904 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			904 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file contains shadow memory manipulation code.
 | |
|  *
 | |
|  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 | |
|  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
 | |
|  *
 | |
|  * Some code borrowed from https://github.com/xairy/kasan-prototype by
 | |
|  *        Andrey Konovalov <andreyknvl@gmail.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| #define DISABLE_BRANCH_PROFILING
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/linkage.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/printk.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/stacktrace.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/bug.h>
 | |
| 
 | |
| #include "kasan.h"
 | |
| #include "../slab.h"
 | |
| 
 | |
| void kasan_enable_current(void)
 | |
| {
 | |
| 	current->kasan_depth++;
 | |
| }
 | |
| 
 | |
| void kasan_disable_current(void)
 | |
| {
 | |
| 	current->kasan_depth--;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
 | |
|  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
 | |
|  */
 | |
| static void kasan_poison_shadow(const void *address, size_t size, u8 value)
 | |
| {
 | |
| 	void *shadow_start, *shadow_end;
 | |
| 
 | |
| 	shadow_start = kasan_mem_to_shadow(address);
 | |
| 	shadow_end = kasan_mem_to_shadow(address + size);
 | |
| 
 | |
| 	memset(shadow_start, value, shadow_end - shadow_start);
 | |
| }
 | |
| 
 | |
| void kasan_unpoison_shadow(const void *address, size_t size)
 | |
| {
 | |
| 	kasan_poison_shadow(address, size, 0);
 | |
| 
 | |
| 	if (size & KASAN_SHADOW_MASK) {
 | |
| 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
 | |
| 		*shadow = size & KASAN_SHADOW_MASK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
 | |
| {
 | |
| 	void *base = task_stack_page(task);
 | |
| 	size_t size = sp - base;
 | |
| 
 | |
| 	kasan_unpoison_shadow(base, size);
 | |
| }
 | |
| 
 | |
| /* Unpoison the entire stack for a task. */
 | |
| void kasan_unpoison_task_stack(struct task_struct *task)
 | |
| {
 | |
| 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
 | |
| }
 | |
| 
 | |
| /* Unpoison the stack for the current task beyond a watermark sp value. */
 | |
| asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
 | |
| {
 | |
| 	/*
 | |
| 	 * Calculate the task stack base address.  Avoid using 'current'
 | |
| 	 * because this function is called by early resume code which hasn't
 | |
| 	 * yet set up the percpu register (%gs).
 | |
| 	 */
 | |
| 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
 | |
| 
 | |
| 	kasan_unpoison_shadow(base, watermark - base);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear all poison for the region between the current SP and a provided
 | |
|  * watermark value, as is sometimes required prior to hand-crafted asm function
 | |
|  * returns in the middle of functions.
 | |
|  */
 | |
| void kasan_unpoison_stack_above_sp_to(const void *watermark)
 | |
| {
 | |
| 	const void *sp = __builtin_frame_address(0);
 | |
| 	size_t size = watermark - sp;
 | |
| 
 | |
| 	if (WARN_ON(sp > watermark))
 | |
| 		return;
 | |
| 	kasan_unpoison_shadow(sp, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * All functions below always inlined so compiler could
 | |
|  * perform better optimizations in each of __asan_loadX/__assn_storeX
 | |
|  * depending on memory access size X.
 | |
|  */
 | |
| 
 | |
| static __always_inline bool memory_is_poisoned_1(unsigned long addr)
 | |
| {
 | |
| 	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
 | |
| 
 | |
| 	if (unlikely(shadow_value)) {
 | |
| 		s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
 | |
| 		return unlikely(last_accessible_byte >= shadow_value);
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
 | |
| 						unsigned long size)
 | |
| {
 | |
| 	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Access crosses 8(shadow size)-byte boundary. Such access maps
 | |
| 	 * into 2 shadow bytes, so we need to check them both.
