978 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			978 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Read-Copy Update mechanism for mutual exclusion
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, you can access it online at
 | |
|  * http://www.gnu.org/licenses/gpl-2.0.html.
 | |
|  *
 | |
|  * Copyright IBM Corporation, 2001
 | |
|  *
 | |
|  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 | |
|  *	    Manfred Spraul <manfred@colorfullife.com>
 | |
|  *
 | |
|  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 | |
|  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 | |
|  * Papers:
 | |
|  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 | |
|  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 | |
|  *
 | |
|  * For detailed explanation of Read-Copy Update mechanism see -
 | |
|  *		http://lse.sourceforge.net/locking/rcupdate.html
 | |
|  *
 | |
|  */
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/debug.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/rcupdate_wait.h>
 | |
| #include <linux/sched/isolation.h>
 | |
| #include <linux/kprobes.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| 
 | |
| #include "rcu.h"
 | |
| 
 | |
| #ifdef MODULE_PARAM_PREFIX
 | |
| #undef MODULE_PARAM_PREFIX
 | |
| #endif
 | |
| #define MODULE_PARAM_PREFIX "rcupdate."
 | |
| 
 | |
| #ifndef CONFIG_TINY_RCU
 | |
| extern int rcu_expedited; /* from sysctl */
 | |
| module_param(rcu_expedited, int, 0);
 | |
| extern int rcu_normal; /* from sysctl */
 | |
| module_param(rcu_normal, int, 0);
 | |
| static int rcu_normal_after_boot;
 | |
| module_param(rcu_normal_after_boot, int, 0);
 | |
| #endif /* #ifndef CONFIG_TINY_RCU */
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC
 | |
| /**
 | |
|  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 | |
|  *
 | |
|  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 | |
|  * RCU-sched read-side critical section.  In absence of
 | |
|  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 | |
|  * critical section unless it can prove otherwise.  Note that disabling
 | |
|  * of preemption (including disabling irqs) counts as an RCU-sched
 | |
|  * read-side critical section.  This is useful for debug checks in functions
 | |
|  * that required that they be called within an RCU-sched read-side
 | |
|  * critical section.
 | |
|  *
 | |
|  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 | |
|  * and while lockdep is disabled.
 | |
|  *
 | |
|  * Note that if the CPU is in the idle loop from an RCU point of
 | |
|  * view (ie: that we are in the section between rcu_idle_enter() and
 | |
|  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 | |
|  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 | |
|  * that are in such a section, considering these as in extended quiescent
 | |
|  * state, so such a CPU is effectively never in an RCU read-side critical
 | |
|  * section regardless of what RCU primitives it invokes.  This state of
 | |
|  * affairs is required --- we need to keep an RCU-free window in idle
 | |
|  * where the CPU may possibly enter into low power mode. This way we can
 | |
|  * notice an extended quiescent state to other CPUs that started a grace
 | |
|  * period. Otherwise we would delay any grace period as long as we run in
 | |
|  * the idle task.
 | |
|  *
 | |
|  * Similarly, we avoid claiming an SRCU read lock held if the current
 | |
|  * CPU is offline.
 | |
|  */
 | |
| int rcu_read_lock_sched_held(void)
 | |
| {
 | |
| 	int lockdep_opinion = 0;
 | |
| 
 | |
| 	if (!debug_lockdep_rcu_enabled())
 | |
| 		return 1;
 | |
| 	if (!rcu_is_watching())
 | |
| 		return 0;
 | |
| 	if (!rcu_lockdep_current_cpu_online())
 | |
| 		return 0;
 | |
| 	if (debug_locks)
 | |
| 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 | |
| 	return lockdep_opinion || !preemptible();
 | |
| }
 | |
| EXPORT_SYMBOL(rcu_read_lock_sched_held);
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_TINY_RCU
 | |
| 
 | |
| /*
 | |
|  * Should expedited grace-period primitives always fall back to their
 | |
|  * non-expedited counterparts?  Intended for use within RCU.  Note
 | |
|  * that if the user specifies both rcu_expedited and rcu_normal, then
 | |
|  * rcu_normal wins.  (Except during the time period during boot from
 | |
|  * when the first task is spawned until the rcu_set_runtime_mode()
 | |
|  * core_initcall() is invoked, at which point everything is expedited.)
