854 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			854 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 *  linux/mm/swap_state.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | 
						|
 *  Swap reorganised 29.12.95, Stephen Tweedie
 | 
						|
 *
 | 
						|
 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
 | 
						|
 */
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/migrate.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/swap_slots.h>
 | 
						|
#include <linux/huge_mm.h>
 | 
						|
 | 
						|
#include <asm/pgtable.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * swapper_space is a fiction, retained to simplify the path through
 | 
						|
 * vmscan's shrink_page_list.
 | 
						|
 */
 | 
						|
static const struct address_space_operations swap_aops = {
 | 
						|
	.writepage	= swap_writepage,
 | 
						|
	.set_page_dirty	= swap_set_page_dirty,
 | 
						|
#ifdef CONFIG_MIGRATION
 | 
						|
	.migratepage	= migrate_page,
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
 | 
						|
static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
 | 
						|
static bool enable_vma_readahead __read_mostly = true;
 | 
						|
 | 
						|
#define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
 | 
						|
#define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
 | 
						|
#define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
 | 
						|
#define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
 | 
						|
 | 
						|
#define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
 | 
						|
#define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
 | 
						|
#define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
 | 
						|
 | 
						|
#define SWAP_RA_VAL(addr, win, hits)				\
 | 
						|
	(((addr) & PAGE_MASK) |					\
 | 
						|
	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
 | 
						|
	 ((hits) & SWAP_RA_HITS_MASK))
 | 
						|
 | 
						|
/* Initial readahead hits is 4 to start up with a small window */
 | 
						|
#define GET_SWAP_RA_VAL(vma)					\
 | 
						|
	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
 | 
						|
 | 
						|
#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
 | 
						|
#define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
 | 
						|
 | 
						|
static struct {
 | 
						|
	unsigned long add_total;
 | 
						|
	unsigned long del_total;
 | 
						|
	unsigned long find_success;
 | 
						|
	unsigned long find_total;
 | 
						|
} swap_cache_info;
 | 
						|
 | 
						|
unsigned long total_swapcache_pages(void)
 | 
						|
{
 | 
						|
	unsigned int i, j, nr;
 | 
						|
	unsigned long ret = 0;
 | 
						|
	struct address_space *spaces;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	for (i = 0; i < MAX_SWAPFILES; i++) {
 | 
						|
		/*
 | 
						|
		 * The corresponding entries in nr_swapper_spaces and
 | 
						|
		 * swapper_spaces will be reused only after at least
 | 
						|
		 * one grace period.  So it is impossible for them
 | 
						|
		 * belongs to different usage.
 | 
						|
		 */
 | 
						|
		nr = nr_swapper_spaces[i];
 | 
						|
		spaces = rcu_dereference(swapper_spaces[i]);
 | 
						|
		if (!nr || !spaces)
 | 
						|
			continue;
 | 
						|
		for (j = 0; j < nr; j++)
 | 
						|
			ret += spaces[j].nrpages;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
 | 
						|
 | 
						|
void show_swap_cache_info(void)
 | 
						|
{
 | 
						|
	printk("%lu pages in swap cache\n", total_swapcache_pages());
 | 
						|
	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
 | 
						|
		swap_cache_info.add_total, swap_cache_info.del_total,
 | 
						|
		swap_cache_info.find_success, swap_cache_info.find_total);
 | 
						|
	printk("Free swap  = %ldkB\n",
 | 
						|
		get_nr_swap_pages() << (PAGE_SHIFT - 10));
 | 
						|
	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
 | 
						|
 * but sets SwapCache flag and private instead of mapping and index.
