4057 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4057 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include "ctree.h"
 | |
| #include "volumes.h"
 | |
| #include "disk-io.h"
 | |
| #include "ordered-data.h"
 | |
| #include "transaction.h"
 | |
| #include "backref.h"
 | |
| #include "extent_io.h"
 | |
| #include "dev-replace.h"
 | |
| #include "check-integrity.h"
 | |
| #include "rcu-string.h"
 | |
| #include "raid56.h"
 | |
| 
 | |
| /*
 | |
|  * This is only the first step towards a full-features scrub. It reads all
 | |
|  * extent and super block and verifies the checksums. In case a bad checksum
 | |
|  * is found or the extent cannot be read, good data will be written back if
 | |
|  * any can be found.
 | |
|  *
 | |
|  * Future enhancements:
 | |
|  *  - In case an unrepairable extent is encountered, track which files are
 | |
|  *    affected and report them
 | |
|  *  - track and record media errors, throw out bad devices
 | |
|  *  - add a mode to also read unallocated space
 | |
|  */
 | |
| 
 | |
| struct scrub_block;
 | |
| struct scrub_ctx;
 | |
| 
 | |
| /*
 | |
|  * the following three values only influence the performance.
 | |
|  * The last one configures the number of parallel and outstanding I/O
 | |
|  * operations. The first two values configure an upper limit for the number
 | |
|  * of (dynamically allocated) pages that are added to a bio.
 | |
|  */
 | |
| #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
 | |
| #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
 | |
| #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
 | |
| 
 | |
| /*
 | |
|  * the following value times PAGE_SIZE needs to be large enough to match the
 | |
|  * largest node/leaf/sector size that shall be supported.
 | |
|  * Values larger than BTRFS_STRIPE_LEN are not supported.
 | |
|  */
 | |
| #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
 | |
| 
 | |
| struct scrub_recover {
 | |
| 	refcount_t		refs;
 | |
| 	struct btrfs_bio	*bbio;
 | |
| 	u64			map_length;
 | |
| };
 | |
| 
 | |
| struct scrub_page {
 | |
| 	struct scrub_block	*sblock;
 | |
| 	struct page		*page;
 | |
| 	struct btrfs_device	*dev;
 | |
| 	struct list_head	list;
 | |
| 	u64			flags;  /* extent flags */
 | |
| 	u64			generation;
 | |
| 	u64			logical;
 | |
| 	u64			physical;
 | |
| 	u64			physical_for_dev_replace;
 | |
| 	atomic_t		refs;
 | |
| 	struct {
 | |
| 		unsigned int	mirror_num:8;
 | |
| 		unsigned int	have_csum:1;
 | |
| 		unsigned int	io_error:1;
 | |
| 	};
 | |
| 	u8			csum[BTRFS_CSUM_SIZE];
 | |
| 
 | |
| 	struct scrub_recover	*recover;
 | |
| };
 | |
| 
 | |
| struct scrub_bio {
 | |
| 	int			index;
 | |
| 	struct scrub_ctx	*sctx;
 | |
| 	struct btrfs_device	*dev;
 | |
| 	struct bio		*bio;
 | |
| 	blk_status_t		status;
 | |
| 	u64			logical;
 | |
| 	u64			physical;
 | |
| #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
 | |
| 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
 | |
| #else
 | |
| 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
 | |
| #endif
 | |
| 	int			page_count;
 | |
| 	int			next_free;
 | |
| 	struct btrfs_work	work;
 | |
| };
 | |
| 
 | |
| struct scrub_block {
 | |
| 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 | |
| 	int			page_count;
 | |
| 	atomic_t		outstanding_pages;
 | |
| 	refcount_t		refs; /* free mem on transition to zero */
 | |
| 	struct scrub_ctx	*sctx;
 | |
| 	struct scrub_parity	*sparity;
 | |
| 	struct {
 | |
| 		unsigned int	header_error:1;
 | |
| 		unsigned int	checksum_error:1;
 | |
| 		unsigned int	no_io_error_seen:1;
 | |
| 		unsigned int	generation_error:1; /* also sets header_error */
 | |
| 
 | |
| 		/* The following is for the data used to check parity */
 | |
| 		/* It is for the data with checksum */
 | |
| 		unsigned int	data_corrected:1;
 | |
| 	};
 | |
| 	struct btrfs_work	work;
 | |
| };
 | |
| 
 | |
| /* Used for the chunks with parity stripe such RAID5/6 */
 | |
| struct scrub_parity {
 | |
| 	struct scrub_ctx	*sctx;
 | |
| 
 | |
| 	struct btrfs_device	*scrub_dev;
 | |
| 
 | |
| 	u64			logic_start;
 | |
| 
 | |
| 	u64			logic_end;
 | |
| 
 | |
| 	int			nsectors;
 | |
| 
 | |
| 	u64			stripe_len;
 | |
| 
 | |
| 	refcount_t		refs;
 | |
| 
 | |
| 	struct list_head	spages;
 | |
| 
 | |
| 	/* Work of parity check and repair */
 | |
| 	struct btrfs_work	work;
 | |
| 
 | |
| 	/* Mark the parity blocks which have data */
 | |
| 	unsigned long		*dbitmap;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the parity blocks which have data, but errors happen when
 | |
| 	 * read data or check data
 | |
| 	 */
 | |
| 	unsigned long		*ebitmap;
 | |
| 
 | |
| 	unsigned long		bitmap[0];
 | |
| };
 | |
| 
 | |
| struct scrub_ctx {
 | |
| 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 | |
| 	struct btrfs_fs_info	*fs_info;
 | |
| 	int			first_free;
 | |
| 	int			curr;
 | |
| 	atomic_t		bios_in_flight;
 | |
| 	atomic_t		workers_pending;
 | |
| 	spinlock_t		list_lock;
 | |
| 	wait_queue_head_t	list_wait;
 | |
| 	u16			csum_size;
 | |
| 	struct list_head	csum_list;
 | |
| 	atomic_t		cancel_req;
 | |
| 	int			readonly;
 | |
| 	int			pages_per_rd_bio;
 | |
| 
 | |
| 	int			is_dev_replace;
 | |
| 
 | |
| 	struct scrub_bio        *wr_curr_bio;
 | |
| 	struct mutex            wr_lock;
 | |
| 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 | |
| 	struct btrfs_device     *wr_tgtdev;
 | |
| 	bool                    flush_all_writes;
 | |
| 
 | |
| 	/*
 | |
| 	 * statistics
 | |
| 	 */
 | |
| 	struct btrfs_scrub_progress stat;
 | |
| 	spinlock_t		stat_lock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 | |
| 	 * decrement bios_in_flight and workers_pending and then do a wakeup
 | |
| 	 * on the list_wait wait queue. We must ensure the main scrub task
 | |
| 	 * doesn't free the scrub context before or while the workers are
 | |
| 	 * doing the wakeup() call.
 | |
| 	 */
 | |
| 	refcount_t              refs;
 | |
| };
 | |
| 
 | |
| struct scrub_warning {
 | |
| 	struct btrfs_path	*path;
 | |
| 	u64			extent_item_size;
 | |
| 	const char		*errstr;
 | |
| 	u64			physical;
 | |
| 	u64			logical;
 | |
| 	struct btrfs_device	*dev;
 | |
| };
 | |
| 
 | |
| struct full_stripe_lock {
 | |
| 	struct rb_node node;
 | |
| 	u64 logical;
 | |
| 	u64 refs;
 | |
| 	struct mutex mutex;
 | |
| };
 | |
| 
 | |
| static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 | |
| static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 | |
| static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 | |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 | |
| 				     struct scrub_block *sblocks_for_recheck);
 | |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 | |
| 				struct scrub_block *sblock,
 | |
| 				int retry_failed_mirror);
 | |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 | |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 | |
| 					     struct scrub_block *sblock_good);
 | |
| static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 | |
| 					    struct scrub_block *sblock_good,
 | |
| 					    int page_num, int force_write);
 | |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 | |
| static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 | |
| 					   int page_num);
 | |
| static int scrub_checksum_data(struct scrub_block *sblock);
 | |
| static int scrub_checksum_tree_block(struct scrub_block *sblock);
 | |
| static int scrub_checksum_super(struct scrub_block *sblock);
 | |
| static void scrub_block_get(struct scrub_block *sblock);
 | |
| static void scrub_block_put(struct scrub_block *sblock);
 | |
| static void scrub_page_get(struct scrub_page *spage);
 | |
| static void scrub_page_put(struct scrub_page *spage);
 | |
| static void scrub_parity_get(struct scrub_parity *sparity);
 | |
| static void scrub_parity_put(struct scrub_parity *sparity);
 | |
| static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 | |
| 				    struct scrub_page *spage);
 | |
| static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 | |
| 		       u64 physical, struct btrfs_device *dev, u64 flags,
 | |
| 		       u64 gen, int mirror_num, u8 *csum, int force,
 | |
| 		       u64 physical_for_dev_replace);
 | |
| static void scrub_bio_end_io(struct bio *bio);
 | |
| static void scrub_bio_end_io_worker(struct btrfs_work *work);
 | |
| static void scrub_block_complete(struct scrub_block *sblock);
 | |
| static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 | |
| 			       u64 extent_logical, u64 extent_len,
 | |
| 			       u64 *extent_physical,
 | |
| 			       struct btrfs_device **extent_dev,
 | |
| 			       int *extent_mirror_num);
 | |
| static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 | |
| 				    struct scrub_page *spage);
 | |
| static void scrub_wr_submit(struct scrub_ctx *sctx);
 | |
| static void scrub_wr_bio_end_io(struct bio *bio);
 | |
| static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 | |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 | |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 | |
| static void scrub_put_ctx(struct scrub_ctx *sctx);
 | |
| 
 | |
| static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 | |
| {
 | |
| 	return page->recover &&
 | |
| 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 | |
| }
 | |
| 
 | |
| static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	refcount_inc(&sctx->refs);
 | |
| 	atomic_inc(&sctx->bios_in_flight);
 | |
| }
 | |
| 
 | |
| static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	atomic_dec(&sctx->bios_in_flight);
 | |
| 	wake_up(&sctx->list_wait);
 | |
| 	scrub_put_ctx(sctx);
 | |
| }
 | |
| 
 | |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	while (atomic_read(&fs_info->scrub_pause_req)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 		   atomic_read(&fs_info->scrub_pause_req) == 0);
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	atomic_inc(&fs_info->scrubs_paused);
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| }
 | |
| 
 | |
| static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	__scrub_blocked_if_needed(fs_info);
 | |
| 	atomic_dec(&fs_info->scrubs_paused);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| }
 | |
| 
 | |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	scrub_pause_on(fs_info);
 | |
| 	scrub_pause_off(fs_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert new full stripe lock into full stripe locks tree
 | |
|  *
 | |
|  * Return pointer to existing or newly inserted full_stripe_lock structure if
 | |
|  * everything works well.
 | |
|  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 | |
|  *
 | |
|  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 | |
|  * function
 | |
|  */
 | |
| static struct full_stripe_lock *insert_full_stripe_lock(
 | |
| 		struct btrfs_full_stripe_locks_tree *locks_root,
 | |
| 		u64 fstripe_logical)
 | |
| {
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct full_stripe_lock *entry;
 | |
| 	struct full_stripe_lock *ret;
 | |
| 	unsigned int nofs_flag;
 | |
| 
 | |
| 	lockdep_assert_held(&locks_root->lock);
 | |
| 
 | |
| 	p = &locks_root->root.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		entry = rb_entry(parent, struct full_stripe_lock, node);
 | |
| 		if (fstripe_logical < entry->logical) {
 | |
| 			p = &(*p)->rb_left;
 | |
| 		} else if (fstripe_logical > entry->logical) {
 | |
| 			p = &(*p)->rb_right;
 | |
| 		} else {
 | |
| 			entry->refs++;
 | |
| 			return entry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Insert new lock.
 | |
| 	 *
 | |
| 	 * We must use GFP_NOFS because the scrub task might be waiting for a
 | |
| 	 * worker task executing this function and in turn a transaction commit
 | |
| 	 * might be waiting the scrub task to pause (which needs to wait for all
 | |
| 	 * the worker tasks to complete before pausing).
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 	if (!ret)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	ret->logical = fstripe_logical;
 | |
| 	ret->refs = 1;
 | |
| 	mutex_init(&ret->mutex);
 | |
| 
 | |
| 	rb_link_node(&ret->node, parent, p);
 | |
| 	rb_insert_color(&ret->node, &locks_root->root);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search for a full stripe lock of a block group
 | |
|  *
 | |
|  * Return pointer to existing full stripe lock if found
 | |
|  * Return NULL if not found
 | |
|  */
 | |
| static struct full_stripe_lock *search_full_stripe_lock(
 | |
| 		struct btrfs_full_stripe_locks_tree *locks_root,
 | |
| 		u64 fstripe_logical)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct full_stripe_lock *entry;
 | |
| 
 | |
| 	lockdep_assert_held(&locks_root->lock);
 | |
| 
 | |
| 	node = locks_root->root.rb_node;
 | |
| 	while (node) {
 | |
| 		entry = rb_entry(node, struct full_stripe_lock, node);
 | |
| 		if (fstripe_logical < entry->logical)
 | |
| 			node = node->rb_left;
 | |
| 		else if (fstripe_logical > entry->logical)
 | |
| 			node = node->rb_right;
 | |
| 		else
 | |
| 			return entry;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper to get full stripe logical from a normal bytenr.
 | |
|  *
 | |
|  * Caller must ensure @cache is a RAID56 block group.
 | |
|  */
 | |
| static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 | |
| 				   u64 bytenr)
 | |
| {
 | |
| 	u64 ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to chunk item size limit, full stripe length should not be
 | |
| 	 * larger than U32_MAX. Just a sanity check here.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 | |
| 
 | |
| 	/*
 | |
| 	 * round_down() can only handle power of 2, while RAID56 full
 | |
| 	 * stripe length can be 64KiB * n, so we need to manually round down.
 | |
| 	 */
 | |
| 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 | |
| 		cache->full_stripe_len + cache->key.objectid;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock a full stripe to avoid concurrency of recovery and read
 | |
|  *
 | |
|  * It's only used for profiles with parities (RAID5/6), for other profiles it
 | |
|  * does nothing.
 | |
|  *
 | |
|  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 | |
|  * So caller must call unlock_full_stripe() at the same context.
 | |
|  *
 | |
|  * Return <0 if encounters error.
 | |
|  */
 | |
| static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 			    bool *locked_ret)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *bg_cache;
 | |
| 	struct btrfs_full_stripe_locks_tree *locks_root;
 | |
| 	struct full_stripe_lock *existing;
 | |
| 	u64 fstripe_start;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	*locked_ret = false;
 | |
| 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 | |
| 	if (!bg_cache) {
 | |
| 		ASSERT(0);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	/* Profiles not based on parity don't need full stripe lock */
 | |
| 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 | |
| 		goto out;
 | |
| 	locks_root = &bg_cache->full_stripe_locks_root;
 | |
| 
 | |
| 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 | |
| 
 | |
| 	/* Now insert the full stripe lock */
 | |
| 	mutex_lock(&locks_root->lock);
 | |
| 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 | |
| 	mutex_unlock(&locks_root->lock);
 | |
| 	if (IS_ERR(existing)) {
 | |
| 		ret = PTR_ERR(existing);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	mutex_lock(&existing->mutex);
 | |
| 	*locked_ret = true;
 | |
| out:
 | |
| 	btrfs_put_block_group(bg_cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock a full stripe.
 | |
|  *
 | |
|  * NOTE: Caller must ensure it's the same context calling corresponding
 | |
|  * lock_full_stripe().
 | |
|  *
 | |
|  * Return 0 if we unlock full stripe without problem.