 | |
|  */
 | |
| bool rcu_gp_is_normal(void)
 | |
| {
 | |
| 	return READ_ONCE(rcu_normal) &&
 | |
| 	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 | |
| 
 | |
| static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
 | |
| 
 | |
| /*
 | |
|  * Should normal grace-period primitives be expedited?  Intended for
 | |
|  * use within RCU.  Note that this function takes the rcu_expedited
 | |
|  * sysfs/boot variable and rcu_scheduler_active into account as well
 | |
|  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
 | |
|  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
 | |
|  */
 | |
| bool rcu_gp_is_expedited(void)
 | |
| {
 | |
| 	return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
 | |
| 	       rcu_scheduler_active == RCU_SCHEDULER_INIT;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 | |
| 
 | |
| /**
 | |
|  * rcu_expedite_gp - Expedite future RCU grace periods
 | |
|  *
 | |
|  * After a call to this function, future calls to synchronize_rcu() and
 | |
|  * friends act as the corresponding synchronize_rcu_expedited() function
 | |
|  * had instead been called.
 | |
|  */
 | |
| void rcu_expedite_gp(void)
 | |
| {
 | |
| 	atomic_inc(&rcu_expedited_nesting);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 | |
| 
 | |
| /**
 | |
|  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 | |
|  *
 | |
|  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 | |
|  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 | |
|  * and if the rcu_expedited sysfs/boot parameter is not set, then all
 | |
|  * subsequent calls to synchronize_rcu() and friends will return to
 | |
|  * their normal non-expedited behavior.
 | |
|  */
 | |
| void rcu_unexpedite_gp(void)
 | |
| {
 | |
| 	atomic_dec(&rcu_expedited_nesting);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 | |
| 
 | |
| /*
 | |
|  * Inform RCU of the end of the in-kernel boot sequence.
 | |
|  */
 | |
| void rcu_end_inkernel_boot(void)
 | |
| {
 | |
| 	rcu_unexpedite_gp();
 | |
| 	if (rcu_normal_after_boot)
 | |
| 		WRITE_ONCE(rcu_normal, 1);
 | |
| }
 | |
| 
 | |
| #endif /* #ifndef CONFIG_TINY_RCU */
 | |
| 
 | |
| /*
 | |
|  * Test each non-SRCU synchronous grace-period wait API.  This is
 | |
|  * useful just after a change in mode for these primitives, and
 | |
|  * during early boot.
 | |
|  */
 | |
| void rcu_test_sync_prims(void)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_PROVE_RCU))
 | |
| 		return;
 | |
| 	synchronize_rcu();
 | |
| 	synchronize_rcu_bh();
 | |
| 	synchronize_sched();
 | |
| 	synchronize_rcu_expedited();
 | |
| 	synchronize_rcu_bh_expedited();
 | |
| 	synchronize_sched_expedited();
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
 | |
| 
 | |
| /*
 | |
|  * Switch to run-time mode once RCU has fully initialized.
 | |
|  */
 | |
| static int __init rcu_set_runtime_mode(void)
 | |
| {
 | |
| 	rcu_test_sync_prims();
 | |
| 	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
 | |
| 	rcu_test_sync_prims();
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(rcu_set_runtime_mode);
 | |
| 
 | |
| #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC
 | |
| static struct lock_class_key rcu_lock_key;
 | |
| struct lockdep_map rcu_lock_map =
 | |
| 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 | |
| EXPORT_SYMBOL_GPL(rcu_lock_map);
 | |
| 
 | |
| static struct lock_class_key rcu_bh_lock_key;
 | |
| struct lockdep_map rcu_bh_lock_map =
 | |
| 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 | |
| EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 | |
| 
 | |
| static struct lock_class_key rcu_sched_lock_key;
 | |
| struct lockdep_map rcu_sched_lock_map =
 | |
| 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 | |
| EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 | |
| 
 | |
| static struct lock_class_key rcu_callback_key;
 | |
| struct lockdep_map rcu_callback_map =
 | |
| 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 | |
| EXPORT_SYMBOL_GPL(rcu_callback_map);
 | |
| 
 | |
| int notrace debug_lockdep_rcu_enabled(void)
 | |
| {
 | |
| 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
 | |
| 	       current->lockdep_recursion == 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 | |
| NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
 | |
| 
 | |
| /**
 | |
|  * rcu_read_lock_held() - might we be in RCU read-side critical section?
