996 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			996 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
 | |
|  * scalable techniques.
 | |
|  *
 | |
|  * Copyright (C) 2017 Facebook
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/blk-mq.h>
 | |
| #include <linux/elevator.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sbitmap.h>
 | |
| 
 | |
| #include "blk.h"
 | |
| #include "blk-mq.h"
 | |
| #include "blk-mq-debugfs.h"
 | |
| #include "blk-mq-sched.h"
 | |
| #include "blk-mq-tag.h"
 | |
| #include "blk-stat.h"
 | |
| 
 | |
| /* Scheduling domains. */
 | |
| enum {
 | |
| 	KYBER_READ,
 | |
| 	KYBER_SYNC_WRITE,
 | |
| 	KYBER_OTHER, /* Async writes, discard, etc. */
 | |
| 	KYBER_NUM_DOMAINS,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	KYBER_MIN_DEPTH = 256,
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to prevent starvation of synchronous requests by a flood of
 | |
| 	 * asynchronous requests, we reserve 25% of requests for synchronous
 | |
| 	 * operations.
 | |
| 	 */
 | |
| 	KYBER_ASYNC_PERCENT = 75,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Initial device-wide depths for each scheduling domain.
 | |
|  *
 | |
|  * Even for fast devices with lots of tags like NVMe, you can saturate
 | |
|  * the device with only a fraction of the maximum possible queue depth.
 | |
|  * So, we cap these to a reasonable value.
 | |
|  */
 | |
| static const unsigned int kyber_depth[] = {
 | |
| 	[KYBER_READ] = 256,
 | |
| 	[KYBER_SYNC_WRITE] = 128,
 | |
| 	[KYBER_OTHER] = 64,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Scheduling domain batch sizes. We favor reads.
 | |
|  */
 | |
| static const unsigned int kyber_batch_size[] = {
 | |
| 	[KYBER_READ] = 16,
 | |
| 	[KYBER_SYNC_WRITE] = 8,
 | |
| 	[KYBER_OTHER] = 8,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * There is a same mapping between ctx & hctx and kcq & khd,
 | |
|  * we use request->mq_ctx->index_hw to index the kcq in khd.
 | |
|  */
 | |
| struct kyber_ctx_queue {
 | |
| 	/*
 | |
| 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 | |
| 	 * Also protect the rqs on rq_list when merge.
 | |
| 	 */
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head rq_list[KYBER_NUM_DOMAINS];
 | |
| } ____cacheline_aligned_in_smp;
 | |
| 
 | |
| struct kyber_queue_data {
 | |
| 	struct request_queue *q;
 | |
| 
 | |
| 	struct blk_stat_callback *cb;
 | |
| 
 | |
| 	/*
 | |
| 	 * The device is divided into multiple scheduling domains based on the
 | |
| 	 * request type. Each domain has a fixed number of in-flight requests of
 | |
| 	 * that type device-wide, limited by these tokens.
 | |
| 	 */
 | |
| 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 | |
| 
 | |
| 	/*
 | |
| 	 * Async request percentage, converted to per-word depth for
 | |
| 	 * sbitmap_get_shallow().