 | |
|  * Return <0 for error
 | |
|  */
 | |
| static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 | |
| 			      bool locked)
 | |
| {
 | |
| 	struct btrfs_block_group_cache *bg_cache;
 | |
| 	struct btrfs_full_stripe_locks_tree *locks_root;
 | |
| 	struct full_stripe_lock *fstripe_lock;
 | |
| 	u64 fstripe_start;
 | |
| 	bool freeit = false;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* If we didn't acquire full stripe lock, no need to continue */
 | |
| 	if (!locked)
 | |
| 		return 0;
 | |
| 
 | |
| 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 | |
| 	if (!bg_cache) {
 | |
| 		ASSERT(0);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 | |
| 		goto out;
 | |
| 
 | |
| 	locks_root = &bg_cache->full_stripe_locks_root;
 | |
| 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 | |
| 
 | |
| 	mutex_lock(&locks_root->lock);
 | |
| 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 | |
| 	/* Unpaired unlock_full_stripe() detected */
 | |
| 	if (!fstripe_lock) {
 | |
| 		WARN_ON(1);
 | |
| 		ret = -ENOENT;
 | |
| 		mutex_unlock(&locks_root->lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (fstripe_lock->refs == 0) {
 | |
| 		WARN_ON(1);
 | |
| 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 | |
| 			fstripe_lock->logical);
 | |
| 	} else {
 | |
| 		fstripe_lock->refs--;
 | |
| 	}
 | |
| 
 | |
| 	if (fstripe_lock->refs == 0) {
 | |
| 		rb_erase(&fstripe_lock->node, &locks_root->root);
 | |
| 		freeit = true;
 | |
| 	}
 | |
| 	mutex_unlock(&locks_root->lock);
 | |
| 
 | |
| 	mutex_unlock(&fstripe_lock->mutex);
 | |
| 	if (freeit)
 | |
| 		kfree(fstripe_lock);
 | |
| out:
 | |
| 	btrfs_put_block_group(bg_cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void scrub_free_csums(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	while (!list_empty(&sctx->csum_list)) {
 | |
| 		struct btrfs_ordered_sum *sum;
 | |
| 		sum = list_first_entry(&sctx->csum_list,
 | |
| 				       struct btrfs_ordered_sum, list);
 | |
| 		list_del(&sum->list);
 | |
| 		kfree(sum);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!sctx)
 | |
| 		return;
 | |
| 
 | |
| 	/* this can happen when scrub is cancelled */
 | |
| 	if (sctx->curr != -1) {
 | |
| 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 | |
| 
 | |
| 		for (i = 0; i < sbio->page_count; i++) {
 | |
| 			WARN_ON(!sbio->pagev[i]->page);
 | |
| 			scrub_block_put(sbio->pagev[i]->sblock);
 | |
| 		}
 | |
| 		bio_put(sbio->bio);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 | |
| 		struct scrub_bio *sbio = sctx->bios[i];
 | |
| 
 | |
| 		if (!sbio)
 | |
| 			break;
 | |
| 		kfree(sbio);
 | |
| 	}
 | |
| 
 | |
| 	kfree(sctx->wr_curr_bio);
 | |
| 	scrub_free_csums(sctx);
 | |
| 	kfree(sctx);
 | |
| }
 | |
| 
 | |
| static void scrub_put_ctx(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&sctx->refs))
 | |
| 		scrub_free_ctx(sctx);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 | |
| 		struct btrfs_fs_info *fs_info, int is_dev_replace)
 | |
| {
 | |
| 	struct scrub_ctx *sctx;
 | |
| 	int		i;
 | |
| 
 | |
| 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 | |
| 	if (!sctx)
 | |
| 		goto nomem;
 | |
| 	refcount_set(&sctx->refs, 1);
 | |
| 	sctx->is_dev_replace = is_dev_replace;
 | |
| 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 | |
| 	sctx->curr = -1;
 | |
| 	sctx->fs_info = fs_info;
 | |
| 	INIT_LIST_HEAD(&sctx->csum_list);
 | |
| 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 | |
| 		struct scrub_bio *sbio;
 | |
| 
 | |
| 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 | |
| 		if (!sbio)
 | |
| 			goto nomem;
 | |
| 		sctx->bios[i] = sbio;
 | |
| 
 | |
| 		sbio->index = i;
 | |
| 		sbio->sctx = sctx;
 | |
| 		sbio->page_count = 0;
 | |
| 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 | |
| 				scrub_bio_end_io_worker, NULL, NULL);
 | |
| 
 | |
| 		if (i != SCRUB_BIOS_PER_SCTX - 1)
 | |
| 			sctx->bios[i]->next_free = i + 1;
 | |
| 		else
 | |
| 			sctx->bios[i]->next_free = -1;
 | |
| 	}
 | |
| 	sctx->first_free = 0;
 | |
| 	atomic_set(&sctx->bios_in_flight, 0);
 | |
| 	atomic_set(&sctx->workers_pending, 0);
 | |
| 	atomic_set(&sctx->cancel_req, 0);
 | |
| 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 | |
| 
 | |
| 	spin_lock_init(&sctx->list_lock);
 | |
| 	spin_lock_init(&sctx->stat_lock);
 | |
| 	init_waitqueue_head(&sctx->list_wait);
 | |
| 
 | |
| 	WARN_ON(sctx->wr_curr_bio != NULL);
 | |
| 	mutex_init(&sctx->wr_lock);
 | |
| 	sctx->wr_curr_bio = NULL;
 | |
| 	if (is_dev_replace) {
 | |
| 		WARN_ON(!fs_info->dev_replace.tgtdev);
 | |
| 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 | |
| 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 | |
| 		sctx->flush_all_writes = false;
 | |
| 	}
 | |
| 
 | |
| 	return sctx;
 | |
| 
 | |
| nomem:
 | |
| 	scrub_free_ctx(sctx);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 | |
| 				     void *warn_ctx)
 | |
| {
 | |
| 	u64 isize;
 | |
| 	u32 nlink;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	unsigned nofs_flag;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	struct scrub_warning *swarn = warn_ctx;
 | |
| 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 | |
| 	struct inode_fs_paths *ipath = NULL;
 | |
| 	struct btrfs_root *local_root;
 | |
| 	struct btrfs_key root_key;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	root_key.objectid = root;
 | |
| 	root_key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	root_key.offset = (u64)-1;
 | |
| 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 | |
| 	if (IS_ERR(local_root)) {
 | |
| 		ret = PTR_ERR(local_root);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * this makes the path point to (inum INODE_ITEM ioff)
 | |
| 	 */
 | |
| 	key.objectid = inum;
 | |
| 	key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 | |
| 	if (ret) {
 | |
| 		btrfs_release_path(swarn->path);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	eb = swarn->path->nodes[0];
 | |
| 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 | |
| 					struct btrfs_inode_item);
 | |
| 	isize = btrfs_inode_size(eb, inode_item);
 | |
| 	nlink = btrfs_inode_nlink(eb, inode_item);
 | |
| 	btrfs_release_path(swarn->path);
 | |
| 
 | |
| 	/*
 | |
| 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 | |
| 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 | |
| 	 * not seem to be strictly necessary.
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	ipath = init_ipath(4096, local_root, swarn->path);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 	if (IS_ERR(ipath)) {
 | |
| 		ret = PTR_ERR(ipath);
 | |
| 		ipath = NULL;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	ret = paths_from_inode(inum, ipath);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * we deliberately ignore the bit ipath might have been too small to
 | |
| 	 * hold all of the paths here
 | |
| 	 */
 | |
| 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 | |
| 		btrfs_warn_in_rcu(fs_info,
 | |
| "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 | |
| 				  swarn->errstr, swarn->logical,
 | |
| 				  rcu_str_deref(swarn->dev->name),
 | |
| 				  swarn->physical,
 | |
| 				  root, inum, offset,
 | |
| 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 | |
| 				  (char *)(unsigned long)ipath->fspath->val[i]);
 | |
| 
 | |
| 	free_ipath(ipath);
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	btrfs_warn_in_rcu(fs_info,
 | |
| 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 | |
| 			  swarn->errstr, swarn->logical,
 | |
| 			  rcu_str_deref(swarn->dev->name),
 | |
| 			  swarn->physical,
 | |
| 			  root, inum, offset, ret);
 | |
| 
 | |
| 	free_ipath(ipath);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 | |
| {
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_extent_item *ei;
 | |
| 	struct scrub_warning swarn;
 | |
| 	unsigned long ptr = 0;
 | |
| 	u64 extent_item_pos;
 | |
| 	u64 flags = 0;
 | |
| 	u64 ref_root;
 | |
| 	u32 item_size;
 | |
| 	u8 ref_level = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON(sblock->page_count < 1);
 | |
| 	dev = sblock->pagev[0]->dev;
 | |
| 	fs_info = sblock->sctx->fs_info;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return;
 | |
| 
 | |
| 	swarn.physical = sblock->pagev[0]->physical;
 | |
| 	swarn.logical = sblock->pagev[0]->logical;
 | |
| 	swarn.errstr = errstr;
 | |
| 	swarn.dev = NULL;
 | |
| 
 | |
| 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 | |
| 				  &flags);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	extent_item_pos = swarn.logical - found_key.objectid;
 | |
| 	swarn.extent_item_size = found_key.offset;
 | |
| 
 | |
| 	eb = path->nodes[0];
 | |
| 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 | |
| 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 		do {
 | |
| 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 | |
| 						      item_size, &ref_root,
 | |
| 						      &ref_level);
 | |
| 			btrfs_warn_in_rcu(fs_info,
 | |
| "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 | |
| 				errstr, swarn.logical,
 | |
| 				rcu_str_deref(dev->name),
 | |
| 				swarn.physical,
 | |
| 				ref_level ? "node" : "leaf",
 | |
| 				ret < 0 ? -1 : ref_level,
 | |
| 				ret < 0 ? -1 : ref_root);
 | |
| 		} while (ret != 1);
 | |
| 		btrfs_release_path(path);
 | |
| 	} else {
 | |
| 		btrfs_release_path(path);
 | |
| 		swarn.path = path;
 | |
| 		swarn.dev = dev;
 | |
| 		iterate_extent_inodes(fs_info, found_key.objectid,
 | |
| 					extent_item_pos, 1,
 | |
| 					scrub_print_warning_inode, &swarn, false);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| }
 | |
| 
 | |
| static inline void scrub_get_recover(struct scrub_recover *recover)
 | |
| {
 | |
| 	refcount_inc(&recover->refs);
 | |
| }
 | |
| 
 | |
| static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 | |
| 				     struct scrub_recover *recover)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&recover->refs)) {
 | |
| 		btrfs_bio_counter_dec(fs_info);
 | |
| 		btrfs_put_bbio(recover->bbio);
 | |
| 		kfree(recover);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * scrub_handle_errored_block gets called when either verification of the
 | |
|  * pages failed or the bio failed to read, e.g. with EIO. In the latter
 | |
|  * case, this function handles all pages in the bio, even though only one
 | |
|  * may be bad.
 | |
|  * The goal of this function is to repair the errored block by using the
 | |
|  * contents of one of the mirrors.
 | |
|  */
 | |
| static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sblock_to_check->sctx;
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct btrfs_fs_info *fs_info;
 | |
| 	u64 logical;
 | |
| 	unsigned int failed_mirror_index;
 | |
| 	unsigned int is_metadata;
 | |
| 	unsigned int have_csum;
 | |
| 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 | |
| 	struct scrub_block *sblock_bad;
 | |
| 	int ret;
 | |
| 	int mirror_index;
 | |
| 	int page_num;
 | |
| 	int success;
 | |
| 	bool full_stripe_locked;
 | |
| 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 | |
| 				      DEFAULT_RATELIMIT_BURST);
 | |
| 
 | |
| 	BUG_ON(sblock_to_check->page_count < 1);
 | |
| 	fs_info = sctx->fs_info;
 | |
| 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 | |
| 		/*
 | |
| 		 * if we find an error in a super block, we just report it.
 | |
| 		 * They will get written with the next transaction commit
 | |
| 		 * anyway
 | |
| 		 */
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		++sctx->stat.super_errors;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	logical = sblock_to_check->pagev[0]->logical;
 | |
| 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 | |
| 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 | |
| 	is_metadata = !(sblock_to_check->pagev[0]->flags &
 | |
| 			BTRFS_EXTENT_FLAG_DATA);
 | |
| 	have_csum = sblock_to_check->pagev[0]->have_csum;
 | |
| 	dev = sblock_to_check->pagev[0]->dev;
 | |
| 
 | |
| 	/*
 | |
| 	 * For RAID5/6, race can happen for a different device scrub thread.
 | |
| 	 * For data corruption, Parity and Data threads will both try
 | |
| 	 * to recovery the data.
 | |
| 	 * Race can lead to doubly added csum error, or even unrecoverable
 | |
| 	 * error.
 | |
| 	 */
 | |
| 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 | |
| 	if (ret < 0) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		if (ret == -ENOMEM)
 | |
| 			sctx->stat.malloc_errors++;
 | |
| 		sctx->stat.read_errors++;
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * read all mirrors one after the other. This includes to
 | |
| 	 * re-read the extent or metadata block that failed (that was
 | |
| 	 * the cause that this fixup code is called) another time,
 | |
| 	 * page by page this time in order to know which pages
 | |
| 	 * caused I/O errors and which ones are good (for all mirrors).
 | |
| 	 * It is the goal to handle the situation when more than one
 | |
| 	 * mirror contains I/O errors, but the errors do not
 | |
| 	 * overlap, i.e. the data can be repaired by selecting the
 | |
| 	 * pages from those mirrors without I/O error on the
 | |
| 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 | |
| 	 * would be that mirror #1 has an I/O error on the first page,
 | |
| 	 * the second page is good, and mirror #2 has an I/O error on
 | |
| 	 * the second page, but the first page is good.
 | |
| 	 * Then the first page of the first mirror can be repaired by
 | |
| 	 * taking the first page of the second mirror, and the
 | |
| 	 * second page of the second mirror can be repaired by
 | |
| 	 * copying the contents of the 2nd page of the 1st mirror.
 | |
| 	 * One more note: if the pages of one mirror contain I/O
 | |
| 	 * errors, the checksum cannot be verified. In order to get
 | |
| 	 * the best data for repairing, the first attempt is to find
 | |
| 	 * a mirror without I/O errors and with a validated checksum.
 | |
| 	 * Only if this is not possible, the pages are picked from
 | |
| 	 * mirrors with I/O errors without considering the checksum.
 | |
| 	 * If the latter is the case, at the end, the checksum of the
 | |
| 	 * repaired area is verified in order to correctly maintain
 | |
| 	 * the statistics.
 | |
| 	 */
 | |
| 
 | |
| 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 | |
| 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
 | |
| 	if (!sblocks_for_recheck) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		sctx->stat.read_errors++;
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* setup the context, map the logical blocks and alloc the pages */
 | |
| 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 | |
| 	if (ret) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.read_errors++;
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 | |
| 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 | |
| 
 | |
| 	/* build and submit the bios for the failed mirror, check checksums */
 | |
| 	scrub_recheck_block(fs_info, sblock_bad, 1);
 | |
| 
 | |
| 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 | |
| 	    sblock_bad->no_io_error_seen) {
 | |
| 		/*
 | |
| 		 * the error disappeared after reading page by page, or
 | |
| 		 * the area was part of a huge bio and other parts of the
 | |
| 		 * bio caused I/O errors, or the block layer merged several
 | |
| 		 * read requests into one and the error is caused by a
 | |
| 		 * different bio (usually one of the two latter cases is
 | |
| 		 * the cause)
 | |
| 		 */
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.unverified_errors++;
 | |
| 		sblock_to_check->data_corrected = 1;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 
 | |
| 		if (sctx->is_dev_replace)
 | |
| 			scrub_write_block_to_dev_replace(sblock_bad);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!sblock_bad->no_io_error_seen) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.read_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (__ratelimit(&_rs))
 | |
| 			scrub_print_warning("i/o error", sblock_to_check);
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 | |
| 	} else if (sblock_bad->checksum_error) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.csum_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (__ratelimit(&_rs))
 | |
| 			scrub_print_warning("checksum error", sblock_to_check);
 | |
| 		btrfs_dev_stat_inc_and_print(dev,
 | |
| 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 | |
| 	} else if (sblock_bad->header_error) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.verify_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (__ratelimit(&_rs))
 | |
| 			scrub_print_warning("checksum/header error",
 | |
| 					    sblock_to_check);
 | |
| 		if (sblock_bad->generation_error)
 | |
| 			btrfs_dev_stat_inc_and_print(dev,
 | |
| 				BTRFS_DEV_STAT_GENERATION_ERRS);
 | |
| 		else
 | |
| 			btrfs_dev_stat_inc_and_print(dev,
 | |
| 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 | |
| 	}
 | |
| 
 | |
| 	if (sctx->readonly) {
 | |
| 		ASSERT(!sctx->is_dev_replace);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * now build and submit the bios for the other mirrors, check
 | |
| 	 * checksums.
 | |
| 	 * First try to pick the mirror which is completely without I/O
 | |
| 	 * errors and also does not have a checksum error.
 | |
| 	 * If one is found, and if a checksum is present, the full block
 | |
| 	 * that is known to contain an error is rewritten. Afterwards
 | |
| 	 * the block is known to be corrected.
 | |
| 	 * If a mirror is found which is completely correct, and no
 | |
| 	 * checksum is present, only those pages are rewritten that had
 | |
| 	 * an I/O error in the block to be repaired, since it cannot be
 | |
| 	 * determined, which copy of the other pages is better (and it
 | |
| 	 * could happen otherwise that a correct page would be
 | |
| 	 * overwritten by a bad one).