 | |
| 	 */
 | |
| 	if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
 | |
| 		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
 | |
| 
 | |
| 	return memory_is_poisoned_1(addr + size - 1);
 | |
| }
 | |
| 
 | |
| static __always_inline bool memory_is_poisoned_16(unsigned long addr)
 | |
| {
 | |
| 	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
 | |
| 
 | |
| 	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
 | |
| 	if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
 | |
| 		return *shadow_addr || memory_is_poisoned_1(addr + 15);
 | |
| 
 | |
| 	return *shadow_addr;
 | |
| }
 | |
| 
 | |
| static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
 | |
| 					size_t size)
 | |
| {
 | |
| 	while (size) {
 | |
| 		if (unlikely(*start))
 | |
| 			return (unsigned long)start;
 | |
| 		start++;
 | |
| 		size--;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __always_inline unsigned long memory_is_nonzero(const void *start,
 | |
| 						const void *end)
 | |
| {
 | |
| 	unsigned int words;
 | |
| 	unsigned long ret;
 | |
| 	unsigned int prefix = (unsigned long)start % 8;
 | |
| 
 | |
| 	if (end - start <= 16)
 | |
| 		return bytes_is_nonzero(start, end - start);
 | |
| 
 | |
| 	if (prefix) {
 | |
| 		prefix = 8 - prefix;
 | |
| 		ret = bytes_is_nonzero(start, prefix);
 | |
| 		if (unlikely(ret))
 | |
| 			return ret;
 | |
| 		start += prefix;
 | |
| 	}
 | |
| 
 | |
| 	words = (end - start) / 8;
 | |
| 	while (words) {
 | |
| 		if (unlikely(*(u64 *)start))
 | |
| 			return bytes_is_nonzero(start, 8);
 | |
| 		start += 8;
 | |
| 		words--;
 | |
| 	}
 | |
| 
 | |
| 	return bytes_is_nonzero(start, (end - start) % 8);
 | |
| }
 | |
| 
 | |
| static __always_inline bool memory_is_poisoned_n(unsigned long addr,
 | |
| 						size_t size)
 | |
| {
 | |
| 	unsigned long ret;
 | |
| 
 | |
| 	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
 | |
| 			kasan_mem_to_shadow((void *)addr + size - 1) + 1);
 | |
| 
 | |
| 	if (unlikely(ret)) {
 | |
| 		unsigned long last_byte = addr + size - 1;
 | |
| 		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
 | |
| 
 | |
| 		if (unlikely(ret != (unsigned long)last_shadow ||
 | |
| 			((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
 | |
| {
 | |
| 	if (__builtin_constant_p(size)) {
 | |
| 		switch (size) {
 | |
| 		case 1:
 | |
| 			return memory_is_poisoned_1(addr);
 | |
| 		case 2:
 | |
| 		case 4:
 | |
| 		case 8:
 | |
| 			return memory_is_poisoned_2_4_8(addr, size);
 | |
| 		case 16:
 | |
| 			return memory_is_poisoned_16(addr);
 | |
| 		default:
 | |
| 			BUILD_BUG();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return memory_is_poisoned_n(addr, size);
 | |
| }
 | |
| 
 | |
| static __always_inline void check_memory_region_inline(unsigned long addr,
 | |
| 						size_t size, bool write,
 | |
| 						unsigned long ret_ip)
 | |
| {
 | |
| 	if (unlikely(size == 0))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely((void *)addr <
 | |
| 		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
 | |
| 		kasan_report(addr, size, write, ret_ip);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!memory_is_poisoned(addr, size)))
 | |
| 		return;
 | |
| 
 | |
| 	kasan_report(addr, size, write, ret_ip);
 | |
| }
 | |
| 
 | |
| static void check_memory_region(unsigned long addr,
 | |
| 				size_t size, bool write,
 | |