 | 
						|
 */
 | 
						|
int __add_to_swap_cache(struct page *page, swp_entry_t entry)
 | 
						|
{
 | 
						|
	int error, i, nr = hpage_nr_pages(page);
 | 
						|
	struct address_space *address_space;
 | 
						|
	pgoff_t idx = swp_offset(entry);
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
	VM_BUG_ON_PAGE(PageSwapCache(page), page);
 | 
						|
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 | 
						|
 | 
						|
	page_ref_add(page, nr);
 | 
						|
	SetPageSwapCache(page);
 | 
						|
 | 
						|
	address_space = swap_address_space(entry);
 | 
						|
	xa_lock_irq(&address_space->i_pages);
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		set_page_private(page + i, entry.val + i);
 | 
						|
		error = radix_tree_insert(&address_space->i_pages,
 | 
						|
					  idx + i, page + i);
 | 
						|
		if (unlikely(error))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (likely(!error)) {
 | 
						|
		address_space->nrpages += nr;
 | 
						|
		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 | 
						|
		ADD_CACHE_INFO(add_total, nr);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Only the context which have set SWAP_HAS_CACHE flag
 | 
						|
		 * would call add_to_swap_cache().
 | 
						|
		 * So add_to_swap_cache() doesn't returns -EEXIST.
 | 
						|
		 */
 | 
						|
		VM_BUG_ON(error == -EEXIST);
 | 
						|
		set_page_private(page + i, 0UL);
 | 
						|
		while (i--) {
 | 
						|
			radix_tree_delete(&address_space->i_pages, idx + i);
 | 
						|
			set_page_private(page + i, 0UL);
 | 
						|
		}
 | 
						|
		ClearPageSwapCache(page);
 | 
						|
		page_ref_sub(page, nr);
 | 
						|
	}
 | 
						|
	xa_unlock_irq(&address_space->i_pages);
 | 
						|
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
 | 
						|
	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
 | 
						|
	if (!error) {
 | 
						|
		error = __add_to_swap_cache(page, entry);
 | 
						|
		radix_tree_preload_end();
 | 
						|
	}
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This must be called only on pages that have
 | 
						|
 * been verified to be in the swap cache.
 | 
						|
 */
 | 
						|
void __delete_from_swap_cache(struct page *page)
 | 
						|
{
 | 
						|
	struct address_space *address_space;
 | 
						|
	int i, nr = hpage_nr_pages(page);
 | 
						|
	swp_entry_t entry;
 | 
						|
	pgoff_t idx;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 | 
						|
	VM_BUG_ON_PAGE(PageWriteback(page), page);
 | 
						|
 | 
						|
	entry.val = page_private(page);
 | 
						|
	address_space = swap_address_space(entry);
 | 
						|
	idx = swp_offset(entry);
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		radix_tree_delete(&address_space->i_pages, idx + i);
 | 
						|
		set_page_private(page + i, 0);
 | 
						|
	}
 | 
						|
	ClearPageSwapCache(page);
 | 
						|
	address_space->nrpages -= nr;
 | 
						|
	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 | 
						|
	ADD_CACHE_INFO(del_total, nr);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * add_to_swap - allocate swap space for a page
 | 
						|
 * @page: page we want to move to swap
 | 
						|
 *
 | 
						|
 * Allocate swap space for the page and add the page to the
 | 
						|
 * swap cache.  Caller needs to hold the page lock. 
 | 
						|
 */
 | 
						|
int add_to_swap(struct page *page)
 | 
						|
{
 | 
						|
	swp_entry_t entry;
 | 
						|
	int err;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
	VM_BUG_ON_PAGE(!PageUptodate(page), page);
 | 
						|
 | 
						|
	entry = get_swap_page(page);
 | 
						|
	if (!entry.val)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Radix-tree node allocations from PF_MEMALLOC contexts could
 | 
						|
	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
 | 
						|
	 * stops emergency reserves from being allocated.
 | 
						|
	 *
 | 
						|
	 * TODO: this could cause a theoretical memory reclaim
 | 
						|
	 * deadlock in the swap out path.
 | 
						|
	 */
 | 
						|
	/*
 | 
						|
	 * Add it to the swap cache.
 | 
						|
	 */
 | 
						|
	err = add_to_swap_cache(page, entry,
 | 
						|
			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
 | 
						|
	/* -ENOMEM radix-tree allocation failure */
 | 
						|
	if (err)
 | 
						|
		/*
 | 
						|
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 | 
						|
		 * clear SWAP_HAS_CACHE flag.
