4188 lines
		
	
	
		
			132 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4188 lines
		
	
	
		
			132 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Read-Copy Update mechanism for mutual exclusion
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, you can access it online at
 | |
|  * http://www.gnu.org/licenses/gpl-2.0.html.
 | |
|  *
 | |
|  * Copyright IBM Corporation, 2008
 | |
|  *
 | |
|  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 | |
|  *	    Manfred Spraul <manfred@colorfullife.com>
 | |
|  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 | |
|  *
 | |
|  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 | |
|  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 | |
|  *
 | |
|  * For detailed explanation of Read-Copy Update mechanism see -
 | |
|  *	Documentation/RCU
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "rcu: " fmt
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/rcupdate_wait.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/debug.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <uapi/linux/sched/types.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/trace_events.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/ftrace.h>
 | |
| 
 | |
| #include "tree.h"
 | |
| #include "rcu.h"
 | |
| 
 | |
| #ifdef MODULE_PARAM_PREFIX
 | |
| #undef MODULE_PARAM_PREFIX
 | |
| #endif
 | |
| #define MODULE_PARAM_PREFIX "rcutree."
 | |
| 
 | |
| /* Data structures. */
 | |
| 
 | |
| /*
 | |
|  * In order to export the rcu_state name to the tracing tools, it
 | |
|  * needs to be added in the __tracepoint_string section.
 | |
|  * This requires defining a separate variable tp_<sname>_varname
 | |
|  * that points to the string being used, and this will allow
 | |
|  * the tracing userspace tools to be able to decipher the string
 | |
|  * address to the matching string.
 | |
|  */
 | |
| #ifdef CONFIG_TRACING
 | |
| # define DEFINE_RCU_TPS(sname) \
 | |
| static char sname##_varname[] = #sname; \
 | |
| static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
 | |
| # define RCU_STATE_NAME(sname) sname##_varname
 | |
| #else
 | |
| # define DEFINE_RCU_TPS(sname)
 | |
| # define RCU_STATE_NAME(sname) __stringify(sname)
 | |
| #endif
 | |
| 
 | |
| #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
 | |
| DEFINE_RCU_TPS(sname) \
 | |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
 | |
| struct rcu_state sname##_state = { \
 | |
| 	.level = { &sname##_state.node[0] }, \
 | |
| 	.rda = &sname##_data, \
 | |
| 	.call = cr, \
 | |
| 	.gp_state = RCU_GP_IDLE, \
 | |
| 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \
 | |
| 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 | |
| 	.name = RCU_STATE_NAME(sname), \
 | |
| 	.abbr = sabbr, \
 | |
| 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 | |
| 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 | |
| 	.ofl_lock = __SPIN_LOCK_UNLOCKED(sname##_state.ofl_lock), \
 | |
| }
 | |
| 
 | |
| RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 | |
| RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 | |
| 
 | |
| static struct rcu_state *const rcu_state_p;
 | |
| LIST_HEAD(rcu_struct_flavors);
 | |
| 
 | |
| /* Dump rcu_node combining tree at boot to verify correct setup. */
 | |
| static bool dump_tree;
 | |
| module_param(dump_tree, bool, 0444);
 | |
| /* Control rcu_node-tree auto-balancing at boot time. */
 | |
| static bool rcu_fanout_exact;
 | |
| module_param(rcu_fanout_exact, bool, 0444);
 | |
| /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 | |
| static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | |
| module_param(rcu_fanout_leaf, int, 0444);
 | |
| int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 | |
| /* Number of rcu_nodes at specified level. */
 | |
| int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 | |
| int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 | |
| /* panic() on RCU Stall sysctl. */
 | |
| int sysctl_panic_on_rcu_stall __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * The rcu_scheduler_active variable is initialized to the value
 | |
|  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 | |
|  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 | |
|  * RCU can assume that there is but one task, allowing RCU to (for example)
 | |
|  * optimize synchronize_rcu() to a simple barrier().  When this variable
 | |
|  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 | |
|  * to detect real grace periods.  This variable is also used to suppress
 | |
|  * boot-time false positives from lockdep-RCU error checking.  Finally, it
 | |
|  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 | |
|  * is fully initialized, including all of its kthreads having been spawned.
 | |
|  */
 | |
| int rcu_scheduler_active __read_mostly;
 | |
| EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 | |
| 
 | |
| /*
 | |
|  * The rcu_scheduler_fully_active variable transitions from zero to one
 | |
|  * during the early_initcall() processing, which is after the scheduler
 | |
|  * is capable of creating new tasks.  So RCU processing (for example,
 | |
|  * creating tasks for RCU priority boosting) must be delayed until after
 | |
|  * rcu_scheduler_fully_active transitions from zero to one.  We also
 | |
|  * currently delay invocation of any RCU callbacks until after this point.
 | |
|  *
 | |
|  * It might later prove better for people registering RCU callbacks during
 | |
|  * early boot to take responsibility for these callbacks, but one step at
 | |
|  * a time.
 | |
|  */
 | |
| static int rcu_scheduler_fully_active __read_mostly;
 | |
| 
 | |
| static void
 | |
| rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
 | |
| 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags);
 | |
| static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 | |
| static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 | |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 | |
| static void invoke_rcu_core(void);
 | |
| static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 | |
| static void rcu_report_exp_rdp(struct rcu_state *rsp,
 | |
| 			       struct rcu_data *rdp, bool wake);
 | |
| static void sync_sched_exp_online_cleanup(int cpu);
 | |
| 
 | |
| /* rcuc/rcub kthread realtime priority */
 | |
| static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 | |
| module_param(kthread_prio, int, 0644);
 | |
| 
 | |
| /* Delay in jiffies for grace-period initialization delays, debug only. */
 | |
| 
 | |
| static int gp_preinit_delay;
 | |
| module_param(gp_preinit_delay, int, 0444);
 | |
| static int gp_init_delay;
 | |
| module_param(gp_init_delay, int, 0444);
 | |
| static int gp_cleanup_delay;
 | |
| module_param(gp_cleanup_delay, int, 0444);
 | |
| 
 | |
| /* Retreive RCU kthreads priority for rcutorture */
 | |
| int rcu_get_gp_kthreads_prio(void)
 | |
| {
 | |
| 	return kthread_prio;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 | |
| 
 | |
| /*
 | |
|  * Number of grace periods between delays, normalized by the duration of
 | |
|  * the delay.  The longer the delay, the more the grace periods between
 | |
|  * each delay.  The reason for this normalization is that it means that,
 | |
|  * for non-zero delays, the overall slowdown of grace periods is constant
 | |
|  * regardless of the duration of the delay.  This arrangement balances
 | |
|  * the need for long delays to increase some race probabilities with the
 | |
|  * need for fast grace periods to increase other race probabilities.
 | |
|  */
 | |
| #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 | |
| 
 | |
| /*
 | |
|  * Compute the mask of online CPUs for the specified rcu_node structure.
 | |
|  * This will not be stable unless the rcu_node structure's ->lock is
 | |
|  * held, but the bit corresponding to the current CPU will be stable
 | |
|  * in most contexts.
 | |
|  */
 | |
| unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 | |
| {
 | |
| 	return READ_ONCE(rnp->qsmaskinitnext);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 | |
|  * permit this function to be invoked without holding the root rcu_node
 | |
|  * structure's ->lock, but of course results can be subject to change.
 | |
|  */
 | |
| static int rcu_gp_in_progress(struct rcu_state *rsp)
 | |
| {
 | |
| 	return rcu_seq_state(rcu_seq_current(&rsp->gp_seq));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note a quiescent state.  Because we do not need to know
 | |
|  * how many quiescent states passed, just if there was at least
 | |
|  * one since the start of the grace period, this just sets a flag.
 | |
|  * The caller must have disabled preemption.
 | |
|  */
 | |
| void rcu_sched_qs(void)
 | |
| {
 | |
| 	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
 | |
| 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 | |
| 		return;
 | |
| 	trace_rcu_grace_period(TPS("rcu_sched"),
 | |
| 			       __this_cpu_read(rcu_sched_data.gp_seq),
 | |
| 			       TPS("cpuqs"));
 | |
| 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 | |
| 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 | |
| 		return;
 | |
| 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 | |
| 	rcu_report_exp_rdp(&rcu_sched_state,
 | |
| 			   this_cpu_ptr(&rcu_sched_data), true);
 | |
| }
 | |
| 
 | |
| void rcu_bh_qs(void)
 | |
| {
 | |
| 	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
 | |
| 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 | |
| 		trace_rcu_grace_period(TPS("rcu_bh"),
 | |
| 				       __this_cpu_read(rcu_bh_data.gp_seq),
 | |
| 				       TPS("cpuqs"));
 | |
| 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Steal a bit from the bottom of ->dynticks for idle entry/exit
 | |
|  * control.  Initially this is for TLB flushing.
 | |
|  */
 | |
| #define RCU_DYNTICK_CTRL_MASK 0x1
 | |
| #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 | |
| #ifndef rcu_eqs_special_exit
 | |
| #define rcu_eqs_special_exit() do { } while (0)
 | |
| #endif
 | |
| 
 | |
| static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 | |
| 	.dynticks_nesting = 1,
 | |
| 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
 | |
| 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Record entry into an extended quiescent state.  This is only to be
 | |
|  * called when not already in an extended quiescent state.
 | |
|  */
 | |
| static void rcu_dynticks_eqs_enter(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 	int seq;
 | |
| 
 | |
| 	/*
 | |
| 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 | |
| 	 * critical sections, and we also must force ordering with the
 | |
| 	 * next idle sojourn.
 | |
| 	 */
 | |
| 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 | |
| 	/* Better be in an extended quiescent state! */
 | |
| 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | |
| 		     (seq & RCU_DYNTICK_CTRL_CTR));
 | |
| 	/* Better not have special action (TLB flush) pending! */
 | |
| 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | |
| 		     (seq & RCU_DYNTICK_CTRL_MASK));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Record exit from an extended quiescent state.  This is only to be
 | |
|  * called from an extended quiescent state.
 | |
|  */
 | |
| static void rcu_dynticks_eqs_exit(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 	int seq;
 | |
| 
 | |
| 	/*
 | |
| 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 | |
| 	 * and we also must force ordering with the next RCU read-side
 | |
| 	 * critical section.
 | |
| 	 */
 | |
| 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 | |
| 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | |
| 		     !(seq & RCU_DYNTICK_CTRL_CTR));
 | |
| 	if (seq & RCU_DYNTICK_CTRL_MASK) {
 | |
| 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
 | |
| 		smp_mb__after_atomic(); /* _exit after clearing mask. */
 | |
| 		/* Prefer duplicate flushes to losing a flush. */
 | |
| 		rcu_eqs_special_exit();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset the current CPU's ->dynticks counter to indicate that the
 | |
|  * newly onlined CPU is no longer in an extended quiescent state.
 | |
|  * This will either leave the counter unchanged, or increment it
 | |
|  * to the next non-quiescent value.
 | |
|  *
 | |
|  * The non-atomic test/increment sequence works because the upper bits
 | |
|  * of the ->dynticks counter are manipulated only by the corresponding CPU,
 | |
|  * or when the corresponding CPU is offline.
 | |
|  */
 | |
| static void rcu_dynticks_eqs_online(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 
 | |
| 	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 | |
| 		return;
 | |
| 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the current CPU in an extended quiescent state?
 | |
|  *
 | |
|  * No ordering, as we are sampling CPU-local information.
 | |
|  */
 | |
| bool rcu_dynticks_curr_cpu_in_eqs(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 
 | |
| 	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Snapshot the ->dynticks counter with full ordering so as to allow
 | |
|  * stable comparison of this counter with past and future snapshots.
 | |
|  */
 | |
| int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
 | |
| {
 | |
| 	int snap = atomic_add_return(0, &rdtp->dynticks);
 | |
| 
 | |
| 	return snap & ~RCU_DYNTICK_CTRL_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the snapshot returned from rcu_dynticks_snap()
 | |
|  * indicates that RCU is in an extended quiescent state.
 | |
|  */
 | |
| static bool rcu_dynticks_in_eqs(int snap)
 | |
| {
 | |
| 	return !(snap & RCU_DYNTICK_CTRL_CTR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the CPU corresponding to the specified rcu_dynticks
 | |
|  * structure has spent some time in an extended quiescent state since
 | |
|  * rcu_dynticks_snap() returned the specified snapshot.
 | |
|  */
 | |
| static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
 | |
| {
 | |
| 	return snap != rcu_dynticks_snap(rdtp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the special (bottom) bit of the specified CPU so that it
 | |
|  * will take special action (such as flushing its TLB) on the
 | |
|  * next exit from an extended quiescent state.  Returns true if
 | |
|  * the bit was successfully set, or false if the CPU was not in
 | |
|  * an extended quiescent state.
 | |
|  */
 | |
| bool rcu_eqs_special_set(int cpu)
 | |
| {
 | |
| 	int old;
 | |
| 	int new;
 | |
| 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 | |
| 
 | |
| 	do {
 | |
| 		old = atomic_read(&rdtp->dynticks);
 | |
| 		if (old & RCU_DYNTICK_CTRL_CTR)
 | |
| 			return false;
 | |
| 		new = old | RCU_DYNTICK_CTRL_MASK;
 | |
| 	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Let the RCU core know that this CPU has gone through the scheduler,
 | |
|  * which is a quiescent state.  This is called when the need for a
 | |
|  * quiescent state is urgent, so we burn an atomic operation and full
 | |
|  * memory barriers to let the RCU core know about it, regardless of what
 | |
|  * this CPU might (or might not) do in the near future.
 | |
|  *
 | |
|  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 | |
|  *
 | |
|  * The caller must have disabled interrupts and must not be idle.
 | |
|  */
 | |
| static void rcu_momentary_dyntick_idle(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 	int special;
 | |
| 
 | |
| 	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
 | |
| 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 | |
| 	/* It is illegal to call this from idle state. */
 | |
| 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note a context switch.  This is a quiescent state for RCU-sched,
 | |
|  * and requires special handling for preemptible RCU.
 | |
|  * The caller must have disabled interrupts.
 | |
|  */
 | |
| void rcu_note_context_switch(bool preempt)
 | |
| {
 | |
| 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 | |
| 	trace_rcu_utilization(TPS("Start context switch"));
 | |
| 	rcu_sched_qs();
 | |
| 	rcu_preempt_note_context_switch(preempt);
 | |
| 	/* Load rcu_urgent_qs before other flags. */
 | |
| 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
 | |
| 		goto out;
 | |
| 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 | |
| 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
 | |
| 		rcu_momentary_dyntick_idle();
 | |
| 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 | |
| 	if (!preempt)
 | |
| 		rcu_tasks_qs(current);
 | |
| out:
 | |
| 	trace_rcu_utilization(TPS("End context switch"));
 | |
| 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 | |
| 
 | |
| /*
 | |
|  * Register a quiescent state for all RCU flavors.  If there is an
 | |
|  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 | |
|  * dyntick-idle quiescent state visible to other CPUs (but only for those
 | |
|  * RCU flavors in desperate need of a quiescent state, which will normally
 | |
|  * be none of them).  Either way, do a lightweight quiescent state for
 | |
|  * all RCU flavors.
 | |
|  *
 | |
|  * The barrier() calls are redundant in the common case when this is
 | |
|  * called externally, but just in case this is called from within this
 | |
|  * file.
 | |
|  *
 | |
|  */
 | |
| void rcu_all_qs(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
 | |
| 		return;
 | |
| 	preempt_disable();
 | |
| 	/* Load rcu_urgent_qs before other flags. */
 | |
| 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
 | |
| 		preempt_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 | |
| 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 | |
| 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
 | |
| 		local_irq_save(flags);
 | |
| 		rcu_momentary_dyntick_idle();
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
 | |
| 		rcu_sched_qs();
 | |
| 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 | |
| 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 | |
| 	preempt_enable();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_all_qs);
 | |
| 
 | |
| #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
 | |
| static long blimit = DEFAULT_RCU_BLIMIT;
 | |
| #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 | |
| static long qhimark = DEFAULT_RCU_QHIMARK;
 | |
| #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 | |
| static long qlowmark = DEFAULT_RCU_QLOMARK;
 | |
| 
 | |
| module_param(blimit, long, 0444);
 | |
| module_param(qhimark, long, 0444);
 | |
| module_param(qlowmark, long, 0444);
 | |
| 
 | |
| static ulong jiffies_till_first_fqs = ULONG_MAX;
 | |
| static ulong jiffies_till_next_fqs = ULONG_MAX;
 | |
| static bool rcu_kick_kthreads;
 | |
| 
 | |
| static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 | |
| {
 | |
| 	ulong j;
 | |
| 	int ret = kstrtoul(val, 0, &j);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 | |
| {
 | |
| 	ulong j;
 | |
| 	int ret = kstrtoul(val, 0, &j);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct kernel_param_ops first_fqs_jiffies_ops = {
 | |
| 	.set = param_set_first_fqs_jiffies,
 | |
| 	.get = param_get_ulong,
 | |
| };
 | |
| 
 | |
| static struct kernel_param_ops next_fqs_jiffies_ops = {
 | |
| 	.set = param_set_next_fqs_jiffies,
 | |
| 	.get = param_get_ulong,
 | |
| };
 | |
| 
 | |
| module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 | |
| module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 | |
| module_param(rcu_kick_kthreads, bool, 0644);
 | |
| 
 | |
| /*
 | |
|  * How long the grace period must be before we start recruiting
 | |
|  * quiescent-state help from rcu_note_context_switch().
 | |
|  */
 | |
| static ulong jiffies_till_sched_qs = HZ / 10;
 | |
| module_param(jiffies_till_sched_qs, ulong, 0444);
 | |
| 
 | |
| static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
 | |
| static void force_quiescent_state(struct rcu_state *rsp);
 | |
| static int rcu_pending(void);
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU GPs completed thus far for debug & stats.