| 				unsigned long ret_ip)
 | |
| {
 | |
| 	check_memory_region_inline(addr, size, write, ret_ip);
 | |
| }
 | |
| 
 | |
| void kasan_check_read(const volatile void *p, unsigned int size)
 | |
| {
 | |
| 	check_memory_region((unsigned long)p, size, false, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(kasan_check_read);
 | |
| 
 | |
| void kasan_check_write(const volatile void *p, unsigned int size)
 | |
| {
 | |
| 	check_memory_region((unsigned long)p, size, true, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(kasan_check_write);
 | |
| 
 | |
| #undef memset
 | |
| void *memset(void *addr, int c, size_t len)
 | |
| {
 | |
| 	check_memory_region((unsigned long)addr, len, true, _RET_IP_);
 | |
| 
 | |
| 	return __memset(addr, c, len);
 | |
| }
 | |
| 
 | |
| #undef memmove
 | |
| void *memmove(void *dest, const void *src, size_t len)
 | |
| {
 | |
| 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
 | |
| 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
 | |
| 
 | |
| 	return __memmove(dest, src, len);
 | |
| }
 | |
| 
 | |
| #undef memcpy
 | |
| void *memcpy(void *dest, const void *src, size_t len)
 | |
| {
 | |
| 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
 | |
| 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
 | |
| 
 | |
| 	return __memcpy(dest, src, len);
 | |
| }
 | |
| 
 | |
| void kasan_alloc_pages(struct page *page, unsigned int order)
 | |
| {
 | |
| 	if (likely(!PageHighMem(page)))
 | |
| 		kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
 | |
| }
 | |
| 
 | |
| void kasan_free_pages(struct page *page, unsigned int order)
 | |
| {
 | |
| 	if (likely(!PageHighMem(page)))
 | |
| 		kasan_poison_shadow(page_address(page),
 | |
| 				PAGE_SIZE << order,
 | |
| 				KASAN_FREE_PAGE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 | |
|  * For larger allocations larger redzones are used.
 | |
|  */
 | |
| static unsigned int optimal_redzone(unsigned int object_size)
 | |
| {
 | |
| 	return
 | |
| 		object_size <= 64        - 16   ? 16 :
 | |
| 		object_size <= 128       - 32   ? 32 :
 | |
| 		object_size <= 512       - 64   ? 64 :
 | |
| 		object_size <= 4096      - 128  ? 128 :
 | |
| 		object_size <= (1 << 14) - 256  ? 256 :
 | |
| 		object_size <= (1 << 15) - 512  ? 512 :
 | |
| 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
 | |
| }
 | |
| 
 | |
| void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
 | |
| 			slab_flags_t *flags)
 | |
| {
 | |
| 	unsigned int orig_size = *size;
 | |
| 	int redzone_adjust;
 | |
| 
 | |
| 	/* Add alloc meta. */
 | |
| 	cache->kasan_info.alloc_meta_offset = *size;
 | |
| 	*size += sizeof(struct kasan_alloc_meta);
 | |
| 
 | |
| 	/* Add free meta. */
 | |
| 	if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
 | |
| 	    cache->object_size < sizeof(struct kasan_free_meta)) {
 | |
| 		cache->kasan_info.free_meta_offset = *size;
 | |
| 		*size += sizeof(struct kasan_free_meta);
 | |
| 	}
 | |
| 	redzone_adjust = optimal_redzone(cache->object_size) -
 | |
| 		(*size - cache->object_size);
 | |
| 
 | |
| 	if (redzone_adjust > 0)
 | |
| 		*size += redzone_adjust;
 | |
| 
 | |
| 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
 | |
| 			max(*size, cache->object_size +
 | |
| 					optimal_redzone(cache->object_size)));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the metadata doesn't fit, don't enable KASAN at all.