 | |
| 	 */
 | |
| 	for (mirror_index = 0; ;mirror_index++) {
 | |
| 		struct scrub_block *sblock_other;
 | |
| 
 | |
| 		if (mirror_index == failed_mirror_index)
 | |
| 			continue;
 | |
| 
 | |
| 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
 | |
| 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
 | |
| 			if (mirror_index >= BTRFS_MAX_MIRRORS)
 | |
| 				break;
 | |
| 			if (!sblocks_for_recheck[mirror_index].page_count)
 | |
| 				break;
 | |
| 
 | |
| 			sblock_other = sblocks_for_recheck + mirror_index;
 | |
| 		} else {
 | |
| 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
 | |
| 			int max_allowed = r->bbio->num_stripes -
 | |
| 						r->bbio->num_tgtdevs;
 | |
| 
 | |
| 			if (mirror_index >= max_allowed)
 | |
| 				break;
 | |
| 			if (!sblocks_for_recheck[1].page_count)
 | |
| 				break;
 | |
| 
 | |
| 			ASSERT(failed_mirror_index == 0);
 | |
| 			sblock_other = sblocks_for_recheck + 1;
 | |
| 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
 | |
| 		}
 | |
| 
 | |
| 		/* build and submit the bios, check checksums */
 | |
| 		scrub_recheck_block(fs_info, sblock_other, 0);
 | |
| 
 | |
| 		if (!sblock_other->header_error &&
 | |
| 		    !sblock_other->checksum_error &&
 | |
| 		    sblock_other->no_io_error_seen) {
 | |
| 			if (sctx->is_dev_replace) {
 | |
| 				scrub_write_block_to_dev_replace(sblock_other);
 | |
| 				goto corrected_error;
 | |
| 			} else {
 | |
| 				ret = scrub_repair_block_from_good_copy(
 | |
| 						sblock_bad, sblock_other);
 | |
| 				if (!ret)
 | |
| 					goto corrected_error;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
 | |
| 		goto did_not_correct_error;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of I/O errors in the area that is supposed to be
 | |
| 	 * repaired, continue by picking good copies of those pages.
 | |
| 	 * Select the good pages from mirrors to rewrite bad pages from
 | |
| 	 * the area to fix. Afterwards verify the checksum of the block
 | |
| 	 * that is supposed to be repaired. This verification step is
 | |
| 	 * only done for the purpose of statistic counting and for the
 | |
| 	 * final scrub report, whether errors remain.
 | |
| 	 * A perfect algorithm could make use of the checksum and try
 | |
| 	 * all possible combinations of pages from the different mirrors
 | |
| 	 * until the checksum verification succeeds. For example, when
 | |
| 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
 | |
| 	 * of mirror #2 is readable but the final checksum test fails,
 | |
| 	 * then the 2nd page of mirror #3 could be tried, whether now
 | |
| 	 * the final checksum succeeds. But this would be a rare
 | |
| 	 * exception and is therefore not implemented. At least it is
 | |
| 	 * avoided that the good copy is overwritten.
 | |
| 	 * A more useful improvement would be to pick the sectors
 | |
| 	 * without I/O error based on sector sizes (512 bytes on legacy
 | |
| 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
 | |
| 	 * mirror could be repaired by taking 512 byte of a different
 | |
| 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
 | |
| 	 * area are unreadable.
 | |
| 	 */
 | |
| 	success = 1;
 | |
| 	for (page_num = 0; page_num < sblock_bad->page_count;
 | |
| 	     page_num++) {
 | |
| 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
 | |
| 		struct scrub_block *sblock_other = NULL;
 | |
| 
 | |
| 		/* skip no-io-error page in scrub */
 | |
| 		if (!page_bad->io_error && !sctx->is_dev_replace)
 | |
| 			continue;
 | |
| 
 | |
| 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
 | |
| 			/*
 | |
| 			 * In case of dev replace, if raid56 rebuild process
 | |
| 			 * didn't work out correct data, then copy the content
 | |
| 			 * in sblock_bad to make sure target device is identical
 | |
| 			 * to source device, instead of writing garbage data in
 | |
| 			 * sblock_for_recheck array to target device.
 | |
| 			 */
 | |
| 			sblock_other = NULL;
 | |
| 		} else if (page_bad->io_error) {
 | |
| 			/* try to find no-io-error page in mirrors */
 | |
| 			for (mirror_index = 0;
 | |
| 			     mirror_index < BTRFS_MAX_MIRRORS &&
 | |
| 			     sblocks_for_recheck[mirror_index].page_count > 0;
 | |
| 			     mirror_index++) {
 | |
| 				if (!sblocks_for_recheck[mirror_index].
 | |
| 				    pagev[page_num]->io_error) {
 | |
| 					sblock_other = sblocks_for_recheck +
 | |
| 						       mirror_index;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (!sblock_other)
 | |
| 				success = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (sctx->is_dev_replace) {
 | |
| 			/*
 | |
| 			 * did not find a mirror to fetch the page
 | |
| 			 * from. scrub_write_page_to_dev_replace()
 | |
| 			 * handles this case (page->io_error), by
 | |
| 			 * filling the block with zeros before
 | |
| 			 * submitting the write request
 | |
| 			 */
 | |
| 			if (!sblock_other)
 | |
| 				sblock_other = sblock_bad;
 | |
| 
 | |
| 			if (scrub_write_page_to_dev_replace(sblock_other,
 | |
| 							    page_num) != 0) {
 | |
| 				btrfs_dev_replace_stats_inc(
 | |
| 					&fs_info->dev_replace.num_write_errors);
 | |
| 				success = 0;
 | |
| 			}
 | |
| 		} else if (sblock_other) {
 | |
| 			ret = scrub_repair_page_from_good_copy(sblock_bad,
 | |
| 							       sblock_other,
 | |
| 							       page_num, 0);
 | |
| 			if (0 == ret)
 | |
| 				page_bad->io_error = 0;
 | |
| 			else
 | |
| 				success = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (success && !sctx->is_dev_replace) {
 | |
| 		if (is_metadata || have_csum) {
 | |
| 			/*
 | |
| 			 * need to verify the checksum now that all
 | |
| 			 * sectors on disk are repaired (the write
 | |
| 			 * request for data to be repaired is on its way).
 | |
| 			 * Just be lazy and use scrub_recheck_block()
 | |
| 			 * which re-reads the data before the checksum
 | |
| 			 * is verified, but most likely the data comes out
 | |
| 			 * of the page cache.
 | |
| 			 */
 | |
| 			scrub_recheck_block(fs_info, sblock_bad, 1);
 | |
| 			if (!sblock_bad->header_error &&
 | |
| 			    !sblock_bad->checksum_error &&
 | |
| 			    sblock_bad->no_io_error_seen)
 | |
| 				goto corrected_error;
 | |
| 			else
 | |
| 				goto did_not_correct_error;
 | |
| 		} else {
 | |
| corrected_error:
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.corrected_errors++;
 | |
| 			sblock_to_check->data_corrected = 1;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			btrfs_err_rl_in_rcu(fs_info,
 | |
| 				"fixed up error at logical %llu on dev %s",
 | |
| 				logical, rcu_str_deref(dev->name));
 | |
| 		}
 | |
| 	} else {
 | |
| did_not_correct_error:
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_err_rl_in_rcu(fs_info,
 | |
| 			"unable to fixup (regular) error at logical %llu on dev %s",
 | |
| 			logical, rcu_str_deref(dev->name));
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (sblocks_for_recheck) {
 | |
| 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
 | |
| 		     mirror_index++) {
 | |
| 			struct scrub_block *sblock = sblocks_for_recheck +
 | |
| 						     mirror_index;
 | |
| 			struct scrub_recover *recover;
 | |
| 			int page_index;
 | |
| 
 | |
| 			for (page_index = 0; page_index < sblock->page_count;
 | |
| 			     page_index++) {
 | |
| 				sblock->pagev[page_index]->sblock = NULL;
 | |
| 				recover = sblock->pagev[page_index]->recover;
 | |
| 				if (recover) {
 | |
| 					scrub_put_recover(fs_info, recover);
 | |
| 					sblock->pagev[page_index]->recover =
 | |
| 									NULL;
 | |
| 				}
 | |
| 				scrub_page_put(sblock->pagev[page_index]);
 | |
| 			}
 | |
| 		}
 | |
| 		kfree(sblocks_for_recheck);
 | |
| 	}
 | |
| 
 | |
| 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
 | |
| 		return 2;
 | |
| 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 		return 3;
 | |
| 	else
 | |
| 		return (int)bbio->num_stripes;
 | |
| }
 | |
| 
 | |
| static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
 | |
| 						 u64 *raid_map,
 | |
| 						 u64 mapped_length,
 | |
| 						 int nstripes, int mirror,
 | |
| 						 int *stripe_index,
 | |
| 						 u64 *stripe_offset)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 		/* RAID5/6 */
 | |
| 		for (i = 0; i < nstripes; i++) {
 | |
| 			if (raid_map[i] == RAID6_Q_STRIPE ||
 | |
| 			    raid_map[i] == RAID5_P_STRIPE)
 | |
| 				continue;
 | |
| 
 | |
| 			if (logical >= raid_map[i] &&
 | |
| 			    logical < raid_map[i] + mapped_length)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		*stripe_index = i;
 | |
| 		*stripe_offset = logical - raid_map[i];
 | |
| 	} else {
 | |
| 		/* The other RAID type */
 | |
| 		*stripe_index = mirror;
 | |
| 		*stripe_offset = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 | |
| 				     struct scrub_block *sblocks_for_recheck)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = original_sblock->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	u64 length = original_sblock->page_count * PAGE_SIZE;
 | |
| 	u64 logical = original_sblock->pagev[0]->logical;
 | |
| 	u64 generation = original_sblock->pagev[0]->generation;
 | |
| 	u64 flags = original_sblock->pagev[0]->flags;
 | |
| 	u64 have_csum = original_sblock->pagev[0]->have_csum;
 | |
| 	struct scrub_recover *recover;
 | |
| 	struct btrfs_bio *bbio;
 | |
| 	u64 sublen;
 | |
| 	u64 mapped_length;
 | |
| 	u64 stripe_offset;
 | |
| 	int stripe_index;
 | |
| 	int page_index = 0;
 | |
| 	int mirror_index;
 | |
| 	int nmirrors;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * note: the two members refs and outstanding_pages
 | |
| 	 * are not used (and not set) in the blocks that are used for
 | |
| 	 * the recheck procedure
 | |
| 	 */
 | |
| 
 | |
| 	while (length > 0) {
 | |
| 		sublen = min_t(u64, length, PAGE_SIZE);
 | |
| 		mapped_length = sublen;
 | |
| 		bbio = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * with a length of PAGE_SIZE, each returned stripe
 | |
| 		 * represents one mirror
 | |
| 		 */
 | |
| 		btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 | |
| 				logical, &mapped_length, &bbio);
 | |
| 		if (ret || !bbio || mapped_length < sublen) {
 | |
| 			btrfs_put_bbio(bbio);
 | |
| 			btrfs_bio_counter_dec(fs_info);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
 | |
| 		if (!recover) {
 | |
| 			btrfs_put_bbio(bbio);
 | |
| 			btrfs_bio_counter_dec(fs_info);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		refcount_set(&recover->refs, 1);
 | |
| 		recover->bbio = bbio;
 | |
| 		recover->map_length = mapped_length;
 | |
| 
 | |
| 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
 | |
| 
 | |
| 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
 | |
| 
 | |
| 		for (mirror_index = 0; mirror_index < nmirrors;
 | |
| 		     mirror_index++) {
 | |
| 			struct scrub_block *sblock;
 | |
| 			struct scrub_page *page;
 | |
| 
 | |
| 			sblock = sblocks_for_recheck + mirror_index;
 | |
| 			sblock->sctx = sctx;
 | |
| 
 | |
| 			page = kzalloc(sizeof(*page), GFP_NOFS);
 | |
| 			if (!page) {
 | |
| leave_nomem:
 | |
| 				spin_lock(&sctx->stat_lock);
 | |
| 				sctx->stat.malloc_errors++;
 | |
| 				spin_unlock(&sctx->stat_lock);
 | |
| 				scrub_put_recover(fs_info, recover);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			scrub_page_get(page);
 | |
| 			sblock->pagev[page_index] = page;
 | |
| 			page->sblock = sblock;
 | |
| 			page->flags = flags;
 | |
| 			page->generation = generation;
 | |
| 			page->logical = logical;
 | |
| 			page->have_csum = have_csum;
 | |
| 			if (have_csum)
 | |
| 				memcpy(page->csum,
 | |
| 				       original_sblock->pagev[0]->csum,
 | |
| 				       sctx->csum_size);
 | |
| 
 | |
| 			scrub_stripe_index_and_offset(logical,
 | |
| 						      bbio->map_type,
 | |
| 						      bbio->raid_map,
 | |
| 						      mapped_length,
 | |
| 						      bbio->num_stripes -
 | |
| 						      bbio->num_tgtdevs,
 | |
| 						      mirror_index,
 | |
| 						      &stripe_index,
 | |
| 						      &stripe_offset);
 | |
| 			page->physical = bbio->stripes[stripe_index].physical +
 | |
| 					 stripe_offset;
 | |
| 			page->dev = bbio->stripes[stripe_index].dev;
 | |
| 
 | |
| 			BUG_ON(page_index >= original_sblock->page_count);
 | |
| 			page->physical_for_dev_replace =
 | |
| 				original_sblock->pagev[page_index]->
 | |
| 				physical_for_dev_replace;
 | |
| 			/* for missing devices, dev->bdev is NULL */
 | |
| 			page->mirror_num = mirror_index + 1;
 | |
| 			sblock->page_count++;
 | |
| 			page->page = alloc_page(GFP_NOFS);
 | |
| 			if (!page->page)
 | |
| 				goto leave_nomem;
 | |
| 
 | |
| 			scrub_get_recover(recover);
 | |
| 			page->recover = recover;
 | |
| 		}
 | |
| 		scrub_put_recover(fs_info, recover);
 | |
| 		length -= sublen;
 | |
| 		logical += sublen;
 | |
| 		page_index++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_bio_wait_endio(struct bio *bio)
 | |
| {
 | |
| 	complete(bio->bi_private);
 | |
| }
 | |
| 
 | |
| static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
 | |
| 					struct bio *bio,
 | |
| 					struct scrub_page *page)
 | |
| {
 | |
| 	DECLARE_COMPLETION_ONSTACK(done);
 | |
| 	int ret;
 | |
| 	int mirror_num;
 | |
| 
 | |
| 	bio->bi_iter.bi_sector = page->logical >> 9;
 | |
| 	bio->bi_private = &done;
 | |
| 	bio->bi_end_io = scrub_bio_wait_endio;
 | |
| 
 | |
| 	mirror_num = page->sblock->pagev[0]->mirror_num;
 | |
| 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
 | |
| 				    page->recover->map_length,
 | |
| 				    mirror_num, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	wait_for_completion_io(&done);
 | |
| 	return blk_status_to_errno(bio->bi_status);
 | |
| }
 | |
| 
 | |
| static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
 | |
| 					  struct scrub_block *sblock)
 | |
| {
 | |
| 	struct scrub_page *first_page = sblock->pagev[0];
 | |
| 	struct bio *bio;
 | |
| 	int page_num;
 | |
| 
 | |
| 	/* All pages in sblock belong to the same stripe on the same device. */
 | |
| 	ASSERT(first_page->dev);
 | |
| 	if (!first_page->dev->bdev)
 | |
| 		goto out;
 | |
| 
 | |
| 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
 | |
| 	bio_set_dev(bio, first_page->dev->bdev);
 | |
| 
 | |
| 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
 | |
| 		struct scrub_page *page = sblock->pagev[page_num];
 | |
| 
 | |
| 		WARN_ON(!page->page);
 | |
| 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
 | |
| 		bio_put(bio);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	scrub_recheck_block_checksum(sblock);
 | |
| 
 | |
| 	return;
 | |
| out:
 | |
| 	for (page_num = 0; page_num < sblock->page_count; page_num++)
 | |
| 		sblock->pagev[page_num]->io_error = 1;
 | |
| 
 | |
| 	sblock->no_io_error_seen = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this function will check the on disk data for checksum errors, header
 | |
|  * errors and read I/O errors. If any I/O errors happen, the exact pages
 | |
|  * which are errored are marked as being bad. The goal is to enable scrub
 | |
|  * to take those pages that are not errored from all the mirrors so that
 | |
|  * the pages that are errored in the just handled mirror can be repaired.
