3035 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3035 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
 | |
| 
 | |
| /* COMMON Applications Kept Enhanced (CAKE) discipline
 | |
|  *
 | |
|  * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
 | |
|  * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
 | |
|  * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
 | |
|  * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
 | |
|  * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
 | |
|  * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
 | |
|  *
 | |
|  * The CAKE Principles:
 | |
|  *		   (or, how to have your cake and eat it too)
 | |
|  *
 | |
|  * This is a combination of several shaping, AQM and FQ techniques into one
 | |
|  * easy-to-use package:
 | |
|  *
 | |
|  * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
 | |
|  *   equipment and bloated MACs.  This operates in deficit mode (as in sch_fq),
 | |
|  *   eliminating the need for any sort of burst parameter (eg. token bucket
 | |
|  *   depth).  Burst support is limited to that necessary to overcome scheduling
 | |
|  *   latency.
 | |
|  *
 | |
|  * - A Diffserv-aware priority queue, giving more priority to certain classes,
 | |
|  *   up to a specified fraction of bandwidth.  Above that bandwidth threshold,
 | |
|  *   the priority is reduced to avoid starving other tins.
 | |
|  *
 | |
|  * - Each priority tin has a separate Flow Queue system, to isolate traffic
 | |
|  *   flows from each other.  This prevents a burst on one flow from increasing
 | |
|  *   the delay to another.  Flows are distributed to queues using a
 | |
|  *   set-associative hash function.
 | |
|  *
 | |
|  * - Each queue is actively managed by Cobalt, which is a combination of the
 | |
|  *   Codel and Blue AQM algorithms.  This serves flows fairly, and signals
 | |
|  *   congestion early via ECN (if available) and/or packet drops, to keep
 | |
|  *   latency low.  The codel parameters are auto-tuned based on the bandwidth
 | |
|  *   setting, as is necessary at low bandwidths.
 | |
|  *
 | |
|  * The configuration parameters are kept deliberately simple for ease of use.
 | |
|  * Everything has sane defaults.  Complete generality of configuration is *not*
 | |
|  * a goal.
 | |
|  *
 | |
|  * The priority queue operates according to a weighted DRR scheme, combined with
 | |
|  * a bandwidth tracker which reuses the shaper logic to detect which side of the
 | |
|  * bandwidth sharing threshold the tin is operating.  This determines whether a
 | |
|  * priority-based weight (high) or a bandwidth-based weight (low) is used for
 | |
|  * that tin in the current pass.
 | |
|  *
 | |
|  * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
 | |
|  * granted us permission to leverage.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/reciprocal_div.h>
 | |
| #include <net/netlink.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <net/pkt_sched.h>
 | |
| #include <net/pkt_cls.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/flow_dissector.h>
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_NF_CONNTRACK)
 | |
| #include <net/netfilter/nf_conntrack_core.h>
 | |
| #endif
 | |
| 
 | |
| #define CAKE_SET_WAYS (8)
 | |
| #define CAKE_MAX_TINS (8)
 | |
| #define CAKE_QUEUES (1024)
 | |
| #define CAKE_FLOW_MASK 63
 | |
| #define CAKE_FLOW_NAT_FLAG 64
 | |
| 
 | |
| /* struct cobalt_params - contains codel and blue parameters
 | |
|  * @interval:	codel initial drop rate
 | |
|  * @target:     maximum persistent sojourn time & blue update rate
