1623 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1623 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2008 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/log2.h>
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "volumes.h"
 | |
| #include "ordered-data.h"
 | |
| #include "compression.h"
 | |
| #include "extent_io.h"
 | |
| #include "extent_map.h"
 | |
| 
 | |
| static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
 | |
| 
 | |
| const char* btrfs_compress_type2str(enum btrfs_compression_type type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case BTRFS_COMPRESS_ZLIB:
 | |
| 	case BTRFS_COMPRESS_LZO:
 | |
| 	case BTRFS_COMPRESS_ZSTD:
 | |
| 	case BTRFS_COMPRESS_NONE:
 | |
| 		return btrfs_compress_types[type];
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| bool btrfs_compress_is_valid_type(const char *str, size_t len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
 | |
| 		size_t comp_len = strlen(btrfs_compress_types[i]);
 | |
| 
 | |
| 		if (len < comp_len)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int btrfs_decompress_bio(struct compressed_bio *cb);
 | |
| 
 | |
| static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
 | |
| 				      unsigned long disk_size)
 | |
| {
 | |
| 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 | |
| 
 | |
| 	return sizeof(struct compressed_bio) +
 | |
| 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
 | |
| }
 | |
| 
 | |
| static int check_compressed_csum(struct btrfs_inode *inode,
 | |
| 				 struct compressed_bio *cb,
 | |
| 				 u64 disk_start)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct page *page;
 | |
| 	unsigned long i;
 | |
| 	char *kaddr;
 | |
| 	u32 csum;
 | |
| 	u32 *cb_sum = &cb->sums;
 | |
| 
 | |
| 	if (inode->flags & BTRFS_INODE_NODATASUM)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < cb->nr_pages; i++) {
 | |
| 		page = cb->compressed_pages[i];
 | |
| 		csum = ~(u32)0;
 | |
| 
 | |
| 		kaddr = kmap_atomic(page);
 | |
| 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
 | |
| 		btrfs_csum_final(csum, (u8 *)&csum);
 | |
| 		kunmap_atomic(kaddr);
 | |
| 
 | |
| 		if (csum != *cb_sum) {
 | |
| 			btrfs_print_data_csum_error(inode, disk_start, csum,
 | |
| 					*cb_sum, cb->mirror_num);
 | |
| 			ret = -EIO;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		cb_sum++;
 | |
| 
 | |
| 	}
 | |
| 	ret = 0;
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* when we finish reading compressed pages from the disk, we
 | |
|  * decompress them and then run the bio end_io routines on the
 | |
|  * decompressed pages (in the inode address space).
 | |
|  *
 | |
|  * This allows the checksumming and other IO error handling routines
 | |
|  * to work normally
 | |
|  *
 | |
|  * The compressed pages are freed here, and it must be run
 | |
|  * in process context
 | |
|  */
 | |
| static void end_compressed_bio_read(struct bio *bio)
 | |
| {
 | |
| 	struct compressed_bio *cb = bio->bi_private;
 | |
| 	struct inode *inode;
 | |
| 	struct page *page;
 | |
| 	unsigned long index;
 | |
| 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		cb->errors = 1;
 | |
| 
 | |
| 	/* if there are more bios still pending for this compressed
 | |
| 	 * extent, just exit
 | |
| 	 */
 | |
| 	if (!refcount_dec_and_test(&cb->pending_bios))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Record the correct mirror_num in cb->orig_bio so that
 | |
| 	 * read-repair can work properly.
 | |
| 	 */
 | |
| 	ASSERT(btrfs_io_bio(cb->orig_bio));
 | |
| 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 | |
| 	cb->mirror_num = mirror;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some IO in this cb have failed, just skip checksum as there
 | |
| 	 * is no way it could be correct.
 | |
| 	 */
 | |
| 	if (cb->errors == 1)
 | |
| 		goto csum_failed;
 | |
| 
 | |
| 	inode = cb->inode;
 | |
| 	ret = check_compressed_csum(BTRFS_I(inode), cb,
 | |
| 				    (u64)bio->bi_iter.bi_sector << 9);
 | |
| 	if (ret)
 | |
| 		goto csum_failed;
 | |
| 
 | |
| 	/* ok, we're the last bio for this extent, lets start
 | |
| 	 * the decompression.
 | |
| 	 */
 | |
| 	ret = btrfs_decompress_bio(cb);
 | |
| 
 | |
| csum_failed:
 | |
| 	if (ret)
 | |
| 		cb->errors = 1;
 | |
| 
 | |
| 	/* release the compressed pages */
 | |
| 	index = 0;
 | |
| 	for (index = 0; index < cb->nr_pages; index++) {
 | |
| 		page = cb->compressed_pages[index];
 | |
| 		page->mapping = NULL;
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 
 | |
| 	/* do io completion on the original bio */
 | |
| 	if (cb->errors) {
 | |
| 		bio_io_error(cb->orig_bio);
 | |
| 	} else {
 | |
| 		int i;
 | |
| 		struct bio_vec *bvec;
 | |
| 
 | |
| 		/*
 | |
| 		 * we have verified the checksum already, set page
 | |
| 		 * checked so the end_io handlers know about it
 | |
| 		 */
 | |
| 		ASSERT(!bio_flagged(bio, BIO_CLONED));
 | |
| 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
 | |
| 			SetPageChecked(bvec->bv_page);
 | |
| 
 | |
| 		bio_endio(cb->orig_bio);
 | |
| 	}
 | |
| 
 | |
| 	/* finally free the cb struct */
 | |
| 	kfree(cb->compressed_pages);
 | |
| 	kfree(cb);
 | |
| out:
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the writeback bits on all of the file
 | |
|  * pages for a compressed write
 | |
|  */
 | |
| static noinline void end_compressed_writeback(struct inode *inode,
 | |
| 					      const struct compressed_bio *cb)
 | |
| {
 | |
| 	unsigned long index = cb->start >> PAGE_SHIFT;
 | |
| 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 | |
| 	struct page *pages[16];
 | |
| 	unsigned long nr_pages = end_index - index + 1;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (cb->errors)
 | |
| 		mapping_set_error(inode->i_mapping, -EIO);
 | |
| 
 | |
| 	while (nr_pages > 0) {
 | |
| 		ret = find_get_pages_contig(inode->i_mapping, index,
 | |
| 				     min_t(unsigned long,
 | |
| 				     nr_pages, ARRAY_SIZE(pages)), pages);
 | |
| 		if (ret == 0) {
 | |
| 			nr_pages -= 1;
 | |
| 			index += 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			if (cb->errors)
 | |
| 				SetPageError(pages[i]);
 | |
| 			end_page_writeback(pages[i]);
 | |
| 			put_page(pages[i]);
 | |
| 		}
 | |
| 		nr_pages -= ret;
 | |
| 		index += ret;
 | |
| 	}
 | |
| 	/* the inode may be gone now */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * do the cleanup once all the compressed pages hit the disk.