 | |
|  */
 | |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 | |
| 				struct scrub_block *sblock,
 | |
| 				int retry_failed_mirror)
 | |
| {
 | |
| 	int page_num;
 | |
| 
 | |
| 	sblock->no_io_error_seen = 1;
 | |
| 
 | |
| 	/* short cut for raid56 */
 | |
| 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
 | |
| 		return scrub_recheck_block_on_raid56(fs_info, sblock);
 | |
| 
 | |
| 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
 | |
| 		struct bio *bio;
 | |
| 		struct scrub_page *page = sblock->pagev[page_num];
 | |
| 
 | |
| 		if (page->dev->bdev == NULL) {
 | |
| 			page->io_error = 1;
 | |
| 			sblock->no_io_error_seen = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON(!page->page);
 | |
| 		bio = btrfs_io_bio_alloc(1);
 | |
| 		bio_set_dev(bio, page->dev->bdev);
 | |
| 
 | |
| 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
 | |
| 		bio->bi_iter.bi_sector = page->physical >> 9;
 | |
| 		bio->bi_opf = REQ_OP_READ;
 | |
| 
 | |
| 		if (btrfsic_submit_bio_wait(bio)) {
 | |
| 			page->io_error = 1;
 | |
| 			sblock->no_io_error_seen = 0;
 | |
| 		}
 | |
| 
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| 
 | |
| 	if (sblock->no_io_error_seen)
 | |
| 		scrub_recheck_block_checksum(sblock);
 | |
| }
 | |
| 
 | |
| static inline int scrub_check_fsid(u8 fsid[],
 | |
| 				   struct scrub_page *spage)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 | |
| 	return !ret;
 | |
| }
 | |
| 
 | |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock)
 | |
| {
 | |
| 	sblock->header_error = 0;
 | |
| 	sblock->checksum_error = 0;
 | |
| 	sblock->generation_error = 0;
 | |
| 
 | |
| 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
 | |
| 		scrub_checksum_data(sblock);
 | |
| 	else
 | |
| 		scrub_checksum_tree_block(sblock);
 | |
| }
 | |
| 
 | |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 | |
| 					     struct scrub_block *sblock_good)
 | |
| {
 | |
| 	int page_num;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
 | |
| 		int ret_sub;
 | |
| 
 | |
| 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
 | |
| 							   sblock_good,
 | |
| 							   page_num, 1);
 | |
| 		if (ret_sub)
 | |
| 			ret = ret_sub;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 | |
| 					    struct scrub_block *sblock_good,
 | |
| 					    int page_num, int force_write)
 | |
| {
 | |
| 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
 | |
| 	struct scrub_page *page_good = sblock_good->pagev[page_num];
 | |
| 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
 | |
| 
 | |
| 	BUG_ON(page_bad->page == NULL);
 | |
| 	BUG_ON(page_good->page == NULL);
 | |
| 	if (force_write || sblock_bad->header_error ||
 | |
| 	    sblock_bad->checksum_error || page_bad->io_error) {
 | |
| 		struct bio *bio;
 | |
| 		int ret;
 | |
| 
 | |
| 		if (!page_bad->dev->bdev) {
 | |
| 			btrfs_warn_rl(fs_info,
 | |
| 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		bio = btrfs_io_bio_alloc(1);
 | |
| 		bio_set_dev(bio, page_bad->dev->bdev);
 | |
| 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
 | |
| 		bio->bi_opf = REQ_OP_WRITE;
 | |
| 
 | |
| 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
 | |
| 		if (PAGE_SIZE != ret) {
 | |
| 			bio_put(bio);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		if (btrfsic_submit_bio_wait(bio)) {
 | |
| 			btrfs_dev_stat_inc_and_print(page_bad->dev,
 | |
| 				BTRFS_DEV_STAT_WRITE_ERRS);
 | |
| 			btrfs_dev_replace_stats_inc(
 | |
| 				&fs_info->dev_replace.num_write_errors);
 | |
| 			bio_put(bio);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
 | |
| 	int page_num;
 | |
| 
 | |
| 	/*
 | |
| 	 * This block is used for the check of the parity on the source device,
 | |
| 	 * so the data needn't be written into the destination device.
 | |
| 	 */
 | |
| 	if (sblock->sparity)
 | |
| 		return;
 | |
| 
 | |
| 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
 | |
| 		if (ret)
 | |
| 			btrfs_dev_replace_stats_inc(
 | |
| 				&fs_info->dev_replace.num_write_errors);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 | |
| 					   int page_num)
 | |
| {
 | |
| 	struct scrub_page *spage = sblock->pagev[page_num];
 | |
| 
 | |
| 	BUG_ON(spage->page == NULL);
 | |
| 	if (spage->io_error) {
 | |
| 		void *mapped_buffer = kmap_atomic(spage->page);
 | |
| 
 | |
| 		clear_page(mapped_buffer);
 | |
| 		flush_dcache_page(spage->page);
 | |
| 		kunmap_atomic(mapped_buffer);
 | |
| 	}
 | |
| 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
 | |
| }
 | |
| 
 | |
| static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 | |
| 				    struct scrub_page *spage)
 | |
| {
 | |
| 	struct scrub_bio *sbio;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&sctx->wr_lock);
 | |
| again:
 | |
| 	if (!sctx->wr_curr_bio) {
 | |
| 		unsigned int nofs_flag;
 | |
| 
 | |
| 		/*
 | |
| 		 * We must use GFP_NOFS because the scrub task might be waiting
 | |
| 		 * for a worker task executing this function and in turn a
 | |
| 		 * transaction commit might be waiting the scrub task to pause
 | |
| 		 * (which needs to wait for all the worker tasks to complete
 | |
| 		 * before pausing).
 | |
| 		 */
 | |
| 		nofs_flag = memalloc_nofs_save();
 | |
| 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
 | |
| 					      GFP_KERNEL);
 | |
| 		memalloc_nofs_restore(nofs_flag);
 | |
| 		if (!sctx->wr_curr_bio) {
 | |
| 			mutex_unlock(&sctx->wr_lock);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		sctx->wr_curr_bio->sctx = sctx;
 | |
| 		sctx->wr_curr_bio->page_count = 0;
 | |
| 	}
 | |
| 	sbio = sctx->wr_curr_bio;
 | |
| 	if (sbio->page_count == 0) {
 | |
| 		struct bio *bio;
 | |
| 
 | |
| 		sbio->physical = spage->physical_for_dev_replace;
 | |
| 		sbio->logical = spage->logical;
 | |
| 		sbio->dev = sctx->wr_tgtdev;
 | |
| 		bio = sbio->bio;
 | |
| 		if (!bio) {
 | |
| 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
 | |
| 			sbio->bio = bio;
 | |
| 		}
 | |
| 
 | |
| 		bio->bi_private = sbio;
 | |
| 		bio->bi_end_io = scrub_wr_bio_end_io;
 | |
| 		bio_set_dev(bio, sbio->dev->bdev);
 | |
| 		bio->bi_iter.bi_sector = sbio->physical >> 9;
 | |
| 		bio->bi_opf = REQ_OP_WRITE;
 | |
| 		sbio->status = 0;
 | |
| 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
 | |
| 		   spage->physical_for_dev_replace ||
 | |
| 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
 | |
| 		   spage->logical) {
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
 | |
| 	if (ret != PAGE_SIZE) {
 | |
| 		if (sbio->page_count < 1) {
 | |
| 			bio_put(sbio->bio);
 | |
| 			sbio->bio = NULL;
 | |
| 			mutex_unlock(&sctx->wr_lock);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	sbio->pagev[sbio->page_count] = spage;
 | |
| 	scrub_page_get(spage);
 | |
| 	sbio->page_count++;
 | |
| 	if (sbio->page_count == sctx->pages_per_wr_bio)
 | |
| 		scrub_wr_submit(sctx);
 | |
| 	mutex_unlock(&sctx->wr_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_wr_submit(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	struct scrub_bio *sbio;
 | |
| 
 | |
| 	if (!sctx->wr_curr_bio)
 | |
| 		return;
 | |
| 
 | |
| 	sbio = sctx->wr_curr_bio;
 | |
| 	sctx->wr_curr_bio = NULL;
 | |
| 	WARN_ON(!sbio->bio->bi_disk);
 | |
| 	scrub_pending_bio_inc(sctx);
 | |
| 	/* process all writes in a single worker thread. Then the block layer
 | |
| 	 * orders the requests before sending them to the driver which
 | |
| 	 * doubled the write performance on spinning disks when measured
 | |
| 	 * with Linux 3.5 */
 | |
| 	btrfsic_submit_bio(sbio->bio);
 | |
| }
 | |
| 
 | |
| static void scrub_wr_bio_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct scrub_bio *sbio = bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 | |
| 
 | |
| 	sbio->status = bio->bi_status;
 | |
| 	sbio->bio = bio;
 | |
| 
 | |
| 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
 | |
| 			 scrub_wr_bio_end_io_worker, NULL, NULL);
 | |
| 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
 | |
| }
 | |
| 
 | |
| static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
 | |
| {
 | |
| 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
 | |
| 	struct scrub_ctx *sctx = sbio->sctx;
 | |
| 	int i;
 | |
| 
 | |
| 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
 | |
| 	if (sbio->status) {
 | |
| 		struct btrfs_dev_replace *dev_replace =
 | |
| 			&sbio->sctx->fs_info->dev_replace;
 | |
| 
 | |
| 		for (i = 0; i < sbio->page_count; i++) {
 | |
| 			struct scrub_page *spage = sbio->pagev[i];
 | |
| 
 | |
| 			spage->io_error = 1;
 | |
| 			btrfs_dev_replace_stats_inc(&dev_replace->
 | |
| 						    num_write_errors);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < sbio->page_count; i++)
 | |
| 		scrub_page_put(sbio->pagev[i]);
 | |
| 
 | |
| 	bio_put(sbio->bio);
 | |
| 	kfree(sbio);
 | |
| 	scrub_pending_bio_dec(sctx);
 | |
| }
 | |
| 
 | |
| static int scrub_checksum(struct scrub_block *sblock)
 | |
| {
 | |
| 	u64 flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to initialize these stats currently,
 | |
| 	 * because this function only use return value
 | |
| 	 * instead of these stats value.
 | |
| 	 *
 | |
| 	 * Todo:
 | |
| 	 * always use stats
 | |
| 	 */
 | |
| 	sblock->header_error = 0;
 | |
| 	sblock->generation_error = 0;
 | |
| 	sblock->checksum_error = 0;
 | |
| 
 | |
| 	WARN_ON(sblock->page_count < 1);
 | |
| 	flags = sblock->pagev[0]->flags;
 | |
| 	ret = 0;
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_DATA)
 | |
| 		ret = scrub_checksum_data(sblock);
 | |
| 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
 | |
| 		ret = scrub_checksum_tree_block(sblock);
 | |
| 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
 | |
| 		(void)scrub_checksum_super(sblock);
 | |
| 	else
 | |
| 		WARN_ON(1);
 | |
| 	if (ret)
 | |
| 		scrub_handle_errored_block(sblock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int scrub_checksum_data(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	u8 csum[BTRFS_CSUM_SIZE];
 | |
| 	u8 *on_disk_csum;
 | |
| 	struct page *page;
 | |
| 	void *buffer;
 | |
| 	u32 crc = ~(u32)0;
 | |
| 	u64 len;
 | |
| 	int index;
 | |
| 
 | |
| 	BUG_ON(sblock->page_count < 1);
 | |
| 	if (!sblock->pagev[0]->have_csum)
 | |
| 		return 0;
 | |
| 
 | |
| 	on_disk_csum = sblock->pagev[0]->csum;
 | |
| 	page = sblock->pagev[0]->page;
 | |
| 	buffer = kmap_atomic(page);
 | |
| 
 | |
| 	len = sctx->fs_info->sectorsize;
 | |
| 	index = 0;
 | |
| 	for (;;) {
 | |
| 		u64 l = min_t(u64, len, PAGE_SIZE);
 | |
| 
 | |
| 		crc = btrfs_csum_data(buffer, crc, l);
 | |
| 		kunmap_atomic(buffer);
 | |
| 		len -= l;
 | |
| 		if (len == 0)
 | |
| 			break;
 | |
| 		index++;
 | |
| 		BUG_ON(index >= sblock->page_count);
 | |
| 		BUG_ON(!sblock->pagev[index]->page);
 | |
| 		page = sblock->pagev[index]->page;
 | |
| 		buffer = kmap_atomic(page);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_csum_final(crc, csum);
 | |
| 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
 | |
| 		sblock->checksum_error = 1;
 | |
| 
 | |
| 	return sblock->checksum_error;
 | |
| }
 | |
| 
 | |
| static int scrub_checksum_tree_block(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	struct btrfs_header *h;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	u8 calculated_csum[BTRFS_CSUM_SIZE];
 | |
| 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 | |
| 	struct page *page;
 | |
| 	void *mapped_buffer;
 | |
| 	u64 mapped_size;
 | |
| 	void *p;
 | |
| 	u32 crc = ~(u32)0;
 | |
| 	u64 len;
 | |
| 	int index;
 | |
| 
 | |
| 	BUG_ON(sblock->page_count < 1);
 | |
| 	page = sblock->pagev[0]->page;
 | |
| 	mapped_buffer = kmap_atomic(page);
 | |
| 	h = (struct btrfs_header *)mapped_buffer;
 | |
| 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't use the getter functions here, as we
 | |
| 	 * a) don't have an extent buffer and
 | |
| 	 * b) the page is already kmapped
 | |
| 	 */
 | |
| 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
 | |
| 		sblock->header_error = 1;
 | |
| 
 | |
| 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
 | |
| 		sblock->header_error = 1;
 | |
| 		sblock->generation_error = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
 | |
| 		sblock->header_error = 1;
 | |
| 
 | |
| 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 | |
| 		   BTRFS_UUID_SIZE))
 | |
| 		sblock->header_error = 1;
 | |
| 
 | |
| 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
 | |
| 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
 | |
| 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
 | |
| 	index = 0;
 | |
| 	for (;;) {
 | |
| 		u64 l = min_t(u64, len, mapped_size);
 | |
| 
 | |
| 		crc = btrfs_csum_data(p, crc, l);
 | |
| 		kunmap_atomic(mapped_buffer);
 | |
| 		len -= l;
 | |
| 		if (len == 0)
 | |
| 			break;
 | |
| 		index++;
 | |
| 		BUG_ON(index >= sblock->page_count);
 | |
| 		BUG_ON(!sblock->pagev[index]->page);
 | |
| 		page = sblock->pagev[index]->page;
 | |
| 		mapped_buffer = kmap_atomic(page);
 | |
| 		mapped_size = PAGE_SIZE;
 | |
| 		p = mapped_buffer;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_csum_final(crc, calculated_csum);
 | |
| 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
 | |
| 		sblock->checksum_error = 1;
 | |
| 
 | |
| 	return sblock->header_error || sblock->checksum_error;
 | |
| }
 | |
| 
 | |
| static int scrub_checksum_super(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct btrfs_super_block *s;
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	u8 calculated_csum[BTRFS_CSUM_SIZE];
 | |
| 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 | |
| 	struct page *page;
 | |
| 	void *mapped_buffer;
 | |
| 	u64 mapped_size;
 | |
| 	void *p;
 | |
| 	u32 crc = ~(u32)0;
 | |
| 	int fail_gen = 0;
 | |
| 	int fail_cor = 0;
 | |
| 	u64 len;
 | |
| 	int index;
 | |
| 
 | |
| 	BUG_ON(sblock->page_count < 1);
 | |
| 	page = sblock->pagev[0]->page;
 | |
| 	mapped_buffer = kmap_atomic(page);
 | |
| 	s = (struct btrfs_super_block *)mapped_buffer;
 | |
| 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
 | |
| 
 | |
| 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
 | |
| 		++fail_cor;
 | |
| 
 | |
| 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
 | |
| 		++fail_gen;
 | |
| 
 | |
| 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
 | |
| 		++fail_cor;
 | |
| 
 | |
| 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
 | |
| 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
 | |
| 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
 | |
| 	index = 0;
 | |
| 	for (;;) {
 | |
| 		u64 l = min_t(u64, len, mapped_size);
 | |
| 
 | |
| 		crc = btrfs_csum_data(p, crc, l);
 | |
| 		kunmap_atomic(mapped_buffer);
 | |
| 		len -= l;
 | |
| 		if (len == 0)
 | |
| 			break;
 | |
| 		index++;
 | |
| 		BUG_ON(index >= sblock->page_count);
 | |
| 		BUG_ON(!sblock->pagev[index]->page);
 | |
| 		page = sblock->pagev[index]->page;
 | |
| 		mapped_buffer = kmap_atomic(page);
 | |
| 		mapped_size = PAGE_SIZE;
 | |
| 		p = mapped_buffer;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_csum_final(crc, calculated_csum);
 | |
| 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
 | |
| 		++fail_cor;
 | |
| 
 | |
| 	if (fail_cor + fail_gen) {
 | |
| 		/*
 | |
| 		 * if we find an error in a super block, we just report it.