 | |
|  * @mtu_time:   serialisation delay of maximum-size packet
 | |
|  * @p_inc:      increment of blue drop probability (0.32 fxp)
 | |
|  * @p_dec:      decrement of blue drop probability (0.32 fxp)
 | |
|  */
 | |
| struct cobalt_params {
 | |
| 	u64	interval;
 | |
| 	u64	target;
 | |
| 	u64	mtu_time;
 | |
| 	u32	p_inc;
 | |
| 	u32	p_dec;
 | |
| };
 | |
| 
 | |
| /* struct cobalt_vars - contains codel and blue variables
 | |
|  * @count:		codel dropping frequency
 | |
|  * @rec_inv_sqrt:	reciprocal value of sqrt(count) >> 1
 | |
|  * @drop_next:		time to drop next packet, or when we dropped last
 | |
|  * @blue_timer:		Blue time to next drop
 | |
|  * @p_drop:		BLUE drop probability (0.32 fxp)
 | |
|  * @dropping:		set if in dropping state
 | |
|  * @ecn_marked:		set if marked
 | |
|  */
 | |
| struct cobalt_vars {
 | |
| 	u32	count;
 | |
| 	u32	rec_inv_sqrt;
 | |
| 	ktime_t	drop_next;
 | |
| 	ktime_t	blue_timer;
 | |
| 	u32     p_drop;
 | |
| 	bool	dropping;
 | |
| 	bool    ecn_marked;
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	CAKE_SET_NONE = 0,
 | |
| 	CAKE_SET_SPARSE,
 | |
| 	CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
 | |
| 	CAKE_SET_BULK,
 | |
| 	CAKE_SET_DECAYING
 | |
| };
 | |
| 
 | |
| struct cake_flow {
 | |
| 	/* this stuff is all needed per-flow at dequeue time */
 | |
| 	struct sk_buff	  *head;
 | |
| 	struct sk_buff	  *tail;
 | |
| 	struct list_head  flowchain;
 | |
| 	s32		  deficit;
 | |
| 	u32		  dropped;
 | |
| 	struct cobalt_vars cvars;
 | |
| 	u16		  srchost; /* index into cake_host table */
 | |
| 	u16		  dsthost;
 | |
| 	u8		  set;
 | |
| }; /* please try to keep this structure <= 64 bytes */
 | |
| 
 | |
| struct cake_host {
 | |
| 	u32 srchost_tag;
 | |
| 	u32 dsthost_tag;
 | |
| 	u16 srchost_refcnt;
 | |
| 	u16 dsthost_refcnt;
 | |
| };
 | |
| 
 | |
| struct cake_heap_entry {
 | |
| 	u16 t:3, b:10;
 | |
| };
 | |
| 
 | |
| struct cake_tin_data {
 | |
| 	struct cake_flow flows[CAKE_QUEUES];
 | |
| 	u32	backlogs[CAKE_QUEUES];
 | |
| 	u32	tags[CAKE_QUEUES]; /* for set association */
 | |
| 	u16	overflow_idx[CAKE_QUEUES];
 | |
| 	struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
 | |
| 	u16	flow_quantum;
 | |
| 
 | |
| 	struct cobalt_params cparams;
 | |
| 	u32	drop_overlimit;
 | |
| 	u16	bulk_flow_count;
 | |
| 	u16	sparse_flow_count;
 | |
| 	u16	decaying_flow_count;
 | |
| 	u16	unresponsive_flow_count;
 | |
| 
 | |
| 	u32	max_skblen;
 | |
| 
 | |
| 	struct list_head new_flows;
 | |
| 	struct list_head old_flows;
 | |
| 	struct list_head decaying_flows;
 | |
| 
 | |
| 	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
 | |
| 	ktime_t	time_next_packet;
 | |
| 	u64	tin_rate_ns;
 | |
| 	u64	tin_rate_bps;
 | |
| 	u16	tin_rate_shft;
 | |
| 
 | |
| 	u16	tin_quantum_prio;
 | |
| 	u16	tin_quantum_band;
 | |
| 	s32	tin_deficit;
 | |
| 	u32	tin_backlog;
 | |
| 	u32	tin_dropped;
 | |
| 	u32	tin_ecn_mark;
 | |
| 
 | |
| 	u32	packets;
 | |
| 	u64	bytes;
 | |
| 
 | |
| 	u32	ack_drops;
 | |
| 
 | |
| 	/* moving averages */
 | |
| 	u64 avge_delay;
 | |
| 	u64 peak_delay;
 | |
| 	u64 base_delay;
 | |
| 
 | |
| 	/* hash function stats */
 | |
| 	u32	way_directs;
 | |
| 	u32	way_hits;
 | |
| 	u32	way_misses;
 | |
| 	u32	way_collisions;
 | |
| }; /* number of tins is small, so size of this struct doesn't matter much */
 | |
| 
 | |
| struct cake_sched_data {
 | |
| 	struct tcf_proto __rcu *filter_list; /* optional external classifier */
 | |
| 	struct tcf_block *block;
 | |
| 	struct cake_tin_data *tins;
 | |
| 
 | |