 | |
|  * This will clear writeback on the file pages and free the compressed
 | |
|  * pages.
 | |
|  *
 | |
|  * This also calls the writeback end hooks for the file pages so that
 | |
|  * metadata and checksums can be updated in the file.
 | |
|  */
 | |
| static void end_compressed_bio_write(struct bio *bio)
 | |
| {
 | |
| 	struct extent_io_tree *tree;
 | |
| 	struct compressed_bio *cb = bio->bi_private;
 | |
| 	struct inode *inode;
 | |
| 	struct page *page;
 | |
| 	unsigned long index;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		cb->errors = 1;
 | |
| 
 | |
| 	/* if there are more bios still pending for this compressed
 | |
| 	 * extent, just exit
 | |
| 	 */
 | |
| 	if (!refcount_dec_and_test(&cb->pending_bios))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* ok, we're the last bio for this extent, step one is to
 | |
| 	 * call back into the FS and do all the end_io operations
 | |
| 	 */
 | |
| 	inode = cb->inode;
 | |
| 	tree = &BTRFS_I(inode)->io_tree;
 | |
| 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 | |
| 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 | |
| 					 cb->start,
 | |
| 					 cb->start + cb->len - 1,
 | |
| 					 NULL,
 | |
| 					 bio->bi_status ?
 | |
| 					 BLK_STS_OK : BLK_STS_NOTSUPP);
 | |
| 	cb->compressed_pages[0]->mapping = NULL;
 | |
| 
 | |
| 	end_compressed_writeback(inode, cb);
 | |
| 	/* note, our inode could be gone now */
 | |
| 
 | |
| 	/*
 | |
| 	 * release the compressed pages, these came from alloc_page and
 | |
| 	 * are not attached to the inode at all
 | |
| 	 */
 | |
| 	index = 0;
 | |
| 	for (index = 0; index < cb->nr_pages; index++) {
 | |
| 		page = cb->compressed_pages[index];
 | |
| 		page->mapping = NULL;
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 
 | |
| 	/* finally free the cb struct */
 | |
| 	kfree(cb->compressed_pages);
 | |
| 	kfree(cb);
 | |
| out:
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * worker function to build and submit bios for previously compressed pages.
 | |
|  * The corresponding pages in the inode should be marked for writeback
 | |
|  * and the compressed pages should have a reference on them for dropping
 | |
|  * when the IO is complete.
 | |
|  *
 | |
|  * This also checksums the file bytes and gets things ready for
 | |
|  * the end io hooks.
 | |
|  */
 | |
| blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
 | |
| 				 unsigned long len, u64 disk_start,
 | |
| 				 unsigned long compressed_len,
 | |
| 				 struct page **compressed_pages,
 | |
| 				 unsigned long nr_pages,
 | |
| 				 unsigned int write_flags)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | |
| 	struct bio *bio = NULL;
 | |
| 	struct compressed_bio *cb;
 | |
| 	unsigned long bytes_left;
 | |
| 	int pg_index = 0;
 | |
| 	struct page *page;
 | |
| 	u64 first_byte = disk_start;
 | |
| 	struct block_device *bdev;
 | |
| 	blk_status_t ret;
 | |
| 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 | |
| 
 | |
| 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
 | |
| 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 | |
| 	if (!cb)
 | |
| 		return BLK_STS_RESOURCE;
 | |
| 	refcount_set(&cb->pending_bios, 0);
 | |
| 	cb->errors = 0;
 | |
| 	cb->inode = inode;
 | |
| 	cb->start = start;
 | |
| 	cb->len = len;
 | |
| 	cb->mirror_num = 0;
 | |
| 	cb->compressed_pages = compressed_pages;
 | |
| 	cb->compressed_len = compressed_len;
 | |
| 	cb->orig_bio = NULL;
 | |
| 	cb->nr_pages = nr_pages;
 | |
| 
 | |
| 	bdev = fs_info->fs_devices->latest_bdev;
 | |
| 
 | |
| 	bio = btrfs_bio_alloc(bdev, first_byte);
 | |
| 	bio->bi_opf = REQ_OP_WRITE | write_flags;
 | |
| 	bio->bi_private = cb;
 | |
| 	bio->bi_end_io = end_compressed_bio_write;
 | |
| 	refcount_set(&cb->pending_bios, 1);
 | |
| 
 | |
| 	/* create and submit bios for the compressed pages */
 | |
| 	bytes_left = compressed_len;
 | |
| 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 | |
| 		int submit = 0;
 | |
| 
 | |
| 		page = compressed_pages[pg_index];
 | |
| 		page->mapping = inode->i_mapping;
 | |
| 		if (bio->bi_iter.bi_size)
 | |
| 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
 | |
| 
 | |
| 		page->mapping = NULL;
 | |
| 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
 | |
| 		    PAGE_SIZE) {
 | |
| 			/*
 | |
| 			 * inc the count before we submit the bio so
 | |
| 			 * we know the end IO handler won't happen before
 | |
| 			 * we inc the count.  Otherwise, the cb might get
 | |
| 			 * freed before we're done setting it up
 | |
| 			 */
 | |
| 			refcount_inc(&cb->pending_bios);
 | |
| 			ret = btrfs_bio_wq_end_io(fs_info, bio,
 | |
| 						  BTRFS_WQ_ENDIO_DATA);
 | |
| 			BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 			if (!skip_sum) {
 | |
| 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 | |
| 				BUG_ON(ret); /* -ENOMEM */
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
 | |
| 			if (ret) {
 | |
| 				bio->bi_status = ret;
 | |
| 				bio_endio(bio);
 | |
| 			}
 | |
| 
 | |
| 			bio = btrfs_bio_alloc(bdev, first_byte);
 | |
| 			bio->bi_opf = REQ_OP_WRITE | write_flags;
 | |
| 			bio->bi_private = cb;
 | |
| 			bio->bi_end_io = end_compressed_bio_write;
 | |
| 			bio_add_page(bio, page, PAGE_SIZE, 0);
 | |
| 		}
 | |
| 		if (bytes_left < PAGE_SIZE) {
 | |
| 			btrfs_info(fs_info,
 | |
| 					"bytes left %lu compress len %lu nr %lu",
 | |
| 			       bytes_left, cb->compressed_len, cb->nr_pages);
 | |
| 		}
 | |
| 		bytes_left -= PAGE_SIZE;
 | |
| 		first_byte += PAGE_SIZE;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 | |
| 	BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 	if (!skip_sum) {
 | |
| 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
 | |
| 	if (ret) {
 | |
| 		bio->bi_status = ret;
 | |
| 		bio_endio(bio);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 bio_end_offset(struct bio *bio)
 | |
| {
 | |
| 	struct bio_vec *last = bio_last_bvec_all(bio);
 | |
| 
 | |
| 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 | |
| }
 | |
| 
 | |
| static noinline int add_ra_bio_pages(struct inode *inode,
 | |
| 				     u64 compressed_end,
 | |
| 				     struct compressed_bio *cb)
 | |
| {
 | |
| 	unsigned long end_index;
 | |
| 	unsigned long pg_index;
 | |
| 	u64 last_offset;
 | |
| 	u64 isize = i_size_read(inode);
 | |
| 	int ret;
 | |
| 	struct page *page;
 | |
| 	unsigned long nr_pages = 0;
 | |
| 	struct extent_map *em;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct extent_io_tree *tree;
 | |
| 	u64 end;
 | |
| 	int misses = 0;
 | |
| 
 | |
| 	last_offset = bio_end_offset(cb->orig_bio);
 | |
| 	em_tree = &BTRFS_I(inode)->extent_tree;
 | |
| 	tree = &BTRFS_I(inode)->io_tree;
 | |
| 
 | |
| 	if (isize == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	while (last_offset < compressed_end) {
 | |
| 		pg_index = last_offset >> PAGE_SHIFT;
 | |
| 
 | |
| 		if (pg_index > end_index)
 | |
| 			break;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		page = radix_tree_lookup(&mapping->i_pages, pg_index);
 | |
| 		rcu_read_unlock();
 | |
| 		if (page && !radix_tree_exceptional_entry(page)) {
 | |
| 			misses++;
 | |
| 			if (misses > 4)
 | |
| 				break;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 | |
| 								 ~__GFP_FS));
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 
 | |
| 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 | |
| 			put_page(page);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		end = last_offset + PAGE_SIZE - 1;
 | |
| 		/*
 | |
| 		 * at this point, we have a locked page in the page cache
 | |
| 		 * for these bytes in the file.  But, we have to make
 | |
| 		 * sure they map to this compressed extent on disk.