 | |
|  */
 | |
| unsigned long rcu_get_gp_seq(void)
 | |
| {
 | |
| 	return READ_ONCE(rcu_state_p->gp_seq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU-sched GPs completed thus far for debug & stats.
 | |
|  */
 | |
| unsigned long rcu_sched_get_gp_seq(void)
 | |
| {
 | |
| 	return READ_ONCE(rcu_sched_state.gp_seq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq);
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU-bh GPs completed thus far for debug & stats.
 | |
|  */
 | |
| unsigned long rcu_bh_get_gp_seq(void)
 | |
| {
 | |
| 	return READ_ONCE(rcu_bh_state.gp_seq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq);
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU expedited batches completed thus far for
 | |
|  * debug & stats.  Odd numbers mean that a batch is in progress, even
 | |
|  * numbers mean idle.  The value returned will thus be roughly double
 | |
|  * the cumulative batches since boot.
 | |
|  */
 | |
| unsigned long rcu_exp_batches_completed(void)
 | |
| {
 | |
| 	return rcu_state_p->expedited_sequence;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU-sched expedited batches completed thus far
 | |
|  * for debug & stats.  Similar to rcu_exp_batches_completed().
 | |
|  */
 | |
| unsigned long rcu_exp_batches_completed_sched(void)
 | |
| {
 | |
| 	return rcu_sched_state.expedited_sequence;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 | |
| 
 | |
| /*
 | |
|  * Force a quiescent state.
 | |
|  */
 | |
| void rcu_force_quiescent_state(void)
 | |
| {
 | |
| 	force_quiescent_state(rcu_state_p);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 | |
| 
 | |
| /*
 | |
|  * Force a quiescent state for RCU BH.
 | |
|  */
 | |
| void rcu_bh_force_quiescent_state(void)
 | |
| {
 | |
| 	force_quiescent_state(&rcu_bh_state);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 | |
| 
 | |
| /*
 | |
|  * Force a quiescent state for RCU-sched.
 | |
|  */
 | |
| void rcu_sched_force_quiescent_state(void)
 | |
| {
 | |
| 	force_quiescent_state(&rcu_sched_state);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 | |
| 
 | |
| /*
 | |
|  * Show the state of the grace-period kthreads.
 | |
|  */
 | |
| void show_rcu_gp_kthreads(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		pr_info("%s: wait state: %d ->state: %#lx\n",
 | |
| 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 | |
| 		rcu_for_each_node_breadth_first(rsp, rnp) {
 | |
| 			if (ULONG_CMP_GE(rsp->gp_seq, rnp->gp_seq_needed))
 | |
| 				continue;
 | |
| 			pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
 | |
| 				rnp->grplo, rnp->grphi, rnp->gp_seq,
 | |
| 				rnp->gp_seq_needed);
 | |
| 			if (!rcu_is_leaf_node(rnp))
 | |
| 				continue;
 | |
| 			for_each_leaf_node_possible_cpu(rnp, cpu) {
 | |
| 				rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 				if (rdp->gpwrap ||
 | |
| 				    ULONG_CMP_GE(rsp->gp_seq,
 | |
| 						 rdp->gp_seq_needed))
 | |
| 					continue;
 | |
| 				pr_info("\tcpu %d ->gp_seq_needed %lu\n",
 | |
| 					cpu, rdp->gp_seq_needed);
 | |
| 			}
 | |
| 		}
 | |
| 		/* sched_show_task(rsp->gp_kthread); */
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 | |
| 
 | |
| /*
 | |
|  * Send along grace-period-related data for rcutorture diagnostics.
 | |
|  */
 | |
| void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 | |
| 			    unsigned long *gp_seq)
 | |
| {
 | |
| 	struct rcu_state *rsp = NULL;
 | |
| 
 | |
| 	switch (test_type) {
 | |
| 	case RCU_FLAVOR:
 | |
| 		rsp = rcu_state_p;
 | |
| 		break;
 | |
| 	case RCU_BH_FLAVOR:
 | |
| 		rsp = &rcu_bh_state;
 | |
| 		break;
 | |
| 	case RCU_SCHED_FLAVOR:
 | |
| 		rsp = &rcu_sched_state;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	if (rsp == NULL)
 | |
| 		return;
 | |
| 	*flags = READ_ONCE(rsp->gp_flags);
 | |
| 	*gp_seq = rcu_seq_current(&rsp->gp_seq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 | |
| 
 | |
| /*
 | |
|  * Return the root node of the specified rcu_state structure.
 | |
|  */
 | |
| static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 | |
| {
 | |
| 	return &rsp->node[0];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enter an RCU extended quiescent state, which can be either the
 | |
|  * idle loop or adaptive-tickless usermode execution.
 | |
|  *
 | |
|  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 | |
|  * the possibility of usermode upcalls having messed up our count
 | |
|  * of interrupt nesting level during the prior busy period.
 | |
|  */
 | |
| static void rcu_eqs_enter(bool user)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_dynticks *rdtp;
 | |
| 
 | |
| 	rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
 | |
| 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 | |
| 		     rdtp->dynticks_nesting == 0);
 | |
| 	if (rdtp->dynticks_nesting != 1) {
 | |
| 		rdtp->dynticks_nesting--;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
 | |
| 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rdp = this_cpu_ptr(rsp->rda);
 | |
| 		do_nocb_deferred_wakeup(rdp);
 | |
| 	}
 | |
| 	rcu_prepare_for_idle();
 | |
| 	WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 | |
| 	rcu_dynticks_eqs_enter();
 | |
| 	rcu_dynticks_task_enter();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_idle_enter - inform RCU that current CPU is entering idle
 | |
|  *
 | |
|  * Enter idle mode, in other words, -leave- the mode in which RCU
 | |
|  * read-side critical sections can occur.  (Though RCU read-side
 | |
|  * critical sections can occur in irq handlers in idle, a possibility
 | |
|  * handled by irq_enter() and irq_exit().)
 | |
|  *
 | |
|  * If you add or remove a call to rcu_idle_enter(), be sure to test with
 | |
|  * CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_idle_enter(void)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	rcu_eqs_enter(false);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| /**
 | |
|  * rcu_user_enter - inform RCU that we are resuming userspace.
 | |
|  *
 | |
|  * Enter RCU idle mode right before resuming userspace.  No use of RCU
 | |
|  * is permitted between this call and rcu_user_exit(). This way the
 | |
|  * CPU doesn't need to maintain the tick for RCU maintenance purposes
 | |
|  * when the CPU runs in userspace.
 | |
|  *
 | |
|  * If you add or remove a call to rcu_user_enter(), be sure to test with
 | |
|  * CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_user_enter(void)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	rcu_eqs_enter(true);
 | |
| }
 | |
| #endif /* CONFIG_NO_HZ_FULL */
 | |
| 
 | |
| /**
 | |
|  * rcu_nmi_exit - inform RCU of exit from NMI context
 | |
|  *
 | |
|  * If we are returning from the outermost NMI handler that interrupted an
 | |
|  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 | |
|  * to let the RCU grace-period handling know that the CPU is back to
 | |
|  * being RCU-idle.
 | |
|  *
 | |
|  * If you add or remove a call to rcu_nmi_exit(), be sure to test
 | |
|  * with CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_nmi_exit(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 | |
| 	 * (We are exiting an NMI handler, so RCU better be paying attention
 | |
| 	 * to us!)
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
 | |
| 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 | |
| 
 | |
| 	/*
 | |
| 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 | |
| 	 * leave it in non-RCU-idle state.
 | |
| 	 */
 | |
| 	if (rdtp->dynticks_nmi_nesting != 1) {
 | |
| 		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
 | |
| 		WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
 | |
| 			   rdtp->dynticks_nmi_nesting - 2);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 | |
| 	trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
 | |
| 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 | |
| 	rcu_dynticks_eqs_enter();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 | |
|  *
 | |
|  * Exit from an interrupt handler, which might possibly result in entering
 | |
|  * idle mode, in other words, leaving the mode in which read-side critical
 | |
|  * sections can occur.  The caller must have disabled interrupts.
 | |
|  *
 | |
|  * This code assumes that the idle loop never does anything that might
 | |
|  * result in unbalanced calls to irq_enter() and irq_exit().  If your
 | |
|  * architecture's idle loop violates this assumption, RCU will give you what
 | |
|  * you deserve, good and hard.  But very infrequently and irreproducibly.
 | |
|  *
 | |
|  * Use things like work queues to work around this limitation.
 | |
|  *
 | |
|  * You have been warned.
 | |
|  *
 | |
|  * If you add or remove a call to rcu_irq_exit(), be sure to test with
 | |
|  * CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_irq_exit(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (rdtp->dynticks_nmi_nesting == 1)
 | |
| 		rcu_prepare_for_idle();
 | |
| 	rcu_nmi_exit();
 | |
| 	if (rdtp->dynticks_nmi_nesting == 0)
 | |
| 		rcu_dynticks_task_enter();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for rcu_irq_exit() where interrupts are enabled.
 | |
|  *
 | |
|  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 | |
|  * with CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_irq_exit_irqson(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rcu_irq_exit();
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Exit an RCU extended quiescent state, which can be either the
 | |
|  * idle loop or adaptive-tickless usermode execution.
 | |
|  *
 | |
|  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 | |
|  * allow for the possibility of usermode upcalls messing up our count of
 | |
|  * interrupt nesting level during the busy period that is just now starting.
 | |
|  */
 | |
| static void rcu_eqs_exit(bool user)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp;
 | |
| 	long oldval;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 	oldval = rdtp->dynticks_nesting;
 | |
| 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 | |
| 	if (oldval) {
 | |
| 		rdtp->dynticks_nesting++;
 | |
| 		return;
 | |
| 	}
 | |
| 	rcu_dynticks_task_exit();
 | |
| 	rcu_dynticks_eqs_exit();
 | |
| 	rcu_cleanup_after_idle();
 | |
| 	trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
 | |
| 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 | |
| 	WRITE_ONCE(rdtp->dynticks_nesting, 1);
 | |
| 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_idle_exit - inform RCU that current CPU is leaving idle
 | |
|  *
 | |
|  * Exit idle mode, in other words, -enter- the mode in which RCU
 | |
|  * read-side critical sections can occur.
 | |
|  *
 | |
|  * If you add or remove a call to rcu_idle_exit(), be sure to test with
 | |
|  * CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_idle_exit(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rcu_eqs_exit(false);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| /**
 | |
|  * rcu_user_exit - inform RCU that we are exiting userspace.
 | |
|  *
 | |
|  * Exit RCU idle mode while entering the kernel because it can
 | |
|  * run a RCU read side critical section anytime.
 | |
|  *
 | |
|  * If you add or remove a call to rcu_user_exit(), be sure to test with
 | |
|  * CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_user_exit(void)
 | |
| {
 | |
| 	rcu_eqs_exit(1);
 | |
| }
 | |
| #endif /* CONFIG_NO_HZ_FULL */
 | |
| 
 | |
| /**
 | |
|  * rcu_nmi_enter - inform RCU of entry to NMI context
 | |
|  *
 | |
|  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 | |
|  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 | |
|  * that the CPU is active.  This implementation permits nested NMIs, as
 | |
|  * long as the nesting level does not overflow an int.  (You will probably
 | |
|  * run out of stack space first.)
 | |
|  *
 | |
|  * If you add or remove a call to rcu_nmi_enter(), be sure to test
 | |
|  * with CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_nmi_enter(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 	long incby = 2;
 | |
| 
 | |
| 	/* Complain about underflow. */
 | |
| 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If idle from RCU viewpoint, atomically increment ->dynticks
 | |
| 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 | |
| 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 | |
| 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 | |
| 	 * to be in the outermost NMI handler that interrupted an RCU-idle
 | |
| 	 * period (observation due to Andy Lutomirski).
 | |
| 	 */
 | |
| 	if (rcu_dynticks_curr_cpu_in_eqs()) {
 | |
| 		rcu_dynticks_eqs_exit();
 | |
| 		incby = 1;
 | |
| 	}
 | |
| 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
 | |
| 			  rdtp->dynticks_nmi_nesting,
 | |
| 			  rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
 | |
| 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
 | |
| 		   rdtp->dynticks_nmi_nesting + incby);
 | |
| 	barrier();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 | |
|  *
 | |
|  * Enter an interrupt handler, which might possibly result in exiting
 | |
|  * idle mode, in other words, entering the mode in which read-side critical
 | |
|  * sections can occur.  The caller must have disabled interrupts.
 | |
|  *
 | |
|  * Note that the Linux kernel is fully capable of entering an interrupt
 | |
|  * handler that it never exits, for example when doing upcalls to user mode!
 | |
|  * This code assumes that the idle loop never does upcalls to user mode.
 | |
|  * If your architecture's idle loop does do upcalls to user mode (or does
 | |
|  * anything else that results in unbalanced calls to the irq_enter() and
 | |
|  * irq_exit() functions), RCU will give you what you deserve, good and hard.
 | |
|  * But very infrequently and irreproducibly.
 | |
|  *
 | |
|  * Use things like work queues to work around this limitation.
 | |
|  *
 | |
|  * You have been warned.
 | |
|  *
 | |
|  * If you add or remove a call to rcu_irq_enter(), be sure to test with
 | |
|  * CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_irq_enter(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (rdtp->dynticks_nmi_nesting == 0)
 | |
| 		rcu_dynticks_task_exit();
 | |
| 	rcu_nmi_enter();
 | |
| 	if (rdtp->dynticks_nmi_nesting == 1)
 | |
| 		rcu_cleanup_after_idle();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for rcu_irq_enter() where interrupts are enabled.
 | |
|  *
 | |
|  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
 | |
|  * with CONFIG_RCU_EQS_DEBUG=y.
 | |
|  */
 | |
| void rcu_irq_enter_irqson(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rcu_irq_enter();
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_is_watching - see if RCU thinks that the current CPU is idle
 | |
|  *
 | |
|  * Return true if RCU is watching the running CPU, which means that this
 | |
|  * CPU can safely enter RCU read-side critical sections.  In other words,
 | |
|  * if the current CPU is in its idle loop and is neither in an interrupt
 | |
|  * or NMI handler, return true.
 | |
|  */
 | |
| bool notrace rcu_is_watching(void)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	preempt_disable_notrace();
 | |
| 	ret = !rcu_dynticks_curr_cpu_in_eqs();
 | |
| 	preempt_enable_notrace();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_is_watching);
 | |
| 
 | |
| /*
 | |
|  * If a holdout task is actually running, request an urgent quiescent
 | |
|  * state from its CPU.  This is unsynchronized, so migrations can cause
 | |
|  * the request to go to the wrong CPU.  Which is OK, all that will happen
 | |
|  * is that the CPU's next context switch will be a bit slower and next
 | |
|  * time around this task will generate another request.
 | |
|  */
 | |
| void rcu_request_urgent_qs_task(struct task_struct *t)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	barrier();
 | |
| 	cpu = task_cpu(t);
 | |
| 	if (!task_curr(t))
 | |
| 		return; /* This task is not running on that CPU. */
 | |
| 	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 | |
| 
 | |
| /*
 | |
|  * Is the current CPU online as far as RCU is concerned?
 | |
|  *
 | |
|  * Disable preemption to avoid false positives that could otherwise
 | |
|  * happen due to the current CPU number being sampled, this task being
 | |
|  * preempted, its old CPU being taken offline, resuming on some other CPU,
 | |
|  * then determining that its old CPU is now offline.  Because there are
 | |
|  * multiple flavors of RCU, and because this function can be called in the
 | |
|  * midst of updating the flavors while a given CPU coming online or going
 | |
|  * offline, it is necessary to check all flavors.  If any of the flavors
 | |
|  * believe that given CPU is online, it is considered to be online.
 | |
|  *
 | |
|  * Disable checking if in an NMI handler because we cannot safely
 | |
|  * report errors from NMI handlers anyway.  In addition, it is OK to use
 | |
|  * RCU on an offline processor during initial boot, hence the check for
 | |
|  * rcu_scheduler_fully_active.
 | |
|  */
 | |
| bool rcu_lockdep_current_cpu_online(void)
 | |
| {
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	if (in_nmi() || !rcu_scheduler_fully_active)
 | |
| 		return true;
 | |
| 	preempt_disable();
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rdp = this_cpu_ptr(rsp->rda);
 | |
| 		rnp = rdp->mynode;
 | |
| 		if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) {
 | |
| 			preempt_enable();
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 | |
| 
 | |
| #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 | |
| 
 | |
| /**
 | |
|  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
 | |
|  *
 | |
|  * If the current CPU is idle or running at a first-level (not nested)
 | |
|  * interrupt from idle, return true.  The caller must have at least
 | |
|  * disabled preemption.
 | |
|  */
 | |
| static int rcu_is_cpu_rrupt_from_idle(void)
 | |
| {
 | |
| 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
 | |
| 	       __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are reporting a quiescent state on behalf of some other CPU, so
 | |
|  * it is our responsibility to check for and handle potential overflow
 | |
|  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 | |
|  * After all, the CPU might be in deep idle state, and thus executing no
 | |
|  * code whatsoever.
 | |
|  */
 | |
| static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 | |
| {
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 | |
| 			 rnp->gp_seq))
 | |
| 		WRITE_ONCE(rdp->gpwrap, true);
 | |
| 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 | |
| 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Snapshot the specified CPU's dynticks counter so that we can later
 | |
|  * credit them with an implicit quiescent state.  Return 1 if this CPU
 | |
|  * is in dynticks idle mode, which is an extended quiescent state.