 | |
| 		 * They will get written with the next transaction commit
 | |
| 		 * anyway
 | |
| 		 */
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		++sctx->stat.super_errors;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (fail_cor)
 | |
| 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
 | |
| 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 | |
| 		else
 | |
| 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
 | |
| 				BTRFS_DEV_STAT_GENERATION_ERRS);
 | |
| 	}
 | |
| 
 | |
| 	return fail_cor + fail_gen;
 | |
| }
 | |
| 
 | |
| static void scrub_block_get(struct scrub_block *sblock)
 | |
| {
 | |
| 	refcount_inc(&sblock->refs);
 | |
| }
 | |
| 
 | |
| static void scrub_block_put(struct scrub_block *sblock)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&sblock->refs)) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (sblock->sparity)
 | |
| 			scrub_parity_put(sblock->sparity);
 | |
| 
 | |
| 		for (i = 0; i < sblock->page_count; i++)
 | |
| 			scrub_page_put(sblock->pagev[i]);
 | |
| 		kfree(sblock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_page_get(struct scrub_page *spage)
 | |
| {
 | |
| 	atomic_inc(&spage->refs);
 | |
| }
 | |
| 
 | |
| static void scrub_page_put(struct scrub_page *spage)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&spage->refs)) {
 | |
| 		if (spage->page)
 | |
| 			__free_page(spage->page);
 | |
| 		kfree(spage);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void scrub_submit(struct scrub_ctx *sctx)
 | |
| {
 | |
| 	struct scrub_bio *sbio;
 | |
| 
 | |
| 	if (sctx->curr == -1)
 | |
| 		return;
 | |
| 
 | |
| 	sbio = sctx->bios[sctx->curr];
 | |
| 	sctx->curr = -1;
 | |
| 	scrub_pending_bio_inc(sctx);
 | |
| 	btrfsic_submit_bio(sbio->bio);
 | |
| }
 | |
| 
 | |
| static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 | |
| 				    struct scrub_page *spage)
 | |
| {
 | |
| 	struct scrub_block *sblock = spage->sblock;
 | |
| 	struct scrub_bio *sbio;
 | |
| 	int ret;
 | |
| 
 | |
| again:
 | |
| 	/*
 | |
| 	 * grab a fresh bio or wait for one to become available
 | |
| 	 */
 | |
| 	while (sctx->curr == -1) {
 | |
| 		spin_lock(&sctx->list_lock);
 | |
| 		sctx->curr = sctx->first_free;
 | |
| 		if (sctx->curr != -1) {
 | |
| 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
 | |
| 			sctx->bios[sctx->curr]->next_free = -1;
 | |
| 			sctx->bios[sctx->curr]->page_count = 0;
 | |
| 			spin_unlock(&sctx->list_lock);
 | |
| 		} else {
 | |
| 			spin_unlock(&sctx->list_lock);
 | |
| 			wait_event(sctx->list_wait, sctx->first_free != -1);
 | |
| 		}
 | |
| 	}
 | |
| 	sbio = sctx->bios[sctx->curr];
 | |
| 	if (sbio->page_count == 0) {
 | |
| 		struct bio *bio;
 | |
| 
 | |
| 		sbio->physical = spage->physical;
 | |
| 		sbio->logical = spage->logical;
 | |
| 		sbio->dev = spage->dev;
 | |
| 		bio = sbio->bio;
 | |
| 		if (!bio) {
 | |
| 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
 | |
| 			sbio->bio = bio;
 | |
| 		}
 | |
| 
 | |
| 		bio->bi_private = sbio;
 | |
| 		bio->bi_end_io = scrub_bio_end_io;
 | |
| 		bio_set_dev(bio, sbio->dev->bdev);
 | |
| 		bio->bi_iter.bi_sector = sbio->physical >> 9;
 | |
| 		bio->bi_opf = REQ_OP_READ;
 | |
| 		sbio->status = 0;
 | |
| 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
 | |
| 		   spage->physical ||
 | |
| 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
 | |
| 		   spage->logical ||
 | |
| 		   sbio->dev != spage->dev) {
 | |
| 		scrub_submit(sctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	sbio->pagev[sbio->page_count] = spage;
 | |
| 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
 | |
| 	if (ret != PAGE_SIZE) {
 | |
| 		if (sbio->page_count < 1) {
 | |
| 			bio_put(sbio->bio);
 | |
| 			sbio->bio = NULL;
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		scrub_submit(sctx);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	scrub_block_get(sblock); /* one for the page added to the bio */
 | |
| 	atomic_inc(&sblock->outstanding_pages);
 | |
| 	sbio->page_count++;
 | |
| 	if (sbio->page_count == sctx->pages_per_rd_bio)
 | |
| 		scrub_submit(sctx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_missing_raid56_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct scrub_block *sblock = bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		sblock->no_io_error_seen = 0;
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
 | |
| }
 | |
| 
 | |
| static void scrub_missing_raid56_worker(struct btrfs_work *work)
 | |
| {
 | |
| 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	u64 logical;
 | |
| 	struct btrfs_device *dev;
 | |
| 
 | |
| 	logical = sblock->pagev[0]->logical;
 | |
| 	dev = sblock->pagev[0]->dev;
 | |
| 
 | |
| 	if (sblock->no_io_error_seen)
 | |
| 		scrub_recheck_block_checksum(sblock);
 | |
| 
 | |
| 	if (!sblock->no_io_error_seen) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.read_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_err_rl_in_rcu(fs_info,
 | |
| 			"IO error rebuilding logical %llu for dev %s",
 | |
| 			logical, rcu_str_deref(dev->name));
 | |
| 	} else if (sblock->header_error || sblock->checksum_error) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.uncorrectable_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		btrfs_err_rl_in_rcu(fs_info,
 | |
| 			"failed to rebuild valid logical %llu for dev %s",
 | |
| 			logical, rcu_str_deref(dev->name));
 | |
| 	} else {
 | |
| 		scrub_write_block_to_dev_replace(sblock);
 | |
| 	}
 | |
| 
 | |
| 	scrub_block_put(sblock);
 | |
| 
 | |
| 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
 | |
| 		mutex_lock(&sctx->wr_lock);
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		mutex_unlock(&sctx->wr_lock);
 | |
| 	}
 | |
| 
 | |
| 	scrub_pending_bio_dec(sctx);
 | |
| }
 | |
| 
 | |
| static void scrub_missing_raid56_pages(struct scrub_block *sblock)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sblock->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	u64 length = sblock->page_count * PAGE_SIZE;
 | |
| 	u64 logical = sblock->pagev[0]->logical;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
 | |
| 			&length, &bbio);
 | |
| 	if (ret || !bbio || !bbio->raid_map)
 | |
| 		goto bbio_out;
 | |
| 
 | |
| 	if (WARN_ON(!sctx->is_dev_replace ||
 | |
| 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
 | |
| 		/*
 | |
| 		 * We shouldn't be scrubbing a missing device. Even for dev
 | |
| 		 * replace, we should only get here for RAID 5/6. We either
 | |
| 		 * managed to mount something with no mirrors remaining or
 | |
| 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
 | |
| 		 */
 | |
| 		goto bbio_out;
 | |
| 	}
 | |
| 
 | |
| 	bio = btrfs_io_bio_alloc(0);
 | |
| 	bio->bi_iter.bi_sector = logical >> 9;
 | |
| 	bio->bi_private = sblock;
 | |
| 	bio->bi_end_io = scrub_missing_raid56_end_io;
 | |
| 
 | |
| 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
 | |
| 	if (!rbio)
 | |
| 		goto rbio_out;
 | |
| 
 | |
| 	for (i = 0; i < sblock->page_count; i++) {
 | |
| 		struct scrub_page *spage = sblock->pagev[i];
 | |
| 
 | |
| 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
 | |
| 			scrub_missing_raid56_worker, NULL, NULL);
 | |
| 	scrub_block_get(sblock);
 | |
| 	scrub_pending_bio_inc(sctx);
 | |
| 	raid56_submit_missing_rbio(rbio);
 | |
| 	return;
 | |
| 
 | |
| rbio_out:
 | |
| 	bio_put(bio);
 | |
| bbio_out:
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 	btrfs_put_bbio(bbio);
 | |
| 	spin_lock(&sctx->stat_lock);
 | |
| 	sctx->stat.malloc_errors++;
 | |
| 	spin_unlock(&sctx->stat_lock);
 | |
| }
 | |
| 
 | |
| static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 | |
| 		       u64 physical, struct btrfs_device *dev, u64 flags,
 | |
| 		       u64 gen, int mirror_num, u8 *csum, int force,
 | |
| 		       u64 physical_for_dev_replace)
 | |
| {
 | |
| 	struct scrub_block *sblock;
 | |
| 	int index;
 | |
| 
 | |
| 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
 | |
| 	if (!sblock) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* one ref inside this function, plus one for each page added to
 | |
| 	 * a bio later on */
 | |
| 	refcount_set(&sblock->refs, 1);
 | |
| 	sblock->sctx = sctx;
 | |
| 	sblock->no_io_error_seen = 1;
 | |
| 
 | |
| 	for (index = 0; len > 0; index++) {
 | |
| 		struct scrub_page *spage;
 | |
| 		u64 l = min_t(u64, len, PAGE_SIZE);
 | |
| 
 | |
| 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
 | |
| 		if (!spage) {
 | |
| leave_nomem:
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.malloc_errors++;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			scrub_block_put(sblock);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
 | |
| 		scrub_page_get(spage);
 | |
| 		sblock->pagev[index] = spage;
 | |
| 		spage->sblock = sblock;
 | |
| 		spage->dev = dev;
 | |
| 		spage->flags = flags;
 | |
| 		spage->generation = gen;
 | |
| 		spage->logical = logical;
 | |
| 		spage->physical = physical;
 | |
| 		spage->physical_for_dev_replace = physical_for_dev_replace;
 | |
| 		spage->mirror_num = mirror_num;
 | |
| 		if (csum) {
 | |
| 			spage->have_csum = 1;
 | |
| 			memcpy(spage->csum, csum, sctx->csum_size);
 | |
| 		} else {
 | |
| 			spage->have_csum = 0;
 | |
| 		}
 | |
| 		sblock->page_count++;
 | |
| 		spage->page = alloc_page(GFP_KERNEL);
 | |
| 		if (!spage->page)
 | |
| 			goto leave_nomem;
 | |
| 		len -= l;
 | |
| 		logical += l;
 | |
| 		physical += l;
 | |
| 		physical_for_dev_replace += l;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(sblock->page_count == 0);
 | |
| 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
 | |
| 		/*
 | |
| 		 * This case should only be hit for RAID 5/6 device replace. See
 | |
| 		 * the comment in scrub_missing_raid56_pages() for details.
 | |
| 		 */
 | |
| 		scrub_missing_raid56_pages(sblock);
 | |
| 	} else {
 | |
| 		for (index = 0; index < sblock->page_count; index++) {
 | |
| 			struct scrub_page *spage = sblock->pagev[index];
 | |
| 			int ret;
 | |
| 
 | |
| 			ret = scrub_add_page_to_rd_bio(sctx, spage);
 | |
| 			if (ret) {
 | |
| 				scrub_block_put(sblock);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (force)
 | |
| 			scrub_submit(sctx);
 | |
| 	}
 | |
| 
 | |
| 	/* last one frees, either here or in bio completion for last page */
 | |
| 	scrub_block_put(sblock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void scrub_bio_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct scrub_bio *sbio = bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 | |
| 
 | |
| 	sbio->status = bio->bi_status;
 | |
| 	sbio->bio = bio;
 | |
| 
 | |
| 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
 | |
| }
 | |
| 
 | |
| static void scrub_bio_end_io_worker(struct btrfs_work *work)
 | |
| {
 | |
| 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
 | |
| 	struct scrub_ctx *sctx = sbio->sctx;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
 | |
| 	if (sbio->status) {
 | |
| 		for (i = 0; i < sbio->page_count; i++) {
 | |
| 			struct scrub_page *spage = sbio->pagev[i];
 | |
| 
 | |
| 			spage->io_error = 1;
 | |
| 			spage->sblock->no_io_error_seen = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* now complete the scrub_block items that have all pages completed */
 | |
| 	for (i = 0; i < sbio->page_count; i++) {
 | |
| 		struct scrub_page *spage = sbio->pagev[i];
 | |
| 		struct scrub_block *sblock = spage->sblock;
 | |
| 
 | |
| 		if (atomic_dec_and_test(&sblock->outstanding_pages))
 | |
| 			scrub_block_complete(sblock);
 | |
| 		scrub_block_put(sblock);
 | |
| 	}
 | |
| 
 | |
| 	bio_put(sbio->bio);
 | |
| 	sbio->bio = NULL;
 | |
| 	spin_lock(&sctx->list_lock);
 | |
| 	sbio->next_free = sctx->first_free;
 | |
| 	sctx->first_free = sbio->index;
 | |
| 	spin_unlock(&sctx->list_lock);
 | |
| 
 | |
| 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
 | |
| 		mutex_lock(&sctx->wr_lock);
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		mutex_unlock(&sctx->wr_lock);
 | |
| 	}
 | |
| 
 | |
| 	scrub_pending_bio_dec(sctx);
 | |
| }
 | |
| 
 | |
| static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
 | |
| 				       unsigned long *bitmap,
 | |
| 				       u64 start, u64 len)
 | |
| {
 | |
| 	u64 offset;
 | |
| 	u64 nsectors64;
 | |
| 	u32 nsectors;
 | |
| 	int sectorsize = sparity->sctx->fs_info->sectorsize;
 | |
| 
 | |
| 	if (len >= sparity->stripe_len) {
 | |
| 		bitmap_set(bitmap, 0, sparity->nsectors);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	start -= sparity->logic_start;
 | |
| 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
 | |
| 	offset = div_u64(offset, sectorsize);
 | |
| 	nsectors64 = div_u64(len, sectorsize);
 | |
| 
 | |
| 	ASSERT(nsectors64 < UINT_MAX);
 | |
| 	nsectors = (u32)nsectors64;
 | |
| 
 | |
| 	if (offset + nsectors <= sparity->nsectors) {
 | |
| 		bitmap_set(bitmap, offset, nsectors);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
 | |
| 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
 | |
| }
 | |
| 
 | |
| static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
 | |
| 						   u64 start, u64 len)
 | |
| {
 | |
| 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
 | |
| }
 | |
| 
 | |
| static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
 | |
| 						  u64 start, u64 len)
 | |
| {
 | |
| 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
 | |
| }
 | |
| 
 | |
| static void scrub_block_complete(struct scrub_block *sblock)
 | |
| {
 | |
| 	int corrupted = 0;
 | |
| 
 | |
| 	if (!sblock->no_io_error_seen) {
 | |
| 		corrupted = 1;
 | |
| 		scrub_handle_errored_block(sblock);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * if has checksum error, write via repair mechanism in
 | |
| 		 * dev replace case, otherwise write here in dev replace
 | |
| 		 * case.