 | |
| 		 */
 | |
| 		set_page_extent_mapped(page);
 | |
| 		lock_extent(tree, last_offset, end);
 | |
| 		read_lock(&em_tree->lock);
 | |
| 		em = lookup_extent_mapping(em_tree, last_offset,
 | |
| 					   PAGE_SIZE);
 | |
| 		read_unlock(&em_tree->lock);
 | |
| 
 | |
| 		if (!em || last_offset < em->start ||
 | |
| 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 | |
| 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 | |
| 			free_extent_map(em);
 | |
| 			unlock_extent(tree, last_offset, end);
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			break;
 | |
| 		}
 | |
| 		free_extent_map(em);
 | |
| 
 | |
| 		if (page->index == end_index) {
 | |
| 			char *userpage;
 | |
| 			size_t zero_offset = isize & (PAGE_SIZE - 1);
 | |
| 
 | |
| 			if (zero_offset) {
 | |
| 				int zeros;
 | |
| 				zeros = PAGE_SIZE - zero_offset;
 | |
| 				userpage = kmap_atomic(page);
 | |
| 				memset(userpage + zero_offset, 0, zeros);
 | |
| 				flush_dcache_page(page);
 | |
| 				kunmap_atomic(userpage);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ret = bio_add_page(cb->orig_bio, page,
 | |
| 				   PAGE_SIZE, 0);
 | |
| 
 | |
| 		if (ret == PAGE_SIZE) {
 | |
| 			nr_pages++;
 | |
| 			put_page(page);
 | |
| 		} else {
 | |
| 			unlock_extent(tree, last_offset, end);
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			break;
 | |
| 		}
 | |
| next:
 | |
| 		last_offset += PAGE_SIZE;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for a compressed read, the bio we get passed has all the inode pages
 | |
|  * in it.  We don't actually do IO on those pages but allocate new ones
 | |
|  * to hold the compressed pages on disk.
 | |
|  *
 | |
|  * bio->bi_iter.bi_sector points to the compressed extent on disk
 | |
|  * bio->bi_io_vec points to all of the inode pages
 | |
|  *
 | |
|  * After the compressed pages are read, we copy the bytes into the
 | |
|  * bio we were passed and then call the bio end_io calls
 | |
|  */
 | |
| blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 | |
| 				 int mirror_num, unsigned long bio_flags)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | |
| 	struct extent_io_tree *tree;
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct compressed_bio *cb;
 | |
| 	unsigned long compressed_len;
 | |
| 	unsigned long nr_pages;
 | |
| 	unsigned long pg_index;
 | |
| 	struct page *page;
 | |
| 	struct block_device *bdev;
 | |
| 	struct bio *comp_bio;
 | |
| 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 | |
| 	u64 em_len;
 | |
| 	u64 em_start;
 | |
| 	struct extent_map *em;
 | |
| 	blk_status_t ret = BLK_STS_RESOURCE;
 | |
| 	int faili = 0;
 | |
| 	u32 *sums;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->io_tree;
 | |
| 	em_tree = &BTRFS_I(inode)->extent_tree;
 | |
| 
 | |
| 	/* we need the actual starting offset of this extent in the file */
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree,
 | |
| 				   page_offset(bio_first_page_all(bio)),
 | |
| 				   PAGE_SIZE);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 	if (!em)
 | |
| 		return BLK_STS_IOERR;
 | |
| 
 | |
| 	compressed_len = em->block_len;
 | |
| 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 | |
| 	if (!cb)
 | |
| 		goto out;
 | |
| 
 | |
| 	refcount_set(&cb->pending_bios, 0);
 | |
| 	cb->errors = 0;
 | |
| 	cb->inode = inode;
 | |
| 	cb->mirror_num = mirror_num;
 | |
| 	sums = &cb->sums;
 | |
| 
 | |
| 	cb->start = em->orig_start;
 | |
| 	em_len = em->len;
 | |
| 	em_start = em->start;
 | |
| 
 | |
| 	free_extent_map(em);
 | |
| 	em = NULL;
 | |
| 
 | |
| 	cb->len = bio->bi_iter.bi_size;
 | |
| 	cb->compressed_len = compressed_len;
 | |
| 	cb->compress_type = extent_compress_type(bio_flags);
 | |
| 	cb->orig_bio = bio;
 | |
| 
 | |
| 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 | |
| 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 | |
| 				       GFP_NOFS);
 | |
| 	if (!cb->compressed_pages)
 | |
| 		goto fail1;
 | |
| 
 | |
| 	bdev = fs_info->fs_devices->latest_bdev;
 | |
| 
 | |
| 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 | |
| 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 | |
| 							      __GFP_HIGHMEM);
 | |
| 		if (!cb->compressed_pages[pg_index]) {
 | |
| 			faili = pg_index - 1;
 | |
| 			ret = BLK_STS_RESOURCE;
 | |
| 			goto fail2;
 | |
| 		}
 | |
| 	}
 | |
| 	faili = nr_pages - 1;
 | |
| 	cb->nr_pages = nr_pages;
 | |
| 
 | |
| 	add_ra_bio_pages(inode, em_start + em_len, cb);
 | |
| 
 | |
| 	/* include any pages we added in add_ra-bio_pages */
 | |
| 	cb->len = bio->bi_iter.bi_size;
 | |
| 
 | |
| 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
 | |
| 	comp_bio->bi_opf = REQ_OP_READ;
 | |
| 	comp_bio->bi_private = cb;
 | |
| 	comp_bio->bi_end_io = end_compressed_bio_read;
 | |
| 	refcount_set(&cb->pending_bios, 1);
 | |
| 
 | |
| 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 | |
| 		int submit = 0;
 | |
| 
 | |
| 		page = cb->compressed_pages[pg_index];
 | |
| 		page->mapping = inode->i_mapping;
 | |
| 		page->index = em_start >> PAGE_SHIFT;
 | |
| 
 | |
| 		if (comp_bio->bi_iter.bi_size)
 | |
| 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
 | |
| 					comp_bio, 0);
 | |
| 
 | |
| 		page->mapping = NULL;
 | |
| 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 | |
| 		    PAGE_SIZE) {
 | |
| 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 | |
| 						  BTRFS_WQ_ENDIO_DATA);
 | |
| 			BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 			/*
 | |
| 			 * inc the count before we submit the bio so
 | |
| 			 * we know the end IO handler won't happen before
 | |
| 			 * we inc the count.  Otherwise, the cb might get
 | |
| 			 * freed before we're done setting it up
 | |
| 			 */
 | |
| 			refcount_inc(&cb->pending_bios);
 | |
| 
 | |
| 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 | |
| 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
 | |
| 							    sums);
 | |
| 				BUG_ON(ret); /* -ENOMEM */
 | |
| 			}