 | |
|  */
 | |
| static int dyntick_save_progress_counter(struct rcu_data *rdp)
 | |
| {
 | |
| 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
 | |
| 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 | |
| 		trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 | |
| 		rcu_gpnum_ovf(rdp->mynode, rdp);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handler for the irq_work request posted when a grace period has
 | |
|  * gone on for too long, but not yet long enough for an RCU CPU
 | |
|  * stall warning.  Set state appropriately, but just complain if
 | |
|  * there is unexpected state on entry.
 | |
|  */
 | |
| static void rcu_iw_handler(struct irq_work *iwp)
 | |
| {
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	rdp = container_of(iwp, struct rcu_data, rcu_iw);
 | |
| 	rnp = rdp->mynode;
 | |
| 	raw_spin_lock_rcu_node(rnp);
 | |
| 	if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
 | |
| 		rdp->rcu_iw_gp_seq = rnp->gp_seq;
 | |
| 		rdp->rcu_iw_pending = false;
 | |
| 	}
 | |
| 	raw_spin_unlock_rcu_node(rnp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the specified CPU has passed through a quiescent
 | |
|  * state by virtue of being in or having passed through an dynticks
 | |
|  * idle state since the last call to dyntick_save_progress_counter()
 | |
|  * for this same CPU, or by virtue of having been offline.
 | |
|  */
 | |
| static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long jtsq;
 | |
| 	bool *rnhqp;
 | |
| 	bool *ruqp;
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the CPU passed through or entered a dynticks idle phase with
 | |
| 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 | |
| 	 * already acknowledged the request to pass through a quiescent
 | |
| 	 * state.  Either way, that CPU cannot possibly be in an RCU
 | |
| 	 * read-side critical section that started before the beginning
 | |
| 	 * of the current RCU grace period.
 | |
| 	 */
 | |
| 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
 | |
| 		trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 | |
| 		rdp->dynticks_fqs++;
 | |
| 		rcu_gpnum_ovf(rnp, rdp);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Has this CPU encountered a cond_resched() since the beginning
 | |
| 	 * of the grace period?  For this to be the case, the CPU has to
 | |
| 	 * have noticed the current grace period.  This might not be the
 | |
| 	 * case for nohz_full CPUs looping in the kernel.
 | |
| 	 */
 | |
| 	jtsq = jiffies_till_sched_qs;
 | |
| 	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
 | |
| 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
 | |
| 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
 | |
| 	    rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) {
 | |
| 		trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("rqc"));
 | |
| 		rcu_gpnum_ovf(rnp, rdp);
 | |
| 		return 1;
 | |
| 	} else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
 | |
| 		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
 | |
| 		smp_store_release(ruqp, true);
 | |
| 	}
 | |
| 
 | |
| 	/* If waiting too long on an offline CPU, complain. */
 | |
| 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
 | |
| 	    time_after(jiffies, rdp->rsp->gp_start + HZ)) {
 | |
| 		bool onl;
 | |
| 		struct rcu_node *rnp1;
 | |
| 
 | |
| 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
 | |
| 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 | |
| 			__func__, rnp->grplo, rnp->grphi, rnp->level,
 | |
| 			(long)rnp->gp_seq, (long)rnp->completedqs);
 | |
| 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 | |
| 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 | |
| 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 | |
| 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 | |
| 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 | |
| 			__func__, rdp->cpu, ".o"[onl],
 | |
| 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 | |
| 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 | |
| 		return 1; /* Break things loose after complaining. */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A CPU running for an extended time within the kernel can
 | |
| 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
 | |
| 	 * even context-switching back and forth between a pair of
 | |
| 	 * in-kernel CPU-bound tasks cannot advance grace periods.
 | |
| 	 * So if the grace period is old enough, make the CPU pay attention.
 | |
| 	 * Note that the unsynchronized assignments to the per-CPU
 | |
| 	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
 | |
| 	 * bits can be lost, but they will be set again on the next
 | |
| 	 * force-quiescent-state pass.  So lost bit sets do not result
 | |
| 	 * in incorrect behavior, merely in a grace period lasting
 | |
| 	 * a few jiffies longer than it might otherwise.  Because
 | |
| 	 * there are at most four threads involved, and because the
 | |
| 	 * updates are only once every few jiffies, the probability of
 | |
| 	 * lossage (and thus of slight grace-period extension) is
 | |
| 	 * quite low.
 | |
| 	 */
 | |
| 	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
 | |
| 	if (!READ_ONCE(*rnhqp) &&
 | |
| 	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
 | |
| 	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
 | |
| 		WRITE_ONCE(*rnhqp, true);
 | |
| 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 | |
| 		smp_store_release(ruqp, true);
 | |
| 		rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If more than halfway to RCU CPU stall-warning time, do a
 | |
| 	 * resched_cpu() to try to loosen things up a bit.  Also check to
 | |
| 	 * see if the CPU is getting hammered with interrupts, but only
 | |
| 	 * once per grace period, just to keep the IPIs down to a dull roar.
 | |
| 	 */
 | |
| 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
 | |
| 		resched_cpu(rdp->cpu);
 | |
| 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 | |
| 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 | |
| 		    (rnp->ffmask & rdp->grpmask)) {
 | |
| 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
 | |
| 			rdp->rcu_iw_pending = true;
 | |
| 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 | |
| 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void record_gp_stall_check_time(struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long j = jiffies;
 | |
| 	unsigned long j1;
 | |
| 
 | |
| 	rsp->gp_start = j;
 | |
| 	j1 = rcu_jiffies_till_stall_check();
 | |
| 	/* Record ->gp_start before ->jiffies_stall. */
 | |
| 	smp_store_release(&rsp->jiffies_stall, j + j1); /* ^^^ */
 | |
| 	rsp->jiffies_resched = j + j1 / 2;
 | |
| 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a ->gp_state value to a character string.
 | |
|  */
 | |
| static const char *gp_state_getname(short gs)
 | |
| {
 | |
| 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
 | |
| 		return "???";
 | |
| 	return gp_state_names[gs];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Complain about starvation of grace-period kthread.
 | |
|  */
 | |
| static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long gpa;
 | |
| 	unsigned long j;
 | |
| 
 | |
| 	j = jiffies;
 | |
| 	gpa = READ_ONCE(rsp->gp_activity);
 | |
| 	if (j - gpa > 2 * HZ) {
 | |
| 		pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
 | |
| 		       rsp->name, j - gpa,
 | |
| 		       (long)rcu_seq_current(&rsp->gp_seq),
 | |
| 		       rsp->gp_flags,
 | |
| 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
 | |
| 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
 | |
| 		       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
 | |
| 		if (rsp->gp_kthread) {
 | |
| 			pr_err("RCU grace-period kthread stack dump:\n");
 | |
| 			sched_show_task(rsp->gp_kthread);
 | |
| 			wake_up_process(rsp->gp_kthread);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dump stacks of all tasks running on stalled CPUs.  First try using
 | |
|  * NMIs, but fall back to manual remote stack tracing on architectures
 | |
|  * that don't support NMI-based stack dumps.  The NMI-triggered stack
 | |
|  * traces are more accurate because they are printed by the target CPU.
 | |
|  */
 | |
| static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	rcu_for_each_leaf_node(rsp, rnp) {
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 		for_each_leaf_node_possible_cpu(rnp, cpu)
 | |
| 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
 | |
| 				if (!trigger_single_cpu_backtrace(cpu))
 | |
| 					dump_cpu_task(cpu);
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If too much time has passed in the current grace period, and if
 | |
|  * so configured, go kick the relevant kthreads.
 | |
|  */
 | |
| static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long j;
 | |
| 
 | |
| 	if (!rcu_kick_kthreads)
 | |
| 		return;
 | |
| 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
 | |
| 	if (time_after(jiffies, j) && rsp->gp_kthread &&
 | |
| 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
 | |
| 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
 | |
| 		rcu_ftrace_dump(DUMP_ALL);
 | |
| 		wake_up_process(rsp->gp_kthread);
 | |
| 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void panic_on_rcu_stall(void)
 | |
| {
 | |
| 	if (sysctl_panic_on_rcu_stall)
 | |
| 		panic("RCU Stall\n");
 | |
| }
 | |
| 
 | |
| static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long gpa;
 | |
| 	unsigned long j;
 | |
| 	int ndetected = 0;
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 	long totqlen = 0;
 | |
| 
 | |
| 	/* Kick and suppress, if so configured. */
 | |
| 	rcu_stall_kick_kthreads(rsp);
 | |
| 	if (rcu_cpu_stall_suppress)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, time to rat on our buddy...
 | |
| 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 | |
| 	 * RCU CPU stall warnings.
 | |
| 	 */
 | |
| 	pr_err("INFO: %s detected stalls on CPUs/tasks:", rsp->name);
 | |
| 	print_cpu_stall_info_begin();
 | |
| 	rcu_for_each_leaf_node(rsp, rnp) {
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 		ndetected += rcu_print_task_stall(rnp);
 | |
| 		if (rnp->qsmask != 0) {
 | |
| 			for_each_leaf_node_possible_cpu(rnp, cpu)
 | |
| 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
 | |
| 					print_cpu_stall_info(rsp, cpu);
 | |
| 					ndetected++;
 | |
| 				}
 | |
| 		}
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	}
 | |
| 
 | |
| 	print_cpu_stall_info_end();
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
 | |
| 							    cpu)->cblist);
 | |
| 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
 | |
| 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
 | |
| 	       (long)rcu_seq_current(&rsp->gp_seq), totqlen);
 | |
| 	if (ndetected) {
 | |
| 		rcu_dump_cpu_stacks(rsp);
 | |
| 
 | |
| 		/* Complain about tasks blocking the grace period. */
 | |
| 		rcu_print_detail_task_stall(rsp);
 | |
| 	} else {
 | |
| 		if (rcu_seq_current(&rsp->gp_seq) != gp_seq) {
 | |
| 			pr_err("INFO: Stall ended before state dump start\n");
 | |
| 		} else {
 | |
| 			j = jiffies;
 | |
| 			gpa = READ_ONCE(rsp->gp_activity);
 | |
| 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
 | |
| 			       rsp->name, j - gpa, j, gpa,
 | |
| 			       jiffies_till_next_fqs,
 | |
| 			       rcu_get_root(rsp)->qsmask);
 | |
| 			/* In this case, the current CPU might be at fault. */
 | |
| 			sched_show_task(current);
 | |
| 		}
 | |
| 	}
 | |
| 	/* Rewrite if needed in case of slow consoles. */
 | |
| 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
 | |
| 		WRITE_ONCE(rsp->jiffies_stall,
 | |
| 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
 | |
| 
 | |
| 	rcu_check_gp_kthread_starvation(rsp);
 | |
| 
 | |
| 	panic_on_rcu_stall();
 | |
| 
 | |
| 	force_quiescent_state(rsp);  /* Kick them all. */
 | |
| }
 | |
| 
 | |
| static void print_cpu_stall(struct rcu_state *rsp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 	long totqlen = 0;
 | |
| 
 | |
| 	/* Kick and suppress, if so configured. */
 | |
| 	rcu_stall_kick_kthreads(rsp);
 | |
| 	if (rcu_cpu_stall_suppress)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, time to rat on ourselves...
 | |
| 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 | |
| 	 * RCU CPU stall warnings.
 | |
| 	 */
 | |
| 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
 | |
| 	print_cpu_stall_info_begin();
 | |
| 	raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
 | |
| 	print_cpu_stall_info(rsp, smp_processor_id());
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
 | |
| 	print_cpu_stall_info_end();
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
 | |
| 							    cpu)->cblist);
 | |
| 	pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
 | |
| 		jiffies - rsp->gp_start,
 | |
| 		(long)rcu_seq_current(&rsp->gp_seq), totqlen);
 | |
| 
 | |
| 	rcu_check_gp_kthread_starvation(rsp);
 | |
| 
 | |
| 	rcu_dump_cpu_stacks(rsp);
 | |
| 
 | |
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 	/* Rewrite if needed in case of slow consoles. */
 | |
| 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
 | |
| 		WRITE_ONCE(rsp->jiffies_stall,
 | |
| 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 
 | |
| 	panic_on_rcu_stall();
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to revive the RCU machinery by forcing a context switch.
 | |
| 	 *
 | |
| 	 * A context switch would normally allow the RCU state machine to make
 | |
| 	 * progress and it could be we're stuck in kernel space without context
 | |
| 	 * switches for an entirely unreasonable amount of time.
 | |
| 	 */
 | |
| 	resched_cpu(smp_processor_id());
 | |
| }
 | |
| 
 | |
| static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long gs1;
 | |
| 	unsigned long gs2;
 | |
| 	unsigned long gps;
 | |
| 	unsigned long j;
 | |
| 	unsigned long jn;
 | |
| 	unsigned long js;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
 | |
| 	    !rcu_gp_in_progress(rsp))
 | |
| 		return;
 | |
| 	rcu_stall_kick_kthreads(rsp);
 | |
| 	j = jiffies;
 | |
| 
 | |
| 	/*
 | |
| 	 * Lots of memory barriers to reject false positives.
 | |
| 	 *
 | |
| 	 * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall,
 | |
| 	 * then rsp->gp_start, and finally another copy of rsp->gp_seq.
 | |
| 	 * These values are updated in the opposite order with memory
 | |
| 	 * barriers (or equivalent) during grace-period initialization
 | |
| 	 * and cleanup.  Now, a false positive can occur if we get an new
 | |
| 	 * value of rsp->gp_start and a old value of rsp->jiffies_stall.
 | |
| 	 * But given the memory barriers, the only way that this can happen
 | |
| 	 * is if one grace period ends and another starts between these
 | |
| 	 * two fetches.  This is detected by comparing the second fetch
 | |
| 	 * of rsp->gp_seq with the previous fetch from rsp->gp_seq.
 | |
| 	 *
 | |
| 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
 | |
| 	 * and rsp->gp_start suffice to forestall false positives.
 | |
| 	 */
 | |
| 	gs1 = READ_ONCE(rsp->gp_seq);
 | |
| 	smp_rmb(); /* Pick up ->gp_seq first... */
 | |
| 	js = READ_ONCE(rsp->jiffies_stall);
 | |
| 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
 | |
| 	gps = READ_ONCE(rsp->gp_start);
 | |
| 	smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
 | |
| 	gs2 = READ_ONCE(rsp->gp_seq);
 | |
| 	if (gs1 != gs2 ||
 | |
| 	    ULONG_CMP_LT(j, js) ||
 | |
| 	    ULONG_CMP_GE(gps, js))
 | |
| 		return; /* No stall or GP completed since entering function. */
 | |
| 	rnp = rdp->mynode;
 | |
| 	jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
 | |
| 	if (rcu_gp_in_progress(rsp) &&
 | |
| 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
 | |
| 	    cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
 | |
| 
 | |
| 		/* We haven't checked in, so go dump stack. */
 | |
| 		print_cpu_stall(rsp);
 | |
| 
 | |
| 	} else if (rcu_gp_in_progress(rsp) &&
 | |
| 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
 | |
| 		   cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
 | |
| 
 | |
| 		/* They had a few time units to dump stack, so complain. */
 | |
| 		print_other_cpu_stall(rsp, gs2);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 | |
|  *
 | |
|  * Set the stall-warning timeout way off into the future, thus preventing
 | |
|  * any RCU CPU stall-warning messages from appearing in the current set of
 | |
|  * RCU grace periods.
 | |
|  *
 | |
|  * The caller must disable hard irqs.
 | |
|  */
 | |
| void rcu_cpu_stall_reset(void)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp)
 | |
| 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
 | |
| }
 | |
| 
 | |
| /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 | |
| static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 | |
| 			      unsigned long gp_seq_req, const char *s)
 | |
| {
 | |
| 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gp_seq, gp_seq_req,
 | |
| 				      rnp->level, rnp->grplo, rnp->grphi, s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rcu_start_this_gp - Request the start of a particular grace period
 | |
|  * @rnp_start: The leaf node of the CPU from which to start.
 | |
|  * @rdp: The rcu_data corresponding to the CPU from which to start.
 | |
|  * @gp_seq_req: The gp_seq of the grace period to start.
 | |
|  *
 | |
|  * Start the specified grace period, as needed to handle newly arrived
 | |
|  * callbacks.  The required future grace periods are recorded in each
 | |
|  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 | |
|  * is reason to awaken the grace-period kthread.
 | |
|  *
 | |
|  * The caller must hold the specified rcu_node structure's ->lock, which
 | |
|  * is why the caller is responsible for waking the grace-period kthread.
 | |
|  *
 | |
|  * Returns true if the GP thread needs to be awakened else false.
 | |
|  */
 | |
| static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 | |
| 			      unsigned long gp_seq_req)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 	struct rcu_state *rsp = rdp->rsp;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use funnel locking to either acquire the root rcu_node
 | |
| 	 * structure's lock or bail out if the need for this grace period
 | |
| 	 * has already been recorded -- or if that grace period has in
 | |
| 	 * fact already started.  If there is already a grace period in
 | |
| 	 * progress in a non-leaf node, no recording is needed because the
 | |
| 	 * end of the grace period will scan the leaf rcu_node structures.
 | |
| 	 * Note that rnp_start->lock must not be released.
 | |
| 	 */
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp_start);
 | |
| 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 | |
| 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 | |
| 		if (rnp != rnp_start)
 | |
| 			raw_spin_lock_rcu_node(rnp);
 | |
| 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 | |
| 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 | |
| 		    (rnp != rnp_start &&
 | |
| 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
 | |
| 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
 | |
| 					  TPS("Prestarted"));
 | |
| 			goto unlock_out;
 | |
| 		}
 | |
| 		rnp->gp_seq_needed = gp_seq_req;
 | |
| 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
 | |
| 			/*
 | |
| 			 * We just marked the leaf or internal node, and a
 | |
| 			 * grace period is in progress, which means that
 | |
| 			 * rcu_gp_cleanup() will see the marking.  Bail to
 | |
| 			 * reduce contention.
