms[i]);
is_upd = 1;
}
break;
}
}
return is_upd;
}
static void i2c_upd_timeout_dft(struct nvtim_i2c_dev *dev)
{
dev->adapter.timeout = NVTIM_I2C_TIMEOUT;
}
static int i2c_upd_rtytimes_dtsi(struct nvtim_i2c_dev *dev, __u16 slv_addr)
{
int i, is_upd = 0;
if (dev->pdata == NULL) {
dev_err(dev->dev, "%s: pdata NULL\n", __func__);
return is_upd;
}
if (dev->pdata->upd_rtytimes_num == 0) {
return is_upd;
}
for (i = 0; i < dev->pdata->upd_rtytimes_num; i++) {
if (dev->pdata->upd_rtytimes_slvaddr[i] == slv_addr) {
if (dev->pdata->upd_rtytimes[i] != dev->pdata->rtytimes) {
// update retry times by slv_addr
dev->pdata->rtytimes = dev->pdata->upd_rtytimes[i];
is_upd = 1;
}
break;
}
}
return is_upd;
}
static void i2c_upd_rtytimes_dft(struct nvtim_i2c_dev *dev)
{
if (dev->pdata == NULL) {
dev_err(dev->dev, "%s: pdata NULL\n", __func__);
return;
}
dev->pdata->rtytimes = 0;
}
/*
* Prepare controller for a transaction and call i2c_nvtim_xfer_msg
*/
static int i2c_nvtim_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
struct nvtim_i2c_dev *dev = i2c_get_adapdata(adap);
int i, is_upd[3], ret;
int rtytimes;
if (msgs[0].flags == NVT_I2C_USER_RST) {
dev_warn(dev->dev, "i2c module reset\n");
i2c_nvtim_init(dev);
return num;
}
ret = i2c_nvtim_wait_bus_not_busy(dev, 1);
if (ret < 0) {
dev_warn(dev->dev, "timeout waiting for bus ready\n");
i2c_nvtim_init(dev);
return ret;
}
if ((num == 1) && (msgs[0].flags & NVT_I2C_CONFIG_MASK)) {
down(&dev->sem_lock);
nvt_i2c_config(adap, msgs, num);
up(&dev->sem_lock);
return num;
}
if ((num == 1) && (msgs[0].flags == NVT_I2C_SET_CFG_FLG)) {
down(&dev->sem_lock);
nvt_i2c_config(adap, msgs, num);
up(&dev->sem_lock);
return num;
}
if (msgs[0].flags & NVT_I2C_VD_SEND) {
down(&dev->sem_lock);
ret = i2c_nvtim_xfer_msg_vd(adap, msgs, num);
up(&dev->sem_lock);
if (ret < 0) {
return ret;
}
return num;
}
for (i = 0; i < num; i++) {
down(&dev->sem_lock);
is_upd[0] = i2c_upd_freq_dtsi(dev, msgs[i].addr); // set frequency to dtsi setting
is_upd[1] = i2c_upd_timeout_dtsi(dev, msgs[i].addr); // set timeout to dtsi setting
is_upd[2] = i2c_upd_rtytimes_dtsi(dev, msgs[i].addr); // set retry times to dtsi setting
rtytimes = (int)dev->pdata->rtytimes;
retry:
ret = i2c_nvtim_xfer_msg(adap, &msgs[i], (i == (num - 1)));
if ((ret != msgs[i].len) && (--rtytimes > 0)) { // transfer fail
dev_err(dev->dev, "%s addr 0x%.2x ret %d rtytimes remain %d \n", __func__, msgs[i].addr, ret, rtytimes);
is_upd[0] = i2c_upd_freq_dtsi(dev, msgs[i].addr); // set frequency to dtsi setting, after i2c_nvtim_init
goto retry;
}
if (is_upd[0]) {
i2c_upd_freq_dft(dev); // set frequency to default setting
}
if (is_upd[1]) {
i2c_upd_timeout_dft(dev); // set timeout to default setting
}
if (is_upd[2]) {
i2c_upd_rtytimes_dft(dev); // set retry times to default setting
}
up(&dev->sem_lock);
dev_dbg(dev->dev, "%s [%d/%d] ret: %d\n", __func__, i + 1, num, ret);
if (ret < 0) {
return ret;
}
}
return num;
}
static u32 i2c_nvtim_func(struct i2c_adapter *adap)
{
#if IS_ENABLED(CONFIG_I2C_SLAVE)
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SLAVE;
#else
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
#endif
}
/*
* Interrupt service routine. This gets called whenever an I2C interrupt
* occurs.