 | |
| 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 | |
| 					     fs_info->sectorsize);
 | |
| 
 | |
| 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 | |
| 			if (ret) {
 | |
| 				comp_bio->bi_status = ret;
 | |
| 				bio_endio(comp_bio);
 | |
| 			}
 | |
| 
 | |
| 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
 | |
| 			comp_bio->bi_opf = REQ_OP_READ;
 | |
| 			comp_bio->bi_private = cb;
 | |
| 			comp_bio->bi_end_io = end_compressed_bio_read;
 | |
| 
 | |
| 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 | |
| 		}
 | |
| 		cur_disk_byte += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 | |
| 	BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 | |
| 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 | |
| 	if (ret) {
 | |
| 		comp_bio->bi_status = ret;
 | |
| 		bio_endio(comp_bio);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail2:
 | |
| 	while (faili >= 0) {
 | |
| 		__free_page(cb->compressed_pages[faili]);
 | |
| 		faili--;
 | |
| 	}
 | |
| 
 | |
| 	kfree(cb->compressed_pages);
 | |
| fail1:
 | |
| 	kfree(cb);
 | |
| out:
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Heuristic uses systematic sampling to collect data from the input data
 | |
|  * range, the logic can be tuned by the following constants:
 | |
|  *
 | |
|  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 | |
|  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 | |
|  */
 | |
| #define SAMPLING_READ_SIZE	(16)
 | |
| #define SAMPLING_INTERVAL	(256)
 | |
| 
 | |
| /*
 | |
|  * For statistical analysis of the input data we consider bytes that form a
 | |
|  * Galois Field of 256 objects. Each object has an attribute count, ie. how
 | |
|  * many times the object appeared in the sample.
 | |
|  */
 | |
| #define BUCKET_SIZE		(256)
 | |
| 
 | |
| /*
 | |
|  * The size of the sample is based on a statistical sampling rule of thumb.
 | |
|  * The common way is to perform sampling tests as long as the number of
 | |
|  * elements in each cell is at least 5.
 | |
|  *
 | |
|  * Instead of 5, we choose 32 to obtain more accurate results.
 | |
|  * If the data contain the maximum number of symbols, which is 256, we obtain a
 | |
|  * sample size bound by 8192.
 | |
|  *
 | |
|  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 | |
|  * from up to 512 locations.
 | |
|  */
 | |
| #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 | |
| 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 | |
| 
 | |
| struct bucket_item {
 | |
| 	u32 count;
 | |
| };
 | |
| 
 | |
| struct heuristic_ws {
 | |
| 	/* Partial copy of input data */
 | |
| 	u8 *sample;
 | |
| 	u32 sample_size;
 | |
| 	/* Buckets store counters for each byte value */
 | |
| 	struct bucket_item *bucket;
 | |
| 	/* Sorting buffer */
 | |
| 	struct bucket_item *bucket_b;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| static void free_heuristic_ws(struct list_head *ws)
 | |
| {
 | |
| 	struct heuristic_ws *workspace;
 | |
| 
 | |
| 	workspace = list_entry(ws, struct heuristic_ws, list);
 | |
| 
 | |
| 	kvfree(workspace->sample);
 | |
| 	kfree(workspace->bucket);
 | |
| 	kfree(workspace->bucket_b);
 | |
| 	kfree(workspace);
 | |
| }
 | |
| 
 | |
| static struct list_head *alloc_heuristic_ws(void)
 | |
| {
 | |
| 	struct heuristic_ws *ws;
 | |
| 
 | |
| 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 | |
| 	if (!ws)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 | |
| 	if (!ws->sample)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 | |
| 	if (!ws->bucket)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 | |
| 	if (!ws->bucket_b)
 | |
| 		goto fail;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ws->list);
 | |
| 	return &ws->list;
 | |
| fail:
 | |
| 	free_heuristic_ws(&ws->list);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| struct workspaces_list {
 | |
| 	struct list_head idle_ws;
 | |
| 	spinlock_t ws_lock;
 | |
| 	/* Number of free workspaces */
 | |
| 	int free_ws;
 | |
| 	/* Total number of allocated workspaces */
 | |
| 	atomic_t total_ws;
 | |
| 	/* Waiters for a free workspace */
 | |
| 	wait_queue_head_t ws_wait;
 | |
| };
 | |
| 
 | |
| static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
 | |
| 
 | |
| static struct workspaces_list btrfs_heuristic_ws;
 | |
| 
 | |
| static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 | |
| 	&btrfs_zlib_compress,
 | |
| 	&btrfs_lzo_compress,
 | |
| 	&btrfs_zstd_compress,
 | |
| };
 | |
| 
 | |
| void __init btrfs_init_compress(void)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int i;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
 | |
| 	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
 | |
| 	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
 | |
| 	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
 | |
| 
 | |
| 	workspace = alloc_heuristic_ws();
 | |
| 	if (IS_ERR(workspace)) {
 | |
| 		pr_warn(
 | |
| 	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
 | |
| 	} else {
 | |
| 		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
 | |
| 		btrfs_heuristic_ws.free_ws = 1;
 | |
| 		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 | |
| 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
 | |
| 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
 | |
| 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
 | |
| 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
 | |
| 
 | |
| 		/*
 | |
| 		 * Preallocate one workspace for each compression type so
 | |
| 		 * we can guarantee forward progress in the worst case
 | |
| 		 */
 | |
| 		workspace = btrfs_compress_op[i]->alloc_workspace();
 | |
| 		if (IS_ERR(workspace)) {
 | |
| 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
 | |
| 		} else {
 | |
| 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
 | |
| 			btrfs_comp_ws[i].free_ws = 1;
 | |
| 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This finds an available workspace or allocates a new one.