 | |
| 	 */
 | |
| 	unsigned int async_depth;
 | |
| 
 | |
| 	/* Target latencies in nanoseconds. */
 | |
| 	u64 read_lat_nsec, write_lat_nsec;
 | |
| };
 | |
| 
 | |
| struct kyber_hctx_data {
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head rqs[KYBER_NUM_DOMAINS];
 | |
| 	unsigned int cur_domain;
 | |
| 	unsigned int batching;
 | |
| 	struct kyber_ctx_queue *kcqs;
 | |
| 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 | |
| 	wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS];
 | |
| 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 | |
| 	atomic_t wait_index[KYBER_NUM_DOMAINS];
 | |
| };
 | |
| 
 | |
| static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 | |
| 			     void *key);
 | |
| 
 | |
| static unsigned int kyber_sched_domain(unsigned int op)
 | |
| {
 | |
| 	if ((op & REQ_OP_MASK) == REQ_OP_READ)
 | |
| 		return KYBER_READ;
 | |
| 	else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
 | |
| 		return KYBER_SYNC_WRITE;
 | |
| 	else
 | |
| 		return KYBER_OTHER;
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	NONE = 0,
 | |
| 	GOOD = 1,
 | |
| 	GREAT = 2,
 | |
| 	BAD = -1,
 | |
| 	AWFUL = -2,
 | |
| };
 | |
| 
 | |
| #define IS_GOOD(status) ((status) > 0)
 | |
| #define IS_BAD(status) ((status) < 0)
 | |
| 
 | |
| static int kyber_lat_status(struct blk_stat_callback *cb,
 | |
| 			    unsigned int sched_domain, u64 target)
 | |
| {
 | |
| 	u64 latency;
 | |
| 
 | |
| 	if (!cb->stat[sched_domain].nr_samples)
 | |
| 		return NONE;
 | |
| 
 | |
| 	latency = cb->stat[sched_domain].mean;
 | |
| 	if (latency >= 2 * target)
 | |
| 		return AWFUL;
 | |
| 	else if (latency > target)
 | |
| 		return BAD;
 | |
| 	else if (latency <= target / 2)
 | |
| 		return GREAT;
 | |
| 	else /* (latency <= target) */
 | |
| 		return GOOD;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust the read or synchronous write depth given the status of reads and
 | |
|  * writes. The goal is that the latencies of the two domains are fair (i.e., if
 | |
|  * one is good, then the other is good).
 | |
|  */
 | |
| static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
 | |
| 				  unsigned int sched_domain, int this_status,
 | |
| 				  int other_status)
 | |
| {
 | |
| 	unsigned int orig_depth, depth;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this domain had no samples, or reads and writes are both good or
 | |
| 	 * both bad, don't adjust the depth.
 | |
| 	 */
 | |
| 	if (this_status == NONE ||
 | |
| 	    (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
 | |
| 	    (IS_BAD(this_status) && IS_BAD(other_status)))
 | |
| 		return;
 | |
| 
 | |
| 	orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
 | |
| 
 | |
| 	if (other_status == NONE) {
 | |
| 		depth++;
 | |
| 	} else {
 | |
| 		switch (this_status) {
 | |
| 		case GOOD:
 | |
| 			if (other_status == AWFUL)
 | |
| 				depth -= max(depth / 4, 1U);
 | |
| 			else
 | |
| 				depth -= max(depth / 8, 1U);
 | |
| 			break;
 | |
| 		case GREAT:
 | |
| 			if (other_status == AWFUL)
 | |
| 				depth /= 2;
 | |
| 			else
 | |
| 				depth -= max(depth / 4, 1U);
 | |
| 			break;
 | |
| 		case BAD:
 | |
| 			depth++;
 | |
| 			break;
 | |
| 		case AWFUL:
 | |
| 			if (other_status == GREAT)
 | |
| 				depth += 2;
 | |
| 			else
 | |
| 				depth++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 | |
| 	if (depth != orig_depth)
 | |
| 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust the depth of other requests given the status of reads and synchronous
 | |
|  * writes. As long as either domain is doing fine, we don't throttle, but if
 | |
|  * both domains are doing badly, we throttle heavily.
 | |
|  */
 | |
| static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
 | |
| 				     int read_status, int write_status,
 | |
| 				     bool have_samples)
 | |
| {
 | |
| 	unsigned int orig_depth, depth;
 | |
| 	int status;
 | |
| 
 | |
| 	orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
 | |
| 
 | |
| 	if (read_status == NONE && write_status == NONE) {
 | |
| 		depth += 2;
 | |
| 	} else if (have_samples) {
 | |
| 		if (read_status == NONE)
 | |
| 			status = write_status;
 | |
| 		else if (write_status == NONE)
 | |
| 			status = read_status;
 | |
| 		else
 | |
| 			status = max(read_status, write_status);
 | |
| 		switch (status) {
 | |
| 		case GREAT:
 | |
| 			depth += 2;
 | |
| 			break;
 | |
| 		case GOOD:
 | |
| 			depth++;
 | |
| 			break;
 | |
| 		case BAD:
 | |
| 			depth -= max(depth / 4, 1U);
 | |
| 			break;
 | |
| 		case AWFUL:
 | |
| 			depth /= 2;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
 | |
| 	if (depth != orig_depth)
 | |
| 		sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Apply heuristics for limiting queue depths based on gathered latency
 | |
|  * statistics.