*/
static irqreturn_t i2c_nvtim_isr(int this_irq, void *dev_id)
{
struct nvtim_i2c_dev *dev = dev_id;
u32 sts_reg;
sts_reg = nvtim_i2c_read_reg(dev, I2C_STS_REG);
/*Handle enabled interrupt status*/
sts_reg &= (nvtim_i2c_read_reg(dev, I2C_CTRL_REG) & I2C_CTRL_INTEN_MASK);
if (sts_reg != 0) {
/*Clear interrupt status*/
nvtim_i2c_write_reg(dev, I2C_STS_REG, sts_reg);
if (sts_reg & BIT(I2C_STS_DR)) {
nvtim_get_rxdata(dev);
}
if (sts_reg & (BIT(I2C_STS_DT) | BIT(I2C_STS_DR))) {
complete(&dev->cmd_complete);
}
if (sts_reg & BIT(I2C_STS_DMAED)) {
complete(&dev->cmd_complete);
}
if (sts_reg & BIT(I2C_STS_BERR)) {
dev->berr = 1;
complete(&dev->cmd_complete);
}
if (sts_reg & BIT(I2C_STS_AL)) {
dev->bal = 1;
complete(&dev->cmd_complete);
}
if (sts_reg & BIT(I2C_STS_SCLTIMEOUT)) {
dev->bscltimeout = 1;
complete(&dev->cmd_complete);
}
}
return IRQ_HANDLED;
}
static irqreturn_t i2c_nvtim_isr_slave(int this_irq, void *dev_id)
{
#if IS_ENABLED(CONFIG_I2C_SLAVE)
u8 value;
#endif
u32 sts_reg, dat_reg;
struct nvtim_i2c_dev *dev = (struct nvtim_i2c_dev *)dev_id;
/* read interrupt status */
sts_reg = nvtim_i2c_read_reg(dev, I2C_STS_REG);
/* clear interrupt status*/
nvtim_i2c_write_reg(dev, I2C_STS_REG, sts_reg);
/* read rx data */
dat_reg = nvtim_i2c_read_reg(dev, I2C_DATA_REG);
#if IS_ENABLED(CONFIG_I2C_SLAVE)
/* master sent stop */
if (sts_reg & BIT(I2C_STS_STOP)) {
i2c_slave_event(dev->slave, I2C_SLAVE_STOP, &value);
}
/* slave address matched */
if (sts_reg & BIT(I2C_STS_SAM)) {
if (sts_reg & BIT(I2C_STS_RW)) { ///< master request read, slave transmit mode
i2c_slave_event(dev->slave, I2C_SLAVE_READ_REQUESTED, &value);
nvtim_i2c_write_reg(dev, I2C_DATA_REG, value);
}
else { ///< master request write, slave receive mode
i2c_slave_event(dev->slave, I2C_SLAVE_WRITE_REQUESTED, &value);
}
}
/* master send data, slave to receive */
if ((sts_reg & BIT(I2C_STS_DR)) && !(sts_reg & BIT(I2C_STS_STOP)) && !(sts_reg & BIT(I2C_STS_SAM))) {
value = (u8)(dat_reg & 0xff);
i2c_slave_event(dev->slave, I2C_SLAVE_WRITE_RECEIVED, &value);
}
/* slave send data, master to receive */
if ((sts_reg & BIT(I2C_STS_DT)) && !(sts_reg & BIT(I2C_STS_STOP)) && !(sts_reg & BIT(I2C_STS_SAM))) {
i2c_slave_event(dev->slave, I2C_SLAVE_READ_PROCESSED, &value);
nvtim_i2c_write_reg(dev, I2C_DATA_REG, value);
}
#endif
/* enable tx/rx */
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, (nvtim_i2c_read_reg(dev, I2C_CTRL_REG)|BIT(I2C_CTRL_TB_EN)));
dev_dbg(dev->dev, "isr sts:0x%08x dat:0x%08x\n", sts_reg, dat_reg);
return IRQ_HANDLED;
}
static void i2c_nvtim_set_slave(struct nvtim_i2c_dev *dev, u16 slave_addr)
{
u32 value;
/* disable controller */
value = nvtim_i2c_read_reg(dev, I2C_CTRL_REG);
value &= ~(BIT(I2C_CTRL_TB_EN) | BIT(I2C_CTRL_I2C_EN));
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, value);