 | |
|  * If it's not possible to allocate a new one, waits until there's one.
 | |
|  * Preallocation makes a forward progress guarantees and we do not return
 | |
|  * errors.
 | |
|  */
 | |
| static struct list_head *__find_workspace(int type, bool heuristic)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int cpus = num_online_cpus();
 | |
| 	int idx = type - 1;
 | |
| 	unsigned nofs_flag;
 | |
| 	struct list_head *idle_ws;
 | |
| 	spinlock_t *ws_lock;
 | |
| 	atomic_t *total_ws;
 | |
| 	wait_queue_head_t *ws_wait;
 | |
| 	int *free_ws;
 | |
| 
 | |
| 	if (heuristic) {
 | |
| 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
 | |
| 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
 | |
| 		total_ws = &btrfs_heuristic_ws.total_ws;
 | |
| 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
 | |
| 		free_ws	 = &btrfs_heuristic_ws.free_ws;
 | |
| 	} else {
 | |
| 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
 | |
| 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
 | |
| 		total_ws = &btrfs_comp_ws[idx].total_ws;
 | |
| 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
 | |
| 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	spin_lock(ws_lock);
 | |
| 	if (!list_empty(idle_ws)) {
 | |
| 		workspace = idle_ws->next;
 | |
| 		list_del(workspace);
 | |
| 		(*free_ws)--;
 | |
| 		spin_unlock(ws_lock);
 | |
| 		return workspace;
 | |
| 
 | |
| 	}
 | |
| 	if (atomic_read(total_ws) > cpus) {
 | |
| 		DEFINE_WAIT(wait);
 | |
| 
 | |
| 		spin_unlock(ws_lock);
 | |
| 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 | |
| 		if (atomic_read(total_ws) > cpus && !*free_ws)
 | |
| 			schedule();
 | |
| 		finish_wait(ws_wait, &wait);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	atomic_inc(total_ws);
 | |
| 	spin_unlock(ws_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 | |
| 	 * to turn it off here because we might get called from the restricted
 | |
| 	 * context of btrfs_compress_bio/btrfs_compress_pages
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	if (heuristic)
 | |
| 		workspace = alloc_heuristic_ws();
 | |
| 	else
 | |
| 		workspace = btrfs_compress_op[idx]->alloc_workspace();
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 
 | |
| 	if (IS_ERR(workspace)) {
 | |
| 		atomic_dec(total_ws);
 | |
| 		wake_up(ws_wait);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not return the error but go back to waiting. There's a
 | |
| 		 * workspace preallocated for each type and the compression
 | |
| 		 * time is bounded so we get to a workspace eventually. This
 | |
| 		 * makes our caller's life easier.
 | |
| 		 *
 | |
| 		 * To prevent silent and low-probability deadlocks (when the
 | |
| 		 * initial preallocation fails), check if there are any
 | |
| 		 * workspaces at all.
 | |
| 		 */
 | |
| 		if (atomic_read(total_ws) == 0) {
 | |
| 			static DEFINE_RATELIMIT_STATE(_rs,
 | |
| 					/* once per minute */ 60 * HZ,
 | |
| 					/* no burst */ 1);
 | |
| 
 | |
| 			if (__ratelimit(&_rs)) {
 | |
| 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 | |
| 			}
 | |
| 		}
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return workspace;
 | |
| }
 | |
| 
 | |
| static struct list_head *find_workspace(int type)
 | |
| {
 | |
| 	return __find_workspace(type, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * put a workspace struct back on the list or free it if we have enough
 | |
|  * idle ones sitting around
 | |
|  */
 | |
| static void __free_workspace(int type, struct list_head *workspace,
 | |
| 			     bool heuristic)
 | |
| {
 | |
| 	int idx = type - 1;
 | |
| 	struct list_head *idle_ws;
 | |
| 	spinlock_t *ws_lock;
 | |
| 	atomic_t *total_ws;
 | |
| 	wait_queue_head_t *ws_wait;
 | |
| 	int *free_ws;
 | |
| 
 | |
| 	if (heuristic) {
 | |
| 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
 | |
| 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
 | |
| 		total_ws = &btrfs_heuristic_ws.total_ws;
 | |
| 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
 | |
| 		free_ws	 = &btrfs_heuristic_ws.free_ws;
 | |
| 	} else {
 | |
| 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
 | |
| 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
 | |
| 		total_ws = &btrfs_comp_ws[idx].total_ws;
 | |
| 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
 | |
| 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(ws_lock);
 | |
| 	if (*free_ws <= num_online_cpus()) {
 | |
| 		list_add(workspace, idle_ws);
 | |
| 		(*free_ws)++;
 | |
| 		spin_unlock(ws_lock);
 | |
| 		goto wake;
 | |
| 	}
 | |
| 	spin_unlock(ws_lock);
 | |
| 
 | |
| 	if (heuristic)
 | |
| 		free_heuristic_ws(workspace);
 | |
| 	else
 | |
| 		btrfs_compress_op[idx]->free_workspace(workspace);
 | |
| 	atomic_dec(total_ws);
 | |
| wake:
 | |
| 	cond_wake_up(ws_wait);
 | |
| }
 | |
| 
 | |
| static void free_workspace(int type, struct list_head *ws)
 | |
| {
 | |
| 	return __free_workspace(type, ws, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cleanup function for module exit
 | |
|  */
 | |
| static void free_workspaces(void)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int i;
 | |
| 
 | |
| 	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
 | |
| 		workspace = btrfs_heuristic_ws.idle_ws.next;
 | |
| 		list_del(workspace);
 | |
| 		free_heuristic_ws(workspace);
 | |
| 		atomic_dec(&btrfs_heuristic_ws.total_ws);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 | |
| 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
 | |
| 			workspace = btrfs_comp_ws[i].idle_ws.next;
 | |
| 			list_del(workspace);
 | |
| 			btrfs_compress_op[i]->free_workspace(workspace);
 | |
| 			atomic_dec(&btrfs_comp_ws[i].total_ws);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given an address space and start and length, compress the bytes into @pages
 | |
|  * that are allocated on demand.