 | |
|  */
 | |
| static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
 | |
| {
 | |
| 	struct kyber_queue_data *kqd = cb->data;
 | |
| 	int read_status, write_status;
 | |
| 
 | |
| 	read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
 | |
| 	write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
 | |
| 
 | |
| 	kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
 | |
| 	kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
 | |
| 	kyber_adjust_other_depth(kqd, read_status, write_status,
 | |
| 				 cb->stat[KYBER_OTHER].nr_samples != 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Continue monitoring latencies if we aren't hitting the targets or
 | |
| 	 * we're still throttling other requests.
 | |
| 	 */
 | |
| 	if (!blk_stat_is_active(kqd->cb) &&
 | |
| 	    ((IS_BAD(read_status) || IS_BAD(write_status) ||
 | |
| 	      kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
 | |
| 		blk_stat_activate_msecs(kqd->cb, 100);
 | |
| }
 | |
| 
 | |
| static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
 | |
| {
 | |
| 	/*
 | |
| 	 * All of the hardware queues have the same depth, so we can just grab
 | |
| 	 * the shift of the first one.
 | |
| 	 */
 | |
| 	return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
 | |
| }
 | |
| 
 | |
| static int kyber_bucket_fn(const struct request *rq)
 | |
| {
 | |
| 	return kyber_sched_domain(rq->cmd_flags);
 | |
| }
 | |
| 
 | |
| static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 | |
| {
 | |
| 	struct kyber_queue_data *kqd;
 | |
| 	unsigned int max_tokens;
 | |
| 	unsigned int shift;
 | |
| 	int ret = -ENOMEM;
 | |
| 	int i;
 | |
| 
 | |
| 	kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 | |
| 	if (!kqd)
 | |
| 		goto err;
 | |
| 	kqd->q = q;
 | |
| 
 | |
| 	kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, kyber_bucket_fn,
 | |
| 					  KYBER_NUM_DOMAINS, kqd);
 | |
| 	if (!kqd->cb)
 | |
| 		goto err_kqd;
 | |
| 
 | |
| 	/*
 | |
| 	 * The maximum number of tokens for any scheduling domain is at least
 | |
| 	 * the queue depth of a single hardware queue. If the hardware doesn't
 | |
| 	 * have many tags, still provide a reasonable number.
 | |
| 	 */
 | |
| 	max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
 | |
| 			   KYBER_MIN_DEPTH);
 | |
| 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | |
| 		WARN_ON(!kyber_depth[i]);
 | |
| 		WARN_ON(!kyber_batch_size[i]);
 | |
| 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 | |
| 					      max_tokens, -1, false, GFP_KERNEL,
 | |
| 					      q->node);
 | |
| 		if (ret) {
 | |
| 			while (--i >= 0)
 | |
| 				sbitmap_queue_free(&kqd->domain_tokens[i]);
 | |
| 			goto err_cb;
 | |
| 		}
 | |
| 		sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
 | |
| 	}
 | |
| 
 | |
| 	shift = kyber_sched_tags_shift(kqd);
 | |
| 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 | |
| 
 | |
| 	kqd->read_lat_nsec = 2000000ULL;
 | |
| 	kqd->write_lat_nsec = 10000000ULL;
 | |
| 
 | |
| 	return kqd;
 | |
| 
 | |
| err_cb:
 | |
| 	blk_stat_free_callback(kqd->cb);
 | |
| err_kqd:
 | |
| 	kfree(kqd);
 | |
| err:
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 | |
| {
 | |
| 	struct kyber_queue_data *kqd;
 | |
| 	struct elevator_queue *eq;
 | |
| 
 | |
| 	eq = elevator_alloc(q, e);
 | |
| 	if (!eq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	kqd = kyber_queue_data_alloc(q);
 | |
| 	if (IS_ERR(kqd)) {
 | |
| 		kobject_put(&eq->kobj);
 | |
| 		return PTR_ERR(kqd);