 | 
						|
		 */
 | 
						|
		goto fail;
 | 
						|
	/*
 | 
						|
	 * Normally the page will be dirtied in unmap because its pte should be
 | 
						|
	 * dirty. A special case is MADV_FREE page. The page'e pte could have
 | 
						|
	 * dirty bit cleared but the page's SwapBacked bit is still set because
 | 
						|
	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
 | 
						|
	 * such page, unmap will not set dirty bit for it, so page reclaim will
 | 
						|
	 * not write the page out. This can cause data corruption when the page
 | 
						|
	 * is swap in later. Always setting the dirty bit for the page solves
 | 
						|
	 * the problem.
 | 
						|
	 */
 | 
						|
	set_page_dirty(page);
 | 
						|
 | 
						|
	return 1;
 | 
						|
 | 
						|
fail:
 | 
						|
	put_swap_page(page, entry);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This must be called only on pages that have
 | 
						|
 * been verified to be in the swap cache and locked.
 | 
						|
 * It will never put the page into the free list,
 | 
						|
 * the caller has a reference on the page.
 | 
						|
 */
 | 
						|
void delete_from_swap_cache(struct page *page)
 | 
						|
{
 | 
						|
	swp_entry_t entry;
 | 
						|
	struct address_space *address_space;
 | 
						|
 | 
						|
	entry.val = page_private(page);
 | 
						|
 | 
						|
	address_space = swap_address_space(entry);
 | 
						|
	xa_lock_irq(&address_space->i_pages);
 | 
						|
	__delete_from_swap_cache(page);
 | 
						|
	xa_unlock_irq(&address_space->i_pages);
 | 
						|
 | 
						|
	put_swap_page(page, entry);
 | 
						|
	page_ref_sub(page, hpage_nr_pages(page));
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * If we are the only user, then try to free up the swap cache. 
 | 
						|
 * 
 | 
						|
 * Its ok to check for PageSwapCache without the page lock
 | 
						|
 * here because we are going to recheck again inside
 | 
						|
 * try_to_free_swap() _with_ the lock.
 | 
						|
 * 					- Marcelo
 | 
						|
 */
 | 
						|
static inline void free_swap_cache(struct page *page)
 | 
						|
{
 | 
						|
	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
 | 
						|
		try_to_free_swap(page);
 | 
						|
		unlock_page(page);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * Perform a free_page(), also freeing any swap cache associated with
 | 
						|
 * this page if it is the last user of the page.
 | 
						|
 */
 | 
						|
void free_page_and_swap_cache(struct page *page)
 | 
						|
{
 | 
						|
	free_swap_cache(page);
 | 
						|
	if (!is_huge_zero_page(page))
 | 
						|
		put_page(page);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Passed an array of pages, drop them all from swapcache and then release
 | 
						|
 * them.  They are removed from the LRU and freed if this is their last use.
 | 
						|
 */
 | 
						|
void free_pages_and_swap_cache(struct page **pages, int nr)
 | 
						|
{
 | 
						|
	struct page **pagep = pages;
 | 
						|
	int i;
 | 
						|
 | 
						|
	lru_add_drain();
 | 
						|
	for (i = 0; i < nr; i++)
 | 
						|
		free_swap_cache(pagep[i]);
 | 
						|
	release_pages(pagep, nr);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool swap_use_vma_readahead(void)
 | 
						|
{
 | 
						|
	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Lookup a swap entry in the swap cache. A found page will be returned
 | 
						|
 * unlocked and with its refcount incremented - we rely on the kernel
 | 
						|
 * lock getting page table operations atomic even if we drop the page
 | 
						|
 * lock before returning.