 | |
|  *
 | |
|  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 | |
|  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 | |
|  * this assumes we are in an RCU read-side critical section unless it can
 | |
|  * prove otherwise.  This is useful for debug checks in functions that
 | |
|  * require that they be called within an RCU read-side critical section.
 | |
|  *
 | |
|  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 | |
|  * and while lockdep is disabled.
 | |
|  *
 | |
|  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 | |
|  * occur in the same context, for example, it is illegal to invoke
 | |
|  * rcu_read_unlock() in process context if the matching rcu_read_lock()
 | |
|  * was invoked from within an irq handler.
 | |
|  *
 | |
|  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 | |
|  * offline from an RCU perspective, so check for those as well.
 | |
|  */
 | |
| int rcu_read_lock_held(void)
 | |
| {
 | |
| 	if (!debug_lockdep_rcu_enabled())
 | |
| 		return 1;
 | |
| 	if (!rcu_is_watching())
 | |
| 		return 0;
 | |
| 	if (!rcu_lockdep_current_cpu_online())
 | |
| 		return 0;
 | |
| 	return lock_is_held(&rcu_lock_map);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 | |
| 
 | |
| /**
 | |
|  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 | |
|  *
 | |
|  * Check for bottom half being disabled, which covers both the
 | |
|  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 | |
|  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 | |
|  * will show the situation.  This is useful for debug checks in functions
 | |
|  * that require that they be called within an RCU read-side critical
 | |
|  * section.
 | |
|  *
 | |
|  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 | |
|  *
 | |
|  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 | |
|  * offline from an RCU perspective, so check for those as well.
 | |
|  */
 | |
| int rcu_read_lock_bh_held(void)
 | |
| {
 | |
| 	if (!debug_lockdep_rcu_enabled())
 | |
| 		return 1;
 | |
| 	if (!rcu_is_watching())
 | |
| 		return 0;
 | |
| 	if (!rcu_lockdep_current_cpu_online())
 | |
| 		return 0;
 | |
| 	return in_softirq() || irqs_disabled();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 | |
| 
 | |
| #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 | |
| 
 | |
| /**
 | |
|  * wakeme_after_rcu() - Callback function to awaken a task after grace period
 | |
|  * @head: Pointer to rcu_head member within rcu_synchronize structure
 | |
|  *
 | |
|  * Awaken the corresponding task now that a grace period has elapsed.
 | |
|  */
 | |
| void wakeme_after_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct rcu_synchronize *rcu;
 | |
| 
 | |
| 	rcu = container_of(head, struct rcu_synchronize, head);
 | |
| 	complete(&rcu->completion);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 | |
| 
 | |
| void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 | |
| 		   struct rcu_synchronize *rs_array)
 | |
| {
 | |
| 	int i;
 | |
| 	int j;
 | |
| 
 | |
| 	/* Initialize and register callbacks for each flavor specified. */
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		if (checktiny &&
 | |
| 		    (crcu_array[i] == call_rcu ||
 | |
| 		     crcu_array[i] == call_rcu_bh)) {
 | |
| 			might_sleep();
 | |
| 			continue;
 | |
| 		}
 | |
| 		init_rcu_head_on_stack(&rs_array[i].head);
 | |
| 		init_completion(&rs_array[i].completion);
 | |
| 		for (j = 0; j < i; j++)
 | |
| 			if (crcu_array[j] == crcu_array[i])
 | |
| 				break;
 | |
| 		if (j == i)
 | |
| 			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for all callbacks to be invoked. */
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		if (checktiny &&
 | |
| 		    (crcu_array[i] == call_rcu ||
 | |
| 		     crcu_array[i] == call_rcu_bh))
 | |
| 			continue;
 | |
| 		for (j = 0; j < i; j++)
 | |
| 			if (crcu_array[j] == crcu_array[i])
 | |
| 				break;
 | |
| 		if (j == i)
 | |
| 			wait_for_completion(&rs_array[i].completion);
 | |
| 		destroy_rcu_head_on_stack(&rs_array[i].head);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 | |
| void init_rcu_head(struct rcu_head *head)
 | |
| {
 | |
| 	debug_object_init(head, &rcuhead_debug_descr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(init_rcu_head);
 | |
| 
 | |
| void destroy_rcu_head(struct rcu_head *head)
 | |
| {
 | |
| 	debug_object_free(head, &rcuhead_debug_descr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(destroy_rcu_head);
 | |
| 
 | |
| static bool rcuhead_is_static_object(void *addr)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 | |