/* set slave address */
nvtim_i2c_write_reg(dev, I2C_SAR_REG, ((slave_addr>>1) & 0x7f)); ///< 7-bit mode
/* set receive byte count to 1 for slave data receive */
value = nvtim_i2c_read_reg(dev, I2C_CONFIG_REG);
value &= ~(0x7<<I2C_CONFIG_PIO_DATASIZE);
value |= (0x1<<I2C_CONFIG_PIO_DATASIZE);
nvtim_i2c_write_reg(dev, I2C_CONFIG_REG, value);
/* clear interrupts status */
nvtim_i2c_write_reg(dev, I2C_STS_REG, I2C_ALL_BIT);
/* enable controller */
value = nvtim_i2c_read_reg(dev, I2C_CTRL_REG);
value |= BIT(I2C_CTRL_I2C_EN);
if (slave_addr) {
value |= BIT(I2C_CTRL_TB_EN);
}
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, value);
}
#if IS_ENABLED(CONFIG_I2C_SLAVE)
static int i2c_nvtim_reg_slave(struct i2c_client *slave)
{
int ret = 0;
struct nvtim_i2c_dev *dev = i2c_get_adapdata(slave->adapter);
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
if (dev->slave) {
ret = -EBUSY;
goto exit;
}
if (dev->flags & I2C_CLIENT_TEN) {
ret = -EAFNOSUPPORT;
goto exit;
}
dev->slave = slave;
/* set slave address and enable data receive */
i2c_nvtim_set_slave(dev, slave->addr);
exit:
spin_unlock_irqrestore(&dev->lock, flags);
return ret;
}
static int i2c_nvtim_unreg_slave(struct i2c_client *slave)
{
int ret = 0;
struct nvtim_i2c_dev *dev = i2c_get_adapdata(slave->adapter);
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
if (!dev->slave) {
ret = -EINVAL;
goto exit;
}
/* clear slave address and disable data receive */
i2c_nvtim_set_slave(dev, 0x00);
dev->slave = NULL;
exit:
spin_unlock_irqrestore(&dev->lock, flags);
return ret;
}
#endif
static struct i2c_algorithm i2c_nvtim_algo = {
.master_xfer = i2c_nvtim_xfer,
.functionality = i2c_nvtim_func,
#if IS_ENABLED(CONFIG_I2C_SLAVE)
.reg_slave = i2c_nvtim_reg_slave,
.unreg_slave = i2c_nvtim_unreg_slave,
#endif
};
static int dtsi_i2c_id = -1;
#ifdef CONFIG_OF
static int nvtim_i2c_of_probe(struct platform_device *pdev, struct nvtim_i2c_dev *i2c)
{
struct device_node *np = pdev->dev.of_node;
u32 slave_mode, clock_frequency, wdt_time, gsr, tsr, user_data_u32;
int rt, cnt, i;
unsigned int *user_data = NULL;
struct nvtim_i2c_clk_info clk_info = {0};
if (of_property_read_u32(np, "slave_mode", &slave_mode)) {
slave_mode = 0;
}
i2c->slave_mode = slave_mode;
if (of_property_read_u32(np, "wdt_time", &wdt_time)) {
wdt_time = NVTIM_I2C_WDT_TIME_MS;
}
i2c->wdt_time = wdt_time ? wdt_time : NVTIM_I2C_WDT_TIME_MS;
if (of_property_read_u32(np, "clock-frequency", &clock_frequency)) {
clock_frequency = I2C_BUS_CLOCK_100KHZ;
}
(i2c->pdata)->bus_freq = clock_frequency;
/* gsr [option]*/
if ((rt = of_property_read_u32(np, "gsr", &gsr)) == 0) {
(i2c->pdata)->gsr = gsr;
} else {
(i2c->pdata)->gsr = I2C_DEFAULT_GSR;
}
/* tsr [option]*/
if ((rt = of_property_read_u32(np, "tsr", &tsr)) == 0) {
(i2c->pdata)->tsr = tsr;