 | |
|  *
 | |
|  * @type_level is encoded algorithm and level, where level 0 means whatever
 | |
|  * default the algorithm chooses and is opaque here;
 | |
|  * - compression algo are 0-3
 | |
|  * - the level are bits 4-7
 | |
|  *
 | |
|  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 | |
|  * and returns number of actually allocated pages
 | |
|  *
 | |
|  * @total_in is used to return the number of bytes actually read.  It
 | |
|  * may be smaller than the input length if we had to exit early because we
 | |
|  * ran out of room in the pages array or because we cross the
 | |
|  * max_out threshold.
 | |
|  *
 | |
|  * @total_out is an in/out parameter, must be set to the input length and will
 | |
|  * be also used to return the total number of compressed bytes
 | |
|  *
 | |
|  * @max_out tells us the max number of bytes that we're allowed to
 | |
|  * stuff into pages
 | |
|  */
 | |
| int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
 | |
| 			 u64 start, struct page **pages,
 | |
| 			 unsigned long *out_pages,
 | |
| 			 unsigned long *total_in,
 | |
| 			 unsigned long *total_out)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int ret;
 | |
| 	int type = type_level & 0xF;
 | |
| 
 | |
| 	workspace = find_workspace(type);
 | |
| 
 | |
| 	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
 | |
| 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 | |
| 						      start, pages,
 | |
| 						      out_pages,
 | |
| 						      total_in, total_out);
 | |
| 	free_workspace(type, workspace);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pages_in is an array of pages with compressed data.
 | |
|  *
 | |
|  * disk_start is the starting logical offset of this array in the file
 | |
|  *
 | |
|  * orig_bio contains the pages from the file that we want to decompress into
 | |
|  *
 | |
|  * srclen is the number of bytes in pages_in
 | |
|  *
 | |
|  * The basic idea is that we have a bio that was created by readpages.
 | |
|  * The pages in the bio are for the uncompressed data, and they may not
 | |
|  * be contiguous.  They all correspond to the range of bytes covered by
 | |
|  * the compressed extent.
 | |
|  */
 | |
| static int btrfs_decompress_bio(struct compressed_bio *cb)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int ret;
 | |
| 	int type = cb->compress_type;
 | |
| 
 | |
| 	workspace = find_workspace(type);
 | |
| 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
 | |
| 	free_workspace(type, workspace);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a less complex decompression routine.  Our compressed data fits in a
 | |
|  * single page, and we want to read a single page out of it.
 | |
|  * start_byte tells us the offset into the compressed data we're interested in
 | |
|  */
 | |
| int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 | |
| 		     unsigned long start_byte, size_t srclen, size_t destlen)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int ret;
 | |
| 
 | |
| 	workspace = find_workspace(type);
 | |
| 
 | |
| 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 | |
| 						  dest_page, start_byte,
 | |
| 						  srclen, destlen);
 | |
| 
 | |
| 	free_workspace(type, workspace);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void __cold btrfs_exit_compress(void)
 | |
| {
 | |
| 	free_workspaces();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy uncompressed data from working buffer to pages.
 | |
|  *
 | |
|  * buf_start is the byte offset we're of the start of our workspace buffer.
 | |
|  *
 | |
|  * total_out is the last byte of the buffer
 | |
|  */
 | |
| int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
 | |
| 			      unsigned long total_out, u64 disk_start,
 | |
| 			      struct bio *bio)
 | |
| {
 | |
| 	unsigned long buf_offset;
 | |
| 	unsigned long current_buf_start;
 | |
| 	unsigned long start_byte;
 | |
| 	unsigned long prev_start_byte;
 | |
| 	unsigned long working_bytes = total_out - buf_start;
 | |
| 	unsigned long bytes;
 | |
| 	char *kaddr;
 | |
| 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
 | |
| 
 | |
| 	/*
 | |
| 	 * start byte is the first byte of the page we're currently
 | |
| 	 * copying into relative to the start of the compressed data.
 | |
| 	 */
 | |
| 	start_byte = page_offset(bvec.bv_page) - disk_start;
 | |
| 
 | |
| 	/* we haven't yet hit data corresponding to this page */
 | |
| 	if (total_out <= start_byte)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * the start of the data we care about is offset into
 | |
| 	 * the middle of our working buffer
 | |
| 	 */
 | |
| 	if (total_out > start_byte && buf_start < start_byte) {
 | |
| 		buf_offset = start_byte - buf_start;
 | |
| 		working_bytes -= buf_offset;
 | |
| 	} else {
 | |
| 		buf_offset = 0;
 | |
| 	}
 | |
| 	current_buf_start = buf_start;
 | |
| 
 | |
| 	/* copy bytes from the working buffer into the pages */
 | |
| 	while (working_bytes > 0) {
 | |
| 		bytes = min_t(unsigned long, bvec.bv_len,
 | |
| 				PAGE_SIZE - buf_offset);
 | |
| 		bytes = min(bytes, working_bytes);
 | |
| 
 | |
| 		kaddr = kmap_atomic(bvec.bv_page);
 | |
| 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
 | |
| 		kunmap_atomic(kaddr);
 | |
| 		flush_dcache_page(bvec.bv_page);
 | |
| 
 | |
| 		buf_offset += bytes;
 | |
| 		working_bytes -= bytes;
 | |
| 		current_buf_start += bytes;
 | |
| 
 | |
| 		/* check if we need to pick another page */
 | |
| 		bio_advance(bio, bytes);
 | |
| 		if (!bio->bi_iter.bi_size)
 | |
| 			return 0;
 | |
| 		bvec = bio_iter_iovec(bio, bio->bi_iter);
 | |
| 		prev_start_byte = start_byte;
 | |
| 		start_byte = page_offset(bvec.bv_page) - disk_start;
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to make sure we're only adjusting
 | |
| 		 * our offset into compression working buffer when
 | |
| 		 * we're switching pages.  Otherwise we can incorrectly
 | |
| 		 * keep copying when we were actually done.
 | |
| 		 */
 | |
| 		if (start_byte != prev_start_byte) {
 | |
| 			/*
 | |
| 			 * make sure our new page is covered by this
 | |
| 			 * working buffer
 | |
| 			 */
 | |
| 			if (total_out <= start_byte)
 | |
| 				return 1;
 | |
| 
 | |
| 			/*
 | |
| 			 * the next page in the biovec might not be adjacent
 | |
| 			 * to the last page, but it might still be found
 | |
| 			 * inside this working buffer. bump our offset pointer
 | |
| 			 */
 | |
| 			if (total_out > start_byte &&
 | |
| 			    current_buf_start < start_byte) {
 | |
| 				buf_offset = start_byte - buf_start;
 | |
| 				working_bytes = total_out - start_byte;
 | |
| 				current_buf_start = buf_start + buf_offset;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shannon Entropy calculation
 | |
|  *
 | |
|  * Pure byte distribution analysis fails to determine compressiability of data.