 | |
| 	}
 | |
| 
 | |
| 	eq->elevator_data = kqd;
 | |
| 	q->elevator = eq;
 | |
| 
 | |
| 	blk_stat_add_callback(q, kqd->cb);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kyber_exit_sched(struct elevator_queue *e)
 | |
| {
 | |
| 	struct kyber_queue_data *kqd = e->elevator_data;
 | |
| 	struct request_queue *q = kqd->q;
 | |
| 	int i;
 | |
| 
 | |
| 	blk_stat_remove_callback(q, kqd->cb);
 | |
| 
 | |
| 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 | |
| 		sbitmap_queue_free(&kqd->domain_tokens[i]);
 | |
| 	blk_stat_free_callback(kqd->cb);
 | |
| 	kfree(kqd);
 | |
| }
 | |
| 
 | |
| static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	spin_lock_init(&kcq->lock);
 | |
| 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 | |
| 		INIT_LIST_HEAD(&kcq->rq_list[i]);
 | |
| }
 | |
| 
 | |
| static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 | |
| {
 | |
| 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 | |
| 	struct kyber_hctx_data *khd;
 | |
| 	int i;
 | |
| 
 | |
| 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 | |
| 	if (!khd)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 | |
| 				       sizeof(struct kyber_ctx_queue),
 | |
| 				       GFP_KERNEL, hctx->numa_node);
 | |
| 	if (!khd->kcqs)
 | |
| 		goto err_khd;
 | |
| 
 | |
| 	for (i = 0; i < hctx->nr_ctx; i++)
 | |
| 		kyber_ctx_queue_init(&khd->kcqs[i]);
 | |
| 
 | |
| 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | |
| 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 | |
| 				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
 | |
| 			while (--i >= 0)
 | |
| 				sbitmap_free(&khd->kcq_map[i]);
 | |
| 			goto err_kcqs;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&khd->lock);
 | |
| 
 | |
| 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | |
| 		INIT_LIST_HEAD(&khd->rqs[i]);
 | |
| 		init_waitqueue_func_entry(&khd->domain_wait[i],
 | |
| 					  kyber_domain_wake);
 | |
| 		khd->domain_wait[i].private = hctx;
 | |
| 		INIT_LIST_HEAD(&khd->domain_wait[i].entry);
 | |
| 		atomic_set(&khd->wait_index[i], 0);
 | |
| 	}
 | |
| 
 | |
| 	khd->cur_domain = 0;
 | |
| 	khd->batching = 0;
 | |
| 
 | |
| 	hctx->sched_data = khd;
 | |
| 	sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags,
 | |
| 					kqd->async_depth);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_kcqs:
 | |
| 	kfree(khd->kcqs);
 | |
| err_khd:
 | |
| 	kfree(khd);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 | |
| {
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 | |
| 		sbitmap_free(&khd->kcq_map[i]);
 | |
| 	kfree(khd->kcqs);
 | |
| 	kfree(hctx->sched_data);
 | |
| }
 | |
| 
 | |
| static int rq_get_domain_token(struct request *rq)
 | |
| {
 | |
| 	return (long)rq->elv.priv[0];
 | |
| }
 | |
| 
 | |
| static void rq_set_domain_token(struct request *rq, int token)
 | |
| {
 | |
| 	rq->elv.priv[0] = (void *)(long)token;
 | |
| }
 | |
| 
 | |
| static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 | |
| 				  struct request *rq)
 | |
| {
 | |
| 	unsigned int sched_domain;
 | |
| 	int nr;
 | |
| 
 | |
| 	nr = rq_get_domain_token(rq);
 | |
| 	if (nr != -1) {
 | |
| 		sched_domain = kyber_sched_domain(rq->cmd_flags);
 | |
| 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 | |
| 				    rq->mq_ctx->cpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
 | |
| {
 | |
| 	/*
 | |
| 	 * We use the scheduler tags as per-hardware queue queueing tokens.
 | |
| 	 * Async requests can be limited at this stage.