} else {
(i2c->pdata)->tsr = 1; // I2C_DEFAULT_TSR; // set 1 for backward compatible
}
/* id [option]*/
if ((rt = of_property_read_u32(np, "id", &dtsi_i2c_id)) == 0) {
// used dtsi id
} else {
dtsi_i2c_id = -1;
}
/* auto_rst [option]*/
if((rt = of_property_read_u32(np, "auto_rst", &user_data_u32)) == 0) {
if (user_data_u32 == 0) {
i2c->pdata->err_hdl &= ~(NVT_I2C_AUTO_RSTMDL_BIT);
} else {
i2c->pdata->err_hdl |= NVT_I2C_AUTO_RSTMDL_BIT;
}
}
/* auto_busclear [option]*/
if((rt = of_property_read_u32(np, "auto_busclear", &user_data_u32)) == 0) {
if (user_data_u32 == 0) {
i2c->pdata->err_hdl &= ~(NVT_I2C_AUTO_BUCLEAR_BIT);
} else {
i2c->pdata->err_hdl |= NVT_I2C_AUTO_BUCLEAR_BIT;
}
}
/*
upd_freq_hz [option]
dtsi sample :
&i2c1 {
upd-clock-frequency = <0x1a 100000>, <0x34 200000>;
};
description :
user_data[0] : device 1 slv_addr
user_data[1] : device 1 frequency
user_data[2] : device 2 slv_addr
user_data[3] : device 2 frequency
...
*/
cnt = of_property_count_u32_elems(np, "upd-clock-frequency");
if (cnt > 0) {
user_data = kzalloc(sizeof(unsigned int) * cnt, GFP_KERNEL);
if ((rt = of_property_read_u32_array(np, "upd-clock-frequency", user_data, cnt)) == 0) {
i2c->pdata->upd_bus_freq_num = cnt / 2;
i2c->pdata->upd_bus_freq_slvaddr = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_bus_freq_num, GFP_KERNEL);
i2c->pdata->upd_freq_hz = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_bus_freq_num, GFP_KERNEL);
i2c->pdata->upd_freq_gsr = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_bus_freq_num, GFP_KERNEL);
i2c->pdata->upd_freq_tsr = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_bus_freq_num, GFP_KERNEL);
i2c->pdata->upd_freq_clkl = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_bus_freq_num, GFP_KERNEL);
i2c->pdata->upd_freq_clkh = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_bus_freq_num, GFP_KERNEL);
// calc_clk_dividers (must calc after set tsr/gsr to platform_data)
for (i = 0; i < i2c->pdata->upd_bus_freq_num; i++) {
dev_dbg(&pdev->dev, "%s : upd-clock-frequency 0x%x=%d\r\n", __func__, (unsigned int)user_data[i * 2], user_data[i * 2 + 1]);
i2c->pdata->upd_bus_freq_slvaddr[i] = (user_data[i * 2] & 0x7f);
i2c->pdata->upd_freq_hz[i] = user_data[i * 2 + 1];
i2c_get_clk_info(i2c, &clk_info);
nvtim_calc_clk_dividers(i2c, i2c->pdata->upd_freq_hz[i], &clk_info);
i2c->pdata->upd_freq_gsr[i] = clk_info.gsr;
i2c->pdata->upd_freq_tsr[i] = clk_info.tsr;
i2c->pdata->upd_freq_clkl[i] = clk_info.clkl;
i2c->pdata->upd_freq_clkh[i] = clk_info.clkh;
}
}
if (user_data) {
kfree(user_data);
}
}
/*
upd_timeout_ms [option]
dtsi sample :
&i2c1 {
upd-timeout-ms = <0x2b 1000>, <0x3c 100000>;
};
description :
user_data[0] : device 1 slv_addr
user_data[1] : device 1 timeout
user_data[2] : device 2 slv_addr
user_data[3] : device 2 timeout
...