|  * @head: pointer to rcu_head structure to be initialized
 | |
|  *
 | |
|  * This function informs debugobjects of a new rcu_head structure that
 | |
|  * has been allocated as an auto variable on the stack.  This function
 | |
|  * is not required for rcu_head structures that are statically defined or
 | |
|  * that are dynamically allocated on the heap.  This function has no
 | |
|  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 | |
|  */
 | |
| void init_rcu_head_on_stack(struct rcu_head *head)
 | |
| {
 | |
| 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 | |
| 
 | |
| /**
 | |
|  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 | |
|  * @head: pointer to rcu_head structure to be initialized
 | |
|  *
 | |
|  * This function informs debugobjects that an on-stack rcu_head structure
 | |
|  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 | |
|  * function is not required for rcu_head structures that are statically
 | |
|  * defined or that are dynamically allocated on the heap.  Also as with
 | |
|  * init_rcu_head_on_stack(), this function has no effect for
 | |
|  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 | |
|  */
 | |
| void destroy_rcu_head_on_stack(struct rcu_head *head)
 | |
| {
 | |
| 	debug_object_free(head, &rcuhead_debug_descr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 | |
| 
 | |
| struct debug_obj_descr rcuhead_debug_descr = {
 | |
| 	.name = "rcu_head",
 | |
| 	.is_static_object = rcuhead_is_static_object,
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 | |
| #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 | |
| 
 | |
| #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 | |
| void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 | |
| 			       unsigned long secs,
 | |
| 			       unsigned long c_old, unsigned long c)
 | |
| {
 | |
| 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 | |
| #else
 | |
| #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 | |
| 	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RCU_STALL_COMMON
 | |
| 
 | |
| #ifdef CONFIG_PROVE_RCU
 | |
| #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
 | |
| #else
 | |
| #define RCU_STALL_DELAY_DELTA	       0
 | |
| #endif
 | |
| 
 | |
| int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 | |
| EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
 | |
| static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 | |
| 
 | |
| module_param(rcu_cpu_stall_suppress, int, 0644);
 | |
| module_param(rcu_cpu_stall_timeout, int, 0644);
 | |
| 
 | |
| int rcu_jiffies_till_stall_check(void)
 | |
| {
 | |
| 	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
 | |
| 
 | |
| 	/*
 | |
| 	 * Limit check must be consistent with the Kconfig limits
 | |
| 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
 | |
| 	 */
 | |
| 	if (till_stall_check < 3) {
 | |
| 		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
 | |
| 		till_stall_check = 3;
 | |
| 	} else if (till_stall_check > 300) {
 | |
| 		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
 | |
| 		till_stall_check = 300;
 | |
| 	}
 | |
| 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
 | |
| }
 | |
| 
 | |
| void rcu_sysrq_start(void)
 | |
| {
 | |
| 	if (!rcu_cpu_stall_suppress)
 | |
| 		rcu_cpu_stall_suppress = 2;
 | |
| }
 | |
| 
 | |
| void rcu_sysrq_end(void)
 | |
| {
 | |
| 	if (rcu_cpu_stall_suppress == 2)
 | |
| 		rcu_cpu_stall_suppress = 0;
 | |
| }
 | |
| 
 | |
| static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 | |
| {
 | |
| 	rcu_cpu_stall_suppress = 1;
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static struct notifier_block rcu_panic_block = {
 | |
| 	.notifier_call = rcu_panic,
 | |
| };
 | |
| 
 | |
| static int __init check_cpu_stall_init(void)
 | |
| {
 | |
| 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(check_cpu_stall_init);
 | |
| 
 | |
| #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 | |
| 
 | |
| #ifdef CONFIG_TASKS_RCU
 | |
| 
 | |
| /*
 | |
|  * Simple variant of RCU whose quiescent states are voluntary context
 | |
|  * switch, cond_resched_rcu_qs(), user-space execution, and idle.
 | |
|  * As such, grace periods can take one good long time.  There are no
 | |
|  * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
 | |
|  * because this implementation is intended to get the system into a safe
 | |
|  * state for some of the manipulations involved in tracing and the like.
 | |
|  * Finally, this implementation does not support high call_rcu_tasks()
 | |
|  * rates from multiple CPUs.  If this is required, per-CPU callback lists
 | |
|  * will be needed.