 | |
| 	 */
 | |
| 	if (!op_is_sync(op)) {
 | |
| 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 | |
| 
 | |
| 		data->shallow_depth = kqd->async_depth;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
 | |
| {
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;
 | |
| 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
 | |
| 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw];
 | |
| 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 | |
| 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
 | |
| 	bool merged;
 | |
| 
 | |
| 	spin_lock(&kcq->lock);
 | |
| 	merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio);
 | |
| 	spin_unlock(&kcq->lock);
 | |
| 	blk_mq_put_ctx(ctx);
 | |
| 
 | |
| 	return merged;
 | |
| }
 | |
| 
 | |
| static void kyber_prepare_request(struct request *rq, struct bio *bio)
 | |
| {
 | |
| 	rq_set_domain_token(rq, -1);
 | |
| }
 | |
| 
 | |
| static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 | |
| 				  struct list_head *rq_list, bool at_head)
 | |
| {
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;
 | |
| 	struct request *rq, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 | |
| 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 | |
| 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw];
 | |
| 		struct list_head *head = &kcq->rq_list[sched_domain];
 | |
| 
 | |
| 		spin_lock(&kcq->lock);
 | |
| 		if (at_head)
 | |
| 			list_move(&rq->queuelist, head);
 | |
| 		else
 | |
| 			list_move_tail(&rq->queuelist, head);
 | |
| 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
 | |
| 				rq->mq_ctx->index_hw);
 | |
| 		blk_mq_sched_request_inserted(rq);
 | |
| 		spin_unlock(&kcq->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kyber_finish_request(struct request *rq)
 | |
| {
 | |
| 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 | |
| 
 | |
| 	rq_clear_domain_token(kqd, rq);
 | |
| }
 | |
| 
 | |
| static void kyber_completed_request(struct request *rq)
 | |
| {
 | |
| 	struct request_queue *q = rq->q;
 | |
| 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
 | |
| 	unsigned int sched_domain;
 | |
| 	u64 now, latency, target;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if this request met our latency goal. If not, quickly gather
 | |
| 	 * some statistics and start throttling.
 | |
| 	 */
 | |
| 	sched_domain = kyber_sched_domain(rq->cmd_flags);
 | |
| 	switch (sched_domain) {
 | |
| 	case KYBER_READ:
 | |
| 		target = kqd->read_lat_nsec;
 | |
| 		break;
 | |
| 	case KYBER_SYNC_WRITE:
 | |
| 		target = kqd->write_lat_nsec;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* If we are already monitoring latencies, don't check again. */
 | |
| 	if (blk_stat_is_active(kqd->cb))
 | |
| 		return;
 | |
| 
 | |
| 	now = ktime_get_ns();
 | |
| 	if (now < rq->io_start_time_ns)
 | |
| 		return;
 | |
| 
 | |
| 	latency = now - rq->io_start_time_ns;
 | |
| 
 | |
| 	if (latency > target)
 | |
| 		blk_stat_activate_msecs(kqd->cb, 10);
 | |
| }
 | |
| 
 | |
| struct flush_kcq_data {
 | |
| 	struct kyber_hctx_data *khd;
 | |
| 	unsigned int sched_domain;
 | |
| 	struct list_head *list;
 | |
| };
 | |
| 
 | |
| static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 | |
| {
 | |
| 	struct flush_kcq_data *flush_data = data;
 | |
| 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 | |
| 
 | |
| 	spin_lock(&kcq->lock);
 | |
| 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 | |
| 			      flush_data->list);
 | |
| 	sbitmap_clear_bit(sb, bitnr);
 | |
| 	spin_unlock(&kcq->lock);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 | |
| 				  unsigned int sched_domain,
 | |
| 				  struct list_head *list)
 | |
| {
 | |
| 	struct flush_kcq_data data = {
 | |
| 		.khd = khd,
 | |
| 		.sched_domain = sched_domain,
 | |
| 		.list = list,
 | |
| 	};
 | |
| 
 | |
| 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 | |
| 			     flush_busy_kcq, &data);
 | |
| }
 | |
| 
 | |
| static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 | |
| 			     void *key)
 | |
| {
 | |
| 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
 | |
| 
 | |
| 	list_del_init(&wait->entry);
 | |
| 	blk_mq_run_hw_queue(hctx, true);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 | |
| 				  struct kyber_hctx_data *khd,
 | |
| 				  struct blk_mq_hw_ctx *hctx)
 | |
| {
 | |
| 	unsigned int sched_domain = khd->cur_domain;
 | |
| 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 | |
| 	wait_queue_entry_t *wait = &khd->domain_wait[sched_domain];
 | |
| 	struct sbq_wait_state *ws;
 | |
| 	int nr;
 | |
| 
 | |
| 	nr = __sbitmap_queue_get(domain_tokens);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we failed to get a domain token, make sure the hardware queue is
 | |
| 	 * run when one becomes available. Note that this is serialized on
 | |
| 	 * khd->lock, but we still need to be careful about the waker.