*/
cnt = of_property_count_u32_elems(np, "upd-timeout-ms");
if (cnt > 0) {
user_data = kzalloc(sizeof(unsigned int) * cnt, GFP_KERNEL);
if ((rt = of_property_read_u32_array(np, "upd-timeout-ms", user_data, cnt)) == 0) {
i2c->pdata->upd_timeout_ms_num = cnt / 2;
i2c->pdata->upd_timeout_slvaddr = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_timeout_ms_num, GFP_KERNEL);
i2c->pdata->upd_timeout_ms = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_timeout_ms_num, GFP_KERNEL);
for (i = 0; i < i2c->pdata->upd_timeout_ms_num; i++) {
dev_dbg(&pdev->dev, "%s : upd-timeout-ms 0x%x=%d\r\n", __func__, (unsigned int)user_data[i * 2], user_data[i * 2 + 1]);
i2c->pdata->upd_timeout_slvaddr[i] = (user_data[i * 2] & 0x7f);
i2c->pdata->upd_timeout_ms[i] = user_data[i * 2 + 1];
}
}
if (user_data) {
kfree(user_data);
}
}
/*
upd_rty_times [option]
dtsi sample :
&i2c1 {
upd-retry-times = <0x11 3>, <0x22 5>;
};
description :
user_data[0] : device 1 slv_addr
user_data[1] : device 1 retry times
user_data[2] : device 2 slv_addr
user_data[3] : device 2 retry times
...
*/
cnt = of_property_count_u32_elems(np, "upd-retry-times");
if (cnt > 0) {
user_data = kzalloc(sizeof(unsigned int) * cnt, GFP_KERNEL);
if ((rt = of_property_read_u32_array(np, "upd-retry-times", user_data, cnt)) == 0) {
i2c->pdata->upd_rtytimes_num = cnt / 2;
i2c->pdata->upd_rtytimes_slvaddr = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_rtytimes_num, GFP_KERNEL);
i2c->pdata->upd_rtytimes = kzalloc(sizeof(unsigned int) * i2c->pdata->upd_rtytimes_num, GFP_KERNEL);
for (i = 0; i < i2c->pdata->upd_rtytimes_num; i++) {
dev_dbg(&pdev->dev, "%s : upd-retry-times 0x%x=%d\r\n", __func__, (unsigned int)user_data[i * 2], user_data[i * 2 + 1]);
i2c->pdata->upd_rtytimes_slvaddr[i] = (user_data[i * 2] & 0x7f);
i2c->pdata->upd_rtytimes[i] = user_data[i * 2 + 1];
}
}
if (user_data) {
kfree(user_data);
}
}
return 0;
}
static int nvtim_i2c_of_remove(struct platform_device *pdev, struct nvtim_i2c_dev *i2c)
{
if (i2c->pdata->upd_bus_freq_slvaddr) {
kfree(i2c->pdata->upd_bus_freq_slvaddr);
}
if (i2c->pdata->upd_freq_hz) {
kfree(i2c->pdata->upd_freq_hz);
}
if (i2c->pdata->upd_freq_gsr) {
kfree(i2c->pdata->upd_freq_gsr);
}
if (i2c->pdata->upd_freq_tsr) {
kfree(i2c->pdata->upd_freq_tsr);
}
if (i2c->pdata->upd_freq_clkl) {
kfree(i2c->pdata->upd_freq_clkl);
}
if (i2c->pdata->upd_freq_clkh) {
kfree(i2c->pdata->upd_freq_clkh);
}
if (i2c->pdata->upd_timeout_slvaddr) {
kfree(i2c->pdata->upd_timeout_slvaddr);
}
if (i2c->pdata->upd_timeout_ms) {
kfree(i2c->pdata->upd_timeout_ms);
}
if (i2c->pdata->upd_rtytimes_slvaddr) {
kfree(i2c->pdata->upd_rtytimes_slvaddr);
}
if (i2c->pdata->upd_rtytimes) {
kfree(i2c->pdata->upd_rtytimes);
}
return 0;
}
#else
#define nvtim_i2c_of_probe(pdev, i2c) -ENODEV
#define nvtim_i2c_of_remove(pdev, i2c) -ENODEV
#endif
static int nvtim_i2c_slave_watchdog(void *data)
{
struct nvtim_i2c_dev *dev = (struct nvtim_i2c_dev *)data;
u32 ctrl_reg, sts_reg, bus_reg, dat_reg;
int do_reset;
unsigned long flags;
do {
spin_lock_irqsave(&dev->lock, flags);
do_reset = 0;