 | |
| 	 */
 | |
| 	if (*size <= cache->kasan_info.alloc_meta_offset ||
 | |
| 			*size <= cache->kasan_info.free_meta_offset) {
 | |
| 		cache->kasan_info.alloc_meta_offset = 0;
 | |
| 		cache->kasan_info.free_meta_offset = 0;
 | |
| 		*size = orig_size;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	*flags |= SLAB_KASAN;
 | |
| }
 | |
| 
 | |
| void kasan_cache_shrink(struct kmem_cache *cache)
 | |
| {
 | |
| 	quarantine_remove_cache(cache);
 | |
| }
 | |
| 
 | |
| void kasan_cache_shutdown(struct kmem_cache *cache)
 | |
| {
 | |
| 	if (!__kmem_cache_empty(cache))
 | |
| 		quarantine_remove_cache(cache);
 | |
| }
 | |
| 
 | |
| size_t kasan_metadata_size(struct kmem_cache *cache)
 | |
| {
 | |
| 	return (cache->kasan_info.alloc_meta_offset ?
 | |
| 		sizeof(struct kasan_alloc_meta) : 0) +
 | |
| 		(cache->kasan_info.free_meta_offset ?
 | |
| 		sizeof(struct kasan_free_meta) : 0);
 | |
| }
 | |
| 
 | |
| void kasan_poison_slab(struct page *page)
 | |
| {
 | |
| 	kasan_poison_shadow(page_address(page),
 | |
| 			PAGE_SIZE << compound_order(page),
 | |
| 			KASAN_KMALLOC_REDZONE);
 | |
| }
 | |
| 
 | |
| void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
 | |
| {
 | |
| 	kasan_unpoison_shadow(object, cache->object_size);
 | |
| }
 | |
| 
 | |
| void kasan_poison_object_data(struct kmem_cache *cache, void *object)
 | |
| {
 | |
| 	kasan_poison_shadow(object,
 | |
| 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
 | |
| 			KASAN_KMALLOC_REDZONE);
 | |
| }
 | |
| 
 | |
| static inline int in_irqentry_text(unsigned long ptr)
 | |
| {
 | |
| 	return (ptr >= (unsigned long)&__irqentry_text_start &&
 | |
| 		ptr < (unsigned long)&__irqentry_text_end) ||
 | |
| 		(ptr >= (unsigned long)&__softirqentry_text_start &&
 | |
| 		 ptr < (unsigned long)&__softirqentry_text_end);
 | |
| }
 | |
| 
 | |
| static inline void filter_irq_stacks(struct stack_trace *trace)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!trace->nr_entries)
 | |
| 		return;
 | |
| 	for (i = 0; i < trace->nr_entries; i++)
 | |
| 		if (in_irqentry_text(trace->entries[i])) {
 | |
| 			/* Include the irqentry function into the stack. */
 | |
| 			trace->nr_entries = i + 1;
 | |
| 			break;
 | |
| 		}
 | |
| }
 | |
| 
 | |
| static inline depot_stack_handle_t save_stack(gfp_t flags)
 | |
| {
 | |
| 	unsigned long entries[KASAN_STACK_DEPTH];
 | |
| 	struct stack_trace trace = {
 | |
| 		.nr_entries = 0,
 | |
| 		.entries = entries,
 | |
| 		.max_entries = KASAN_STACK_DEPTH,
 | |
| 		.skip = 0
 | |
| 	};
 | |
| 
 | |
| 	save_stack_trace(&trace);
 | |
| 	filter_irq_stacks(&trace);
 | |
| 	if (trace.nr_entries != 0 &&
 | |
| 	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
 | |
| 		trace.nr_entries--;
 | |
| 
 | |
| 	return depot_save_stack(&trace, flags);
 | |
| }
 | |
| 
 | |
| static inline void set_track(struct kasan_track *track, gfp_t flags)
 | |
| {
 | |
| 	track->pid = current->pid;
 | |
| 	track->stack = save_stack(flags);
 | |
| }
 | |
| 
 | |
| struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
 | |
| 					const void *object)
 | |
| {
 | |
| 	BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
 | |
| 	return (void *)object + cache->kasan_info.alloc_meta_offset;
 | |
| }
 | |
| 
 | |
| struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
 | |
| 				      const void *object)
 | |
| {
 | |
| 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
 | |
| 	return (void *)object + cache->kasan_info.free_meta_offset;
 | |
| }
 | |
| 
 | |
| void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
 | |
| {
 | |
| 	struct kasan_alloc_meta *alloc_info;
 | |
| 
 | |
| 	if (!(cache->flags & SLAB_KASAN))