 | |
| 	 */
 | |
| 	if (nr < 0 && list_empty_careful(&wait->entry)) {
 | |
| 		ws = sbq_wait_ptr(domain_tokens,
 | |
| 				  &khd->wait_index[sched_domain]);
 | |
| 		khd->domain_ws[sched_domain] = ws;
 | |
| 		add_wait_queue(&ws->wait, wait);
 | |
| 
 | |
| 		/*
 | |
| 		 * Try again in case a token was freed before we got on the wait
 | |
| 		 * queue.
 | |
| 		 */
 | |
| 		nr = __sbitmap_queue_get(domain_tokens);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we got a token while we were on the wait queue, remove ourselves
 | |
| 	 * from the wait queue to ensure that all wake ups make forward
 | |
| 	 * progress. It's possible that the waker already deleted the entry
 | |
| 	 * between the !list_empty_careful() check and us grabbing the lock, but
 | |
| 	 * list_del_init() is okay with that.
 | |
| 	 */
 | |
| 	if (nr >= 0 && !list_empty_careful(&wait->entry)) {
 | |
| 		ws = khd->domain_ws[sched_domain];
 | |
| 		spin_lock_irq(&ws->wait.lock);
 | |
| 		list_del_init(&wait->entry);
 | |
| 		spin_unlock_irq(&ws->wait.lock);
 | |
| 	}
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static struct request *
 | |
| kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 | |
| 			  struct kyber_hctx_data *khd,
 | |
| 			  struct blk_mq_hw_ctx *hctx)
 | |
| {
 | |
| 	struct list_head *rqs;
 | |
| 	struct request *rq;
 | |
| 	int nr;
 | |
| 
 | |
| 	rqs = &khd->rqs[khd->cur_domain];
 | |
| 
 | |
| 	/*
 | |
| 	 * If we already have a flushed request, then we just need to get a
 | |
| 	 * token for it. Otherwise, if there are pending requests in the kcqs,
 | |
| 	 * flush the kcqs, but only if we can get a token. If not, we should
 | |
| 	 * leave the requests in the kcqs so that they can be merged. Note that
 | |
| 	 * khd->lock serializes the flushes, so if we observed any bit set in
 | |
| 	 * the kcq_map, we will always get a request.
 | |
| 	 */
 | |
| 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
 | |
| 	if (rq) {
 | |
| 		nr = kyber_get_domain_token(kqd, khd, hctx);
 | |
| 		if (nr >= 0) {
 | |
| 			khd->batching++;
 | |
| 			rq_set_domain_token(rq, nr);
 | |
| 			list_del_init(&rq->queuelist);
 | |
| 			return rq;
 | |
| 		}
 | |
| 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 | |
| 		nr = kyber_get_domain_token(kqd, khd, hctx);
 | |
| 		if (nr >= 0) {
 | |
| 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 | |
| 			rq = list_first_entry(rqs, struct request, queuelist);
 | |
| 			khd->batching++;
 | |
| 			rq_set_domain_token(rq, nr);
 | |
| 			list_del_init(&rq->queuelist);
 | |
| 			return rq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* There were either no pending requests or no tokens. */
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 | |
| {
 | |
| 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;
 | |
| 	struct request *rq;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock(&khd->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * First, if we are still entitled to batch, try to dispatch a request
 | |
| 	 * from the batch.
 | |
| 	 */
 | |
| 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 | |
| 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 | |
| 		if (rq)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Either,
 | |
| 	 * 1. We were no longer entitled to a batch.
 | |
| 	 * 2. The domain we were batching didn't have any requests.
 | |
| 	 * 3. The domain we were batching was out of tokens.
 | |
| 	 *
 | |
| 	 * Start another batch. Note that this wraps back around to the original
 | |
| 	 * domain if no other domains have requests or tokens.