 | |
|  * Try calculating entropy to estimate the average minimum number of bits
 | |
|  * needed to encode the sampled data.
 | |
|  *
 | |
|  * For convenience, return the percentage of needed bits, instead of amount of
 | |
|  * bits directly.
 | |
|  *
 | |
|  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 | |
|  *			    and can be compressible with high probability
 | |
|  *
 | |
|  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 | |
|  *
 | |
|  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 | |
|  */
 | |
| #define ENTROPY_LVL_ACEPTABLE		(65)
 | |
| #define ENTROPY_LVL_HIGH		(80)
 | |
| 
 | |
| /*
 | |
|  * For increasead precision in shannon_entropy calculation,
 | |
|  * let's do pow(n, M) to save more digits after comma:
 | |
|  *
 | |
|  * - maximum int bit length is 64
 | |
|  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 | |
|  * - 13 * 4 = 52 < 64		-> M = 4
 | |
|  *
 | |
|  * So use pow(n, 4).
 | |
|  */
 | |
| static inline u32 ilog2_w(u64 n)
 | |
| {
 | |
| 	return ilog2(n * n * n * n);
 | |
| }
 | |
| 
 | |
| static u32 shannon_entropy(struct heuristic_ws *ws)
 | |
| {
 | |
| 	const u32 entropy_max = 8 * ilog2_w(2);
 | |
| 	u32 entropy_sum = 0;
 | |
| 	u32 p, p_base, sz_base;
 | |
| 	u32 i;
 | |
| 
 | |
| 	sz_base = ilog2_w(ws->sample_size);
 | |
| 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
 | |
| 		p = ws->bucket[i].count;
 | |
| 		p_base = ilog2_w(p);
 | |
| 		entropy_sum += p * (sz_base - p_base);
 | |
| 	}
 | |
| 
 | |
| 	entropy_sum /= ws->sample_size;
 | |
| 	return entropy_sum * 100 / entropy_max;
 | |
| }
 | |
| 
 | |
| #define RADIX_BASE		4U
 | |
| #define COUNTERS_SIZE		(1U << RADIX_BASE)
 | |
| 
 | |
| static u8 get4bits(u64 num, int shift) {
 | |
| 	u8 low4bits;
 | |
| 
 | |
| 	num >>= shift;
 | |
| 	/* Reverse order */
 | |
| 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
 | |
| 	return low4bits;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use 4 bits as radix base
 | |
|  * Use 16 u32 counters for calculating new possition in buf array
 | |
|  *
 | |
|  * @array     - array that will be sorted
 | |
|  * @array_buf - buffer array to store sorting results
 | |
|  *              must be equal in size to @array
 | |
|  * @num       - array size
 | |
|  */
 | |
| static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
 | |
| 		       int num)
 | |
| {
 | |
| 	u64 max_num;
 | |
| 	u64 buf_num;
 | |
| 	u32 counters[COUNTERS_SIZE];
 | |
| 	u32 new_addr;
 | |
| 	u32 addr;
 | |
| 	int bitlen;
 | |
| 	int shift;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try avoid useless loop iterations for small numbers stored in big
 | |
| 	 * counters.  Example: 48 33 4 ... in 64bit array
 | |
| 	 */
 | |
| 	max_num = array[0].count;
 | |
| 	for (i = 1; i < num; i++) {
 | |
| 		buf_num = array[i].count;
 | |
| 		if (buf_num > max_num)
 | |
| 			max_num = buf_num;
 | |
| 	}
 | |
| 
 | |
| 	buf_num = ilog2(max_num);
 | |
| 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
 | |
| 
 | |
| 	shift = 0;
 | |
| 	while (shift < bitlen) {
 | |
| 		memset(counters, 0, sizeof(counters));
 | |
| 
 | |
| 		for (i = 0; i < num; i++) {
 | |
| 			buf_num = array[i].count;
 | |
| 			addr = get4bits(buf_num, shift);
 | |
| 			counters[addr]++;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 1; i < COUNTERS_SIZE; i++)
 | |
| 			counters[i] += counters[i - 1];
 | |
| 
 | |
| 		for (i = num - 1; i >= 0; i--) {
 | |
| 			buf_num = array[i].count;
 | |
| 			addr = get4bits(buf_num, shift);
 | |
| 			counters[addr]--;
 | |
| 			new_addr = counters[addr];
 | |
| 			array_buf[new_addr] = array[i];
 | |
| 		}
 | |
| 
 | |
| 		shift += RADIX_BASE;
 | |
| 
 | |
| 		/*
 | |
| 		 * Normal radix expects to move data from a temporary array, to
 | |
| 		 * the main one.  But that requires some CPU time. Avoid that
 | |
| 		 * by doing another sort iteration to original array instead of
 | |
| 		 * memcpy()
 | |
| 		 */
 | |
| 		memset(counters, 0, sizeof(counters));
 | |
| 
 | |
| 		for (i = 0; i < num; i ++) {
 | |
| 			buf_num = array_buf[i].count;
 | |
| 			addr = get4bits(buf_num, shift);
 | |
| 			counters[addr]++;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 1; i < COUNTERS_SIZE; i++)
 | |
| 			counters[i] += counters[i - 1];
 | |
| 
 | |
| 		for (i = num - 1; i >= 0; i--) {
 | |
| 			buf_num = array_buf[i].count;
 | |
| 			addr = get4bits(buf_num, shift);
 | |
| 			counters[addr]--;
 | |
| 			new_addr = counters[addr];
 | |
| 			array[new_addr] = array_buf[i];
 | |
| 		}
 | |
| 
 | |
| 		shift += RADIX_BASE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Size of the core byte set - how many bytes cover 90% of the sample
 | |
|  *
 | |
|  * There are several types of structured binary data that use nearly all byte
 | |
|  * values. The distribution can be uniform and counts in all buckets will be
 | |
|  * nearly the same (eg. encrypted data). Unlikely to be compressible.
 | |
|  *
 | |
|  * Other possibility is normal (Gaussian) distribution, where the data could
 | |
|  * be potentially compressible, but we have to take a few more steps to decide
 | |
|  * how much.
 | |
|  *
 | |
|  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 | |
|  *                       compression algo can easy fix that
 | |
|  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 | |
|  *                       probability is not compressible
 | |
|  */
 | |
| #define BYTE_CORE_SET_LOW		(64)
 | |
| #define BYTE_CORE_SET_HIGH		(200)
 | |
| 
 | |
| static int byte_core_set_size(struct heuristic_ws *ws)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 coreset_sum = 0;
 | |
| 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
 | |
| 	struct bucket_item *bucket = ws->bucket;
 | |
| 
 | |
| 	/* Sort in reverse order */
 | |
| 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
 | |
| 
 | |
| 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
 | |
| 		coreset_sum += bucket[i].count;
 | |
| 
 | |
| 	if (coreset_sum > core_set_threshold)
 | |
| 		return i;
 | |
| 
 | |
| 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
 | |
| 		coreset_sum += bucket[i].count;
 | |
| 		if (coreset_sum > core_set_threshold)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Count byte values in buckets.