 | |
| 		return;
 | |
| 
 | |
| 	alloc_info = get_alloc_info(cache, object);
 | |
| 	__memset(alloc_info, 0, sizeof(*alloc_info));
 | |
| }
 | |
| 
 | |
| void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
 | |
| {
 | |
| 	kasan_kmalloc(cache, object, cache->object_size, flags);
 | |
| }
 | |
| 
 | |
| static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
 | |
| 			      unsigned long ip, bool quarantine)
 | |
| {
 | |
| 	s8 shadow_byte;
 | |
| 	unsigned long rounded_up_size;
 | |
| 
 | |
| 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
 | |
| 	    object)) {
 | |
| 		kasan_report_invalid_free(object, ip);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* RCU slabs could be legally used after free within the RCU period */
 | |
| 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
 | |
| 		return false;
 | |
| 
 | |
| 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
 | |
| 	if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
 | |
| 		kasan_report_invalid_free(object, ip);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
 | |
| 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
 | |
| 
 | |
| 	if (!quarantine || unlikely(!(cache->flags & SLAB_KASAN)))
 | |
| 		return false;
 | |
| 
 | |
| 	set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
 | |
| 	quarantine_put(get_free_info(cache, object), cache);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
 | |
| {
 | |
| 	return __kasan_slab_free(cache, object, ip, true);
 | |
| }
 | |
| 
 | |
| void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
 | |
| 		   gfp_t flags)
 | |
| {
 | |
| 	unsigned long redzone_start;
 | |
| 	unsigned long redzone_end;
 | |
| 
 | |
| 	if (gfpflags_allow_blocking(flags))
 | |
| 		quarantine_reduce();
 | |
| 
 | |
| 	if (unlikely(object == NULL))
 | |
| 		return;
 | |
| 
 | |
| 	redzone_start = round_up((unsigned long)(object + size),
 | |
| 				KASAN_SHADOW_SCALE_SIZE);
 | |
| 	redzone_end = round_up((unsigned long)object + cache->object_size,
 | |
| 				KASAN_SHADOW_SCALE_SIZE);
 | |
| 
 | |
| 	kasan_unpoison_shadow(object, size);
 | |
| 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
 | |
| 		KASAN_KMALLOC_REDZONE);
 | |
| 
 | |
| 	if (cache->flags & SLAB_KASAN)
 | |
| 		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(kasan_kmalloc);
 | |
| 
 | |
| void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned long redzone_start;
 | |
| 	unsigned long redzone_end;
 | |
| 
 | |
| 	if (gfpflags_allow_blocking(flags))
 | |
| 		quarantine_reduce();
 | |
| 
 | |
| 	if (unlikely(ptr == NULL))
 | |
| 		return;
 | |
| 
 | |
| 	page = virt_to_page(ptr);
 | |
| 	redzone_start = round_up((unsigned long)(ptr + size),
 | |
| 				KASAN_SHADOW_SCALE_SIZE);
 | |
| 	redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
 | |
| 
 | |
| 	kasan_unpoison_shadow(ptr, size);
 | |
| 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
 | |
| 		KASAN_PAGE_REDZONE);
 | |
| }
 | |
| 
 | |
| void kasan_krealloc(const void *object, size_t size, gfp_t flags)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (unlikely(object == ZERO_SIZE_PTR))
 | |
| 		return;
 | |
| 
 | |
| 	page = virt_to_head_page(object);
 | |
| 
 | |
| 	if (unlikely(!PageSlab(page)))
 | |
| 		kasan_kmalloc_large(object, size, flags);
 | |
| 	else
 | |
| 		kasan_kmalloc(page->slab_cache, object, size, flags);
 | |
| }
 | |
| 
 | |
| void kasan_poison_kfree(void *ptr, unsigned long ip)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = virt_to_head_page(ptr);
 | |
| 
 | |
| 	if (unlikely(!PageSlab(page))) {
 | |
| 		if (ptr != page_address(page)) {
 | |
| 			kasan_report_invalid_free(ptr, ip);