 | |
| 			 */
 | |
| 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
 | |
| 					  TPS("Startedleaf"));
 | |
| 			goto unlock_out;
 | |
| 		}
 | |
| 		if (rnp != rnp_start && rnp->parent != NULL)
 | |
| 			raw_spin_unlock_rcu_node(rnp);
 | |
| 		if (!rnp->parent)
 | |
| 			break;  /* At root, and perhaps also leaf. */
 | |
| 	}
 | |
| 
 | |
| 	/* If GP already in progress, just leave, otherwise start one. */
 | |
| 	if (rcu_gp_in_progress(rsp)) {
 | |
| 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
 | |
| 		goto unlock_out;
 | |
| 	}
 | |
| 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
 | |
| 	WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT);
 | |
| 	rsp->gp_req_activity = jiffies;
 | |
| 	if (!rsp->gp_kthread) {
 | |
| 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
 | |
| 		goto unlock_out;
 | |
| 	}
 | |
| 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), TPS("newreq"));
 | |
| 	ret = true;  /* Caller must wake GP kthread. */
 | |
| unlock_out:
 | |
| 	/* Push furthest requested GP to leaf node and rcu_data structure. */
 | |
| 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
 | |
| 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
 | |
| 		rdp->gp_seq_needed = rnp->gp_seq_needed;
 | |
| 	}
 | |
| 	if (rnp != rnp_start)
 | |
| 		raw_spin_unlock_rcu_node(rnp);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up any old requests for the just-ended grace period.  Also return
 | |
|  * whether any additional grace periods have been requested.
 | |
|  */
 | |
| static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
 | |
| {
 | |
| 	bool needmore;
 | |
| 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
 | |
| 
 | |
| 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
 | |
| 	if (!needmore)
 | |
| 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
 | |
| 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
 | |
| 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
 | |
| 	return needmore;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
 | |
|  * an interrupt or softirq handler), and don't bother awakening when there
 | |
|  * is nothing for the grace-period kthread to do (as in several CPUs raced
 | |
|  * to awaken, and we lost), and finally don't try to awaken a kthread that
 | |
|  * has not yet been created.  If all those checks are passed, track some
 | |
|  * debug information and awaken.
 | |
|  *
 | |
|  * So why do the self-wakeup when in an interrupt or softirq handler
 | |
|  * in the grace-period kthread's context?  Because the kthread might have
 | |
|  * been interrupted just as it was going to sleep, and just after the final
 | |
|  * pre-sleep check of the awaken condition.  In this case, a wakeup really
 | |
|  * is required, and is therefore supplied.
 | |
|  */
 | |
| static void rcu_gp_kthread_wake(struct rcu_state *rsp)
 | |
| {
 | |
| 	if ((current == rsp->gp_kthread &&
 | |
| 	     !in_interrupt() && !in_serving_softirq()) ||
 | |
| 	    !READ_ONCE(rsp->gp_flags) ||
 | |
| 	    !rsp->gp_kthread)
 | |
| 		return;
 | |
| 	swake_up_one(&rsp->gp_wq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If there is room, assign a ->gp_seq number to any callbacks on this
 | |
|  * CPU that have not already been assigned.  Also accelerate any callbacks
 | |
|  * that were previously assigned a ->gp_seq number that has since proven
 | |
|  * to be too conservative, which can happen if callbacks get assigned a
 | |
|  * ->gp_seq number while RCU is idle, but with reference to a non-root
 | |
|  * rcu_node structure.  This function is idempotent, so it does not hurt
 | |
|  * to call it repeatedly.  Returns an flag saying that we should awaken
 | |
|  * the RCU grace-period kthread.
 | |
|  *
 | |
|  * The caller must hold rnp->lock with interrupts disabled.
 | |
|  */
 | |
| static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
 | |
| 			       struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long gp_seq_req;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 
 | |
| 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
 | |
| 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Callbacks are often registered with incomplete grace-period
 | |
| 	 * information.  Something about the fact that getting exact
 | |
| 	 * information requires acquiring a global lock...  RCU therefore
 | |
| 	 * makes a conservative estimate of the grace period number at which
 | |
| 	 * a given callback will become ready to invoke.	The following
 | |
| 	 * code checks this estimate and improves it when possible, thus
 | |
| 	 * accelerating callback invocation to an earlier grace-period
 | |
| 	 * number.
 | |
| 	 */
 | |
| 	gp_seq_req = rcu_seq_snap(&rsp->gp_seq);
 | |
| 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
 | |
| 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
 | |
| 
 | |
| 	/* Trace depending on how much we were able to accelerate. */
 | |
| 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
 | |
| 		trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccWaitCB"));
 | |
| 	else
 | |
| 		trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccReadyCB"));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
 | |
|  * rcu_node structure's ->lock be held.  It consults the cached value
 | |
|  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
 | |
|  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
 | |
|  * while holding the leaf rcu_node structure's ->lock.
 | |
|  */
 | |
| static void rcu_accelerate_cbs_unlocked(struct rcu_state *rsp,
 | |
| 					struct rcu_node *rnp,
 | |
| 					struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long c;
 | |
| 	bool needwake;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	c = rcu_seq_snap(&rsp->gp_seq);
 | |
| 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
 | |
| 		/* Old request still live, so mark recent callbacks. */
 | |
| 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
 | |
| 		return;
 | |
| 	}
 | |
| 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 | |
| 	needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
 | |
| 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | |
| 	if (needwake)
 | |
| 		rcu_gp_kthread_wake(rsp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move any callbacks whose grace period has completed to the
 | |
|  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 | |
|  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
 | |
|  * sublist.  This function is idempotent, so it does not hurt to
 | |
|  * invoke it repeatedly.  As long as it is not invoked -too- often...
 | |
|  * Returns true if the RCU grace-period kthread needs to be awakened.
 | |
|  *
 | |
|  * The caller must hold rnp->lock with interrupts disabled.
 | |
|  */
 | |
| static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
 | |
| 			    struct rcu_data *rdp)
 | |
| {
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 
 | |
| 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
 | |
| 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find all callbacks whose ->gp_seq numbers indicate that they
 | |
| 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
 | |
| 	 */
 | |
| 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
 | |
| 
 | |
| 	/* Classify any remaining callbacks. */
 | |
| 	return rcu_accelerate_cbs(rsp, rnp, rdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update CPU-local rcu_data state to record the beginnings and ends of
 | |
|  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 | |
|  * structure corresponding to the current CPU, and must have irqs disabled.
 | |
|  * Returns true if the grace-period kthread needs to be awakened.
 | |
|  */
 | |
| static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
 | |
| 			      struct rcu_data *rdp)
 | |
| {
 | |
| 	bool ret;
 | |
| 	bool need_gp;
 | |
| 
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 
 | |
| 	if (rdp->gp_seq == rnp->gp_seq)
 | |
| 		return false; /* Nothing to do. */
 | |
| 
 | |
| 	/* Handle the ends of any preceding grace periods first. */
 | |
| 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
 | |
| 	    unlikely(READ_ONCE(rdp->gpwrap))) {
 | |
| 		ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */
 | |
| 		trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend"));
 | |
| 	} else {
 | |
| 		ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */
 | |
| 	}
 | |
| 
 | |
| 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
 | |
| 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
 | |
| 	    unlikely(READ_ONCE(rdp->gpwrap))) {
 | |
| 		/*
 | |
| 		 * If the current grace period is waiting for this CPU,
 | |
| 		 * set up to detect a quiescent state, otherwise don't
 | |
| 		 * go looking for one.
 | |
| 		 */
 | |
| 		trace_rcu_grace_period(rsp->name, rnp->gp_seq, TPS("cpustart"));
 | |
| 		need_gp = !!(rnp->qsmask & rdp->grpmask);
 | |
| 		rdp->cpu_no_qs.b.norm = need_gp;
 | |
| 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
 | |
| 		rdp->core_needs_qs = need_gp;
 | |
| 		zero_cpu_stall_ticks(rdp);
 | |
| 	}
 | |
| 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
 | |
| 	if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
 | |
| 		rdp->gp_seq_needed = rnp->gp_seq_needed;
 | |
| 	WRITE_ONCE(rdp->gpwrap, false);
 | |
| 	rcu_gpnum_ovf(rnp, rdp);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool needwake;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rnp = rdp->mynode;
 | |
| 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
 | |
| 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
 | |
| 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
 | |
| 		local_irq_restore(flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	needwake = __note_gp_changes(rsp, rnp, rdp);
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	if (needwake)
 | |
| 		rcu_gp_kthread_wake(rsp);
 | |
| }
 | |
| 
 | |
| static void rcu_gp_slow(struct rcu_state *rsp, int delay)
 | |
| {
 | |
| 	if (delay > 0 &&
 | |
| 	    !(rcu_seq_ctr(rsp->gp_seq) %
 | |
| 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
 | |
| 		schedule_timeout_uninterruptible(delay);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a new grace period.  Return false if no grace period required.
 | |
|  */
 | |
| static bool rcu_gp_init(struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long oldmask;
 | |
| 	unsigned long mask;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	WRITE_ONCE(rsp->gp_activity, jiffies);
 | |
| 	raw_spin_lock_irq_rcu_node(rnp);
 | |
| 	if (!READ_ONCE(rsp->gp_flags)) {
 | |
| 		/* Spurious wakeup, tell caller to go back to sleep.  */
 | |
| 		raw_spin_unlock_irq_rcu_node(rnp);
 | |
| 		return false;
 | |
| 	}
 | |
| 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
 | |
| 
 | |
| 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
 | |
| 		/*
 | |
| 		 * Grace period already in progress, don't start another.
 | |
| 		 * Not supposed to be able to happen.
 | |
| 		 */
 | |
| 		raw_spin_unlock_irq_rcu_node(rnp);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Advance to a new grace period and initialize state. */
 | |
| 	record_gp_stall_check_time(rsp);
 | |
| 	/* Record GP times before starting GP, hence rcu_seq_start(). */
 | |
| 	rcu_seq_start(&rsp->gp_seq);
 | |
| 	trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("start"));
 | |
| 	raw_spin_unlock_irq_rcu_node(rnp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Apply per-leaf buffered online and offline operations to the
 | |
| 	 * rcu_node tree.  Note that this new grace period need not wait
 | |
| 	 * for subsequent online CPUs, and that quiescent-state forcing
 | |
| 	 * will handle subsequent offline CPUs.
 | |
| 	 */
 | |
| 	rsp->gp_state = RCU_GP_ONOFF;
 | |
| 	rcu_for_each_leaf_node(rsp, rnp) {
 | |
| 		spin_lock(&rsp->ofl_lock);
 | |
| 		raw_spin_lock_irq_rcu_node(rnp);
 | |
| 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
 | |
| 		    !rnp->wait_blkd_tasks) {
 | |
| 			/* Nothing to do on this leaf rcu_node structure. */
 | |
| 			raw_spin_unlock_irq_rcu_node(rnp);
 | |
| 			spin_unlock(&rsp->ofl_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Record old state, apply changes to ->qsmaskinit field. */
 | |
| 		oldmask = rnp->qsmaskinit;
 | |
| 		rnp->qsmaskinit = rnp->qsmaskinitnext;
 | |
| 
 | |
| 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
 | |
| 		if (!oldmask != !rnp->qsmaskinit) {
 | |
| 			if (!oldmask) { /* First online CPU for rcu_node. */
 | |
| 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
 | |
| 					rcu_init_new_rnp(rnp);
 | |
| 			} else if (rcu_preempt_has_tasks(rnp)) {
 | |
| 				rnp->wait_blkd_tasks = true; /* blocked tasks */
 | |
| 			} else { /* Last offline CPU and can propagate. */
 | |
| 				rcu_cleanup_dead_rnp(rnp);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If all waited-on tasks from prior grace period are
 | |
| 		 * done, and if all this rcu_node structure's CPUs are
 | |
| 		 * still offline, propagate up the rcu_node tree and
 | |
| 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
 | |
| 		 * rcu_node structure's CPUs has since come back online,
 | |
| 		 * simply clear ->wait_blkd_tasks.
 | |
| 		 */
 | |
| 		if (rnp->wait_blkd_tasks &&
 | |
| 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
 | |
| 			rnp->wait_blkd_tasks = false;
 | |
| 			if (!rnp->qsmaskinit)
 | |
| 				rcu_cleanup_dead_rnp(rnp);
 | |
| 		}
 | |
| 
 | |
| 		raw_spin_unlock_irq_rcu_node(rnp);
 | |
| 		spin_unlock(&rsp->ofl_lock);
 | |
| 	}
 | |
| 	rcu_gp_slow(rsp, gp_preinit_delay); /* Races with CPU hotplug. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the quiescent-state-needed bits in all the rcu_node
 | |
| 	 * structures for all currently online CPUs in breadth-first order,
 | |
| 	 * starting from the root rcu_node structure, relying on the layout
 | |
| 	 * of the tree within the rsp->node[] array.  Note that other CPUs
 | |
| 	 * will access only the leaves of the hierarchy, thus seeing that no
 | |
| 	 * grace period is in progress, at least until the corresponding
 | |
| 	 * leaf node has been initialized.
 | |
| 	 *
 | |
| 	 * The grace period cannot complete until the initialization
 | |
| 	 * process finishes, because this kthread handles both.
 | |
| 	 */
 | |
| 	rsp->gp_state = RCU_GP_INIT;
 | |
| 	rcu_for_each_node_breadth_first(rsp, rnp) {
 | |
| 		rcu_gp_slow(rsp, gp_init_delay);
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 		rdp = this_cpu_ptr(rsp->rda);
 | |
| 		rcu_preempt_check_blocked_tasks(rsp, rnp);
 | |
| 		rnp->qsmask = rnp->qsmaskinit;
 | |
| 		WRITE_ONCE(rnp->gp_seq, rsp->gp_seq);
 | |
| 		if (rnp == rdp->mynode)
 | |
| 			(void)__note_gp_changes(rsp, rnp, rdp);
 | |
| 		rcu_preempt_boost_start_gp(rnp);
 | |
| 		trace_rcu_grace_period_init(rsp->name, rnp->gp_seq,
 | |
| 					    rnp->level, rnp->grplo,
 | |
| 					    rnp->grphi, rnp->qsmask);
 | |
| 		/* Quiescent states for tasks on any now-offline CPUs. */
 | |
| 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
 | |
| 		rnp->rcu_gp_init_mask = mask;
 | |
| 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
 | |
| 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
 | |
| 		else
 | |
| 			raw_spin_unlock_irq_rcu_node(rnp);
 | |
| 		cond_resched_tasks_rcu_qs();
 | |
| 		WRITE_ONCE(rsp->gp_activity, jiffies);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
 | |
|  * time.
 | |
|  */
 | |
| static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
 | |
| {
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
 | |
| 	*gfp = READ_ONCE(rsp->gp_flags);
 | |
| 	if (*gfp & RCU_GP_FLAG_FQS)
 | |
| 		return true;
 | |
| 
 | |
| 	/* The current grace period has completed. */
 | |
| 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do one round of quiescent-state forcing.
 | |
|  */
 | |
| static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
 | |
| {
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	WRITE_ONCE(rsp->gp_activity, jiffies);
 | |
| 	rsp->n_force_qs++;
 | |
| 	if (first_time) {
 | |
| 		/* Collect dyntick-idle snapshots. */
 | |
| 		force_qs_rnp(rsp, dyntick_save_progress_counter);
 | |
| 	} else {
 | |
| 		/* Handle dyntick-idle and offline CPUs. */
 | |
| 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
 | |
| 	}
 | |
| 	/* Clear flag to prevent immediate re-entry. */
 | |
| 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
 | |
| 		raw_spin_lock_irq_rcu_node(rnp);
 | |
| 		WRITE_ONCE(rsp->gp_flags,
 | |
| 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
 | |
| 		raw_spin_unlock_irq_rcu_node(rnp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up after the old grace period.
 | |
|  */
 | |
| static void rcu_gp_cleanup(struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long gp_duration;
 | |
| 	bool needgp = false;
 | |
| 	unsigned long new_gp_seq;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 	struct swait_queue_head *sq;
 | |
| 
 | |
| 	WRITE_ONCE(rsp->gp_activity, jiffies);
 | |
| 	raw_spin_lock_irq_rcu_node(rnp);
 | |
| 	gp_duration = jiffies - rsp->gp_start;
 | |
| 	if (gp_duration > rsp->gp_max)
 | |
| 		rsp->gp_max = gp_duration;
 | |
| 
 | |
| 	/*
 | |
| 	 * We know the grace period is complete, but to everyone else
 | |
| 	 * it appears to still be ongoing.  But it is also the case
 | |
| 	 * that to everyone else it looks like there is nothing that
 | |
| 	 * they can do to advance the grace period.  It is therefore
 | |
| 	 * safe for us to drop the lock in order to mark the grace
 | |
| 	 * period as completed in all of the rcu_node structures.
 | |
| 	 */
 | |
| 	raw_spin_unlock_irq_rcu_node(rnp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Propagate new ->gp_seq value to rcu_node structures so that
 | |
| 	 * other CPUs don't have to wait until the start of the next grace
 | |
| 	 * period to process their callbacks.  This also avoids some nasty
 | |
| 	 * RCU grace-period initialization races by forcing the end of
 | |
| 	 * the current grace period to be completely recorded in all of
 | |
| 	 * the rcu_node structures before the beginning of the next grace
 | |
| 	 * period is recorded in any of the rcu_node structures.