 | |
|  * This heuristic can detect textual data (configs, xml, json, html, etc).
 | |
|  * Because in most text-like data byte set is restricted to limited number of
 | |
|  * possible characters, and that restriction in most cases makes data easy to
 | |
|  * compress.
 | |
|  *
 | |
|  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 | |
|  *	less - compressible
 | |
|  *	more - need additional analysis
 | |
|  */
 | |
| #define BYTE_SET_THRESHOLD		(64)
 | |
| 
 | |
| static u32 byte_set_size(const struct heuristic_ws *ws)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 byte_set_size = 0;
 | |
| 
 | |
| 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
 | |
| 		if (ws->bucket[i].count > 0)
 | |
| 			byte_set_size++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Continue collecting count of byte values in buckets.  If the byte
 | |
| 	 * set size is bigger then the threshold, it's pointless to continue,
 | |
| 	 * the detection technique would fail for this type of data.
 | |
| 	 */
 | |
| 	for (; i < BUCKET_SIZE; i++) {
 | |
| 		if (ws->bucket[i].count > 0) {
 | |
| 			byte_set_size++;
 | |
| 			if (byte_set_size > BYTE_SET_THRESHOLD)
 | |
| 				return byte_set_size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return byte_set_size;
 | |
| }
 | |
| 
 | |
| static bool sample_repeated_patterns(struct heuristic_ws *ws)
 | |
| {
 | |
| 	const u32 half_of_sample = ws->sample_size / 2;
 | |
| 	const u8 *data = ws->sample;
 | |
| 
 | |
| 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
 | |
| }
 | |
| 
 | |
| static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
 | |
| 				     struct heuristic_ws *ws)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	u64 index, index_end;
 | |
| 	u32 i, curr_sample_pos;
 | |
| 	u8 *in_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compression handles the input data by chunks of 128KiB
 | |
| 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
 | |
| 	 *
 | |
| 	 * We do the same for the heuristic and loop over the whole range.
 | |
| 	 *
 | |
| 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
 | |
| 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
 | |
| 	 */
 | |
| 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
 | |
| 		end = start + BTRFS_MAX_UNCOMPRESSED;
 | |
| 
 | |
| 	index = start >> PAGE_SHIFT;
 | |
| 	index_end = end >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Don't miss unaligned end */
 | |
| 	if (!IS_ALIGNED(end, PAGE_SIZE))
 | |
| 		index_end++;
 | |
| 
 | |
| 	curr_sample_pos = 0;
 | |
| 	while (index < index_end) {
 | |
| 		page = find_get_page(inode->i_mapping, index);
 | |
| 		in_data = kmap(page);
 | |
| 		/* Handle case where the start is not aligned to PAGE_SIZE */
 | |
| 		i = start % PAGE_SIZE;
 | |
| 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
 | |
| 			/* Don't sample any garbage from the last page */
 | |
| 			if (start > end - SAMPLING_READ_SIZE)
 | |
| 				break;
 | |
| 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
 | |
| 					SAMPLING_READ_SIZE);
 | |
| 			i += SAMPLING_INTERVAL;
 | |
| 			start += SAMPLING_INTERVAL;
 | |
| 			curr_sample_pos += SAMPLING_READ_SIZE;
 | |
| 		}
 | |
| 		kunmap(page);
 | |
| 		put_page(page);
 | |
| 
 | |
| 		index++;
 | |
| 	}
 | |
| 
 | |
| 	ws->sample_size = curr_sample_pos;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compression heuristic.
 | |
|  *
 | |
|  * For now is's a naive and optimistic 'return true', we'll extend the logic to
 | |
|  * quickly (compared to direct compression) detect data characteristics
 | |
|  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 | |
|  * data.
 | |
|  *
 | |
|  * The following types of analysis can be performed:
 | |
|  * - detect mostly zero data
 | |
|  * - detect data with low "byte set" size (text, etc)
 | |
|  * - detect data with low/high "core byte" set
 | |
|  *
 | |
|  * Return non-zero if the compression should be done, 0 otherwise.
 | |
|  */
 | |
| int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
 | |
| {
 | |
| 	struct list_head *ws_list = __find_workspace(0, true);
 | |
| 	struct heuristic_ws *ws;
 | |
| 	u32 i;
 | |
| 	u8 byte;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ws = list_entry(ws_list, struct heuristic_ws, list);
 | |
| 
 | |
| 	heuristic_collect_sample(inode, start, end, ws);
 | |
| 
 | |
| 	if (sample_repeated_patterns(ws)) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
 | |
| 
 | |
| 	for (i = 0; i < ws->sample_size; i++) {
 | |
| 		byte = ws->sample[i];
 | |
| 		ws->bucket[byte].count++;
 | |
| 	}
 | |
| 
 | |
| 	i = byte_set_size(ws);
 | |
| 	if (i < BYTE_SET_THRESHOLD) {
 | |
| 		ret = 2;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	i = byte_core_set_size(ws);
 | |
| 	if (i <= BYTE_CORE_SET_LOW) {
 | |
| 		ret = 3;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (i >= BYTE_CORE_SET_HIGH) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	i = shannon_entropy(ws);
 | |
| 	if (i <= ENTROPY_LVL_ACEPTABLE) {
 | |
| 		ret = 4;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
 | |
| 	 * needed to give green light to compression.
 | |
| 	 *
 | |
| 	 * For now just assume that compression at that level is not worth the
 | |
| 	 * resources because:
 | |
| 	 *
 | |
| 	 * 1. it is possible to defrag the data later
 | |
| 	 *
 | |
| 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
 | |
| 	 * values, every bucket has counter at level ~54. The heuristic would
 | |
| 	 * be confused. This can happen when data have some internal repeated
 | |
| 	 * patterns like "abbacbbc...". This can be detected by analyzing
 | |
| 	 * pairs of bytes, which is too costly.
 | |
| 	 */
 | |
| 	if (i < ENTROPY_LVL_HIGH) {
 | |
| 		ret = 5;
 | |
| 		goto out;
 | |
| 	} else {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	__free_workspace(0, ws_list, true);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned int btrfs_compress_str2level(const char *str)
 | |
| {
 | |
| 	if (strncmp(str, "zlib", 4) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
 | |
| 	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
 | |
| 		return str[5] - '0';
 | |
| 
 | |
| 	return BTRFS_ZLIB_DEFAULT_LEVEL;
 | |
| }
 | 