 | |
| 			return;
 | |
| 		}
 | |
| 		kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
 | |
| 				KASAN_FREE_PAGE);
 | |
| 	} else {
 | |
| 		__kasan_slab_free(page->slab_cache, ptr, ip, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kasan_kfree_large(void *ptr, unsigned long ip)
 | |
| {
 | |
| 	if (ptr != page_address(virt_to_head_page(ptr)))
 | |
| 		kasan_report_invalid_free(ptr, ip);
 | |
| 	/* The object will be poisoned by page_alloc. */
 | |
| }
 | |
| 
 | |
| int kasan_module_alloc(void *addr, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t scaled_size;
 | |
| 	size_t shadow_size;
 | |
| 	unsigned long shadow_start;
 | |
| 
 | |
| 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
 | |
| 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
 | |
| 	shadow_size = round_up(scaled_size, PAGE_SIZE);
 | |
| 
 | |
| 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
 | |
| 			shadow_start + shadow_size,
 | |
| 			GFP_KERNEL | __GFP_ZERO,
 | |
| 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
 | |
| 			__builtin_return_address(0));
 | |
| 
 | |
| 	if (ret) {
 | |
| 		find_vm_area(addr)->flags |= VM_KASAN;
 | |
| 		kmemleak_ignore(ret);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void kasan_free_shadow(const struct vm_struct *vm)
 | |
| {
 | |
| 	if (vm->flags & VM_KASAN)
 | |
| 		vfree(kasan_mem_to_shadow(vm->addr));
 | |
| }
 | |
| 
 | |
| static void register_global(struct kasan_global *global)
 | |
| {
 | |
| 	size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
 | |
| 
 | |
| 	kasan_unpoison_shadow(global->beg, global->size);
 | |
| 
 | |
| 	kasan_poison_shadow(global->beg + aligned_size,
 | |
| 		global->size_with_redzone - aligned_size,
 | |
| 		KASAN_GLOBAL_REDZONE);
 | |
| }
 | |
| 
 | |
| void __asan_register_globals(struct kasan_global *globals, size_t size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		register_global(&globals[i]);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_register_globals);
 | |
| 
 | |
| void __asan_unregister_globals(struct kasan_global *globals, size_t size)
 | |
| {
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_unregister_globals);
 | |
| 
 | |
| #define DEFINE_ASAN_LOAD_STORE(size)					\
 | |
| 	void __asan_load##size(unsigned long addr)			\
 | |
| 	{								\
 | |
| 		check_memory_region_inline(addr, size, false, _RET_IP_);\
 | |
| 	}								\
 | |
| 	EXPORT_SYMBOL(__asan_load##size);				\
 | |
| 	__alias(__asan_load##size)					\
 | |
| 	void __asan_load##size##_noabort(unsigned long);		\
 | |
| 	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
 | |
| 	void __asan_store##size(unsigned long addr)			\
 | |
| 	{								\
 | |
| 		check_memory_region_inline(addr, size, true, _RET_IP_);	\
 | |
| 	}								\
 | |
| 	EXPORT_SYMBOL(__asan_store##size);				\
 | |
| 	__alias(__asan_store##size)					\
 | |
| 	void __asan_store##size##_noabort(unsigned long);		\
 | |
| 	EXPORT_SYMBOL(__asan_store##size##_noabort)
 | |
| 
 | |
| DEFINE_ASAN_LOAD_STORE(1);
 | |
| DEFINE_ASAN_LOAD_STORE(2);
 | |
| DEFINE_ASAN_LOAD_STORE(4);
 | |
| DEFINE_ASAN_LOAD_STORE(8);
 | |
| DEFINE_ASAN_LOAD_STORE(16);
 | |
| 
 | |
| void __asan_loadN(unsigned long addr, size_t size)
 | |
| {
 | |
| 	check_memory_region(addr, size, false, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_loadN);
 | |
| 
 | |
| __alias(__asan_loadN)
 | |
| void __asan_loadN_noabort(unsigned long, size_t);
 | |
| EXPORT_SYMBOL(__asan_loadN_noabort);
 | |
| 
 | |
| void __asan_storeN(unsigned long addr, size_t size)
 | |
| {
 | |
| 	check_memory_region(addr, size, true, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_storeN);
 | |
| 