if (dev->slave) {
ctrl_reg = nvtim_i2c_read_reg(dev, I2C_CTRL_REG);
sts_reg = nvtim_i2c_read_reg(dev, I2C_STS_REG);
dat_reg = nvtim_i2c_read_reg(dev, I2C_DATA_REG);
bus_reg = nvtim_i2c_read_reg(dev, I2C_BUS_REG);
if (!(ctrl_reg & BIT(I2C_CTRL_TB_EN))) {
if (sts_reg & BIT(I2C_STS_BUSBUSY)) {
/* disable */
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, 0x0);
do_reset++;
dev_err(dev->dev, "trigger reset ctrl:0x%08x sts:0x%08x dat:0x%08x bus:0x%08x\n", ctrl_reg, sts_reg, dat_reg, bus_reg);
}
else {
if ((sts_reg & BIT(I2C_STS_BUSFREE)) ||
((sts_reg & BIT(I2C_STS_SCLTIMEOUT)) && !(bus_reg & BIT(I2C_BUS_SCL)))) {
dev_dbg(dev->dev, "enable tx/rx ctrl:0x%08x sts:0x%08x dat:0x%08x bus:0x%08x\n", ctrl_reg, sts_reg, dat_reg, bus_reg);
/* clear status */
nvtim_i2c_write_reg(dev, I2C_STS_REG, I2C_ALL_BIT);
/* enable tx/rx */
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, (ctrl_reg | BIT(I2C_CTRL_I2C_EN) | BIT(I2C_CTRL_TB_EN)));
}
}
}
}
spin_unlock_irqrestore(&dev->lock, flags);
/* something wrong, do hardware reset */
if (do_reset) {
clk_disable_unprepare(dev->clk);
clk_prepare(dev->clk);
clk_enable(dev->clk);
spin_lock_irqsave(&dev->lock, flags);
i2c_nvtim_init(dev);
i2c_nvtim_set_slave(dev, dev->slave->addr);
spin_unlock_irqrestore(&dev->lock, flags);
}
/* sleep */
schedule_timeout_interruptible(msecs_to_jiffies(dev->wdt_time));
} while(!kthread_should_stop());
return 0;
}
static int nvtim_i2c_probe(struct platform_device *pdev)
{
struct nvtim_i2c_dev *dev;
struct i2c_adapter *adap;
struct resource *mem, *irq;
int r;
char wd_name[32];
/* NOTE: driver uses the static register mapping */
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(&pdev->dev, "no mem resource?\n");
return -ENODEV;
}
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq) {
dev_err(&pdev->dev, "no irq resource?\n");
return -ENODEV;
}
dev = devm_kzalloc(&pdev->dev, sizeof(struct nvtim_i2c_dev), GFP_KERNEL);
if (!dev) {
dev_err(&pdev->dev, "Memory allocation failed\n");
return -ENOMEM;
}
spin_lock_init(&dev->lock);
sema_init(&dev->sem_lock, 1);
init_completion(&dev->cmd_complete);
dev->dev = &pdev->dev;
dev->irq = irq->start;
dev->pdata = dev->dev->platform_data;
dev->busfree_interval = 0xE2;
platform_set_drvdata(pdev, dev);
if (!dev->pdata) {
dev->pdata = devm_kzalloc(&pdev->dev, sizeof(struct nvtim_i2c_platform_data), GFP_KERNEL);
if (!dev->pdata) {
return -ENOMEM;
}
if (nvtim_i2c_of_probe(pdev, dev) != 0) {
memcpy(dev->pdata, &nvtim_i2c_platform_data_default, sizeof(struct nvtim_i2c_platform_data));
}
}
dev->clk = devm_clk_get(&pdev->dev, dev_name(&pdev->dev));
if (IS_ERR(dev->clk)) {
dev_err(&pdev->dev, "can't find clock %s\n", dev_name(&pdev->dev));
dev->clk = NULL;
} else {
clk_prepare(dev->clk);
clk_enable(dev->clk);
}
dev->base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(dev->base)) {
r = PTR_ERR(dev->base);
goto err_unuse_clocks;
}
i2c_nvtim_init(dev);
r = devm_request_irq(&pdev->dev,
dev->irq,
((dev->slave_mode) ? i2c_nvtim_isr_slave : i2c_nvtim_isr),
0,
pdev->name,
dev);
if (r) {
dev_err(&pdev->dev, "failure requesting irq %i\n", dev->irq);