 | |
| 	 */
 | |
| 	new_gp_seq = rsp->gp_seq;
 | |
| 	rcu_seq_end(&new_gp_seq);
 | |
| 	rcu_for_each_node_breadth_first(rsp, rnp) {
 | |
| 		raw_spin_lock_irq_rcu_node(rnp);
 | |
| 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 | |
| 			dump_blkd_tasks(rsp, rnp, 10);
 | |
| 		WARN_ON_ONCE(rnp->qsmask);
 | |
| 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
 | |
| 		rdp = this_cpu_ptr(rsp->rda);
 | |
| 		if (rnp == rdp->mynode)
 | |
| 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
 | |
| 		/* smp_mb() provided by prior unlock-lock pair. */
 | |
| 		needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp;
 | |
| 		sq = rcu_nocb_gp_get(rnp);
 | |
| 		raw_spin_unlock_irq_rcu_node(rnp);
 | |
| 		rcu_nocb_gp_cleanup(sq);
 | |
| 		cond_resched_tasks_rcu_qs();
 | |
| 		WRITE_ONCE(rsp->gp_activity, jiffies);
 | |
| 		rcu_gp_slow(rsp, gp_cleanup_delay);
 | |
| 	}
 | |
| 	rnp = rcu_get_root(rsp);
 | |
| 	raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */
 | |
| 
 | |
| 	/* Declare grace period done. */
 | |
| 	rcu_seq_end(&rsp->gp_seq);
 | |
| 	trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("end"));
 | |
| 	rsp->gp_state = RCU_GP_IDLE;
 | |
| 	/* Check for GP requests since above loop. */
 | |
| 	rdp = this_cpu_ptr(rsp->rda);
 | |
| 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
 | |
| 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
 | |
| 				  TPS("CleanupMore"));
 | |
| 		needgp = true;
 | |
| 	}
 | |
| 	/* Advance CBs to reduce false positives below. */
 | |
| 	if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) {
 | |
| 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
 | |
| 		rsp->gp_req_activity = jiffies;
 | |
| 		trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq),
 | |
| 				       TPS("newreq"));
 | |
| 	} else {
 | |
| 		WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT);
 | |
| 	}
 | |
| 	raw_spin_unlock_irq_rcu_node(rnp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Body of kthread that handles grace periods.
 | |
|  */
 | |
| static int __noreturn rcu_gp_kthread(void *arg)
 | |
| {
 | |
| 	bool first_gp_fqs;
 | |
| 	int gf;
 | |
| 	unsigned long j;
 | |
| 	int ret;
 | |
| 	struct rcu_state *rsp = arg;
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	rcu_bind_gp_kthread();
 | |
| 	for (;;) {
 | |
| 
 | |
| 		/* Handle grace-period start. */
 | |
| 		for (;;) {
 | |
| 			trace_rcu_grace_period(rsp->name,
 | |
| 					       READ_ONCE(rsp->gp_seq),
 | |
| 					       TPS("reqwait"));
 | |
| 			rsp->gp_state = RCU_GP_WAIT_GPS;
 | |
| 			swait_event_idle_exclusive(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
 | |
| 						     RCU_GP_FLAG_INIT);
 | |
| 			rsp->gp_state = RCU_GP_DONE_GPS;
 | |
| 			/* Locking provides needed memory barrier. */
 | |
| 			if (rcu_gp_init(rsp))
 | |
| 				break;
 | |
| 			cond_resched_tasks_rcu_qs();
 | |
| 			WRITE_ONCE(rsp->gp_activity, jiffies);
 | |
| 			WARN_ON(signal_pending(current));
 | |
| 			trace_rcu_grace_period(rsp->name,
 | |
| 					       READ_ONCE(rsp->gp_seq),
 | |
| 					       TPS("reqwaitsig"));
 | |
| 		}
 | |
| 
 | |
| 		/* Handle quiescent-state forcing. */
 | |
| 		first_gp_fqs = true;
 | |
| 		j = jiffies_till_first_fqs;
 | |
| 		ret = 0;
 | |
| 		for (;;) {
 | |
| 			if (!ret) {
 | |
| 				rsp->jiffies_force_qs = jiffies + j;
 | |
| 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
 | |
| 					   jiffies + 3 * j);
 | |
| 			}
 | |
| 			trace_rcu_grace_period(rsp->name,
 | |
| 					       READ_ONCE(rsp->gp_seq),
 | |
| 					       TPS("fqswait"));
 | |
| 			rsp->gp_state = RCU_GP_WAIT_FQS;
 | |
| 			ret = swait_event_idle_timeout_exclusive(rsp->gp_wq,
 | |
| 					rcu_gp_fqs_check_wake(rsp, &gf), j);
 | |
| 			rsp->gp_state = RCU_GP_DOING_FQS;
 | |
| 			/* Locking provides needed memory barriers. */
 | |
| 			/* If grace period done, leave loop. */
 | |
| 			if (!READ_ONCE(rnp->qsmask) &&
 | |
| 			    !rcu_preempt_blocked_readers_cgp(rnp))
 | |
| 				break;
 | |
| 			/* If time for quiescent-state forcing, do it. */
 | |
| 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
 | |
| 			    (gf & RCU_GP_FLAG_FQS)) {
 | |
| 				trace_rcu_grace_period(rsp->name,
 | |
| 						       READ_ONCE(rsp->gp_seq),
 | |
| 						       TPS("fqsstart"));
 | |
| 				rcu_gp_fqs(rsp, first_gp_fqs);
 | |
| 				first_gp_fqs = false;
 | |
| 				trace_rcu_grace_period(rsp->name,
 | |
| 						       READ_ONCE(rsp->gp_seq),
 | |
| 						       TPS("fqsend"));
 | |
| 				cond_resched_tasks_rcu_qs();
 | |
| 				WRITE_ONCE(rsp->gp_activity, jiffies);
 | |
| 				ret = 0; /* Force full wait till next FQS. */
 | |
| 				j = jiffies_till_next_fqs;
 | |
| 			} else {
 | |
| 				/* Deal with stray signal. */
 | |
| 				cond_resched_tasks_rcu_qs();
 | |
| 				WRITE_ONCE(rsp->gp_activity, jiffies);
 | |
| 				WARN_ON(signal_pending(current));
 | |
| 				trace_rcu_grace_period(rsp->name,
 | |
| 						       READ_ONCE(rsp->gp_seq),
 | |
| 						       TPS("fqswaitsig"));
 | |
| 				ret = 1; /* Keep old FQS timing. */
 | |
| 				j = jiffies;
 | |
| 				if (time_after(jiffies, rsp->jiffies_force_qs))
 | |
| 					j = 1;
 | |
| 				else
 | |
| 					j = rsp->jiffies_force_qs - j;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Handle grace-period end. */
 | |
| 		rsp->gp_state = RCU_GP_CLEANUP;
 | |
| 		rcu_gp_cleanup(rsp);
 | |
| 		rsp->gp_state = RCU_GP_CLEANED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Report a full set of quiescent states to the specified rcu_state data
 | |
|  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 | |
|  * kthread if another grace period is required.  Whether we wake
 | |
|  * the grace-period kthread or it awakens itself for the next round
 | |
|  * of quiescent-state forcing, that kthread will clean up after the
 | |
|  * just-completed grace period.  Note that the caller must hold rnp->lock,
 | |
|  * which is released before return.
 | |
|  */
 | |
| static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
 | |
| 	__releases(rcu_get_root(rsp)->lock)
 | |
| {
 | |
| 	raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
 | |
| 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
 | |
| 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
 | |
| 	rcu_gp_kthread_wake(rsp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 | |
|  * Allows quiescent states for a group of CPUs to be reported at one go
 | |
|  * to the specified rcu_node structure, though all the CPUs in the group
 | |
|  * must be represented by the same rcu_node structure (which need not be a
 | |
|  * leaf rcu_node structure, though it often will be).  The gps parameter
 | |
|  * is the grace-period snapshot, which means that the quiescent states
 | |
|  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
 | |
|  * must be held upon entry, and it is released before return.
 | |
|  *
 | |
|  * As a special case, if mask is zero, the bit-already-cleared check is
 | |
|  * disabled.  This allows propagating quiescent state due to resumed tasks
 | |
|  * during grace-period initialization.
 | |
|  */
 | |
| static void
 | |
| rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
 | |
| 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
 | |
| 	__releases(rnp->lock)
 | |
| {
 | |
| 	unsigned long oldmask = 0;
 | |
| 	struct rcu_node *rnp_c;
 | |
| 
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 
 | |
| 	/* Walk up the rcu_node hierarchy. */
 | |
| 	for (;;) {
 | |
| 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
 | |
| 
 | |
| 			/*
 | |
| 			 * Our bit has already been cleared, or the
 | |
| 			 * relevant grace period is already over, so done.
 | |
| 			 */
 | |
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
 | |
| 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
 | |
| 			     rcu_preempt_blocked_readers_cgp(rnp));
 | |
| 		rnp->qsmask &= ~mask;
 | |
| 		trace_rcu_quiescent_state_report(rsp->name, rnp->gp_seq,
 | |
| 						 mask, rnp->qsmask, rnp->level,
 | |
| 						 rnp->grplo, rnp->grphi,
 | |
| 						 !!rnp->gp_tasks);
 | |
| 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 | |
| 
 | |
| 			/* Other bits still set at this level, so done. */
 | |
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 		rnp->completedqs = rnp->gp_seq;
 | |
| 		mask = rnp->grpmask;
 | |
| 		if (rnp->parent == NULL) {
 | |
| 
 | |
| 			/* No more levels.  Exit loop holding root lock. */
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		rnp_c = rnp;
 | |
| 		rnp = rnp->parent;
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 		oldmask = rnp_c->qsmask;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get here if we are the last CPU to pass through a quiescent
 | |
| 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
 | |
| 	 * to clean up and start the next grace period if one is needed.
 | |
| 	 */
 | |
| 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Record a quiescent state for all tasks that were previously queued
 | |
|  * on the specified rcu_node structure and that were blocking the current
 | |
|  * RCU grace period.  The caller must hold the specified rnp->lock with
 | |
|  * irqs disabled, and this lock is released upon return, but irqs remain
 | |
|  * disabled.
 | |
|  */
 | |
| static void __maybe_unused
 | |
| rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
 | |
| 			  struct rcu_node *rnp, unsigned long flags)
 | |
| 	__releases(rnp->lock)
 | |
| {
 | |
| 	unsigned long gps;
 | |
| 	unsigned long mask;
 | |
| 	struct rcu_node *rnp_p;
 | |
| 
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 	if (WARN_ON_ONCE(rcu_state_p == &rcu_sched_state) ||
 | |
| 	    WARN_ON_ONCE(rsp != rcu_state_p) ||
 | |
| 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
 | |
| 	    rnp->qsmask != 0) {
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		return;  /* Still need more quiescent states! */
 | |
| 	}
 | |
| 
 | |
| 	rnp->completedqs = rnp->gp_seq;
 | |
| 	rnp_p = rnp->parent;
 | |
| 	if (rnp_p == NULL) {
 | |
| 		/*
 | |
| 		 * Only one rcu_node structure in the tree, so don't
 | |
| 		 * try to report up to its nonexistent parent!
 | |
| 		 */
 | |
| 		rcu_report_qs_rsp(rsp, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
 | |
| 	gps = rnp->gp_seq;
 | |
| 	mask = rnp->grpmask;
 | |
| 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
 | |
| 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
 | |
| 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Record a quiescent state for the specified CPU to that CPU's rcu_data
 | |
|  * structure.  This must be called from the specified CPU.
 | |
|  */
 | |
| static void
 | |
| rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long mask;
 | |
| 	bool needwake;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	rnp = rdp->mynode;
 | |
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
 | |
| 	    rdp->gpwrap) {
 | |
| 
 | |
| 		/*
 | |
| 		 * The grace period in which this quiescent state was
 | |
| 		 * recorded has ended, so don't report it upwards.
 | |
| 		 * We will instead need a new quiescent state that lies
 | |
| 		 * within the current grace period.
 | |
| 		 */
 | |
| 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
 | |
| 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	mask = rdp->grpmask;
 | |
| 	if ((rnp->qsmask & mask) == 0) {
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	} else {
 | |
| 		rdp->core_needs_qs = false;
 | |
| 
 | |
| 		/*
 | |
| 		 * This GP can't end until cpu checks in, so all of our
 | |
| 		 * callbacks can be processed during the next GP.
 | |
| 		 */
 | |
| 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
 | |
| 
 | |
| 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
 | |
| 		/* ^^^ Released rnp->lock */
 | |
| 		if (needwake)
 | |
| 			rcu_gp_kthread_wake(rsp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if there is a new grace period of which this CPU
 | |
|  * is not yet aware, and if so, set up local rcu_data state for it.
 | |
|  * Otherwise, see if this CPU has just passed through its first
 | |
|  * quiescent state for this grace period, and record that fact if so.
 | |
|  */
 | |
| static void
 | |
| rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	/* Check for grace-period ends and beginnings. */
 | |
| 	note_gp_changes(rsp, rdp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Does this CPU still need to do its part for current grace period?
 | |
| 	 * If no, return and let the other CPUs do their part as well.
 | |
| 	 */
 | |
| 	if (!rdp->core_needs_qs)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Was there a quiescent state since the beginning of the grace
 | |
| 	 * period? If no, then exit and wait for the next call.
 | |
| 	 */
 | |
| 	if (rdp->cpu_no_qs.b.norm)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
 | |
| 	 * judge of that).
 | |
| 	 */
 | |
| 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trace the fact that this CPU is going offline.
 | |
|  */
 | |
| static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
 | |
| {
 | |
| 	RCU_TRACE(bool blkd;)
 | |
| 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
 | |
| 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
 | |
| 		return;
 | |
| 
 | |
| 	RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
 | |
| 	trace_rcu_grace_period(rsp->name, rnp->gp_seq,
 | |
| 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * All CPUs for the specified rcu_node structure have gone offline,
 | |
|  * and all tasks that were preempted within an RCU read-side critical
 | |
|  * section while running on one of those CPUs have since exited their RCU
 | |
|  * read-side critical section.  Some other CPU is reporting this fact with
 | |
|  * the specified rcu_node structure's ->lock held and interrupts disabled.
 | |
|  * This function therefore goes up the tree of rcu_node structures,
 | |
|  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 | |
|  * the leaf rcu_node structure's ->qsmaskinit field has already been
 | |
|  * updated.
 | |
|  *
 | |
|  * This function does check that the specified rcu_node structure has
 | |
|  * all CPUs offline and no blocked tasks, so it is OK to invoke it
 | |
|  * prematurely.  That said, invoking it after the fact will cost you
 | |
|  * a needless lock acquisition.  So once it has done its work, don't
 | |
|  * invoke it again.
 | |
|  */
 | |
| static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
 | |
| {
 | |
| 	long mask;
 | |
| 	struct rcu_node *rnp = rnp_leaf;
 | |
| 
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
 | |
| 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
 | |
| 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
 | |
| 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
 | |
| 		return;
 | |
| 	for (;;) {
 | |
| 		mask = rnp->grpmask;
 | |
| 		rnp = rnp->parent;
 | |
| 		if (!rnp)
 | |
| 			break;
 | |
| 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 | |
| 		rnp->qsmaskinit &= ~mask;
 | |
| 		/* Between grace periods, so better already be zero! */
 | |
| 		WARN_ON_ONCE(rnp->qsmask);
 | |
| 		if (rnp->qsmaskinit) {
 | |
| 			raw_spin_unlock_rcu_node(rnp);
 | |
| 			/* irqs remain disabled. */
 | |
| 			return;
 | |
| 		}
 | |
| 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The CPU has been completely removed, and some other CPU is reporting
 | |
|  * this fact from process context.  Do the remainder of the cleanup.
 | |
|  * There can only be one CPU hotplug operation at a time, so no need for
 | |
|  * explicit locking.
 | |
|  */
 | |
| static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
 | |
| 		return;
 | |
| 
 | |
| 	/* Adjust any no-longer-needed kthreads. */
 | |
| 	rcu_boost_kthread_setaffinity(rnp, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoke any RCU callbacks that have made it to the end of their grace
 | |
|  * period.  Thottle as specified by rdp->blimit.
 | |
|  */
 | |
| static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_head *rhp;
 | |
| 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
 | |
| 	long bl, count;
 | |
| 
 | |
| 	/* If no callbacks are ready, just return. */
 | |
| 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
 | |
| 		trace_rcu_batch_start(rsp->name,
 | |
| 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | |
| 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
 | |
| 		trace_rcu_batch_end(rsp->name, 0,
 | |
| 				    !rcu_segcblist_empty(&rdp->cblist),
 | |
| 				    need_resched(), is_idle_task(current),
 | |
| 				    rcu_is_callbacks_kthread());
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Extract the list of ready callbacks, disabling to prevent
 | |
| 	 * races with call_rcu() from interrupt handlers.  Leave the
 | |
| 	 * callback counts, as rcu_barrier() needs to be conservative.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
 | |
| 	bl = rdp->blimit;
 | |
| 	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | |
| 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
 | |
| 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* Invoke callbacks. */
 | |
| 	rhp = rcu_cblist_dequeue(&rcl);
 | |
| 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
 | |
| 		debug_rcu_head_unqueue(rhp);
 | |
| 		if (__rcu_reclaim(rsp->name, rhp))
 | |
| 			rcu_cblist_dequeued_lazy(&rcl);
 | |
| 		/*
 | |
| 		 * Stop only if limit reached and CPU has something to do.
 | |
| 		 * Note: The rcl structure counts down from zero.