 | 
						|
 */
 | 
						|
struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
 | 
						|
			       unsigned long addr)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	page = find_get_page(swap_address_space(entry), swp_offset(entry));
 | 
						|
 | 
						|
	INC_CACHE_INFO(find_total);
 | 
						|
	if (page) {
 | 
						|
		bool vma_ra = swap_use_vma_readahead();
 | 
						|
		bool readahead;
 | 
						|
 | 
						|
		INC_CACHE_INFO(find_success);
 | 
						|
		/*
 | 
						|
		 * At the moment, we don't support PG_readahead for anon THP
 | 
						|
		 * so let's bail out rather than confusing the readahead stat.
 | 
						|
		 */
 | 
						|
		if (unlikely(PageTransCompound(page)))
 | 
						|
			return page;
 | 
						|
 | 
						|
		readahead = TestClearPageReadahead(page);
 | 
						|
		if (vma && vma_ra) {
 | 
						|
			unsigned long ra_val;
 | 
						|
			int win, hits;
 | 
						|
 | 
						|
			ra_val = GET_SWAP_RA_VAL(vma);
 | 
						|
			win = SWAP_RA_WIN(ra_val);
 | 
						|
			hits = SWAP_RA_HITS(ra_val);
 | 
						|
			if (readahead)
 | 
						|
				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
 | 
						|
			atomic_long_set(&vma->swap_readahead_info,
 | 
						|
					SWAP_RA_VAL(addr, win, hits));
 | 
						|
		}
 | 
						|
 | 
						|
		if (readahead) {
 | 
						|
			count_vm_event(SWAP_RA_HIT);
 | 
						|
			if (!vma || !vma_ra)
 | 
						|
				atomic_inc(&swapin_readahead_hits);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 | 
						|
			struct vm_area_struct *vma, unsigned long addr,
 | 
						|
			bool *new_page_allocated)
 | 
						|
{
 | 
						|
	struct page *found_page, *new_page = NULL;
 | 
						|
	struct address_space *swapper_space = swap_address_space(entry);
 | 
						|
	int err;
 | 
						|
	*new_page_allocated = false;
 | 
						|
 | 
						|
	do {
 | 
						|
		/*
 | 
						|
		 * First check the swap cache.  Since this is normally
 | 
						|
		 * called after lookup_swap_cache() failed, re-calling
 | 
						|
		 * that would confuse statistics.
 | 
						|
		 */
 | 
						|
		found_page = find_get_page(swapper_space, swp_offset(entry));
 | 
						|
		if (found_page)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Just skip read ahead for unused swap slot.
 | 
						|
		 * During swap_off when swap_slot_cache is disabled,
 | 
						|
		 * we have to handle the race between putting
 | 
						|
		 * swap entry in swap cache and marking swap slot
 | 
						|
		 * as SWAP_HAS_CACHE.  That's done in later part of code or
 | 
						|
		 * else swap_off will be aborted if we return NULL.
 | 
						|
		 */
 | 
						|
		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Get a new page to read into from swap.
 | 
						|
		 */
 | 
						|
		if (!new_page) {
 | 
						|
			new_page = alloc_page_vma(gfp_mask, vma, addr);
 | 
						|
			if (!new_page)
 | 
						|
				break;		/* Out of memory */
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * call radix_tree_preload() while we can wait.
 | 
						|
		 */
 | 
						|
		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
 | 
						|
		if (err)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Swap entry may have been freed since our caller observed it.
 | 
						|
		 */
 | 
						|
		err = swapcache_prepare(entry);
 | 
						|
		if (err == -EEXIST) {
 | 
						|
			radix_tree_preload_end();
 | 
						|
			/*
 | 
						|
			 * We might race against get_swap_page() and stumble
 | 
						|
			 * across a SWAP_HAS_CACHE swap_map entry whose page
 | 
						|
			 * has not been brought into the swapcache yet.
 | 
						|
			 */
 | 
						|
			cond_resched();
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (err) {		/* swp entry is obsolete ? */
 | 
						|
			radix_tree_preload_end();
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
 | 
						|
		__SetPageLocked(new_page);
 | 
						|
		__SetPageSwapBacked(new_page);
 | 
						|
		err = __add_to_swap_cache(new_page, entry);
 | 
						|
		if (likely(!err)) {
 | 
						|
			radix_tree_preload_end();
 | 
						|
			/*
 | 
						|
			 * Initiate read into locked page and return.