goto err_unuse_clocks;
}
adap = &dev->adapter;
i2c_set_adapdata(adap, dev);
adap->owner = THIS_MODULE;
adap->class = I2C_CLASS_HWMON;
strlcpy(adap->name, "nvtim I2C adapter", sizeof(adap->name));
adap->algo = &i2c_nvtim_algo;
adap->dev.parent = &pdev->dev;
adap->timeout = NVTIM_I2C_TIMEOUT;
if (dtsi_i2c_id == -1) {
adap->nr = pdev->id;
} else {
adap->nr = dtsi_i2c_id;
}
#ifdef CONFIG_OF
adap->dev.of_node = pdev->dev.of_node;
#endif
r = i2c_add_numbered_adapter(adap);
if (r) {
dev_err(&pdev->dev, "failure adding adapter\n");
goto err_unuse_clocks;
}
/* create slave watchdog task for monitor controller status */
if (dev->slave_mode) {
sprintf(wd_name, "i2c%d_slv_wd", adap->nr);
dev->slave_watchdog = kthread_create(nvtim_i2c_slave_watchdog, (void *)dev, wd_name);
if (!IS_ERR(dev->slave_watchdog)) {
wake_up_process(dev->slave_watchdog);
}
else {
dev_err(&pdev->dev, "create i2c%d slave watchdog thread failed\n", pdev->id);
dev->slave_watchdog = NULL;
r = -EFAULT;
goto err_unuse_clocks;
}
}
dev_info(&pdev->dev, "Register %s successfully ver:%s\n", __func__, DRV_VERSION);
return 0;
err_unuse_clocks:
clk_disable_unprepare(dev->clk);
dev->clk = NULL;
return r;
}
static int nvtim_i2c_remove(struct platform_device *pdev)
{
struct nvtim_i2c_dev *dev = platform_get_drvdata(pdev);
/* stop watchdog */
if(dev->slave_watchdog) {
kthread_stop(dev->slave_watchdog);
}
/* disable */
nvtim_i2c_write_reg(dev, I2C_CTRL_REG, 0);
/* free private data */
nvtim_i2c_of_remove(pdev, dev);
i2c_del_adapter(&dev->adapter);
clk_disable_unprepare(dev->clk);
dev->clk = NULL;
return 0;
}
#ifdef CONFIG_PM
static int nvtim_i2c_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct nvtim_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
clk_disable_unprepare(i2c_dev->clk);
return 0;
}
static int nvtim_i2c_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct nvtim_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
clk_prepare_enable(i2c_dev->clk);
return 0;
}
static const struct dev_pm_ops nvtim_i2c_pm = {
.suspend = nvtim_i2c_suspend,
.resume = nvtim_i2c_resume,
};
#define nvtim_i2c_pm_ops (&nvtim_i2c_pm)
#else
#define nvtim_i2c_pm_ops NULL
#endif
#ifdef CONFIG_OF
static const struct of_device_id nvtim_i2c_ids[] = {
{ .compatible = "nvt,nvt_i2c" },
{},
};
MODULE_DEVICE_TABLE(of, nvtim_i2c_ids);
#else
#define nvtim_i2c_ids NULL
#endif
static struct platform_driver nvtim_i2c_driver = {
.probe = nvtim_i2c_probe,
.remove = nvtim_i2c_remove,
.driver = {
.name = "nvt_i2c",
.owner = THIS_MODULE,
.pm = nvtim_i2c_pm_ops,
.of_match_table = of_match_ptr(nvtim_i2c_ids),
},
};
/* I2C may be needed to bring up other drivers */
static int __init nvtim_i2c_init_driver(void)
{
return platform_driver_register(&nvtim_i2c_driver);
}
subsys_initcall(nvtim_i2c_init_driver);
static void __exit nvtim_i2c_exit_driver(void)
{
platform_driver_unregister(&nvtim_i2c_driver);
}
module_exit(nvtim_i2c_exit_driver);
MODULE_AUTHOR("Novatek");
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Novatek I2C bus adapter");
MODULE_LICENSE("GPL");