 | |
| 		 */
 | |
| 		if (-rcl.len >= bl &&
 | |
| 		    (need_resched() ||
 | |
| 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	count = -rcl.len;
 | |
| 	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
 | |
| 			    is_idle_task(current), rcu_is_callbacks_kthread());
 | |
| 
 | |
| 	/* Update counts and requeue any remaining callbacks. */
 | |
| 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
 | |
| 	smp_mb(); /* List handling before counting for rcu_barrier(). */
 | |
| 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
 | |
| 
 | |
| 	/* Reinstate batch limit if we have worked down the excess. */
 | |
| 	count = rcu_segcblist_n_cbs(&rdp->cblist);
 | |
| 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
 | |
| 		rdp->blimit = blimit;
 | |
| 
 | |
| 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
 | |
| 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
 | |
| 		rdp->qlen_last_fqs_check = 0;
 | |
| 		rdp->n_force_qs_snap = rsp->n_force_qs;
 | |
| 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
 | |
| 		rdp->qlen_last_fqs_check = count;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following usually indicates a double call_rcu().  To track
 | |
| 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* Re-invoke RCU core processing if there are callbacks remaining. */
 | |
| 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 | |
| 		invoke_rcu_core();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if this CPU is in a non-context-switch quiescent state
 | |
|  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 | |
|  * Also schedule RCU core processing.
 | |
|  *
 | |
|  * This function must be called from hardirq context.  It is normally
 | |
|  * invoked from the scheduling-clock interrupt.
 | |
|  */
 | |
| void rcu_check_callbacks(int user)
 | |
| {
 | |
| 	trace_rcu_utilization(TPS("Start scheduler-tick"));
 | |
| 	increment_cpu_stall_ticks();
 | |
| 	if (user || rcu_is_cpu_rrupt_from_idle()) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Get here if this CPU took its interrupt from user
 | |
| 		 * mode or from the idle loop, and if this is not a
 | |
| 		 * nested interrupt.  In this case, the CPU is in
 | |
| 		 * a quiescent state, so note it.
 | |
| 		 *
 | |
| 		 * No memory barrier is required here because both
 | |
| 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
 | |
| 		 * variables that other CPUs neither access nor modify,
 | |
| 		 * at least not while the corresponding CPU is online.
 | |
| 		 */
 | |
| 
 | |
| 		rcu_sched_qs();
 | |
| 		rcu_bh_qs();
 | |
| 		rcu_note_voluntary_context_switch(current);
 | |
| 
 | |
| 	} else if (!in_softirq()) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Get here if this CPU did not take its interrupt from
 | |
| 		 * softirq, in other words, if it is not interrupting
 | |
| 		 * a rcu_bh read-side critical section.  This is an _bh
 | |
| 		 * critical section, so note it.
 | |
| 		 */
 | |
| 
 | |
| 		rcu_bh_qs();
 | |
| 	}
 | |
| 	rcu_preempt_check_callbacks();
 | |
| 	/* The load-acquire pairs with the store-release setting to true. */
 | |
| 	if (smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
 | |
| 		/* Idle and userspace execution already are quiescent states. */
 | |
| 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
 | |
| 			set_tsk_need_resched(current);
 | |
| 			set_preempt_need_resched();
 | |
| 		}
 | |
| 		__this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 | |
| 	}
 | |
| 	if (rcu_pending())
 | |
| 		invoke_rcu_core();
 | |
| 
 | |
| 	trace_rcu_utilization(TPS("End scheduler-tick"));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the leaf rcu_node structures, processing dyntick state for any that
 | |
|  * have not yet encountered a quiescent state, using the function specified.
 | |
|  * Also initiate boosting for any threads blocked on the root rcu_node.
 | |
|  *
 | |
|  * The caller must have suppressed start of new grace periods.
 | |
|  */
 | |
| static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long mask;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	rcu_for_each_leaf_node(rsp, rnp) {
 | |
| 		cond_resched_tasks_rcu_qs();
 | |
| 		mask = 0;
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 		if (rnp->qsmask == 0) {
 | |
| 			if (rcu_state_p == &rcu_sched_state ||
 | |
| 			    rsp != rcu_state_p ||
 | |
| 			    rcu_preempt_blocked_readers_cgp(rnp)) {
 | |
| 				/*
 | |
| 				 * No point in scanning bits because they
 | |
| 				 * are all zero.  But we might need to
 | |
| 				 * priority-boost blocked readers.
 | |
| 				 */
 | |
| 				rcu_initiate_boost(rnp, flags);
 | |
| 				/* rcu_initiate_boost() releases rnp->lock */
 | |
| 				continue;
 | |
| 			}
 | |
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		for_each_leaf_node_possible_cpu(rnp, cpu) {
 | |
| 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
 | |
| 			if ((rnp->qsmask & bit) != 0) {
 | |
| 				if (f(per_cpu_ptr(rsp->rda, cpu)))
 | |
| 					mask |= bit;
 | |
| 			}
 | |
| 		}
 | |
| 		if (mask != 0) {
 | |
| 			/* Idle/offline CPUs, report (releases rnp->lock). */
 | |
| 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
 | |
| 		} else {
 | |
| 			/* Nothing to do here, so just drop the lock. */
 | |
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Force quiescent states on reluctant CPUs, and also detect which
 | |
|  * CPUs are in dyntick-idle mode.
 | |
|  */
 | |
| static void force_quiescent_state(struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool ret;
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_node *rnp_old = NULL;
 | |
| 
 | |
| 	/* Funnel through hierarchy to reduce memory contention. */
 | |
| 	rnp = __this_cpu_read(rsp->rda->mynode);
 | |
| 	for (; rnp != NULL; rnp = rnp->parent) {
 | |
| 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
 | |
| 		      !raw_spin_trylock(&rnp->fqslock);
 | |
| 		if (rnp_old != NULL)
 | |
| 			raw_spin_unlock(&rnp_old->fqslock);
 | |
| 		if (ret)
 | |
| 			return;
 | |
| 		rnp_old = rnp;
 | |
| 	}
 | |
| 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
 | |
| 
 | |
| 	/* Reached the root of the rcu_node tree, acquire lock. */
 | |
| 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
 | |
| 	raw_spin_unlock(&rnp_old->fqslock);
 | |
| 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
 | |
| 		return;  /* Someone beat us to it. */
 | |
| 	}
 | |
| 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
 | |
| 	rcu_gp_kthread_wake(rsp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function checks for grace-period requests that fail to motivate
 | |
|  * RCU to come out of its idle mode.
 | |
|  */
 | |
| static void
 | |
| rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp,
 | |
| 			 struct rcu_data *rdp)
 | |
| {
 | |
| 	const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long j;
 | |
| 	struct rcu_node *rnp_root = rcu_get_root(rsp);
 | |
| 	static atomic_t warned = ATOMIC_INIT(0);
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) ||
 | |
| 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
 | |
| 		return;
 | |
| 	j = jiffies; /* Expensive access, and in common case don't get here. */
 | |
| 	if (time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) ||
 | |
| 	    time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) ||
 | |
| 	    atomic_read(&warned))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 	j = jiffies;
 | |
| 	if (rcu_gp_in_progress(rsp) ||
 | |
| 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
 | |
| 	    time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) ||
 | |
| 	    time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) ||
 | |
| 	    atomic_read(&warned)) {
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Hold onto the leaf lock to make others see warned==1. */
 | |
| 
 | |
| 	if (rnp_root != rnp)
 | |
| 		raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
 | |
| 	j = jiffies;
 | |
| 	if (rcu_gp_in_progress(rsp) ||
 | |
| 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
 | |
| 	    time_before(j, rsp->gp_req_activity + gpssdelay) ||
 | |
| 	    time_before(j, rsp->gp_activity + gpssdelay) ||
 | |
| 	    atomic_xchg(&warned, 1)) {
 | |
| 		raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
 | |
| 		 __func__, (long)READ_ONCE(rsp->gp_seq),
 | |
| 		 (long)READ_ONCE(rnp_root->gp_seq_needed),
 | |
| 		 j - rsp->gp_req_activity, j - rsp->gp_activity,
 | |
| 		 rsp->gp_flags, rsp->gp_state, rsp->name,
 | |
| 		 rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL);
 | |
| 	WARN_ON(1);
 | |
| 	if (rnp_root != rnp)
 | |
| 		raw_spin_unlock_rcu_node(rnp_root);
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This does the RCU core processing work for the specified rcu_state
 | |
|  * and rcu_data structures.  This may be called only from the CPU to
 | |
|  * whom the rdp belongs.
 | |
|  */
 | |
| static void
 | |
| __rcu_process_callbacks(struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rdp->beenonline);
 | |
| 
 | |
| 	/* Update RCU state based on any recent quiescent states. */
 | |
| 	rcu_check_quiescent_state(rsp, rdp);
 | |
| 
 | |
| 	/* No grace period and unregistered callbacks? */
 | |
| 	if (!rcu_gp_in_progress(rsp) &&
 | |
| 	    rcu_segcblist_is_enabled(&rdp->cblist)) {
 | |
| 		local_irq_save(flags);
 | |
| 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 | |
| 			rcu_accelerate_cbs_unlocked(rsp, rnp, rdp);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 
 | |
| 	rcu_check_gp_start_stall(rsp, rnp, rdp);
 | |
| 
 | |
| 	/* If there are callbacks ready, invoke them. */
 | |
| 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 | |
| 		invoke_rcu_callbacks(rsp, rdp);
 | |
| 
 | |
| 	/* Do any needed deferred wakeups of rcuo kthreads. */
 | |
| 	do_nocb_deferred_wakeup(rdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do RCU core processing for the current CPU.
 | |
|  */
 | |
| static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	if (cpu_is_offline(smp_processor_id()))
 | |
| 		return;
 | |
| 	trace_rcu_utilization(TPS("Start RCU core"));
 | |
| 	for_each_rcu_flavor(rsp)
 | |
| 		__rcu_process_callbacks(rsp);
 | |
| 	trace_rcu_utilization(TPS("End RCU core"));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Schedule RCU callback invocation.  If the specified type of RCU
 | |
|  * does not support RCU priority boosting, just do a direct call,
 | |
|  * otherwise wake up the per-CPU kernel kthread.  Note that because we
 | |
|  * are running on the current CPU with softirqs disabled, the
 | |
|  * rcu_cpu_kthread_task cannot disappear out from under us.
 | |
|  */
 | |
| static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
 | |
| 		return;
 | |
| 	if (likely(!rsp->boost)) {
 | |
| 		rcu_do_batch(rsp, rdp);
 | |
| 		return;
 | |
| 	}
 | |
| 	invoke_rcu_callbacks_kthread();
 | |
| }
 | |
| 
 | |
| static void invoke_rcu_core(void)
 | |
| {
 | |
| 	if (cpu_online(smp_processor_id()))
 | |
| 		raise_softirq(RCU_SOFTIRQ);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle any core-RCU processing required by a call_rcu() invocation.
 | |
|  */
 | |
| static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
 | |
| 			    struct rcu_head *head, unsigned long flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * If called from an extended quiescent state, invoke the RCU
 | |
| 	 * core in order to force a re-evaluation of RCU's idleness.
 | |
| 	 */
 | |
| 	if (!rcu_is_watching())
 | |
| 		invoke_rcu_core();
 | |
| 
 | |
| 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
 | |
| 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Force the grace period if too many callbacks or too long waiting.
 | |
| 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
 | |
| 	 * if some other CPU has recently done so.  Also, don't bother
 | |
| 	 * invoking force_quiescent_state() if the newly enqueued callback
 | |
| 	 * is the only one waiting for a grace period to complete.
 | |
| 	 */
 | |
| 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
 | |
| 		     rdp->qlen_last_fqs_check + qhimark)) {
 | |
| 
 | |
| 		/* Are we ignoring a completed grace period? */
 | |
| 		note_gp_changes(rsp, rdp);
 | |
| 
 | |
| 		/* Start a new grace period if one not already started. */
 | |
| 		if (!rcu_gp_in_progress(rsp)) {
 | |
| 			rcu_accelerate_cbs_unlocked(rsp, rdp->mynode, rdp);
 | |
| 		} else {
 | |
| 			/* Give the grace period a kick. */
 | |
| 			rdp->blimit = LONG_MAX;
 | |
| 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
 | |
| 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
 | |
| 				force_quiescent_state(rsp);
 | |
| 			rdp->n_force_qs_snap = rsp->n_force_qs;
 | |
| 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RCU callback function to leak a callback.
 | |
|  */
 | |
| static void rcu_leak_callback(struct rcu_head *rhp)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for call_rcu() and friends.  The cpu argument will
 | |
|  * normally be -1, indicating "currently running CPU".  It may specify
 | |
|  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 | |
|  * is expected to specify a CPU.
 | |
|  */
 | |
| static void
 | |
| __call_rcu(struct rcu_head *head, rcu_callback_t func,
 | |
| 	   struct rcu_state *rsp, int cpu, bool lazy)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp;
 | |
| 
 | |
| 	/* Misaligned rcu_head! */
 | |
| 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
 | |
| 
 | |
| 	if (debug_rcu_head_queue(head)) {
 | |
| 		/*
 | |
| 		 * Probable double call_rcu(), so leak the callback.
 | |
| 		 * Use rcu:rcu_callback trace event to find the previous
 | |
| 		 * time callback was passed to __call_rcu().
 | |
| 		 */
 | |
| 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
 | |
| 			  head, head->func);
 | |
| 		WRITE_ONCE(head->func, rcu_leak_callback);
 | |
| 		return;
 | |
| 	}
 | |
| 	head->func = func;
 | |
| 	head->next = NULL;
 | |
| 	local_irq_save(flags);
 | |
| 	rdp = this_cpu_ptr(rsp->rda);
 | |
| 
 | |
| 	/* Add the callback to our list. */
 | |
| 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
 | |
| 		int offline;
 | |
| 
 | |
| 		if (cpu != -1)
 | |
| 			rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 		if (likely(rdp->mynode)) {
 | |
| 			/* Post-boot, so this should be for a no-CBs CPU. */
 | |
| 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
 | |
| 			WARN_ON_ONCE(offline);
 | |
| 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
 | |
| 			local_irq_restore(flags);
 | |
| 			return;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Very early boot, before rcu_init().  Initialize if needed
 | |
| 		 * and then drop through to queue the callback.
 | |
| 		 */
 | |
| 		BUG_ON(cpu != -1);
 | |
| 		WARN_ON_ONCE(!rcu_is_watching());
 | |
| 		if (rcu_segcblist_empty(&rdp->cblist))
 | |
| 			rcu_segcblist_init(&rdp->cblist);
 | |
| 	}
 | |
| 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
 | |
| 	if (!lazy)
 | |
| 		rcu_idle_count_callbacks_posted();
 | |
| 
 | |
| 	if (__is_kfree_rcu_offset((unsigned long)func))
 | |
| 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
 | |
| 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | |
| 					 rcu_segcblist_n_cbs(&rdp->cblist));
 | |
| 	else
 | |
| 		trace_rcu_callback(rsp->name, head,
 | |
| 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 | |
| 				   rcu_segcblist_n_cbs(&rdp->cblist));
 | |
| 
 | |
| 	/* Go handle any RCU core processing required. */
 | |
| 	__call_rcu_core(rsp, rdp, head, flags);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 | |
|  * @head: structure to be used for queueing the RCU updates.
 | |
|  * @func: actual callback function to be invoked after the grace period
 | |
|  *
 | |
|  * The callback function will be invoked some time after a full grace
 | |
|  * period elapses, in other words after all currently executing RCU
 | |
|  * read-side critical sections have completed. call_rcu_sched() assumes
 | |
|  * that the read-side critical sections end on enabling of preemption
 | |
|  * or on voluntary preemption.
 | |
|  * RCU read-side critical sections are delimited by:
 | |
|  *
 | |
|  * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
 | |
|  * - anything that disables preemption.
 | |
|  *
 | |
|  *  These may be nested.
 | |
|  *
 | |
|  * See the description of call_rcu() for more detailed information on
 | |
|  * memory ordering guarantees.
 | |
|  */
 | |
| void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
 | |
| {
 | |
| 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(call_rcu_sched);
 | |
| 
 | |
| /**
 | |
|  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 | |
|  * @head: structure to be used for queueing the RCU updates.
 | |
|  * @func: actual callback function to be invoked after the grace period
 | |
|  *
 | |
|  * The callback function will be invoked some time after a full grace
 | |
|  * period elapses, in other words after all currently executing RCU
 | |
|  * read-side critical sections have completed. call_rcu_bh() assumes
 | |
|  * that the read-side critical sections end on completion of a softirq
 | |
|  * handler. This means that read-side critical sections in process
 | |
|  * context must not be interrupted by softirqs. This interface is to be
 | |
|  * used when most of the read-side critical sections are in softirq context.
 | |
|  * RCU read-side critical sections are delimited by:
 | |
|  *
 | |
|  * - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context, OR
 | |
|  * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 | |
|  *
 | |
|  * These may be nested.
 | |
|  *
 | |
|  * See the description of call_rcu() for more detailed information on
 | |
|  * memory ordering guarantees.
 | |
|  */
 | |
| void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
 | |
| {
 | |
| 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(call_rcu_bh);
 | |
| 
 | |
| /*
 | |
|  * Queue an RCU callback for lazy invocation after a grace period.
 | |
|  * This will likely be later named something like "call_rcu_lazy()",
 | |
|  * but this change will require some way of tagging the lazy RCU
 | |
|  * callbacks in the list of pending callbacks. Until then, this
 | |
|  * function may only be called from __kfree_rcu().
 | |
|  */
 | |
| void kfree_call_rcu(struct rcu_head *head,
 | |
| 		    rcu_callback_t func)
 | |
| {
 | |
| 	__call_rcu(head, func, rcu_state_p, -1, 1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kfree_call_rcu);
 | |
| 
 | |
| /*
 | |
|  * Because a context switch is a grace period for RCU-sched and RCU-bh,
 | |
|  * any blocking grace-period wait automatically implies a grace period
 | |
|  * if there is only one CPU online at any point time during execution
 | |
|  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 | |
|  * occasionally incorrectly indicate that there are multiple CPUs online
 | |
|  * when there was in fact only one the whole time, as this just adds
 | |
|  * some overhead: RCU still operates correctly.