 | |
| __alias(__asan_storeN)
 | |
| void __asan_storeN_noabort(unsigned long, size_t);
 | |
| EXPORT_SYMBOL(__asan_storeN_noabort);
 | |
| 
 | |
| /* to shut up compiler complaints */
 | |
| void __asan_handle_no_return(void) {}
 | |
| EXPORT_SYMBOL(__asan_handle_no_return);
 | |
| 
 | |
| /* Emitted by compiler to poison large objects when they go out of scope. */
 | |
| void __asan_poison_stack_memory(const void *addr, size_t size)
 | |
| {
 | |
| 	/*
 | |
| 	 * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
 | |
| 	 * by redzones, so we simply round up size to simplify logic.
 | |
| 	 */
 | |
| 	kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
 | |
| 			    KASAN_USE_AFTER_SCOPE);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_poison_stack_memory);
 | |
| 
 | |
| /* Emitted by compiler to unpoison large objects when they go into scope. */
 | |
| void __asan_unpoison_stack_memory(const void *addr, size_t size)
 | |
| {
 | |
| 	kasan_unpoison_shadow(addr, size);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_unpoison_stack_memory);
 | |
| 
 | |
| /* Emitted by compiler to poison alloca()ed objects. */
 | |
| void __asan_alloca_poison(unsigned long addr, size_t size)
 | |
| {
 | |
| 	size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
 | |
| 	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
 | |
| 			rounded_up_size;
 | |
| 	size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE);
 | |
| 
 | |
| 	const void *left_redzone = (const void *)(addr -
 | |
| 			KASAN_ALLOCA_REDZONE_SIZE);
 | |
| 	const void *right_redzone = (const void *)(addr + rounded_up_size);
 | |
| 
 | |
| 	WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
 | |
| 
 | |
| 	kasan_unpoison_shadow((const void *)(addr + rounded_down_size),
 | |
| 			      size - rounded_down_size);
 | |
| 	kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
 | |
| 			KASAN_ALLOCA_LEFT);
 | |
| 	kasan_poison_shadow(right_redzone,
 | |
| 			padding_size + KASAN_ALLOCA_REDZONE_SIZE,
 | |
| 			KASAN_ALLOCA_RIGHT);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_alloca_poison);
 | |
| 
 | |
| /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
 | |
| void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
 | |
| {
 | |
| 	if (unlikely(!stack_top || stack_top > stack_bottom))
 | |
| 		return;
 | |
| 
 | |
| 	kasan_unpoison_shadow(stack_top, stack_bottom - stack_top);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_allocas_unpoison);
 | |
| 
 | |
| /* Emitted by the compiler to [un]poison local variables. */
 | |
| #define DEFINE_ASAN_SET_SHADOW(byte) \
 | |
| 	void __asan_set_shadow_##byte(const void *addr, size_t size)	\
 | |
| 	{								\
 | |
| 		__memset((void *)addr, 0x##byte, size);			\
 | |
| 	}								\
 | |
| 	EXPORT_SYMBOL(__asan_set_shadow_##byte)
 | |
| 
 | |
| DEFINE_ASAN_SET_SHADOW(00);
 | |
| DEFINE_ASAN_SET_SHADOW(f1);
 | |
| DEFINE_ASAN_SET_SHADOW(f2);
 | |
| DEFINE_ASAN_SET_SHADOW(f3);
 | |
| DEFINE_ASAN_SET_SHADOW(f5);
 | |
| DEFINE_ASAN_SET_SHADOW(f8);
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| static bool shadow_mapped(unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd = pgd_offset_k(addr);
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return false;
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	if (p4d_none(*p4d))
 | |
| 		return false;
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	if (pud_none(*pud))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't use pud_large() or pud_huge(), the first one is
 | |
| 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
 | |
| 	 * pud_bad(), if pud is bad then it's bad because it's huge.