 | |
|  */
 | |
| 
 | |
| /* Global list of callbacks and associated lock. */
 | |
| static struct rcu_head *rcu_tasks_cbs_head;
 | |
| static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 | |
| static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 | |
| static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 | |
| 
 | |
| /* Track exiting tasks in order to allow them to be waited for. */
 | |
| DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
 | |
| 
 | |
| /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 | |
| #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
 | |
| static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
 | |
| module_param(rcu_task_stall_timeout, int, 0644);
 | |
| 
 | |
| static struct task_struct *rcu_tasks_kthread_ptr;
 | |
| 
 | |
| /**
 | |
|  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 | |
|  * @rhp: structure to be used for queueing the RCU updates.
 | |
|  * @func: actual callback function to be invoked after the grace period
 | |
|  *
 | |
|  * The callback function will be invoked some time after a full grace
 | |
|  * period elapses, in other words after all currently executing RCU
 | |
|  * read-side critical sections have completed. call_rcu_tasks() assumes
 | |
|  * that the read-side critical sections end at a voluntary context
 | |
|  * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
 | |
|  * or transition to usermode execution.  As such, there are no read-side
 | |
|  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
 | |
|  * this primitive is intended to determine that all tasks have passed
 | |
|  * through a safe state, not so much for data-strcuture synchronization.
 | |
|  *
 | |
|  * See the description of call_rcu() for more detailed information on
 | |
|  * memory ordering guarantees.
 | |
|  */
 | |
| void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool needwake;
 | |
| 
 | |
| 	rhp->next = NULL;
 | |
| 	rhp->func = func;
 | |
| 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 | |
| 	needwake = !rcu_tasks_cbs_head;
 | |
| 	*rcu_tasks_cbs_tail = rhp;
 | |
| 	rcu_tasks_cbs_tail = &rhp->next;
 | |
| 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 | |
| 	/* We can't create the thread unless interrupts are enabled. */
 | |
| 	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
 | |
| 		wake_up(&rcu_tasks_cbs_wq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(call_rcu_tasks);
 | |
| 
 | |
| /**
 | |
|  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 | |
|  *
 | |
|  * Control will return to the caller some time after a full rcu-tasks
 | |
|  * grace period has elapsed, in other words after all currently
 | |
|  * executing rcu-tasks read-side critical sections have elapsed.  These
 | |
|  * read-side critical sections are delimited by calls to schedule(),
 | |
|  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
 | |
|  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 | |
|  *
 | |
|  * This is a very specialized primitive, intended only for a few uses in
 | |
|  * tracing and other situations requiring manipulation of function
 | |
|  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 | |
|  * is not (yet) intended for heavy use from multiple CPUs.
 | |
|  *
 | |
|  * Note that this guarantee implies further memory-ordering guarantees.
 | |
|  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 | |
|  * each CPU is guaranteed to have executed a full memory barrier since the
 | |
|  * end of its last RCU-tasks read-side critical section whose beginning
 | |
|  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 | |
|  * having an RCU-tasks read-side critical section that extends beyond
 | |
|  * the return from synchronize_rcu_tasks() is guaranteed to have executed
 | |
|  * a full memory barrier after the beginning of synchronize_rcu_tasks()
 | |
|  * and before the beginning of that RCU-tasks read-side critical section.
 | |
|  * Note that these guarantees include CPUs that are offline, idle, or
 | |
|  * executing in user mode, as well as CPUs that are executing in the kernel.
 | |
|  *
 | |
|  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 | |
|  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 | |
|  * to have executed a full memory barrier during the execution of
 | |
|  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 | |
|  * (but again only if the system has more than one CPU).
 | |
|  */
 | |
| void synchronize_rcu_tasks(void)
 | |
| {
 | |
| 	/* Complain if the scheduler has not started.  */
 | |
| 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 | |
| 			 "synchronize_rcu_tasks called too soon");
 | |
| 
 | |
| 	/* Wait for the grace period. */
 | |
| 	wait_rcu_gp(call_rcu_tasks);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 | |
| 
 | |
| /**
 | |
|  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 | |
|  *
 | |
|  * Although the current implementation is guaranteed to wait, it is not
 | |
|  * obligated to, for example, if there are no pending callbacks.