 | |
| 		 */
 | |
| 		corrupted = scrub_checksum(sblock);
 | |
| 		if (!corrupted && sblock->sctx->is_dev_replace)
 | |
| 			scrub_write_block_to_dev_replace(sblock);
 | |
| 	}
 | |
| 
 | |
| 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
 | |
| 		u64 start = sblock->pagev[0]->logical;
 | |
| 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
 | |
| 			  PAGE_SIZE;
 | |
| 
 | |
| 		scrub_parity_mark_sectors_error(sblock->sparity,
 | |
| 						start, end - start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
 | |
| {
 | |
| 	struct btrfs_ordered_sum *sum = NULL;
 | |
| 	unsigned long index;
 | |
| 	unsigned long num_sectors;
 | |
| 
 | |
| 	while (!list_empty(&sctx->csum_list)) {
 | |
| 		sum = list_first_entry(&sctx->csum_list,
 | |
| 				       struct btrfs_ordered_sum, list);
 | |
| 		if (sum->bytenr > logical)
 | |
| 			return 0;
 | |
| 		if (sum->bytenr + sum->len > logical)
 | |
| 			break;
 | |
| 
 | |
| 		++sctx->stat.csum_discards;
 | |
| 		list_del(&sum->list);
 | |
| 		kfree(sum);
 | |
| 		sum = NULL;
 | |
| 	}
 | |
| 	if (!sum)
 | |
| 		return 0;
 | |
| 
 | |
| 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
 | |
| 	ASSERT(index < UINT_MAX);
 | |
| 
 | |
| 	num_sectors = sum->len / sctx->fs_info->sectorsize;
 | |
| 	memcpy(csum, sum->sums + index, sctx->csum_size);
 | |
| 	if (index == num_sectors - 1) {
 | |
| 		list_del(&sum->list);
 | |
| 		kfree(sum);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* scrub extent tries to collect up to 64 kB for each bio */
 | |
| static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
 | |
| 			u64 logical, u64 len,
 | |
| 			u64 physical, struct btrfs_device *dev, u64 flags,
 | |
| 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 csum[BTRFS_CSUM_SIZE];
 | |
| 	u32 blocksize;
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
 | |
| 			blocksize = map->stripe_len;
 | |
| 		else
 | |
| 			blocksize = sctx->fs_info->sectorsize;
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.data_extents_scrubbed++;
 | |
| 		sctx->stat.data_bytes_scrubbed += len;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
 | |
| 			blocksize = map->stripe_len;
 | |
| 		else
 | |
| 			blocksize = sctx->fs_info->nodesize;
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.tree_extents_scrubbed++;
 | |
| 		sctx->stat.tree_bytes_scrubbed += len;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 	} else {
 | |
| 		blocksize = sctx->fs_info->sectorsize;
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	while (len) {
 | |
| 		u64 l = min_t(u64, len, blocksize);
 | |
| 		int have_csum = 0;
 | |
| 
 | |
| 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 | |
| 			/* push csums to sbio */
 | |
| 			have_csum = scrub_find_csum(sctx, logical, csum);
 | |
| 			if (have_csum == 0)
 | |
| 				++sctx->stat.no_csum;
 | |
| 		}
 | |
| 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
 | |
| 				  mirror_num, have_csum ? csum : NULL, 0,
 | |
| 				  physical_for_dev_replace);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		len -= l;
 | |
| 		logical += l;
 | |
| 		physical += l;
 | |
| 		physical_for_dev_replace += l;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int scrub_pages_for_parity(struct scrub_parity *sparity,
 | |
| 				  u64 logical, u64 len,
 | |
| 				  u64 physical, struct btrfs_device *dev,
 | |
| 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 	struct scrub_block *sblock;
 | |
| 	int index;
 | |
| 
 | |
| 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
 | |
| 	if (!sblock) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* one ref inside this function, plus one for each page added to
 | |
| 	 * a bio later on */
 | |
| 	refcount_set(&sblock->refs, 1);
 | |
| 	sblock->sctx = sctx;
 | |
| 	sblock->no_io_error_seen = 1;
 | |
| 	sblock->sparity = sparity;
 | |
| 	scrub_parity_get(sparity);
 | |
| 
 | |
| 	for (index = 0; len > 0; index++) {
 | |
| 		struct scrub_page *spage;
 | |
| 		u64 l = min_t(u64, len, PAGE_SIZE);
 | |
| 
 | |
| 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
 | |
| 		if (!spage) {
 | |
| leave_nomem:
 | |
| 			spin_lock(&sctx->stat_lock);
 | |
| 			sctx->stat.malloc_errors++;
 | |
| 			spin_unlock(&sctx->stat_lock);
 | |
| 			scrub_block_put(sblock);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
 | |
| 		/* For scrub block */
 | |
| 		scrub_page_get(spage);
 | |
| 		sblock->pagev[index] = spage;
 | |
| 		/* For scrub parity */
 | |
| 		scrub_page_get(spage);
 | |
| 		list_add_tail(&spage->list, &sparity->spages);
 | |
| 		spage->sblock = sblock;
 | |
| 		spage->dev = dev;
 | |
| 		spage->flags = flags;
 | |
| 		spage->generation = gen;
 | |
| 		spage->logical = logical;
 | |
| 		spage->physical = physical;
 | |
| 		spage->mirror_num = mirror_num;
 | |
| 		if (csum) {
 | |
| 			spage->have_csum = 1;
 | |
| 			memcpy(spage->csum, csum, sctx->csum_size);
 | |
| 		} else {
 | |
| 			spage->have_csum = 0;
 | |
| 		}
 | |
| 		sblock->page_count++;
 | |
| 		spage->page = alloc_page(GFP_KERNEL);
 | |
| 		if (!spage->page)
 | |
| 			goto leave_nomem;
 | |
| 		len -= l;
 | |
| 		logical += l;
 | |
| 		physical += l;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(sblock->page_count == 0);
 | |
| 	for (index = 0; index < sblock->page_count; index++) {
 | |
| 		struct scrub_page *spage = sblock->pagev[index];
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = scrub_add_page_to_rd_bio(sctx, spage);
 | |
| 		if (ret) {
 | |
| 			scrub_block_put(sblock);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* last one frees, either here or in bio completion for last page */
 | |
| 	scrub_block_put(sblock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int scrub_extent_for_parity(struct scrub_parity *sparity,
 | |
| 				   u64 logical, u64 len,
 | |
| 				   u64 physical, struct btrfs_device *dev,
 | |
| 				   u64 flags, u64 gen, int mirror_num)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 	int ret;
 | |
| 	u8 csum[BTRFS_CSUM_SIZE];
 | |
| 	u32 blocksize;
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
 | |
| 		scrub_parity_mark_sectors_error(sparity, logical, len);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
 | |
| 		blocksize = sparity->stripe_len;
 | |
| 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 | |
| 		blocksize = sparity->stripe_len;
 | |
| 	} else {
 | |
| 		blocksize = sctx->fs_info->sectorsize;
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	while (len) {
 | |
| 		u64 l = min_t(u64, len, blocksize);
 | |
| 		int have_csum = 0;
 | |
| 
 | |
| 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
 | |
| 			/* push csums to sbio */
 | |
| 			have_csum = scrub_find_csum(sctx, logical, csum);
 | |
| 			if (have_csum == 0)
 | |
| 				goto skip;
 | |
| 		}
 | |
| 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
 | |
| 					     flags, gen, mirror_num,
 | |
| 					     have_csum ? csum : NULL);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| skip:
 | |
| 		len -= l;
 | |
| 		logical += l;
 | |
| 		physical += l;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a physical address, this will calculate it's
 | |
|  * logical offset. if this is a parity stripe, it will return
 | |
|  * the most left data stripe's logical offset.
 | |
|  *
 | |
|  * return 0 if it is a data stripe, 1 means parity stripe.
 | |
|  */
 | |
| static int get_raid56_logic_offset(u64 physical, int num,
 | |
| 				   struct map_lookup *map, u64 *offset,
 | |
| 				   u64 *stripe_start)
 | |
| {
 | |
| 	int i;
 | |
| 	int j = 0;
 | |
| 	u64 stripe_nr;
 | |
| 	u64 last_offset;
 | |
| 	u32 stripe_index;
 | |
| 	u32 rot;
 | |
| 
 | |
| 	last_offset = (physical - map->stripes[num].physical) *
 | |
| 		      nr_data_stripes(map);
 | |
| 	if (stripe_start)
 | |
| 		*stripe_start = last_offset;
 | |
| 
 | |
| 	*offset = last_offset;
 | |
| 	for (i = 0; i < nr_data_stripes(map); i++) {
 | |
| 		*offset = last_offset + i * map->stripe_len;
 | |
| 
 | |
| 		stripe_nr = div64_u64(*offset, map->stripe_len);
 | |
| 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
 | |
| 
 | |
| 		/* Work out the disk rotation on this stripe-set */
 | |
| 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
 | |
| 		/* calculate which stripe this data locates */
 | |
| 		rot += i;
 | |
| 		stripe_index = rot % map->num_stripes;
 | |
| 		if (stripe_index == num)
 | |
| 			return 0;
 | |
| 		if (stripe_index < num)
 | |
| 			j++;
 | |
| 	}
 | |
| 	*offset = last_offset + j * map->stripe_len;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void scrub_free_parity(struct scrub_parity *sparity)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 	struct scrub_page *curr, *next;
 | |
| 	int nbits;
 | |
| 
 | |
| 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
 | |
| 	if (nbits) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.read_errors += nbits;
 | |
| 		sctx->stat.uncorrectable_errors += nbits;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
 | |
| 		list_del_init(&curr->list);
 | |
| 		scrub_page_put(curr);
 | |
| 	}
 | |
| 
 | |
| 	kfree(sparity);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
 | |
| {
 | |
| 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
 | |
| 						    work);
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 
 | |
| 	scrub_free_parity(sparity);
 | |
| 	scrub_pending_bio_dec(sctx);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_bio_endio(struct bio *bio)
 | |
| {
 | |
| 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
 | |
| 			  sparity->nsectors);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
 | |
| 			scrub_parity_bio_endio_worker, NULL, NULL);
 | |
| 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
 | |
| {
 | |
| 	struct scrub_ctx *sctx = sparity->sctx;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct bio *bio;
 | |
| 	struct btrfs_raid_bio *rbio;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	u64 length;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
 | |
| 			   sparity->nsectors))
 | |
| 		goto out;
 | |
| 
 | |
| 	length = sparity->logic_end - sparity->logic_start;
 | |
| 
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
 | |
| 			       &length, &bbio);
 | |
| 	if (ret || !bbio || !bbio->raid_map)
 | |
| 		goto bbio_out;
 | |
| 
 | |
| 	bio = btrfs_io_bio_alloc(0);
 | |
| 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
 | |
| 	bio->bi_private = sparity;
 | |
| 	bio->bi_end_io = scrub_parity_bio_endio;
 | |
| 
 | |
| 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
 | |
| 					      length, sparity->scrub_dev,
 | |
| 					      sparity->dbitmap,
 | |
| 					      sparity->nsectors);
 | |
| 	if (!rbio)
 | |
| 		goto rbio_out;
 | |
| 
 | |
| 	scrub_pending_bio_inc(sctx);
 | |
| 	raid56_parity_submit_scrub_rbio(rbio);
 | |
| 	return;
 | |
| 
 | |
| rbio_out:
 | |
| 	bio_put(bio);
 | |
| bbio_out:
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 	btrfs_put_bbio(bbio);
 | |
| 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
 | |
| 		  sparity->nsectors);
 | |
| 	spin_lock(&sctx->stat_lock);
 | |
| 	sctx->stat.malloc_errors++;
 | |
| 	spin_unlock(&sctx->stat_lock);
 | |
| out:
 | |
| 	scrub_free_parity(sparity);
 | |
| }
 | |
| 
 | |
| static inline int scrub_calc_parity_bitmap_len(int nsectors)
 | |
| {
 | |
| 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_get(struct scrub_parity *sparity)
 | |
| {
 | |
| 	refcount_inc(&sparity->refs);
 | |
| }
 | |
| 
 | |
| static void scrub_parity_put(struct scrub_parity *sparity)
 | |
| {
 | |
| 	if (!refcount_dec_and_test(&sparity->refs))
 | |
| 		return;
 | |
| 
 | |
| 	scrub_parity_check_and_repair(sparity);
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
 | |
| 						  struct map_lookup *map,
 | |
| 						  struct btrfs_device *sdev,
 | |
| 						  struct btrfs_path *path,
 | |
| 						  u64 logic_start,
 | |
| 						  u64 logic_end)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->extent_root;
 | |
| 	struct btrfs_root *csum_root = fs_info->csum_root;
 | |
| 	struct btrfs_extent_item *extent;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	u64 flags;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *l;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 generation;
 | |
| 	u64 extent_logical;
 | |
| 	u64 extent_physical;
 | |
| 	u64 extent_len;
 | |
| 	u64 mapped_length;
 | |
| 	struct btrfs_device *extent_dev;
 | |
| 	struct scrub_parity *sparity;
 | |
| 	int nsectors;
 | |
| 	int bitmap_len;
 | |
| 	int extent_mirror_num;
 | |
| 	int stop_loop = 0;
 | |
| 
 | |
| 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
 | |
| 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
 | |
| 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
 | |
| 			  GFP_NOFS);
 | |
| 	if (!sparity) {
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		sctx->stat.malloc_errors++;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	sparity->stripe_len = map->stripe_len;
 | |
| 	sparity->nsectors = nsectors;
 | |
| 	sparity->sctx = sctx;
 | |
| 	sparity->scrub_dev = sdev;
 | |
| 	sparity->logic_start = logic_start;
 | |
| 	sparity->logic_end = logic_end;
 | |
| 	refcount_set(&sparity->refs, 1);
 | |
| 	INIT_LIST_HEAD(&sparity->spages);
 | |
| 	sparity->dbitmap = sparity->bitmap;
 | |
| 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	while (logic_start < logic_end) {
 | |
| 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 | |
| 			key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 		else
 | |
| 			key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 		key.objectid = logic_start;
 | |
| 		key.offset = (u64)-1;
 | |
| 
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (ret > 0) {
 | |
| 			ret = btrfs_previous_extent_item(root, path, 0);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			if (ret > 0) {
 | |
| 				btrfs_release_path(path);
 | |
| 				ret = btrfs_search_slot(NULL, root, &key,
 | |
| 							path, 0, 0);
 | |
| 				if (ret < 0)
 | |
| 					goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		stop_loop = 0;
 | |
| 		while (1) {
 | |
| 			u64 bytes;
 | |
| 
 | |
| 			l = path->nodes[0];
 | |
| 			slot = path->slots[0];
 | |
| 			if (slot >= btrfs_header_nritems(l)) {
 | |
| 				ret = btrfs_next_leaf(root, path);
 | |
| 				if (ret == 0)
 | |
| 					continue;
 | |
| 				if (ret < 0)
 | |
| 					goto out;
 | |
| 
 | |
| 				stop_loop = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			btrfs_item_key_to_cpu(l, &key, slot);
 | |
| 
 | |
| 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
 | |
| 			    key.type != BTRFS_METADATA_ITEM_KEY)
 | |
| 				goto next;
 | |
| 
 | |
| 			if (key.type == BTRFS_METADATA_ITEM_KEY)
 | |
| 				bytes = fs_info->nodesize;
 | |
| 			else
 | |
| 				bytes = key.offset;
 | |
| 
 | |
| 			if (key.objectid + bytes <= logic_start)
 | |
| 				goto next;
 | |
| 
 | |
| 			if (key.objectid >= logic_end) {
 | |
| 				stop_loop = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			while (key.objectid >= logic_start + map->stripe_len)
 | |
| 				logic_start += map->stripe_len;
 | |
| 
 | |
| 			extent = btrfs_item_ptr(l, slot,
 | |
| 						struct btrfs_extent_item);
 | |
| 			flags = btrfs_extent_flags(l, extent);
 | |
| 			generation = btrfs_extent_generation(l, extent);
 | |
| 
 | |
| 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
 | |
| 			    (key.objectid < logic_start ||
 | |
| 			     key.objectid + bytes >
 | |