 | |
| 	 */
 | |
| 	khd->batching = 0;
 | |
| 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | |
| 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 | |
| 			khd->cur_domain = 0;
 | |
| 		else
 | |
| 			khd->cur_domain++;
 | |
| 
 | |
| 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 | |
| 		if (rq)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	rq = NULL;
 | |
| out:
 | |
| 	spin_unlock(&khd->lock);
 | |
| 	return rq;
 | |
| }
 | |
| 
 | |
| static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 | |
| {
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 | |
| 		if (!list_empty_careful(&khd->rqs[i]) ||
 | |
| 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #define KYBER_LAT_SHOW_STORE(op)					\
 | |
| static ssize_t kyber_##op##_lat_show(struct elevator_queue *e,		\
 | |
| 				     char *page)			\
 | |
| {									\
 | |
| 	struct kyber_queue_data *kqd = e->elevator_data;		\
 | |
| 									\
 | |
| 	return sprintf(page, "%llu\n", kqd->op##_lat_nsec);		\
 | |
| }									\
 | |
| 									\
 | |
| static ssize_t kyber_##op##_lat_store(struct elevator_queue *e,		\
 | |
| 				      const char *page, size_t count)	\
 | |
| {									\
 | |
| 	struct kyber_queue_data *kqd = e->elevator_data;		\
 | |
| 	unsigned long long nsec;					\
 | |
| 	int ret;							\
 | |
| 									\
 | |
| 	ret = kstrtoull(page, 10, &nsec);				\
 | |
| 	if (ret)							\
 | |
| 		return ret;						\
 | |
| 									\
 | |
| 	kqd->op##_lat_nsec = nsec;					\
 | |
| 									\
 | |
| 	return count;							\
 | |
| }
 | |
| KYBER_LAT_SHOW_STORE(read);
 | |
| KYBER_LAT_SHOW_STORE(write);
 | |
| #undef KYBER_LAT_SHOW_STORE
 | |
| 
 | |
| #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 | |
| static struct elv_fs_entry kyber_sched_attrs[] = {
 | |
| 	KYBER_LAT_ATTR(read),
 | |
| 	KYBER_LAT_ATTR(write),
 | |
| 	__ATTR_NULL
 | |
| };
 | |
| #undef KYBER_LAT_ATTR
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEBUG_FS
 | |
| #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
 | |
| static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
 | |
| {									\
 | |
| 	struct request_queue *q = data;					\
 | |
| 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
 | |
| 									\
 | |
| 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
 | |
| 	return 0;							\
 | |
| }									\
 | |
| 									\
 | |
| static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
 | |
| 	__acquires(&khd->lock)						\
 | |
| {									\
 | |
| 	struct blk_mq_hw_ctx *hctx = m->private;			\
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;			\
 | |
| 									\
 | |
| 	spin_lock(&khd->lock);						\
 | |
| 	return seq_list_start(&khd->rqs[domain], *pos);			\
 | |
| }									\
 | |
| 									\
 | |
| static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
 | |
| 				     loff_t *pos)			\
 | |
| {									\
 | |
| 	struct blk_mq_hw_ctx *hctx = m->private;			\
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;			\
 | |
| 									\
 | |
| 	return seq_list_next(v, &khd->rqs[domain], pos);		\
 | |
| }									\
 | |
| 									\
 | |
| static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
 | |
| 	__releases(&khd->lock)						\
 | |
| {									\
 | |
| 	struct blk_mq_hw_ctx *hctx = m->private;			\
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;			\
 | |
| 									\
 | |
| 	spin_unlock(&khd->lock);					\
 | |
| }									\
 | |
| 									\
 | |
| static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
 | |
| 	.start	= kyber_##name##_rqs_start,				\
 | |
| 	.next	= kyber_##name##_rqs_next,				\
 | |
| 	.stop	= kyber_##name##_rqs_stop,				\
 | |
| 	.show	= blk_mq_debugfs_rq_show,				\
 | |
| };									\
 | |
| 									\
 | |
| static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
 | |
| {									\
 | |
| 	struct blk_mq_hw_ctx *hctx = data;				\
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;			\
 | |