 | 
						|
			 */
 | 
						|
			lru_cache_add_anon(new_page);
 | 
						|
			*new_page_allocated = true;
 | 
						|
			return new_page;
 | 
						|
		}
 | 
						|
		radix_tree_preload_end();
 | 
						|
		__ClearPageLocked(new_page);
 | 
						|
		/*
 | 
						|
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 | 
						|
		 * clear SWAP_HAS_CACHE flag.
 | 
						|
		 */
 | 
						|
		put_swap_page(new_page, entry);
 | 
						|
	} while (err != -ENOMEM);
 | 
						|
 | 
						|
	if (new_page)
 | 
						|
		put_page(new_page);
 | 
						|
	return found_page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Locate a page of swap in physical memory, reserving swap cache space
 | 
						|
 * and reading the disk if it is not already cached.
 | 
						|
 * A failure return means that either the page allocation failed or that
 | 
						|
 * the swap entry is no longer in use.
 | 
						|
 */
 | 
						|
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 | 
						|
		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
 | 
						|
{
 | 
						|
	bool page_was_allocated;
 | 
						|
	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
 | 
						|
			vma, addr, &page_was_allocated);
 | 
						|
 | 
						|
	if (page_was_allocated)
 | 
						|
		swap_readpage(retpage, do_poll);
 | 
						|
 | 
						|
	return retpage;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int __swapin_nr_pages(unsigned long prev_offset,
 | 
						|
				      unsigned long offset,
 | 
						|
				      int hits,
 | 
						|
				      int max_pages,
 | 
						|
				      int prev_win)
 | 
						|
{
 | 
						|
	unsigned int pages, last_ra;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This heuristic has been found to work well on both sequential and
 | 
						|
	 * random loads, swapping to hard disk or to SSD: please don't ask
 | 
						|
	 * what the "+ 2" means, it just happens to work well, that's all.
 | 
						|
	 */
 | 
						|
	pages = hits + 2;
 | 
						|
	if (pages == 2) {
 | 
						|
		/*
 | 
						|
		 * We can have no readahead hits to judge by: but must not get
 | 
						|
		 * stuck here forever, so check for an adjacent offset instead
 | 
						|
		 * (and don't even bother to check whether swap type is same).
 | 
						|
		 */
 | 
						|
		if (offset != prev_offset + 1 && offset != prev_offset - 1)
 | 
						|
			pages = 1;
 | 
						|
	} else {
 | 
						|
		unsigned int roundup = 4;
 | 
						|
		while (roundup < pages)
 | 
						|
			roundup <<= 1;
 | 
						|
		pages = roundup;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pages > max_pages)
 | 
						|
		pages = max_pages;
 | 
						|
 | 
						|
	/* Don't shrink readahead too fast */
 | 
						|
	last_ra = prev_win / 2;
 | 
						|
	if (pages < last_ra)
 | 
						|
		pages = last_ra;
 | 
						|
 | 
						|
	return pages;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long swapin_nr_pages(unsigned long offset)
 | 
						|
{
 | 
						|
	static unsigned long prev_offset;
 | 
						|
	unsigned int hits, pages, max_pages;
 | 
						|
	static atomic_t last_readahead_pages;
 | 
						|
 | 
						|
	max_pages = 1 << READ_ONCE(page_cluster);
 | 
						|
	if (max_pages <= 1)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	hits = atomic_xchg(&swapin_readahead_hits, 0);
 | 
						|
	pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
 | 
						|
				  atomic_read(&last_readahead_pages));
 | 
						|
	if (!hits)
 | 
						|
		prev_offset = offset;
 | 
						|
	atomic_set(&last_readahead_pages, pages);
 | 
						|
 | 
						|
	return pages;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * swap_cluster_readahead - swap in pages in hope we need them soon
 | 
						|
 * @entry: swap entry of this memory
 | 
						|
 * @gfp_mask: memory allocation flags
 | 
						|
 * @vmf: fault information
 | 
						|
 *
 | 
						|
 * Returns the struct page for entry and addr, after queueing swapin.