| 			     logic_start + map->stripe_len)) {
 | |
| 				btrfs_err(fs_info,
 | |
| 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
 | |
| 					  key.objectid, logic_start);
 | |
| 				spin_lock(&sctx->stat_lock);
 | |
| 				sctx->stat.uncorrectable_errors++;
 | |
| 				spin_unlock(&sctx->stat_lock);
 | |
| 				goto next;
 | |
| 			}
 | |
| again:
 | |
| 			extent_logical = key.objectid;
 | |
| 			extent_len = bytes;
 | |
| 
 | |
| 			if (extent_logical < logic_start) {
 | |
| 				extent_len -= logic_start - extent_logical;
 | |
| 				extent_logical = logic_start;
 | |
| 			}
 | |
| 
 | |
| 			if (extent_logical + extent_len >
 | |
| 			    logic_start + map->stripe_len)
 | |
| 				extent_len = logic_start + map->stripe_len -
 | |
| 					     extent_logical;
 | |
| 
 | |
| 			scrub_parity_mark_sectors_data(sparity, extent_logical,
 | |
| 						       extent_len);
 | |
| 
 | |
| 			mapped_length = extent_len;
 | |
| 			bbio = NULL;
 | |
| 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
 | |
| 					extent_logical, &mapped_length, &bbio,
 | |
| 					0);
 | |
| 			if (!ret) {
 | |
| 				if (!bbio || mapped_length < extent_len)
 | |
| 					ret = -EIO;
 | |
| 			}
 | |
| 			if (ret) {
 | |
| 				btrfs_put_bbio(bbio);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			extent_physical = bbio->stripes[0].physical;
 | |
| 			extent_mirror_num = bbio->mirror_num;
 | |
| 			extent_dev = bbio->stripes[0].dev;
 | |
| 			btrfs_put_bbio(bbio);
 | |
| 
 | |
| 			ret = btrfs_lookup_csums_range(csum_root,
 | |
| 						extent_logical,
 | |
| 						extent_logical + extent_len - 1,
 | |
| 						&sctx->csum_list, 1);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 
 | |
| 			ret = scrub_extent_for_parity(sparity, extent_logical,
 | |
| 						      extent_len,
 | |
| 						      extent_physical,
 | |
| 						      extent_dev, flags,
 | |
| 						      generation,
 | |
| 						      extent_mirror_num);
 | |
| 
 | |
| 			scrub_free_csums(sctx);
 | |
| 
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 
 | |
| 			if (extent_logical + extent_len <
 | |
| 			    key.objectid + bytes) {
 | |
| 				logic_start += map->stripe_len;
 | |
| 
 | |
| 				if (logic_start >= logic_end) {
 | |
| 					stop_loop = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				if (logic_start < key.objectid + bytes) {
 | |
| 					cond_resched();
 | |
| 					goto again;
 | |
| 				}
 | |
| 			}
 | |
| next:
 | |
| 			path->slots[0]++;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		if (stop_loop)
 | |
| 			break;
 | |
| 
 | |
| 		logic_start += map->stripe_len;
 | |
| 	}
 | |
| out:
 | |
| 	if (ret < 0)
 | |
| 		scrub_parity_mark_sectors_error(sparity, logic_start,
 | |
| 						logic_end - logic_start);
 | |
| 	scrub_parity_put(sparity);
 | |
| 	scrub_submit(sctx);
 | |
| 	mutex_lock(&sctx->wr_lock);
 | |
| 	scrub_wr_submit(sctx);
 | |
| 	mutex_unlock(&sctx->wr_lock);
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
 | |
| 					   struct map_lookup *map,
 | |
| 					   struct btrfs_device *scrub_dev,
 | |
| 					   int num, u64 base, u64 length)
 | |
| {
 | |
| 	struct btrfs_path *path, *ppath;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->extent_root;
 | |
| 	struct btrfs_root *csum_root = fs_info->csum_root;
 | |
| 	struct btrfs_extent_item *extent;
 | |
| 	struct blk_plug plug;
 | |
| 	u64 flags;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	u64 nstripes;
 | |
| 	struct extent_buffer *l;
 | |
| 	u64 physical;
 | |
| 	u64 logical;
 | |
| 	u64 logic_end;
 | |
| 	u64 physical_end;
 | |
| 	u64 generation;
 | |
| 	int mirror_num;
 | |
| 	struct reada_control *reada1;
 | |
| 	struct reada_control *reada2;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key key_end;
 | |
| 	u64 increment = map->stripe_len;
 | |
| 	u64 offset;
 | |
| 	u64 extent_logical;
 | |
| 	u64 extent_physical;
 | |
| 	u64 extent_len;
 | |
| 	u64 stripe_logical;
 | |
| 	u64 stripe_end;
 | |
| 	struct btrfs_device *extent_dev;
 | |
| 	int extent_mirror_num;
 | |
| 	int stop_loop = 0;
 | |
| 
 | |
| 	physical = map->stripes[num].physical;
 | |
| 	offset = 0;
 | |
| 	nstripes = div64_u64(length, map->stripe_len);
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
 | |
| 		offset = map->stripe_len * num;
 | |
| 		increment = map->stripe_len * map->num_stripes;
 | |
| 		mirror_num = 1;
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | |
| 		int factor = map->num_stripes / map->sub_stripes;
 | |
| 		offset = map->stripe_len * (num / map->sub_stripes);
 | |
| 		increment = map->stripe_len * factor;
 | |
| 		mirror_num = num % map->sub_stripes + 1;
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
 | |
| 		increment = map->stripe_len;
 | |
| 		mirror_num = num % map->num_stripes + 1;
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
 | |
| 		increment = map->stripe_len;
 | |
| 		mirror_num = num % map->num_stripes + 1;
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
 | |
| 		increment = map->stripe_len * nr_data_stripes(map);
 | |
| 		mirror_num = 1;
 | |
| 	} else {
 | |
| 		increment = map->stripe_len;
 | |
| 		mirror_num = 1;
 | |
| 	}
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ppath = btrfs_alloc_path();
 | |
| 	if (!ppath) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * work on commit root. The related disk blocks are static as
 | |
| 	 * long as COW is applied. This means, it is save to rewrite
 | |
| 	 * them to repair disk errors without any race conditions
 | |
| 	 */
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->skip_locking = 1;
 | |
| 
 | |
| 	ppath->search_commit_root = 1;
 | |
| 	ppath->skip_locking = 1;
 | |
| 	/*
 | |
| 	 * trigger the readahead for extent tree csum tree and wait for
 | |
| 	 * completion. During readahead, the scrub is officially paused
 | |
| 	 * to not hold off transaction commits
 | |
| 	 */
 | |
| 	logical = base + offset;
 | |
| 	physical_end = physical + nstripes * map->stripe_len;
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 		get_raid56_logic_offset(physical_end, num,
 | |
| 					map, &logic_end, NULL);
 | |
| 		logic_end += base;
 | |
| 	} else {
 | |
| 		logic_end = logical + increment * nstripes;
 | |
| 	}
 | |
| 	wait_event(sctx->list_wait,
 | |
| 		   atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 	scrub_blocked_if_needed(fs_info);
 | |
| 
 | |
| 	/* FIXME it might be better to start readahead at commit root */
 | |
| 	key.objectid = logical;
 | |
| 	key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 	key.offset = (u64)0;
 | |
| 	key_end.objectid = logic_end;
 | |
| 	key_end.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 	key_end.offset = (u64)-1;
 | |
| 	reada1 = btrfs_reada_add(root, &key, &key_end);
 | |
| 
 | |
| 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 | |
| 	key.type = BTRFS_EXTENT_CSUM_KEY;
 | |
| 	key.offset = logical;
 | |
| 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 | |
| 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
 | |
| 	key_end.offset = logic_end;
 | |
| 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
 | |
| 
 | |
| 	if (!IS_ERR(reada1))
 | |
| 		btrfs_reada_wait(reada1);
 | |
| 	if (!IS_ERR(reada2))
 | |
| 		btrfs_reada_wait(reada2);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * collect all data csums for the stripe to avoid seeking during
 | |
| 	 * the scrub. This might currently (crc32) end up to be about 1MB
 | |
| 	 */
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	/*
 | |
| 	 * now find all extents for each stripe and scrub them
 | |
| 	 */
 | |
| 	ret = 0;
 | |
| 	while (physical < physical_end) {
 | |
| 		/*
 | |
| 		 * canceled?
 | |
| 		 */
 | |
| 		if (atomic_read(&fs_info->scrub_cancel_req) ||
 | |
| 		    atomic_read(&sctx->cancel_req)) {
 | |
| 			ret = -ECANCELED;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * check to see if we have to pause
 | |
| 		 */
 | |
| 		if (atomic_read(&fs_info->scrub_pause_req)) {
 | |
| 			/* push queued extents */
 | |
| 			sctx->flush_all_writes = true;
 | |
| 			scrub_submit(sctx);
 | |
| 			mutex_lock(&sctx->wr_lock);
 | |
| 			scrub_wr_submit(sctx);
 | |
| 			mutex_unlock(&sctx->wr_lock);
 | |
| 			wait_event(sctx->list_wait,
 | |
| 				   atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 			sctx->flush_all_writes = false;
 | |
| 			scrub_blocked_if_needed(fs_info);
 | |
| 		}
 | |
| 
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 			ret = get_raid56_logic_offset(physical, num, map,
 | |
| 						      &logical,
 | |
| 						      &stripe_logical);
 | |
| 			logical += base;
 | |
| 			if (ret) {
 | |
| 				/* it is parity strip */
 | |
| 				stripe_logical += base;
 | |
| 				stripe_end = stripe_logical + increment;
 | |
| 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
 | |
| 							  ppath, stripe_logical,
 | |
| 							  stripe_end);
 | |
| 				if (ret)
 | |
| 					goto out;
 | |
| 				goto skip;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 | |
| 			key.type = BTRFS_METADATA_ITEM_KEY;
 | |
| 		else
 | |
| 			key.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 		key.objectid = logical;
 | |
| 		key.offset = (u64)-1;
 | |
| 
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (ret > 0) {
 | |
| 			ret = btrfs_previous_extent_item(root, path, 0);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 			if (ret > 0) {
 | |
| 				/* there's no smaller item, so stick with the
 | |
| 				 * larger one */
 | |
| 				btrfs_release_path(path);
 | |
| 				ret = btrfs_search_slot(NULL, root, &key,
 | |
| 							path, 0, 0);
 | |
| 				if (ret < 0)
 | |
| 					goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		stop_loop = 0;
 | |
| 		while (1) {
 | |
| 			u64 bytes;
 | |
| 
 | |
| 			l = path->nodes[0];
 | |
| 			slot = path->slots[0];
 | |
| 			if (slot >= btrfs_header_nritems(l)) {
 | |
| 				ret = btrfs_next_leaf(root, path);
 | |
| 				if (ret == 0)
 | |
| 					continue;
 | |
| 				if (ret < 0)
 | |
| 					goto out;
 | |
| 
 | |
| 				stop_loop = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			btrfs_item_key_to_cpu(l, &key, slot);
 | |
| 
 | |
| 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
 | |
| 			    key.type != BTRFS_METADATA_ITEM_KEY)
 | |
| 				goto next;
 | |
| 
 | |
| 			if (key.type == BTRFS_METADATA_ITEM_KEY)
 | |
| 				bytes = fs_info->nodesize;
 | |
| 			else
 | |
| 				bytes = key.offset;
 | |
| 
 | |
| 			if (key.objectid + bytes <= logical)
 | |
| 				goto next;
 | |
| 
 | |
| 			if (key.objectid >= logical + map->stripe_len) {
 | |
| 				/* out of this device extent */
 | |
| 				if (key.objectid >= logic_end)
 | |
| 					stop_loop = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			extent = btrfs_item_ptr(l, slot,
 | |
| 						struct btrfs_extent_item);
 | |
| 			flags = btrfs_extent_flags(l, extent);
 | |
| 			generation = btrfs_extent_generation(l, extent);
 | |
| 
 | |
| 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
 | |
| 			    (key.objectid < logical ||
 | |
| 			     key.objectid + bytes >
 | |
| 			     logical + map->stripe_len)) {
 | |
| 				btrfs_err(fs_info,
 | |
| 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
 | |
| 				       key.objectid, logical);
 | |
| 				spin_lock(&sctx->stat_lock);
 | |
| 				sctx->stat.uncorrectable_errors++;
 | |
| 				spin_unlock(&sctx->stat_lock);
 | |
| 				goto next;
 | |
| 			}
 | |
| 
 | |
| again:
 | |
| 			extent_logical = key.objectid;
 | |
| 			extent_len = bytes;
 | |
| 
 | |
| 			/*
 | |
| 			 * trim extent to this stripe
 | |
| 			 */
 | |
| 			if (extent_logical < logical) {
 | |
| 				extent_len -= logical - extent_logical;
 | |
| 				extent_logical = logical;
 | |
| 			}
 | |
| 			if (extent_logical + extent_len >
 | |
| 			    logical + map->stripe_len) {
 | |
| 				extent_len = logical + map->stripe_len -
 | |
| 					     extent_logical;
 | |
| 			}
 | |
| 
 | |
| 			extent_physical = extent_logical - logical + physical;
 | |
| 			extent_dev = scrub_dev;
 | |
| 			extent_mirror_num = mirror_num;
 | |
| 			if (sctx->is_dev_replace)
 | |
| 				scrub_remap_extent(fs_info, extent_logical,
 | |
| 						   extent_len, &extent_physical,
 | |
| 						   &extent_dev,
 | |
| 						   &extent_mirror_num);
 | |
| 
 | |
| 			ret = btrfs_lookup_csums_range(csum_root,
 | |
| 						       extent_logical,
 | |
| 						       extent_logical +
 | |
| 						       extent_len - 1,
 | |
| 						       &sctx->csum_list, 1);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 
 | |
| 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
 | |
| 					   extent_physical, extent_dev, flags,
 | |
| 					   generation, extent_mirror_num,
 | |
| 					   extent_logical - logical + physical);
 | |
| 
 | |
| 			scrub_free_csums(sctx);
 | |
| 
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 
 | |
| 			if (extent_logical + extent_len <
 | |
| 			    key.objectid + bytes) {
 | |
| 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 					/*
 | |
| 					 * loop until we find next data stripe
 | |
| 					 * or we have finished all stripes.
 | |
| 					 */
 | |
| loop:
 | |
| 					physical += map->stripe_len;
 | |
| 					ret = get_raid56_logic_offset(physical,
 | |
| 							num, map, &logical,
 | |
| 							&stripe_logical);
 | |
| 					logical += base;
 | |
| 
 | |
| 					if (ret && physical < physical_end) {
 | |
| 						stripe_logical += base;
 | |
| 						stripe_end = stripe_logical +
 | |
| 								increment;
 | |
| 						ret = scrub_raid56_parity(sctx,
 | |
| 							map, scrub_dev, ppath,
 | |
| 							stripe_logical,
 | |
| 							stripe_end);
 | |
| 						if (ret)
 | |
| 							goto out;
 | |
| 						goto loop;
 | |
| 					}
 | |
| 				} else {
 | |
| 					physical += map->stripe_len;
 | |
| 					logical += increment;
 | |
| 				}
 | |
| 				if (logical < key.objectid + bytes) {
 | |
| 					cond_resched();
 | |
| 					goto again;
 | |
| 				}
 | |
| 
 | |
| 				if (physical >= physical_end) {
 | |
| 					stop_loop = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| next:
 | |
| 			path->slots[0]++;
 | |
| 		}
 | |
| 		btrfs_release_path(path);
 | |
| skip:
 | |
| 		logical += increment;
 | |
| 		physical += map->stripe_len;
 | |
| 		spin_lock(&sctx->stat_lock);
 | |
| 		if (stop_loop)
 | |
| 			sctx->stat.last_physical = map->stripes[num].physical +
 | |
| 						   length;
 | |
| 		else
 | |
| 			sctx->stat.last_physical = physical;
 | |
| 		spin_unlock(&sctx->stat_lock);
 | |
| 		if (stop_loop)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	/* push queued extents */
 | |
| 	scrub_submit(sctx);
 | |
| 	mutex_lock(&sctx->wr_lock);
 | |
| 	scrub_wr_submit(sctx);
 | |
| 	mutex_unlock(&sctx->wr_lock);
 | |
| 
 | |
| 	blk_finish_plug(&plug);
 | |
| 	btrfs_free_path(path);
 | |
| 	btrfs_free_path(ppath);
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 | |
| 					  struct btrfs_device *scrub_dev,
 | |
| 					  u64 chunk_offset, u64 length,
 | |
| 					  u64 dev_offset,
 | |
| 					  struct btrfs_block_group_cache *cache)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
 | |
| 	struct map_lookup *map;
 | |
| 	struct extent_map *em;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	read_lock(&map_tree->map_tree.lock);
 | |
| 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
 | |
| 	read_unlock(&map_tree->map_tree.lock);
 | |
| 
 | |
| 	if (!em) {
 | |
| 		/*
 | |
| 		 * Might have been an unused block group deleted by the cleaner
 | |
| 		 * kthread or relocation.