 | |
|  */
 | |
| static int rcu_blocking_is_gp(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	might_sleep();  /* Check for RCU read-side critical section. */
 | |
| 	preempt_disable();
 | |
| 	ret = num_online_cpus() <= 1;
 | |
| 	preempt_enable();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 | |
|  *
 | |
|  * Control will return to the caller some time after a full rcu-sched
 | |
|  * grace period has elapsed, in other words after all currently executing
 | |
|  * rcu-sched read-side critical sections have completed.   These read-side
 | |
|  * critical sections are delimited by rcu_read_lock_sched() and
 | |
|  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 | |
|  * local_irq_disable(), and so on may be used in place of
 | |
|  * rcu_read_lock_sched().
 | |
|  *
 | |
|  * This means that all preempt_disable code sequences, including NMI and
 | |
|  * non-threaded hardware-interrupt handlers, in progress on entry will
 | |
|  * have completed before this primitive returns.  However, this does not
 | |
|  * guarantee that softirq handlers will have completed, since in some
 | |
|  * kernels, these handlers can run in process context, and can block.
 | |
|  *
 | |
|  * Note that this guarantee implies further memory-ordering guarantees.
 | |
|  * On systems with more than one CPU, when synchronize_sched() returns,
 | |
|  * each CPU is guaranteed to have executed a full memory barrier since the
 | |
|  * end of its last RCU-sched read-side critical section whose beginning
 | |
|  * preceded the call to synchronize_sched().  In addition, each CPU having
 | |
|  * an RCU read-side critical section that extends beyond the return from
 | |
|  * synchronize_sched() is guaranteed to have executed a full memory barrier
 | |
|  * after the beginning of synchronize_sched() and before the beginning of
 | |
|  * that RCU read-side critical section.  Note that these guarantees include
 | |
|  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 | |
|  * that are executing in the kernel.
 | |
|  *
 | |
|  * Furthermore, if CPU A invoked synchronize_sched(), which returned
 | |
|  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 | |
|  * to have executed a full memory barrier during the execution of
 | |
|  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 | |
|  * again only if the system has more than one CPU).
 | |
|  */
 | |
| void synchronize_sched(void)
 | |
| {
 | |
| 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 | |
| 			 lock_is_held(&rcu_lock_map) ||
 | |
| 			 lock_is_held(&rcu_sched_lock_map),
 | |
| 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
 | |
| 	if (rcu_blocking_is_gp())
 | |
| 		return;
 | |
| 	if (rcu_gp_is_expedited())
 | |
| 		synchronize_sched_expedited();
 | |
| 	else
 | |
| 		wait_rcu_gp(call_rcu_sched);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_sched);
 | |
| 
 | |
| /**
 | |
|  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 | |
|  *
 | |
|  * Control will return to the caller some time after a full rcu_bh grace
 | |
|  * period has elapsed, in other words after all currently executing rcu_bh
 | |
|  * read-side critical sections have completed.  RCU read-side critical
 | |
|  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 | |
|  * and may be nested.
 | |
|  *
 | |
|  * See the description of synchronize_sched() for more detailed information
 | |
|  * on memory ordering guarantees.
 | |
|  */
 | |
| void synchronize_rcu_bh(void)
 | |
| {
 | |
| 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 | |
| 			 lock_is_held(&rcu_lock_map) ||
 | |
| 			 lock_is_held(&rcu_sched_lock_map),
 | |
| 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
 | |
| 	if (rcu_blocking_is_gp())
 | |
| 		return;
 | |
| 	if (rcu_gp_is_expedited())
 | |
| 		synchronize_rcu_bh_expedited();
 | |
| 	else
 | |
| 		wait_rcu_gp(call_rcu_bh);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
 | |
| 
 | |
| /**
 | |
|  * get_state_synchronize_rcu - Snapshot current RCU state
 | |
|  *
 | |
|  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 | |
|  * to determine whether or not a full grace period has elapsed in the
 | |
|  * meantime.
 | |
|  */
 | |
| unsigned long get_state_synchronize_rcu(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Any prior manipulation of RCU-protected data must happen
 | |
| 	 * before the load from ->gp_seq.
 | |
| 	 */
 | |
| 	smp_mb();  /* ^^^ */
 | |
| 	return rcu_seq_snap(&rcu_state_p->gp_seq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
 | |
| 
 | |
| /**
 | |
|  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 | |
|  *
 | |
|  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 | |
|  *
 | |
|  * If a full RCU grace period has elapsed since the earlier call to
 | |
|  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 | |
|  * synchronize_rcu() to wait for a full grace period.
 | |
|  *
 | |
|  * Yes, this function does not take counter wrap into account.  But
 | |
|  * counter wrap is harmless.  If the counter wraps, we have waited for
 | |
|  * more than 2 billion grace periods (and way more on a 64-bit system!),
 | |
|  * so waiting for one additional grace period should be just fine.
 | |
|  */
 | |
| void cond_synchronize_rcu(unsigned long oldstate)
 | |
| {
 | |
| 	if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate))
 | |
| 		synchronize_rcu();
 | |
| 	else
 | |
| 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
 | |
| 
 | |
| /**
 | |
|  * get_state_synchronize_sched - Snapshot current RCU-sched state
 | |
|  *
 | |
|  * Returns a cookie that is used by a later call to cond_synchronize_sched()
 | |
|  * to determine whether or not a full grace period has elapsed in the
 | |
|  * meantime.
 | |
|  */
 | |
| unsigned long get_state_synchronize_sched(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Any prior manipulation of RCU-protected data must happen
 | |
| 	 * before the load from ->gp_seq.
 | |
| 	 */
 | |
| 	smp_mb();  /* ^^^ */
 | |
| 	return rcu_seq_snap(&rcu_sched_state.gp_seq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
 | |
| 
 | |
| /**
 | |
|  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 | |
|  *
 | |
|  * @oldstate: return value from earlier call to get_state_synchronize_sched()
 | |
|  *
 | |
|  * If a full RCU-sched grace period has elapsed since the earlier call to
 | |
|  * get_state_synchronize_sched(), just return.  Otherwise, invoke
 | |
|  * synchronize_sched() to wait for a full grace period.
 | |
|  *
 | |
|  * Yes, this function does not take counter wrap into account.  But
 | |
|  * counter wrap is harmless.  If the counter wraps, we have waited for
 | |
|  * more than 2 billion grace periods (and way more on a 64-bit system!),
 | |
|  * so waiting for one additional grace period should be just fine.
 | |
|  */
 | |
| void cond_synchronize_sched(unsigned long oldstate)
 | |
| {
 | |
| 	if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate))
 | |
| 		synchronize_sched();
 | |
| 	else
 | |
| 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cond_synchronize_sched);
 | |
| 
 | |
| /*
 | |
|  * Check to see if there is any immediate RCU-related work to be done
 | |
|  * by the current CPU, for the specified type of RCU, returning 1 if so.
 | |
|  * The checks are in order of increasing expense: checks that can be
 | |
|  * carried out against CPU-local state are performed first.  However,
 | |
|  * we must check for CPU stalls first, else we might not get a chance.
 | |
|  */
 | |
| static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	/* Check for CPU stalls, if enabled. */
 | |
| 	check_cpu_stall(rsp, rdp);
 | |
| 
 | |
| 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
 | |
| 	if (rcu_nohz_full_cpu(rsp))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Is the RCU core waiting for a quiescent state from this CPU? */
 | |
| 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Does this CPU have callbacks ready to invoke? */
 | |
| 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Has RCU gone idle with this CPU needing another grace period? */
 | |
| 	if (!rcu_gp_in_progress(rsp) &&
 | |
| 	    rcu_segcblist_is_enabled(&rdp->cblist) &&
 | |
| 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Have RCU grace period completed or started?  */
 | |
| 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
 | |
| 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Does this CPU need a deferred NOCB wakeup? */
 | |
| 	if (rcu_nocb_need_deferred_wakeup(rdp))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* nothing to do */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if there is any immediate RCU-related work to be done
 | |
|  * by the current CPU, returning 1 if so.  This function is part of the
 | |
|  * RCU implementation; it is -not- an exported member of the RCU API.
 | |
|  */
 | |
| static int rcu_pending(void)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp)
 | |
| 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
 | |
| 			return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the specified CPU has any callback.  If all_lazy is
 | |
|  * non-NULL, store an indication of whether all callbacks are lazy.
 | |
|  * (If there are no callbacks, all of them are deemed to be lazy.)
 | |
|  */
 | |
| static bool rcu_cpu_has_callbacks(bool *all_lazy)
 | |
| {
 | |
| 	bool al = true;
 | |
| 	bool hc = false;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rdp = this_cpu_ptr(rsp->rda);
 | |
| 		if (rcu_segcblist_empty(&rdp->cblist))
 | |
| 			continue;
 | |
| 		hc = true;
 | |
| 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
 | |
| 			al = false;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (all_lazy)
 | |
| 		*all_lazy = al;
 | |
| 	return hc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 | |
|  * the compiler is expected to optimize this away.
 | |
|  */
 | |
| static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
 | |
| 			       int cpu, unsigned long done)
 | |
| {
 | |
| 	trace_rcu_barrier(rsp->name, s, cpu,
 | |
| 			  atomic_read(&rsp->barrier_cpu_count), done);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RCU callback function for _rcu_barrier().  If we are last, wake
 | |
|  * up the task executing _rcu_barrier().
 | |
|  */
 | |
| static void rcu_barrier_callback(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
 | |
| 	struct rcu_state *rsp = rdp->rsp;
 | |
| 
 | |
| 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
 | |
| 		_rcu_barrier_trace(rsp, TPS("LastCB"), -1,
 | |
| 				   rsp->barrier_sequence);
 | |
| 		complete(&rsp->barrier_completion);
 | |
| 	} else {
 | |
| 		_rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with preemption disabled, and from cross-cpu IRQ context.
 | |
|  */
 | |
| static void rcu_barrier_func(void *type)
 | |
| {
 | |
| 	struct rcu_state *rsp = type;
 | |
| 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
 | |
| 
 | |
| 	_rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
 | |
| 	rdp->barrier_head.func = rcu_barrier_callback;
 | |
| 	debug_rcu_head_queue(&rdp->barrier_head);
 | |
| 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
 | |
| 		atomic_inc(&rsp->barrier_cpu_count);
 | |
| 	} else {
 | |
| 		debug_rcu_head_unqueue(&rdp->barrier_head);
 | |
| 		_rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
 | |
| 				   rsp->barrier_sequence);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Orchestrate the specified type of RCU barrier, waiting for all
 | |
|  * RCU callbacks of the specified type to complete.
 | |
|  */
 | |
| static void _rcu_barrier(struct rcu_state *rsp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct rcu_data *rdp;
 | |
| 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
 | |
| 
 | |
| 	_rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
 | |
| 
 | |
| 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
 | |
| 	mutex_lock(&rsp->barrier_mutex);
 | |
| 
 | |
| 	/* Did someone else do our work for us? */
 | |
| 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
 | |
| 		_rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
 | |
| 				   rsp->barrier_sequence);
 | |
| 		smp_mb(); /* caller's subsequent code after above check. */
 | |
| 		mutex_unlock(&rsp->barrier_mutex);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Mark the start of the barrier operation. */
 | |
| 	rcu_seq_start(&rsp->barrier_sequence);
 | |
| 	_rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the count to one rather than to zero in order to
 | |
| 	 * avoid a too-soon return to zero in case of a short grace period
 | |
| 	 * (or preemption of this task).  Exclude CPU-hotplug operations
 | |
| 	 * to ensure that no offline CPU has callbacks queued.
 | |
| 	 */
 | |
| 	init_completion(&rsp->barrier_completion);
 | |
| 	atomic_set(&rsp->barrier_cpu_count, 1);
 | |
| 	get_online_cpus();
 | |
| 
 | |
| 	/*
 | |
| 	 * Force each CPU with callbacks to register a new callback.
 | |
| 	 * When that callback is invoked, we will know that all of the
 | |
| 	 * corresponding CPU's preceding callbacks have been invoked.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
 | |
| 			continue;
 | |
| 		rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 		if (rcu_is_nocb_cpu(cpu)) {
 | |
| 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
 | |
| 				_rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
 | |
| 						   rsp->barrier_sequence);
 | |
| 			} else {
 | |
| 				_rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
 | |
| 						   rsp->barrier_sequence);
 | |
| 				smp_mb__before_atomic();
 | |
| 				atomic_inc(&rsp->barrier_cpu_count);
 | |
| 				__call_rcu(&rdp->barrier_head,
 | |
| 					   rcu_barrier_callback, rsp, cpu, 0);
 | |
| 			}
 | |
| 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
 | |
| 			_rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
 | |
| 					   rsp->barrier_sequence);
 | |
| 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
 | |
| 		} else {
 | |
| 			_rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
 | |
| 					   rsp->barrier_sequence);
 | |
| 		}
 | |
| 	}
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we have an rcu_barrier_callback() callback on each
 | |
| 	 * CPU, and thus each counted, remove the initial count.
 | |
| 	 */
 | |
| 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
 | |
| 		complete(&rsp->barrier_completion);
 | |
| 
 | |
| 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
 | |
| 	wait_for_completion(&rsp->barrier_completion);
 | |
| 
 | |
| 	/* Mark the end of the barrier operation. */
 | |
| 	_rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
 | |
| 	rcu_seq_end(&rsp->barrier_sequence);
 | |
| 
 | |
| 	/* Other rcu_barrier() invocations can now safely proceed. */
 | |
| 	mutex_unlock(&rsp->barrier_mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 | |
|  */
 | |
| void rcu_barrier_bh(void)
 | |
| {
 | |
| 	_rcu_barrier(&rcu_bh_state);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_barrier_bh);
 | |
| 
 | |
| /**
 | |
|  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 | |
|  */
 | |
| void rcu_barrier_sched(void)
 | |
| {
 | |
| 	_rcu_barrier(&rcu_sched_state);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_barrier_sched);
 | |
| 
 | |
| /*
 | |
|  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 | |
|  * first CPU in a given leaf rcu_node structure coming online.  The caller
 | |
|  * must hold the corresponding leaf rcu_node ->lock with interrrupts
 | |
|  * disabled.
 | |
|  */
 | |
| static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
 | |
| {
 | |
| 	long mask;
 | |
| 	long oldmask;
 | |
| 	struct rcu_node *rnp = rnp_leaf;
 | |
| 
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
 | |
| 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
 | |
| 	for (;;) {
 | |
| 		mask = rnp->grpmask;
 | |
| 		rnp = rnp->parent;
 | |
| 		if (rnp == NULL)
 | |
| 			return;
 | |
| 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
 | |
| 		oldmask = rnp->qsmaskinit;
 | |
| 		rnp->qsmaskinit |= mask;
 | |
| 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
 | |
| 		if (oldmask)
 | |
| 			return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do boot-time initialization of a CPU's per-CPU RCU data.
 | |
|  */
 | |
| static void __init
 | |
| rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 
 | |
| 	/* Set up local state, ensuring consistent view of global state. */
 | |
| 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
 | |
| 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
 | |
| 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
 | |
| 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
 | |
| 	rdp->rcu_ofl_gp_seq = rsp->gp_seq;
 | |
| 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
 | |
| 	rdp->rcu_onl_gp_seq = rsp->gp_seq;
 | |
| 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
 | |
| 	rdp->cpu = cpu;
 | |
| 	rdp->rsp = rsp;
 | |
| 	rcu_boot_init_nocb_percpu_data(rdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 | |
|  * offline event can be happening at a given time.  Note also that we can
 | |
|  * accept some slop in the rsp->gp_seq access due to the fact that this
 | |
|  * CPU cannot possibly have any RCU callbacks in flight yet.
 | |
|  */
 | |
| static void
 | |
| rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	/* Set up local state, ensuring consistent view of global state. */
 | |
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 	rdp->qlen_last_fqs_check = 0;
 | |
| 	rdp->n_force_qs_snap = rsp->n_force_qs;
 | |
| 	rdp->blimit = blimit;
 | |
| 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
 | |
| 	    !init_nocb_callback_list(rdp))
 | |
| 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
 | |
| 	rdp->dynticks->dynticks_nesting = 1;	/* CPU not up, no tearing. */
 | |
| 	rcu_dynticks_eqs_online();
 | |
| 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
 | |
| 	 * propagation up the rcu_node tree will happen at the beginning
 | |
| 	 * of the next grace period.
 | |
| 	 */
 | |
| 	rnp = rdp->mynode;
 | |
| 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
 | |
| 	rdp->beenonline = true;	 /* We have now been online. */
 | |
| 	rdp->gp_seq = rnp->gp_seq;
 | |
| 	rdp->gp_seq_needed = rnp->gp_seq;
 | |
| 	rdp->cpu_no_qs.b.norm = true;
 | |
| 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
 | |
| 	rdp->core_needs_qs = false;
 | |
| 	rdp->rcu_iw_pending = false;
 | |
| 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
 | |
| 	trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuonl"));
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoked early in the CPU-online process, when pretty much all
 | |
|  * services are available.  The incoming CPU is not present.
 | |
|  */
 | |
| int rcutree_prepare_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp)
 | |
| 		rcu_init_percpu_data(cpu, rsp);
 | |
| 
 | |
| 	rcu_prepare_kthreads(cpu);
 | |
| 	rcu_spawn_all_nocb_kthreads(cpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 | |
|  */
 | |
| static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
 | |
| 
 | |
| 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Near the end of the CPU-online process.  Pretty much all services
 | |
|  * enabled, and the CPU is now very much alive.