 | 
						|
 *
 | 
						|
 * Primitive swap readahead code. We simply read an aligned block of
 | 
						|
 * (1 << page_cluster) entries in the swap area. This method is chosen
 | 
						|
 * because it doesn't cost us any seek time.  We also make sure to queue
 | 
						|
 * the 'original' request together with the readahead ones...
 | 
						|
 *
 | 
						|
 * This has been extended to use the NUMA policies from the mm triggering
 | 
						|
 * the readahead.
 | 
						|
 *
 | 
						|
 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
 | 
						|
 */
 | 
						|
struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
 | 
						|
				struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	unsigned long entry_offset = swp_offset(entry);
 | 
						|
	unsigned long offset = entry_offset;
 | 
						|
	unsigned long start_offset, end_offset;
 | 
						|
	unsigned long mask;
 | 
						|
	struct swap_info_struct *si = swp_swap_info(entry);
 | 
						|
	struct blk_plug plug;
 | 
						|
	bool do_poll = true, page_allocated;
 | 
						|
	struct vm_area_struct *vma = vmf->vma;
 | 
						|
	unsigned long addr = vmf->address;
 | 
						|
 | 
						|
	mask = swapin_nr_pages(offset) - 1;
 | 
						|
	if (!mask)
 | 
						|
		goto skip;
 | 
						|
 | 
						|
	do_poll = false;
 | 
						|
	/* Read a page_cluster sized and aligned cluster around offset. */
 | 
						|
	start_offset = offset & ~mask;
 | 
						|
	end_offset = offset | mask;
 | 
						|
	if (!start_offset)	/* First page is swap header. */
 | 
						|
		start_offset++;
 | 
						|
	if (end_offset >= si->max)
 | 
						|
		end_offset = si->max - 1;
 | 
						|
 | 
						|
	blk_start_plug(&plug);
 | 
						|
	for (offset = start_offset; offset <= end_offset ; offset++) {
 | 
						|
		/* Ok, do the async read-ahead now */
 | 
						|
		page = __read_swap_cache_async(
 | 
						|
			swp_entry(swp_type(entry), offset),
 | 
						|
			gfp_mask, vma, addr, &page_allocated);
 | 
						|
		if (!page)
 | 
						|
			continue;
 | 
						|
		if (page_allocated) {
 | 
						|
			swap_readpage(page, false);
 | 
						|
			if (offset != entry_offset) {
 | 
						|
				SetPageReadahead(page);
 | 
						|
				count_vm_event(SWAP_RA);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
	blk_finish_plug(&plug);
 | 
						|
 | 
						|
	lru_add_drain();	/* Push any new pages onto the LRU now */
 | 
						|
skip:
 | 
						|
	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
 | 
						|
}
 | 
						|
 | 
						|
int init_swap_address_space(unsigned int type, unsigned long nr_pages)
 | 
						|
{
 | 
						|
	struct address_space *spaces, *space;
 | 
						|
	unsigned int i, nr;
 | 
						|
 | 
						|
	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
 | 
						|
	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
 | 
						|
	if (!spaces)
 | 
						|
		return -ENOMEM;
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		space = spaces + i;
 | 
						|
		INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN);
 | 
						|
		atomic_set(&space->i_mmap_writable, 0);
 | 
						|
		space->a_ops = &swap_aops;
 | 
						|
		/* swap cache doesn't use writeback related tags */
 | 
						|
		mapping_set_no_writeback_tags(space);
 | 
						|
	}
 | 
						|
	nr_swapper_spaces[type] = nr;
 | 
						|
	rcu_assign_pointer(swapper_spaces[type], spaces);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void exit_swap_address_space(unsigned int type)
 | 
						|
{
 | 
						|
	struct address_space *spaces;
 | 
						|
 | 
						|
	spaces = swapper_spaces[type];
 | 
						|
	nr_swapper_spaces[type] = 0;
 | 
						|
	rcu_assign_pointer(swapper_spaces[type], NULL);
 | 
						|
	synchronize_rcu();
 | 
						|