 | |
|  */
 | |
| void rcu_barrier_tasks(void)
 | |
| {
 | |
| 	/* There is only one callback queue, so this is easy.  ;-) */
 | |
| 	synchronize_rcu_tasks();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 | |
| 
 | |
| /* See if tasks are still holding out, complain if so. */
 | |
| static void check_holdout_task(struct task_struct *t,
 | |
| 			       bool needreport, bool *firstreport)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
 | |
| 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 | |
| 	    !READ_ONCE(t->on_rq) ||
 | |
| 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 | |
| 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 | |
| 		WRITE_ONCE(t->rcu_tasks_holdout, false);
 | |
| 		list_del_init(&t->rcu_tasks_holdout_list);
 | |
| 		put_task_struct(t);
 | |
| 		return;
 | |
| 	}
 | |
| 	rcu_request_urgent_qs_task(t);
 | |
| 	if (!needreport)
 | |
| 		return;
 | |
| 	if (*firstreport) {
 | |
| 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 | |
| 		*firstreport = false;
 | |
| 	}
 | |
| 	cpu = task_cpu(t);
 | |
| 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 | |
| 		 t, ".I"[is_idle_task(t)],
 | |
| 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 | |
| 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 | |
| 		 t->rcu_tasks_idle_cpu, cpu);
 | |
| 	sched_show_task(t);
 | |
| }
 | |
| 
 | |
| /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 | |
| static int __noreturn rcu_tasks_kthread(void *arg)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *g, *t;
 | |
| 	unsigned long lastreport;
 | |
| 	struct rcu_head *list;
 | |
| 	struct rcu_head *next;
 | |
| 	LIST_HEAD(rcu_tasks_holdouts);
 | |
| 	int fract;
 | |
| 
 | |
| 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 | |
| 	housekeeping_affine(current, HK_FLAG_RCU);
 | |
| 
 | |
| 	/*
 | |
| 	 * Each pass through the following loop makes one check for
 | |
| 	 * newly arrived callbacks, and, if there are some, waits for
 | |
| 	 * one RCU-tasks grace period and then invokes the callbacks.
 | |
| 	 * This loop is terminated by the system going down.  ;-)
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 
 | |
| 		/* Pick up any new callbacks. */
 | |
| 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 | |
| 		list = rcu_tasks_cbs_head;
 | |
| 		rcu_tasks_cbs_head = NULL;
 | |
| 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 | |
| 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 | |
| 
 | |
| 		/* If there were none, wait a bit and start over. */
 | |
| 		if (!list) {
 | |
| 			wait_event_interruptible(rcu_tasks_cbs_wq,
 | |
| 						 rcu_tasks_cbs_head);
 | |
| 			if (!rcu_tasks_cbs_head) {
 | |
| 				WARN_ON(signal_pending(current));
 | |
| 				schedule_timeout_interruptible(HZ/10);
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for all pre-existing t->on_rq and t->nvcsw
 | |
| 		 * transitions to complete.  Invoking synchronize_sched()
 | |
| 		 * suffices because all these transitions occur with
 | |
| 		 * interrupts disabled.  Without this synchronize_sched(),
 | |
| 		 * a read-side critical section that started before the
 | |
| 		 * grace period might be incorrectly seen as having started
 | |
| 		 * after the grace period.
 | |
| 		 *
 | |
| 		 * This synchronize_sched() also dispenses with the
 | |
| 		 * need for a memory barrier on the first store to
 | |
| 		 * ->rcu_tasks_holdout, as it forces the store to happen
 | |
| 		 * after the beginning of the grace period.
 | |
| 		 */
 | |
| 		synchronize_sched();
 | |
| 
 | |
| 		/*
 | |
| 		 * There were callbacks, so we need to wait for an
 | |
| 		 * RCU-tasks grace period.  Start off by scanning
 | |
| 		 * the task list for tasks that are not already
 | |
| 		 * voluntarily blocked.  Mark these tasks and make
 | |
| 		 * a list of them in rcu_tasks_holdouts.
 | |
| 		 */
 | |
| 		rcu_read_lock();
 | |
| 		for_each_process_thread(g, t) {
 | |
| 			if (t != current && READ_ONCE(t->on_rq) &&
 | |
| 			    !is_idle_task(t)) {
 | |
| 				get_task_struct(t);
 | |
| 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 | |
| 				WRITE_ONCE(t->rcu_tasks_holdout, true);
 | |
| 				list_add(&t->rcu_tasks_holdout_list,
 | |
| 					 &rcu_tasks_holdouts);
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for tasks that are in the process of exiting.