 | |
| 		 */
 | |
| 		spin_lock(&cache->lock);
 | |
| 		if (!cache->removed)
 | |
| 			ret = -EINVAL;
 | |
| 		spin_unlock(&cache->lock);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	map = em->map_lookup;
 | |
| 	if (em->start != chunk_offset)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (em->len < length)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; ++i) {
 | |
| 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
 | |
| 		    map->stripes[i].physical == dev_offset) {
 | |
| 			ret = scrub_stripe(sctx, map, scrub_dev, i,
 | |
| 					   chunk_offset, length);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	free_extent_map(em);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| int scrub_enumerate_chunks(struct scrub_ctx *sctx,
 | |
| 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 | |
| {
 | |
| 	struct btrfs_dev_extent *dev_extent = NULL;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	u64 length;
 | |
| 	u64 chunk_offset;
 | |
| 	int ret = 0;
 | |
| 	int ro_set;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *l;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_block_group_cache *cache;
 | |
| 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->skip_locking = 1;
 | |
| 
 | |
| 	key.objectid = scrub_dev->devid;
 | |
| 	key.offset = 0ull;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret > 0) {
 | |
| 			if (path->slots[0] >=
 | |
| 			    btrfs_header_nritems(path->nodes[0])) {
 | |
| 				ret = btrfs_next_leaf(root, path);
 | |
| 				if (ret < 0)
 | |
| 					break;
 | |
| 				if (ret > 0) {
 | |
| 					ret = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 			} else {
 | |
| 				ret = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		l = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(l, &found_key, slot);
 | |
| 
 | |
| 		if (found_key.objectid != scrub_dev->devid)
 | |
| 			break;
 | |
| 
 | |
| 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		if (found_key.offset >= end)
 | |
| 			break;
 | |
| 
 | |
| 		if (found_key.offset < key.offset)
 | |
| 			break;
 | |
| 
 | |
| 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | |
| 		length = btrfs_dev_extent_length(l, dev_extent);
 | |
| 
 | |
| 		if (found_key.offset + length <= start)
 | |
| 			goto skip;
 | |
| 
 | |
| 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
 | |
| 
 | |
| 		/*
 | |
| 		 * get a reference on the corresponding block group to prevent
 | |
| 		 * the chunk from going away while we scrub it
 | |
| 		 */
 | |
| 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
 | |
| 
 | |
| 		/* some chunks are removed but not committed to disk yet,
 | |
| 		 * continue scrubbing */
 | |
| 		if (!cache)
 | |
| 			goto skip;
 | |
| 
 | |
| 		/*
 | |
| 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
 | |
| 		 * to avoid deadlock caused by:
 | |
| 		 * btrfs_inc_block_group_ro()
 | |
| 		 * -> btrfs_wait_for_commit()
 | |
| 		 * -> btrfs_commit_transaction()
 | |
| 		 * -> btrfs_scrub_pause()
 | |
| 		 */
 | |
| 		scrub_pause_on(fs_info);
 | |
| 		ret = btrfs_inc_block_group_ro(cache);
 | |
| 		if (!ret && sctx->is_dev_replace) {
 | |
| 			/*
 | |
| 			 * If we are doing a device replace wait for any tasks
 | |
| 			 * that started dellaloc right before we set the block
 | |
| 			 * group to RO mode, as they might have just allocated
 | |
| 			 * an extent from it or decided they could do a nocow
 | |
| 			 * write. And if any such tasks did that, wait for their
 | |
| 			 * ordered extents to complete and then commit the
 | |
| 			 * current transaction, so that we can later see the new
 | |
| 			 * extent items in the extent tree - the ordered extents
 | |
| 			 * create delayed data references (for cow writes) when
 | |
| 			 * they complete, which will be run and insert the
 | |
| 			 * corresponding extent items into the extent tree when
 | |
| 			 * we commit the transaction they used when running
 | |
| 			 * inode.c:btrfs_finish_ordered_io(). We later use
 | |
| 			 * the commit root of the extent tree to find extents
 | |
| 			 * to copy from the srcdev into the tgtdev, and we don't
 | |
| 			 * want to miss any new extents.
 | |
| 			 */
 | |
| 			btrfs_wait_block_group_reservations(cache);
 | |
| 			btrfs_wait_nocow_writers(cache);
 | |
| 			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
 | |
| 						       cache->key.objectid,
 | |
| 						       cache->key.offset);
 | |
| 			if (ret > 0) {
 | |
| 				struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 				trans = btrfs_join_transaction(root);
 | |
| 				if (IS_ERR(trans))
 | |
| 					ret = PTR_ERR(trans);
 | |
| 				else
 | |
| 					ret = btrfs_commit_transaction(trans);
 | |
| 				if (ret) {
 | |
| 					scrub_pause_off(fs_info);
 | |
| 					btrfs_put_block_group(cache);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		scrub_pause_off(fs_info);
 | |
| 
 | |
| 		if (ret == 0) {
 | |
| 			ro_set = 1;
 | |
| 		} else if (ret == -ENOSPC) {
 | |
| 			/*
 | |
| 			 * btrfs_inc_block_group_ro return -ENOSPC when it
 | |
| 			 * failed in creating new chunk for metadata.
 | |
| 			 * It is not a problem for scrub/replace, because
 | |
| 			 * metadata are always cowed, and our scrub paused
 | |
| 			 * commit_transactions.
 | |
| 			 */
 | |
| 			ro_set = 0;
 | |
| 		} else {
 | |
| 			btrfs_warn(fs_info,
 | |
| 				   "failed setting block group ro: %d", ret);
 | |
| 			btrfs_put_block_group(cache);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
 | |
| 		dev_replace->cursor_right = found_key.offset + length;
 | |
| 		dev_replace->cursor_left = found_key.offset;
 | |
| 		dev_replace->item_needs_writeback = 1;
 | |
| 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
 | |
| 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
 | |
| 				  found_key.offset, cache);
 | |
| 
 | |
| 		/*
 | |
| 		 * flush, submit all pending read and write bios, afterwards
 | |
| 		 * wait for them.
 | |
| 		 * Note that in the dev replace case, a read request causes
 | |
| 		 * write requests that are submitted in the read completion
 | |
| 		 * worker. Therefore in the current situation, it is required
 | |
| 		 * that all write requests are flushed, so that all read and
 | |
| 		 * write requests are really completed when bios_in_flight
 | |
| 		 * changes to 0.
 | |
| 		 */
 | |
| 		sctx->flush_all_writes = true;
 | |
| 		scrub_submit(sctx);
 | |
| 		mutex_lock(&sctx->wr_lock);
 | |
| 		scrub_wr_submit(sctx);
 | |
| 		mutex_unlock(&sctx->wr_lock);
 | |
| 
 | |
| 		wait_event(sctx->list_wait,
 | |
| 			   atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 
 | |
| 		scrub_pause_on(fs_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * must be called before we decrease @scrub_paused.
 | |
| 		 * make sure we don't block transaction commit while
 | |
| 		 * we are waiting pending workers finished.
 | |
| 		 */
 | |
| 		wait_event(sctx->list_wait,
 | |
| 			   atomic_read(&sctx->workers_pending) == 0);
 | |
| 		sctx->flush_all_writes = false;
 | |
| 
 | |
| 		scrub_pause_off(fs_info);
 | |
| 
 | |
| 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
 | |
| 		dev_replace->cursor_left = dev_replace->cursor_right;
 | |
| 		dev_replace->item_needs_writeback = 1;
 | |
| 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
 | |
| 
 | |
| 		if (ro_set)
 | |
| 			btrfs_dec_block_group_ro(cache);
 | |
| 
 | |
| 		/*
 | |
| 		 * We might have prevented the cleaner kthread from deleting
 | |
| 		 * this block group if it was already unused because we raced
 | |
| 		 * and set it to RO mode first. So add it back to the unused
 | |
| 		 * list, otherwise it might not ever be deleted unless a manual
 | |
| 		 * balance is triggered or it becomes used and unused again.
 | |
| 		 */
 | |
| 		spin_lock(&cache->lock);
 | |
| 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
 | |
| 		    btrfs_block_group_used(&cache->item) == 0) {
 | |
| 			spin_unlock(&cache->lock);
 | |
| 			btrfs_mark_bg_unused(cache);
 | |
| 		} else {
 | |
| 			spin_unlock(&cache->lock);
 | |
| 		}
 | |
| 
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		if (sctx->is_dev_replace &&
 | |
| 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (sctx->stat.malloc_errors > 0) {
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| skip:
 | |
| 		key.offset = found_key.offset + length;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
 | |
| 					   struct btrfs_device *scrub_dev)
 | |
| {
 | |
| 	int	i;
 | |
| 	u64	bytenr;
 | |
| 	u64	gen;
 | |
| 	int	ret;
 | |
| 	struct btrfs_fs_info *fs_info = sctx->fs_info;
 | |
| 
 | |
| 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* Seed devices of a new filesystem has their own generation. */
 | |
| 	if (scrub_dev->fs_devices != fs_info->fs_devices)
 | |
| 		gen = scrub_dev->generation;
 | |
| 	else
 | |
| 		gen = fs_info->last_trans_committed;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 | |
| 		bytenr = btrfs_sb_offset(i);
 | |
| 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
 | |
| 		    scrub_dev->commit_total_bytes)
 | |
| 			break;
 | |
| 
 | |
| 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
 | |
| 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
 | |
| 				  NULL, 1, bytenr);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get a reference count on fs_info->scrub_workers. start worker if necessary
 | |
|  */
 | |
| static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
 | |
| 						int is_dev_replace)
 | |
| {
 | |
| 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
 | |
| 	int max_active = fs_info->thread_pool_size;
 | |
| 
 | |
| 	if (fs_info->scrub_workers_refcnt == 0) {
 | |
| 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
 | |
| 				flags, is_dev_replace ? 1 : max_active, 4);
 | |
| 		if (!fs_info->scrub_workers)
 | |
| 			goto fail_scrub_workers;
 | |
| 
 | |
| 		fs_info->scrub_wr_completion_workers =
 | |
| 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
 | |
| 					      max_active, 2);
 | |
| 		if (!fs_info->scrub_wr_completion_workers)
 | |
| 			goto fail_scrub_wr_completion_workers;
 | |
| 
 | |
| 		fs_info->scrub_parity_workers =
 | |
| 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
 | |
| 					      max_active, 2);
 | |
| 		if (!fs_info->scrub_parity_workers)
 | |
| 			goto fail_scrub_parity_workers;
 | |
| 	}
 | |
| 	++fs_info->scrub_workers_refcnt;
 | |
| 	return 0;
 | |
| 
 | |
| fail_scrub_parity_workers:
 | |
| 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
 | |
| fail_scrub_wr_completion_workers:
 | |
| 	btrfs_destroy_workqueue(fs_info->scrub_workers);
 | |
| fail_scrub_workers:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
 | |
| 		    u64 end, struct btrfs_scrub_progress *progress,
 | |
| 		    int readonly, int is_dev_replace)
 | |
| {
 | |
| 	struct scrub_ctx *sctx;
 | |
| 	int ret;
 | |
| 	struct btrfs_device *dev;
 | |
| 	unsigned int nofs_flag;
 | |
| 	struct btrfs_workqueue *scrub_workers = NULL;
 | |
| 	struct btrfs_workqueue *scrub_wr_comp = NULL;
 | |
| 	struct btrfs_workqueue *scrub_parity = NULL;
 | |
| 
 | |
| 	if (btrfs_fs_closing(fs_info))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
 | |
| 		/*
 | |
| 		 * in this case scrub is unable to calculate the checksum
 | |
| 		 * the way scrub is implemented. Do not handle this
 | |
| 		 * situation at all because it won't ever happen.
 | |
| 		 */
 | |
| 		btrfs_err(fs_info,
 | |
| 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
 | |
| 		       fs_info->nodesize,
 | |
| 		       BTRFS_STRIPE_LEN);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (fs_info->sectorsize != PAGE_SIZE) {
 | |
| 		/* not supported for data w/o checksums */
 | |
| 		btrfs_err_rl(fs_info,
 | |
| 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
 | |
| 		       fs_info->sectorsize, PAGE_SIZE);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (fs_info->nodesize >
 | |
| 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
 | |
| 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
 | |
| 		/*
 | |
| 		 * would exhaust the array bounds of pagev member in
 | |
| 		 * struct scrub_block
 | |
| 		 */
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
 | |
| 		       fs_info->nodesize,
 | |
| 		       SCRUB_MAX_PAGES_PER_BLOCK,
 | |
| 		       fs_info->sectorsize,
 | |
| 		       SCRUB_MAX_PAGES_PER_BLOCK);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate outside of device_list_mutex */
 | |
| 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
 | |
| 	if (IS_ERR(sctx))
 | |
| 		return PTR_ERR(sctx);
 | |
| 
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
 | |
| 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
 | |
| 		     !is_dev_replace)) {
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_free_ctx;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_dev_replace && !readonly &&
 | |
| 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
 | |
| 				rcu_str_deref(dev->name));
 | |
| 		ret = -EROFS;
 | |
| 		goto out_free_ctx;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
 | |
| 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = -EIO;
 | |
| 		goto out_free_ctx;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
 | |
| 	if (dev->scrub_ctx ||
 | |
| 	    (!is_dev_replace &&
 | |
| 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
 | |
| 		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = -EINPROGRESS;
 | |
| 		goto out_free_ctx;
 | |
| 	}
 | |
| 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
 | |
| 
 | |
| 	ret = scrub_workers_get(fs_info, is_dev_replace);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		goto out_free_ctx;
 | |
| 	}
 | |
| 
 | |
| 	sctx->readonly = readonly;
 | |
| 	dev->scrub_ctx = sctx;
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * checking @scrub_pause_req here, we can avoid
 | |
| 	 * race between committing transaction and scrubbing.
 | |
| 	 */
 | |
| 	__scrub_blocked_if_needed(fs_info);
 | |
| 	atomic_inc(&fs_info->scrubs_running);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to avoid deadlock with reclaim when there is a transaction
 | |
| 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
 | |
| 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
 | |
| 	 * invoked by our callees. The pausing request is done when the
 | |
| 	 * transaction commit starts, and it blocks the transaction until scrub
 | |
| 	 * is paused (done at specific points at scrub_stripe() or right above
 | |
| 	 * before incrementing fs_info->scrubs_running).
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	if (!is_dev_replace) {
 | |
| 		/*
 | |
| 		 * by holding device list mutex, we can
 | |
| 		 * kick off writing super in log tree sync.
 | |
| 		 */
 | |
| 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		ret = scrub_supers(sctx, dev);
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 
 | |
| 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 | |
| 	atomic_dec(&fs_info->scrubs_running);
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| 
 | |
| 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
 | |
| 
 | |
| 	if (progress)
 | |
| 		memcpy(progress, &sctx->stat, sizeof(*progress));
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	dev->scrub_ctx = NULL;
 | |
| 	if (--fs_info->scrub_workers_refcnt == 0) {
 | |
| 		scrub_workers = fs_info->scrub_workers;
 | |
| 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
 | |
| 		scrub_parity = fs_info->scrub_parity_workers;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	btrfs_destroy_workqueue(scrub_workers);
 | |
| 	btrfs_destroy_workqueue(scrub_wr_comp);
 | |
| 	btrfs_destroy_workqueue(scrub_parity);
 | |
| 	scrub_put_ctx(sctx);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| out_free_ctx:
 | |
| 	scrub_free_ctx(sctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	atomic_inc(&fs_info->scrub_pause_req);
 | |
| 	while (atomic_read(&fs_info->scrubs_paused) !=
 | |
| 	       atomic_read(&fs_info->scrubs_running)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 			   atomic_read(&fs_info->scrubs_paused) ==
 | |
| 			   atomic_read(&fs_info->scrubs_running));
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| }
 | |
| 
 | |
| void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	atomic_dec(&fs_info->scrub_pause_req);
 | |
| 	wake_up(&fs_info->scrub_pause_wait);
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	if (!atomic_read(&fs_info->scrubs_running)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		return -ENOTCONN;
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&fs_info->scrub_cancel_req);
 | |
| 	while (atomic_read(&fs_info->scrubs_running)) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 			   atomic_read(&fs_info->scrubs_running) == 0);
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| 	atomic_dec(&fs_info->scrub_cancel_req);
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
 | |
| 			   struct btrfs_device *dev)
 | |
| {
 | |
| 	struct scrub_ctx *sctx;
 | |
| 
 | |
| 	mutex_lock(&fs_info->scrub_lock);
 | |
| 	sctx = dev->scrub_ctx;
 | |
| 	if (!sctx) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		return -ENOTCONN;
 | |
| 	}
 | |
| 	atomic_inc(&sctx->cancel_req);
 | |
| 	while (dev->scrub_ctx) {
 | |
| 		mutex_unlock(&fs_info->scrub_lock);
 | |
| 		wait_event(fs_info->scrub_pause_wait,
 | |
| 			   dev->scrub_ctx == NULL);
 | |
| 		mutex_lock(&fs_info->scrub_lock);
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->scrub_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
 | |
| 			 struct btrfs_scrub_progress *progress)
 | |
| {
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct scrub_ctx *sctx = NULL;
 | |
| 
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
 | |
| 	if (dev)
 | |
| 		sctx = dev->scrub_ctx;
 | |
| 	if (sctx)
 | |
| 		memcpy(progress, &sctx->stat, sizeof(*progress));
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
 | |
| }
 | |
| 
 | |
| static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 | |
| 			       u64 extent_logical, u64 extent_len,
 | |
| 			       u64 *extent_physical,
 | |
| 			       struct btrfs_device **extent_dev,
 | |
| 			       int *extent_mirror_num)
 | |
| {
 | |
| 	u64 mapped_length;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	mapped_length = extent_len;
 | |
| 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
 | |
| 			      &mapped_length, &bbio, 0);
 | |
| 	if (ret || !bbio || mapped_length < extent_len ||
 | |
| 	    !bbio->stripes[0].dev->bdev) {
 | |
| 		btrfs_put_bbio(bbio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	*extent_physical = bbio->stripes[0].physical;
 | |
| 	*extent_mirror_num = bbio->mirror_num;
 | |
| 	*extent_dev = bbio->stripes[0].dev;
 | |
| 	btrfs_put_bbio(bbio);
 | |
| }
 | 