	kvfree(spaces);
 | 
						|
}
 | 
						|
 | 
						|
static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
 | 
						|
				     unsigned long faddr,
 | 
						|
				     unsigned long lpfn,
 | 
						|
				     unsigned long rpfn,
 | 
						|
				     unsigned long *start,
 | 
						|
				     unsigned long *end)
 | 
						|
{
 | 
						|
	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
 | 
						|
		      PFN_DOWN(faddr & PMD_MASK));
 | 
						|
	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
 | 
						|
		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
 | 
						|
}
 | 
						|
 | 
						|
static void swap_ra_info(struct vm_fault *vmf,
 | 
						|
			struct vma_swap_readahead *ra_info)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = vmf->vma;
 | 
						|
	unsigned long ra_val;
 | 
						|
	swp_entry_t entry;
 | 
						|
	unsigned long faddr, pfn, fpfn;
 | 
						|
	unsigned long start, end;
 | 
						|
	pte_t *pte, *orig_pte;
 | 
						|
	unsigned int max_win, hits, prev_win, win, left;
 | 
						|
#ifndef CONFIG_64BIT
 | 
						|
	pte_t *tpte;
 | 
						|
#endif
 | 
						|
 | 
						|
	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
 | 
						|
			     SWAP_RA_ORDER_CEILING);
 | 
						|
	if (max_win == 1) {
 | 
						|
		ra_info->win = 1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	faddr = vmf->address;
 | 
						|
	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
 | 
						|
	entry = pte_to_swp_entry(*pte);
 | 
						|
	if ((unlikely(non_swap_entry(entry)))) {
 | 
						|
		pte_unmap(orig_pte);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	fpfn = PFN_DOWN(faddr);
 | 
						|
	ra_val = GET_SWAP_RA_VAL(vma);
 | 
						|
	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
 | 
						|
	prev_win = SWAP_RA_WIN(ra_val);
 | 
						|
	hits = SWAP_RA_HITS(ra_val);
 | 
						|
	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
 | 
						|
					       max_win, prev_win);
 | 
						|
	atomic_long_set(&vma->swap_readahead_info,
 | 
						|
			SWAP_RA_VAL(faddr, win, 0));
 | 
						|
 | 
						|
	if (win == 1) {
 | 
						|
		pte_unmap(orig_pte);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Copy the PTEs because the page table may be unmapped */
 | 
						|
	if (fpfn == pfn + 1)
 | 
						|
		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
 | 
						|
	else if (pfn == fpfn + 1)
 | 
						|
		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
 | 
						|
				  &start, &end);
 | 
						|
	else {
 | 
						|
		left = (win - 1) / 2;
 | 
						|
		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
 | 
						|
				  &start, &end);
 | 
						|
	}
 | 
						|
	ra_info->nr_pte = end - start;
 | 
						|
	ra_info->offset = fpfn - start;
 | 
						|
	pte -= ra_info->offset;
 | 
						|
#ifdef CONFIG_64BIT
 | 
						|
	ra_info->ptes = pte;
 | 
						|
#else
 | 
						|
	tpte = ra_info->ptes;
 | 
						|
	for (pfn = start; pfn != end; pfn++)
 | 
						|
		*tpte++ = *pte++;
 | 
						|
#endif
 | 
						|
	pte_unmap(orig_pte);
 | 
						|
}
 | 
						|
 | 
						|
static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
 | 
						|
				       struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	struct blk_plug plug;
 | 
						|
	struct vm_area_struct *vma = vmf->vma;
 | 
						|
	struct page *page;
 | 
						|
	pte_t *pte, pentry;
 | 
						|
	swp_entry_t entry;
 | 
						|
	unsigned int i;
 | 
						|
	bool page_allocated;
 | 
						|
	struct vma_swap_readahead ra_info = {0,};
 | 
						|
 | 
						|
	swap_ra_info(vmf, &ra_info);
 | 
						|
	if (ra_info.win == 1)
 | 
						|
		goto skip;
 | 
						|
 | 
						|
	blk_start_plug(&plug);
 | 
						|
	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