| 	wait_queue_entry_t *wait = &khd->domain_wait[domain];		\
 | |
| 									\
 | |
| 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
 | |
| 	return 0;							\
 | |
| }
 | |
| KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 | |
| KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
 | |
| KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 | |
| #undef KYBER_DEBUGFS_DOMAIN_ATTRS
 | |
| 
 | |
| static int kyber_async_depth_show(void *data, struct seq_file *m)
 | |
| {
 | |
| 	struct request_queue *q = data;
 | |
| 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
 | |
| 
 | |
| 	seq_printf(m, "%u\n", kqd->async_depth);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kyber_cur_domain_show(void *data, struct seq_file *m)
 | |
| {
 | |
| 	struct blk_mq_hw_ctx *hctx = data;
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;
 | |
| 
 | |
| 	switch (khd->cur_domain) {
 | |
| 	case KYBER_READ:
 | |
| 		seq_puts(m, "READ\n");
 | |
| 		break;
 | |
| 	case KYBER_SYNC_WRITE:
 | |
| 		seq_puts(m, "SYNC_WRITE\n");
 | |
| 		break;
 | |
| 	case KYBER_OTHER:
 | |
| 		seq_puts(m, "OTHER\n");
 | |
| 		break;
 | |
| 	default:
 | |
| 		seq_printf(m, "%u\n", khd->cur_domain);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kyber_batching_show(void *data, struct seq_file *m)
 | |
| {
 | |
| 	struct blk_mq_hw_ctx *hctx = data;
 | |
| 	struct kyber_hctx_data *khd = hctx->sched_data;
 | |
| 
 | |
| 	seq_printf(m, "%u\n", khd->batching);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
 | |
| 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
 | |
| static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 | |
| 	KYBER_QUEUE_DOMAIN_ATTRS(read),
 | |
| 	KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
 | |
| 	KYBER_QUEUE_DOMAIN_ATTRS(other),
 | |
| 	{"async_depth", 0400, kyber_async_depth_show},
 | |
| 	{},
 | |
| };
 | |
| #undef KYBER_QUEUE_DOMAIN_ATTRS
 | |
| 
 | |
| #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
 | |
| 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
 | |
| 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
 | |
| static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
 | |
| 	KYBER_HCTX_DOMAIN_ATTRS(read),
 | |
| 	KYBER_HCTX_DOMAIN_ATTRS(sync_write),
 | |
| 	KYBER_HCTX_DOMAIN_ATTRS(other),
 | |
| 	{"cur_domain", 0400, kyber_cur_domain_show},
 | |
| 	{"batching", 0400, kyber_batching_show},
 | |
| 	{},
 | |
| };
 | |
| #undef KYBER_HCTX_DOMAIN_ATTRS
 | |
| #endif
 | |
| 
 | |
| static struct elevator_type kyber_sched = {
 | |
| 	.ops.mq = {
 | |
| 		.init_sched = kyber_init_sched,
 | |
| 		.exit_sched = kyber_exit_sched,
 | |
| 		.init_hctx = kyber_init_hctx,
 | |
| 		.exit_hctx = kyber_exit_hctx,
 | |
| 		.limit_depth = kyber_limit_depth,
 | |
| 		.bio_merge = kyber_bio_merge,
 | |
| 		.prepare_request = kyber_prepare_request,
 | |
| 		.insert_requests = kyber_insert_requests,
 | |
| 		.finish_request = kyber_finish_request,
 | |
| 		.requeue_request = kyber_finish_request,
 | |
| 		.completed_request = kyber_completed_request,
 | |
| 		.dispatch_request = kyber_dispatch_request,
 | |
| 		.has_work = kyber_has_work,
 | |
| 	},
 | |
| 	.uses_mq = true,
 | |
| #ifdef CONFIG_BLK_DEBUG_FS
 | |
| 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
 | |
| 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
 | |
| #endif
 | |
| 	.elevator_attrs = kyber_sched_attrs,
 | |
| 	.elevator_name = "kyber",
 | |
| 	.elevator_owner = THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init kyber_init(void)
 | |
| {
 | |
| 	return elv_register(&kyber_sched);
 | |
| }
 | |
| 
 | |
| static void __exit kyber_exit(void)
 | |
| {
 | |
| 	elv_unregister(&kyber_sched);
 | |
| }
 | |
| 
 | |
| module_init(kyber_init);
 | |
| module_exit(kyber_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Omar Sandoval");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("Kyber I/O scheduler");
 | 