 | |
| 		 * This does only part of the job, ensuring that all
 | |
| 		 * tasks that were previously exiting reach the point
 | |
| 		 * where they have disabled preemption, allowing the
 | |
| 		 * later synchronize_sched() to finish the job.
 | |
| 		 */
 | |
| 		synchronize_srcu(&tasks_rcu_exit_srcu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Each pass through the following loop scans the list
 | |
| 		 * of holdout tasks, removing any that are no longer
 | |
| 		 * holdouts.  When the list is empty, we are done.
 | |
| 		 */
 | |
| 		lastreport = jiffies;
 | |
| 
 | |
| 		/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
 | |
| 		fract = 10;
 | |
| 
 | |
| 		for (;;) {
 | |
| 			bool firstreport;
 | |
| 			bool needreport;
 | |
| 			int rtst;
 | |
| 			struct task_struct *t1;
 | |
| 
 | |
| 			if (list_empty(&rcu_tasks_holdouts))
 | |
| 				break;
 | |
| 
 | |
| 			/* Slowly back off waiting for holdouts */
 | |
| 			schedule_timeout_interruptible(HZ/fract);
 | |
| 
 | |
| 			if (fract > 1)
 | |
| 				fract--;
 | |
| 
 | |
| 			rtst = READ_ONCE(rcu_task_stall_timeout);
 | |
| 			needreport = rtst > 0 &&
 | |
| 				     time_after(jiffies, lastreport + rtst);
 | |
| 			if (needreport)
 | |
| 				lastreport = jiffies;
 | |
| 			firstreport = true;
 | |
| 			WARN_ON(signal_pending(current));
 | |
| 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 | |
| 						rcu_tasks_holdout_list) {
 | |
| 				check_holdout_task(t, needreport, &firstreport);
 | |
| 				cond_resched();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Because ->on_rq and ->nvcsw are not guaranteed
 | |
| 		 * to have a full memory barriers prior to them in the
 | |
| 		 * schedule() path, memory reordering on other CPUs could
 | |
| 		 * cause their RCU-tasks read-side critical sections to
 | |
| 		 * extend past the end of the grace period.  However,
 | |
| 		 * because these ->nvcsw updates are carried out with
 | |
| 		 * interrupts disabled, we can use synchronize_sched()
 | |
| 		 * to force the needed ordering on all such CPUs.
 | |
| 		 *
 | |
| 		 * This synchronize_sched() also confines all
 | |
| 		 * ->rcu_tasks_holdout accesses to be within the grace
 | |
| 		 * period, avoiding the need for memory barriers for
 | |
| 		 * ->rcu_tasks_holdout accesses.
 | |
| 		 *
 | |
| 		 * In addition, this synchronize_sched() waits for exiting
 | |
| 		 * tasks to complete their final preempt_disable() region
 | |
| 		 * of execution, cleaning up after the synchronize_srcu()
 | |
| 		 * above.
 | |
| 		 */
 | |
| 		synchronize_sched();
 | |
| 
 | |
| 		/* Invoke the callbacks. */
 | |
| 		while (list) {
 | |
| 			next = list->next;
 | |
| 			local_bh_disable();
 | |
| 			list->func(list);
 | |
| 			local_bh_enable();
 | |
| 			list = next;
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 		/* Paranoid sleep to keep this from entering a tight loop */
 | |
| 		schedule_timeout_uninterruptible(HZ/10);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Spawn rcu_tasks_kthread() at core_initcall() time. */
 | |
| static int __init rcu_spawn_tasks_kthread(void)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 | |
| 	BUG_ON(IS_ERR(t));
 | |
| 	smp_mb(); /* Ensure others see full kthread. */
 | |
| 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(rcu_spawn_tasks_kthread);
 | |
| 
 | |
| /* Do the srcu_read_lock() for the above synchronize_srcu().  */
 | |
| void exit_tasks_rcu_start(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
 | |
| void exit_tasks_rcu_finish(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_TASKS_RCU */
 | |
| 
 | |
| #ifndef CONFIG_TINY_RCU
 | |
| 
 | |
| /*
 | |
|  * Print any non-default Tasks RCU settings.