 | 
						|
	     i++, pte++) {
 | 
						|
		pentry = *pte;
 | 
						|
		if (pte_none(pentry))
 | 
						|
			continue;
 | 
						|
		if (pte_present(pentry))
 | 
						|
			continue;
 | 
						|
		entry = pte_to_swp_entry(pentry);
 | 
						|
		if (unlikely(non_swap_entry(entry)))
 | 
						|
			continue;
 | 
						|
		page = __read_swap_cache_async(entry, gfp_mask, vma,
 | 
						|
					       vmf->address, &page_allocated);
 | 
						|
		if (!page)
 | 
						|
			continue;
 | 
						|
		if (page_allocated) {
 | 
						|
			swap_readpage(page, false);
 | 
						|
			if (i != ra_info.offset) {
 | 
						|
				SetPageReadahead(page);
 | 
						|
				count_vm_event(SWAP_RA);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
	blk_finish_plug(&plug);
 | 
						|
	lru_add_drain();
 | 
						|
skip:
 | 
						|
	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
 | 
						|
				     ra_info.win == 1);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * swapin_readahead - swap in pages in hope we need them soon
 | 
						|
 * @entry: swap entry of this memory
 | 
						|
 * @gfp_mask: memory allocation flags
 | 
						|
 * @vmf: fault information
 | 
						|
 *
 | 
						|
 * Returns the struct page for entry and addr, after queueing swapin.
 | 
						|
 *
 | 
						|
 * It's a main entry function for swap readahead. By the configuration,
 | 
						|
 * it will read ahead blocks by cluster-based(ie, physical disk based)
 | 
						|
 * or vma-based(ie, virtual address based on faulty address) readahead.
 | 
						|
 */
 | 
						|
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
 | 
						|
				struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	return swap_use_vma_readahead() ?
 | 
						|
			swap_vma_readahead(entry, gfp_mask, vmf) :
 | 
						|
			swap_cluster_readahead(entry, gfp_mask, vmf);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SYSFS
 | 
						|
static ssize_t vma_ra_enabled_show(struct kobject *kobj,
 | 
						|
				     struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
 | 
						|
}
 | 
						|
static ssize_t vma_ra_enabled_store(struct kobject *kobj,
 | 
						|
				      struct kobj_attribute *attr,
 | 
						|
				      const char *buf, size_t count)
 | 
						|
{
 | 
						|
	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
 | 
						|
		enable_vma_readahead = true;
 | 
						|
	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
 | 
						|
		enable_vma_readahead = false;
 | 
						|
	else
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
static struct kobj_attribute vma_ra_enabled_attr =
 | 
						|
	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
 | 
						|
	       vma_ra_enabled_store);
 | 
						|
 | 
						|
static struct attribute *swap_attrs[] = {
 | 
						|
	&vma_ra_enabled_attr.attr,
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
 | 
						|
static struct attribute_group swap_attr_group = {
 | 
						|
	.attrs = swap_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static int __init swap_init_sysfs(void)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	struct kobject *swap_kobj;
 | 
						|
 | 
						|
	swap_kobj = kobject_create_and_add("swap", mm_kobj);
 | 
						|
	if (!swap_kobj) {
 | 
						|
		pr_err("failed to create swap kobject\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
	err = sysfs_create_group(swap_kobj, &swap_attr_group);
 | 
						|
	if (err) {
 | 
						|
		pr_err("failed to register swap group\n");
 | 
						|
		goto delete_obj;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
delete_obj:
 | 
						|
	kobject_put(swap_kobj);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
subsys_initcall(swap_init_sysfs);
 | 
						|
#endif
 |