 | |
|  */
 | |
| int rcutree_online_cpu(unsigned int cpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 		rnp = rdp->mynode;
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 		rnp->ffmask |= rdp->grpmask;
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	}
 | |
| 	if (IS_ENABLED(CONFIG_TREE_SRCU))
 | |
| 		srcu_online_cpu(cpu);
 | |
| 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 | |
| 		return 0; /* Too early in boot for scheduler work. */
 | |
| 	sync_sched_exp_online_cleanup(cpu);
 | |
| 	rcutree_affinity_setting(cpu, -1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Near the beginning of the process.  The CPU is still very much alive
 | |
|  * with pretty much all services enabled.
 | |
|  */
 | |
| int rcutree_offline_cpu(unsigned int cpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 		rnp = rdp->mynode;
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 		rnp->ffmask &= ~rdp->grpmask;
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	}
 | |
| 
 | |
| 	rcutree_affinity_setting(cpu, cpu);
 | |
| 	if (IS_ENABLED(CONFIG_TREE_SRCU))
 | |
| 		srcu_offline_cpu(cpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Near the end of the offline process.  We do only tracing here.
 | |
|  */
 | |
| int rcutree_dying_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp)
 | |
| 		rcu_cleanup_dying_cpu(rsp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The outgoing CPU is gone and we are running elsewhere.
 | |
|  */
 | |
| int rcutree_dead_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rcu_cleanup_dead_cpu(cpu, rsp);
 | |
| 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(int, rcu_cpu_started);
 | |
| 
 | |
| /*
 | |
|  * Mark the specified CPU as being online so that subsequent grace periods
 | |
|  * (both expedited and normal) will wait on it.  Note that this means that
 | |
|  * incoming CPUs are not allowed to use RCU read-side critical sections
 | |
|  * until this function is called.  Failing to observe this restriction
 | |
|  * will result in lockdep splats.
 | |
|  *
 | |
|  * Note that this function is special in that it is invoked directly
 | |
|  * from the incoming CPU rather than from the cpuhp_step mechanism.
 | |
|  * This is because this function must be invoked at a precise location.
 | |
|  */
 | |
| void rcu_cpu_starting(unsigned int cpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long mask;
 | |
| 	int nbits;
 | |
| 	unsigned long oldmask;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	if (per_cpu(rcu_cpu_started, cpu))
 | |
| 		return;
 | |
| 
 | |
| 	per_cpu(rcu_cpu_started, cpu) = 1;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 		rnp = rdp->mynode;
 | |
| 		mask = rdp->grpmask;
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 		rnp->qsmaskinitnext |= mask;
 | |
| 		oldmask = rnp->expmaskinitnext;
 | |
| 		rnp->expmaskinitnext |= mask;
 | |
| 		oldmask ^= rnp->expmaskinitnext;
 | |
| 		nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
 | |
| 		/* Allow lockless access for expedited grace periods. */
 | |
| 		smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
 | |
| 		rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
 | |
| 		rdp->rcu_onl_gp_seq = READ_ONCE(rsp->gp_seq);
 | |
| 		rdp->rcu_onl_gp_flags = READ_ONCE(rsp->gp_flags);
 | |
| 		if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
 | |
| 			/* Report QS -after- changing ->qsmaskinitnext! */
 | |
| 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
 | |
| 		} else {
 | |
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		}
 | |
| 	}
 | |
| 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| /*
 | |
|  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 | |
|  * function.  We now remove it from the rcu_node tree's ->qsmaskinitnext
 | |
|  * bit masks.
 | |
|  */
 | |
| static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long mask;
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
 | |
| 
 | |
| 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
 | |
| 	mask = rdp->grpmask;
 | |
| 	spin_lock(&rsp->ofl_lock);
 | |
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
 | |
| 	rdp->rcu_ofl_gp_seq = READ_ONCE(rsp->gp_seq);
 | |
| 	rdp->rcu_ofl_gp_flags = READ_ONCE(rsp->gp_flags);
 | |
| 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
 | |
| 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
 | |
| 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 	}
 | |
| 	rnp->qsmaskinitnext &= ~mask;
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	spin_unlock(&rsp->ofl_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The outgoing function has no further need of RCU, so remove it from
 | |
|  * the list of CPUs that RCU must track.
 | |
|  *
 | |
|  * Note that this function is special in that it is invoked directly
 | |
|  * from the outgoing CPU rather than from the cpuhp_step mechanism.
 | |
|  * This is because this function must be invoked at a precise location.
 | |
|  */
 | |
| void rcu_report_dead(unsigned int cpu)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	/* QS for any half-done expedited RCU-sched GP. */
 | |
| 	preempt_disable();
 | |
| 	rcu_report_exp_rdp(&rcu_sched_state,
 | |
| 			   this_cpu_ptr(rcu_sched_state.rda), true);
 | |
| 	preempt_enable();
 | |
| 	for_each_rcu_flavor(rsp)
 | |
| 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
 | |
| 
 | |
| 	per_cpu(rcu_cpu_started, cpu) = 0;
 | |
| }
 | |
| 
 | |
| /* Migrate the dead CPU's callbacks to the current CPU. */
 | |
| static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *my_rdp;
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
 | |
| 	bool needwake;
 | |
| 
 | |
| 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
 | |
| 		return;  /* No callbacks to migrate. */
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	my_rdp = this_cpu_ptr(rsp->rda);
 | |
| 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
 | |
| 		local_irq_restore(flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
 | |
| 	/* Leverage recent GPs and set GP for new callbacks. */
 | |
| 	needwake = rcu_advance_cbs(rsp, rnp_root, rdp) ||
 | |
| 		   rcu_advance_cbs(rsp, rnp_root, my_rdp);
 | |
| 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
 | |
| 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
 | |
| 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
 | |
| 	if (needwake)
 | |
| 		rcu_gp_kthread_wake(rsp);
 | |
| 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
 | |
| 		  !rcu_segcblist_empty(&rdp->cblist),
 | |
| 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
 | |
| 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
 | |
| 		  rcu_segcblist_first_cb(&rdp->cblist));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The outgoing CPU has just passed through the dying-idle state,
 | |
|  * and we are being invoked from the CPU that was IPIed to continue the
 | |
|  * offline operation.  We need to migrate the outgoing CPU's callbacks.
 | |
|  */
 | |
| void rcutree_migrate_callbacks(int cpu)
 | |
| {
 | |
| 	struct rcu_state *rsp;
 | |
| 
 | |
| 	for_each_rcu_flavor(rsp)
 | |
| 		rcu_migrate_callbacks(cpu, rsp);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On non-huge systems, use expedited RCU grace periods to make suspend
 | |
|  * and hibernation run faster.
 | |
|  */
 | |
| static int rcu_pm_notify(struct notifier_block *self,
 | |
| 			 unsigned long action, void *hcpu)
 | |
| {
 | |
| 	switch (action) {
 | |
| 	case PM_HIBERNATION_PREPARE:
 | |
| 	case PM_SUSPEND_PREPARE:
 | |
| 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
 | |
| 			rcu_expedite_gp();
 | |
| 		break;
 | |
| 	case PM_POST_HIBERNATION:
 | |
| 	case PM_POST_SUSPEND:
 | |
| 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
 | |
| 			rcu_unexpedite_gp();
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spawn the kthreads that handle each RCU flavor's grace periods.
 | |
|  */
 | |
| static int __init rcu_spawn_gp_kthread(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int kthread_prio_in = kthread_prio;
 | |
| 	struct rcu_node *rnp;
 | |
| 	struct rcu_state *rsp;
 | |
| 	struct sched_param sp;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	/* Force priority into range. */
 | |
| 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
 | |
| 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
 | |
| 		kthread_prio = 2;
 | |
| 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
 | |
| 		kthread_prio = 1;
 | |
| 	else if (kthread_prio < 0)
 | |
| 		kthread_prio = 0;
 | |
| 	else if (kthread_prio > 99)
 | |
| 		kthread_prio = 99;
 | |
| 
 | |
| 	if (kthread_prio != kthread_prio_in)
 | |
| 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
 | |
| 			 kthread_prio, kthread_prio_in);
 | |
| 
 | |
| 	rcu_scheduler_fully_active = 1;
 | |
| 	for_each_rcu_flavor(rsp) {
 | |
| 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
 | |
| 		BUG_ON(IS_ERR(t));
 | |
| 		rnp = rcu_get_root(rsp);
 | |
| 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 		rsp->gp_kthread = t;
 | |
| 		if (kthread_prio) {
 | |
| 			sp.sched_priority = kthread_prio;
 | |
| 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 | |
| 		}
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		wake_up_process(t);
 | |
| 	}
 | |
| 	rcu_spawn_nocb_kthreads();
 | |
| 	rcu_spawn_boost_kthreads();
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(rcu_spawn_gp_kthread);
 | |
| 
 | |
| /*
 | |
|  * This function is invoked towards the end of the scheduler's
 | |
|  * initialization process.  Before this is called, the idle task might
 | |
|  * contain synchronous grace-period primitives (during which time, this idle
 | |
|  * task is booting the system, and such primitives are no-ops).  After this
 | |
|  * function is called, any synchronous grace-period primitives are run as
 | |
|  * expedited, with the requesting task driving the grace period forward.
 | |
|  * A later core_initcall() rcu_set_runtime_mode() will switch to full
 | |
|  * runtime RCU functionality.
 | |
|  */
 | |
| void rcu_scheduler_starting(void)
 | |
| {
 | |
| 	WARN_ON(num_online_cpus() != 1);
 | |
| 	WARN_ON(nr_context_switches() > 0);
 | |
| 	rcu_test_sync_prims();
 | |
| 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
 | |
| 	rcu_test_sync_prims();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for rcu_init() that initializes one rcu_state structure.
 | |
|  */
 | |
| static void __init rcu_init_one(struct rcu_state *rsp)
 | |
| {
 | |
| 	static const char * const buf[] = RCU_NODE_NAME_INIT;
 | |
| 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
 | |
| 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
 | |
| 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
 | |
| 
 | |
| 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
 | |
| 	int cpustride = 1;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
 | |
| 
 | |
| 	/* Silence gcc 4.8 false positive about array index out of range. */
 | |
| 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
 | |
| 		panic("rcu_init_one: rcu_num_lvls out of range");
 | |
| 
 | |
| 	/* Initialize the level-tracking arrays. */
 | |
| 
 | |
| 	for (i = 1; i < rcu_num_lvls; i++)
 | |
| 		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
 | |
| 	rcu_init_levelspread(levelspread, num_rcu_lvl);
 | |
| 
 | |
| 	/* Initialize the elements themselves, starting from the leaves. */
 | |
| 
 | |
| 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
 | |
| 		cpustride *= levelspread[i];
 | |
| 		rnp = rsp->level[i];
 | |
| 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
 | |
| 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
 | |
| 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
 | |
| 						   &rcu_node_class[i], buf[i]);
 | |
| 			raw_spin_lock_init(&rnp->fqslock);
 | |
| 			lockdep_set_class_and_name(&rnp->fqslock,
 | |
| 						   &rcu_fqs_class[i], fqs[i]);
 | |
| 			rnp->gp_seq = rsp->gp_seq;
 | |
| 			rnp->gp_seq_needed = rsp->gp_seq;
 | |
| 			rnp->completedqs = rsp->gp_seq;
 | |
| 			rnp->qsmask = 0;
 | |
| 			rnp->qsmaskinit = 0;
 | |
| 			rnp->grplo = j * cpustride;
 | |
| 			rnp->grphi = (j + 1) * cpustride - 1;
 | |
| 			if (rnp->grphi >= nr_cpu_ids)
 | |
| 				rnp->grphi = nr_cpu_ids - 1;
 | |
| 			if (i == 0) {
 | |
| 				rnp->grpnum = 0;
 | |
| 				rnp->grpmask = 0;
 | |
| 				rnp->parent = NULL;
 | |
| 			} else {
 | |
| 				rnp->grpnum = j % levelspread[i - 1];
 | |
| 				rnp->grpmask = 1UL << rnp->grpnum;
 | |
| 				rnp->parent = rsp->level[i - 1] +
 | |
| 					      j / levelspread[i - 1];
 | |
| 			}
 | |
| 			rnp->level = i;
 | |
| 			INIT_LIST_HEAD(&rnp->blkd_tasks);
 | |
| 			rcu_init_one_nocb(rnp);
 | |
| 			init_waitqueue_head(&rnp->exp_wq[0]);
 | |
| 			init_waitqueue_head(&rnp->exp_wq[1]);
 | |
| 			init_waitqueue_head(&rnp->exp_wq[2]);
 | |
| 			init_waitqueue_head(&rnp->exp_wq[3]);
 | |
| 			spin_lock_init(&rnp->exp_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	init_swait_queue_head(&rsp->gp_wq);
 | |
| 	init_swait_queue_head(&rsp->expedited_wq);
 | |
| 	rnp = rcu_first_leaf_node(rsp);
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		while (i > rnp->grphi)
 | |
| 			rnp++;
 | |
| 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
 | |
| 		rcu_boot_init_percpu_data(i, rsp);
 | |
| 	}
 | |
| 	list_add(&rsp->flavors, &rcu_struct_flavors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 | |
|  * replace the definitions in tree.h because those are needed to size
 | |
|  * the ->node array in the rcu_state structure.
 | |
|  */
 | |
| static void __init rcu_init_geometry(void)
 | |
| {
 | |
| 	ulong d;
 | |
| 	int i;
 | |
| 	int rcu_capacity[RCU_NUM_LVLS];
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize any unspecified boot parameters.
 | |
| 	 * The default values of jiffies_till_first_fqs and
 | |
| 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
 | |
| 	 * value, which is a function of HZ, then adding one for each
 | |
| 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
 | |
| 	 */
 | |
| 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 | |
| 	if (jiffies_till_first_fqs == ULONG_MAX)
 | |
| 		jiffies_till_first_fqs = d;
 | |
| 	if (jiffies_till_next_fqs == ULONG_MAX)
 | |
| 		jiffies_till_next_fqs = d;
 | |
| 
 | |
| 	/* If the compile-time values are accurate, just leave. */
 | |
| 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
 | |
| 	    nr_cpu_ids == NR_CPUS)
 | |
| 		return;
 | |
| 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
 | |
| 		rcu_fanout_leaf, nr_cpu_ids);
 | |
| 
 | |
| 	/*
 | |
| 	 * The boot-time rcu_fanout_leaf parameter must be at least two
 | |
| 	 * and cannot exceed the number of bits in the rcu_node masks.
 | |
| 	 * Complain and fall back to the compile-time values if this
 | |
| 	 * limit is exceeded.
 | |
| 	 */
 | |
| 	if (rcu_fanout_leaf < 2 ||
 | |
| 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
 | |
| 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | |
| 		WARN_ON(1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute number of nodes that can be handled an rcu_node tree
 | |
| 	 * with the given number of levels.
 | |
| 	 */
 | |
| 	rcu_capacity[0] = rcu_fanout_leaf;
 | |
| 	for (i = 1; i < RCU_NUM_LVLS; i++)
 | |
| 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
 | |
| 
 | |
| 	/*
 | |
| 	 * The tree must be able to accommodate the configured number of CPUs.
 | |
| 	 * If this limit is exceeded, fall back to the compile-time values.
 | |
| 	 */
 | |
| 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
 | |
| 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 | |
| 		WARN_ON(1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the number of levels in the tree. */
 | |
| 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
 | |
| 	}
 | |
| 	rcu_num_lvls = i + 1;
 | |
| 
 | |
| 	/* Calculate the number of rcu_nodes at each level of the tree. */
 | |
| 	for (i = 0; i < rcu_num_lvls; i++) {
 | |
| 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
 | |
| 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the total number of rcu_node structures. */
 | |
| 	rcu_num_nodes = 0;
 | |
| 	for (i = 0; i < rcu_num_lvls; i++)
 | |
| 		rcu_num_nodes += num_rcu_lvl[i];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dump out the structure of the rcu_node combining tree associated
 | |
|  * with the rcu_state structure referenced by rsp.
 | |
|  */
 | |
| static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
 | |
| {
 | |
| 	int level = 0;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	pr_info("rcu_node tree layout dump\n");
 | |
| 	pr_info(" ");
 | |
| 	rcu_for_each_node_breadth_first(rsp, rnp) {
 | |
| 		if (rnp->level != level) {
 | |
| 			pr_cont("\n");
 | |
| 			pr_info(" ");
 | |
| 			level = rnp->level;
 | |
| 		}
 | |
| 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
 | |
| 	}
 | |
| 	pr_cont("\n");
 | |
| }
 | |
| 
 | |
| struct workqueue_struct *rcu_gp_wq;
 | |
| struct workqueue_struct *rcu_par_gp_wq;
 | |
| 
 | |
| void __init rcu_init(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	rcu_early_boot_tests();
 | |
| 
 | |
| 	rcu_bootup_announce();
 | |
| 	rcu_init_geometry();
 | |
| 	rcu_init_one(&rcu_bh_state);
 | |
| 	rcu_init_one(&rcu_sched_state);
 | |
| 	if (dump_tree)
 | |
| 		rcu_dump_rcu_node_tree(&rcu_sched_state);
 | |
| 	__rcu_init_preempt();
 | |
| 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't need protection against CPU-hotplug here because
 | |
| 	 * this is called early in boot, before either interrupts
 | |
| 	 * or the scheduler are operational.
 | |
| 	 */
 | |
| 	pm_notifier(rcu_pm_notify, 0);
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		rcutree_prepare_cpu(cpu);
 | |
| 		rcu_cpu_starting(cpu);
 | |
| 		rcutree_online_cpu(cpu);
 | |
| 	}
 | |
| 
 | |
| 	/* Create workqueue for expedited GPs and for Tree SRCU. */
 | |
| 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
 | |
| 	WARN_ON(!rcu_gp_wq);
 | |
| 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
 | |
| 	WARN_ON(!rcu_par_gp_wq);
 | |
| }
 | |
| 
 | |
| #include "tree_exp.h"
 | |
| #include "tree_plugin.h"
 | 