 | |
| 	 */
 | |
| 	if (pud_bad(*pud))
 | |
| 		return true;
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return false;
 | |
| 
 | |
| 	if (pmd_bad(*pmd))
 | |
| 		return true;
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	return !pte_none(*pte);
 | |
| }
 | |
| 
 | |
| static int __meminit kasan_mem_notifier(struct notifier_block *nb,
 | |
| 			unsigned long action, void *data)
 | |
| {
 | |
| 	struct memory_notify *mem_data = data;
 | |
| 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
 | |
| 	unsigned long shadow_end, shadow_size;
 | |
| 
 | |
| 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
 | |
| 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
 | |
| 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
 | |
| 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
 | |
| 	shadow_end = shadow_start + shadow_size;
 | |
| 
 | |
| 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
 | |
| 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
 | |
| 		return NOTIFY_BAD;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_GOING_ONLINE: {
 | |
| 		void *ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * If shadow is mapped already than it must have been mapped
 | |
| 		 * during the boot. This could happen if we onlining previously
 | |
| 		 * offlined memory.
 | |
| 		 */
 | |
| 		if (shadow_mapped(shadow_start))
 | |
| 			return NOTIFY_OK;
 | |
| 
 | |
| 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
 | |
| 					shadow_end, GFP_KERNEL,
 | |
| 					PAGE_KERNEL, VM_NO_GUARD,
 | |
| 					pfn_to_nid(mem_data->start_pfn),
 | |
| 					__builtin_return_address(0));
 | |
| 		if (!ret)
 | |
| 			return NOTIFY_BAD;
 | |
| 
 | |
| 		kmemleak_ignore(ret);
 | |
| 		return NOTIFY_OK;
 | |
| 	}
 | |
| 	case MEM_CANCEL_ONLINE:
 | |
| 	case MEM_OFFLINE: {
 | |
| 		struct vm_struct *vm;
 | |
| 
 | |
| 		/*
 | |
| 		 * shadow_start was either mapped during boot by kasan_init()
 | |
| 		 * or during memory online by __vmalloc_node_range().
 | |
| 		 * In the latter case we can use vfree() to free shadow.
 | |
| 		 * Non-NULL result of the find_vm_area() will tell us if
 | |
| 		 * that was the second case.
 | |
| 		 *
 | |
| 		 * Currently it's not possible to free shadow mapped
 | |
| 		 * during boot by kasan_init(). It's because the code
 | |
| 		 * to do that hasn't been written yet. So we'll just
 | |
| 		 * leak the memory.
 | |
| 		 */
 | |
| 		vm = find_vm_area((void *)shadow_start);
 | |
| 		if (vm)
 | |
| 			vfree((void *)shadow_start);
 | |
| 	}
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static int __init kasan_memhotplug_init(void)
 | |
| {
 | |
| 	hotplug_memory_notifier(kasan_mem_notifier, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| core_initcall(kasan_memhotplug_init);
 | |
| #endif
 | 