 | |
|  */
 | |
| static void __init rcu_tasks_bootup_oddness(void)
 | |
| {
 | |
| #ifdef CONFIG_TASKS_RCU
 | |
| 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
 | |
| 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
 | |
| 	else
 | |
| 		pr_info("\tTasks RCU enabled.\n");
 | |
| #endif /* #ifdef CONFIG_TASKS_RCU */
 | |
| }
 | |
| 
 | |
| #endif /* #ifndef CONFIG_TINY_RCU */
 | |
| 
 | |
| #ifdef CONFIG_PROVE_RCU
 | |
| 
 | |
| /*
 | |
|  * Early boot self test parameters, one for each flavor
 | |
|  */
 | |
| static bool rcu_self_test;
 | |
| static bool rcu_self_test_bh;
 | |
| static bool rcu_self_test_sched;
 | |
| 
 | |
| module_param(rcu_self_test, bool, 0444);
 | |
| module_param(rcu_self_test_bh, bool, 0444);
 | |
| module_param(rcu_self_test_sched, bool, 0444);
 | |
| 
 | |
| static int rcu_self_test_counter;
 | |
| 
 | |
| static void test_callback(struct rcu_head *r)
 | |
| {
 | |
| 	rcu_self_test_counter++;
 | |
| 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 | |
| }
 | |
| 
 | |
| static void early_boot_test_call_rcu(void)
 | |
| {
 | |
| 	static struct rcu_head head;
 | |
| 
 | |
| 	call_rcu(&head, test_callback);
 | |
| }
 | |
| 
 | |
| static void early_boot_test_call_rcu_bh(void)
 | |
| {
 | |
| 	static struct rcu_head head;
 | |
| 
 | |
| 	call_rcu_bh(&head, test_callback);
 | |
| }
 | |
| 
 | |
| static void early_boot_test_call_rcu_sched(void)
 | |
| {
 | |
| 	static struct rcu_head head;
 | |
| 
 | |
| 	call_rcu_sched(&head, test_callback);
 | |
| }
 | |
| 
 | |
| void rcu_early_boot_tests(void)
 | |
| {
 | |
| 	pr_info("Running RCU self tests\n");
 | |
| 
 | |
| 	if (rcu_self_test)
 | |
| 		early_boot_test_call_rcu();
 | |
| 	if (rcu_self_test_bh)
 | |
| 		early_boot_test_call_rcu_bh();
 | |
| 	if (rcu_self_test_sched)
 | |
| 		early_boot_test_call_rcu_sched();
 | |
| 	rcu_test_sync_prims();
 | |
| }
 | |
| 
 | |
| static int rcu_verify_early_boot_tests(void)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int early_boot_test_counter = 0;
 | |
| 
 | |
| 	if (rcu_self_test) {
 | |
| 		early_boot_test_counter++;
 | |
| 		rcu_barrier();
 | |
| 	}
 | |
| 	if (rcu_self_test_bh) {
 | |
| 		early_boot_test_counter++;
 | |
| 		rcu_barrier_bh();
 | |
| 	}
 | |
| 	if (rcu_self_test_sched) {
 | |
| 		early_boot_test_counter++;
 | |
| 		rcu_barrier_sched();
 | |
| 	}
 | |
| 
 | |
| 	if (rcu_self_test_counter != early_boot_test_counter) {
 | |
| 		WARN_ON(1);
 | |
| 		ret = -1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| late_initcall(rcu_verify_early_boot_tests);
 | |
| #else
 | |
| void rcu_early_boot_tests(void) {}
 | |
| #endif /* CONFIG_PROVE_RCU */
 | |
| 
 | |
| #ifndef CONFIG_TINY_RCU
 | |
| 
 | |
| /*
 | |
|  * Print any significant non-default boot-time settings.
 | |
|  */
 | |
| void __init rcupdate_announce_bootup_oddness(void)
 | |
| {
 | |
| 	if (rcu_normal)
 | |
| 		pr_info("\tNo expedited grace period (rcu_normal).\n");
 | |
| 	else if (rcu_normal_after_boot)
 | |
| 		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
 | |
| 	else if (rcu_expedited)
 | |
| 		pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
 | |
| 	if (rcu_cpu_stall_suppress)
 | |
| 		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
 | |
| 	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
 | |
| 		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
 | |
| 	rcu_tasks_bootup_oddness();
 | |
| }
 | |
| 
 | |
| #endif /* #ifndef CONFIG_TINY_RCU */
 | 