| 	struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
 | |
| 	u16		overflow_timeout;
 | |
| 
 | |
| 	u16		tin_cnt;
 | |
| 	u8		tin_mode;
 | |
| 	u8		flow_mode;
 | |
| 	u8		ack_filter;
 | |
| 	u8		atm_mode;
 | |
| 
 | |
| 	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
 | |
| 	u16		rate_shft;
 | |
| 	ktime_t		time_next_packet;
 | |
| 	ktime_t		failsafe_next_packet;
 | |
| 	u64		rate_ns;
 | |
| 	u64		rate_bps;
 | |
| 	u16		rate_flags;
 | |
| 	s16		rate_overhead;
 | |
| 	u16		rate_mpu;
 | |
| 	u64		interval;
 | |
| 	u64		target;
 | |
| 
 | |
| 	/* resource tracking */
 | |
| 	u32		buffer_used;
 | |
| 	u32		buffer_max_used;
 | |
| 	u32		buffer_limit;
 | |
| 	u32		buffer_config_limit;
 | |
| 
 | |
| 	/* indices for dequeue */
 | |
| 	u16		cur_tin;
 | |
| 	u16		cur_flow;
 | |
| 
 | |
| 	struct qdisc_watchdog watchdog;
 | |
| 	const u8	*tin_index;
 | |
| 	const u8	*tin_order;
 | |
| 
 | |
| 	/* bandwidth capacity estimate */
 | |
| 	ktime_t		last_packet_time;
 | |
| 	ktime_t		avg_window_begin;
 | |
| 	u64		avg_packet_interval;
 | |
| 	u64		avg_window_bytes;
 | |
| 	u64		avg_peak_bandwidth;
 | |
| 	ktime_t		last_reconfig_time;
 | |
| 
 | |
| 	/* packet length stats */
 | |
| 	u32		avg_netoff;
 | |
| 	u16		max_netlen;
 | |
| 	u16		max_adjlen;
 | |
| 	u16		min_netlen;
 | |
| 	u16		min_adjlen;
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	CAKE_FLAG_OVERHEAD	   = BIT(0),
 | |
| 	CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
 | |
| 	CAKE_FLAG_INGRESS	   = BIT(2),
 | |
| 	CAKE_FLAG_WASH		   = BIT(3),
 | |
| 	CAKE_FLAG_SPLIT_GSO	   = BIT(4)
 | |
| };
 | |
| 
 | |
| /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
 | |
|  * obtain the best features of each.  Codel is excellent on flows which
 | |
|  * respond to congestion signals in a TCP-like way.  BLUE is more effective on
 | |
|  * unresponsive flows.
 | |
|  */
 | |
| 
 | |
| struct cobalt_skb_cb {
 | |
| 	ktime_t enqueue_time;
 | |
| 	u32     adjusted_len;
 | |
| };
 | |
| 
 | |
| static u64 us_to_ns(u64 us)
 | |
| {
 | |
| 	return us * NSEC_PER_USEC;
 | |
| }
 | |
| 
 | |
| static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
 | |
| {
 | |
| 	qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
 | |
| 	return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
 | |
| }
 | |
| 
 | |
| static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
 | |
| {
 | |
| 	return get_cobalt_cb(skb)->enqueue_time;
 | |
| }
 | |
| 
 | |
| static void cobalt_set_enqueue_time(struct sk_buff *skb,
 | |
| 				    ktime_t now)
 | |
| {
 | |
| 	get_cobalt_cb(skb)->enqueue_time = now;
 | |
| }
 | |
| 
 | |
| static u16 quantum_div[CAKE_QUEUES + 1] = {0};
 | |
| 
 | |
| /* Diffserv lookup tables */
 | |
| 
 | |
| static const u8 precedence[] = {
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1,
 | |
| 	2, 2, 2, 2, 2, 2, 2, 2,
 | |
| 	3, 3, 3, 3, 3, 3, 3, 3,
 | |
| 	4, 4, 4, 4, 4, 4, 4, 4,
 | |
| 	5, 5, 5, 5, 5, 5, 5, 5,
 | |
| 	6, 6, 6, 6, 6, 6, 6, 6,
 | |
| 	7, 7, 7, 7, 7, 7, 7, 7,
 | |
| };
 | |
| 
 | |
| static const u8 diffserv8[] = {
 | |
| 	2, 5, 1, 2, 4, 2, 2, 2,
 | |
| 	0, 2, 1, 2, 1, 2, 1, 2,
 | |
| 	5, 2, 4, 2, 4, 2, 4, 2,
 | |
| 	3, 2, 3, 2, 3, 2, 3, 2,
 | |
| 	6, 2, 3, 2, 3, 2, 3, 2,
 | |
| 	6, 2, 2, 2, 6, 2, 6, 2,
 | |
| 	7, 2, 2, 2, 2, 2, 2, 2,
 | |
| 	7, 2, 2, 2, 2, 2, 2, 2,
 | |
| };
 | |
| 
 | |
| static const u8 diffserv4[] = {
 | |
| 	0, 2, 0, 0, 2, 0, 0, 0,
 | |
| 	1, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	2, 0, 2, 0, 2, 0, 2, 0,
 | |
| 	2, 0, 2, 0, 2, 0, 2, 0,
 | |
| 	3, 0, 2, 0, 2, 0, 2, 0,
 | |
| 	3, 0, 0, 0, 3, 0, 3, 0,
 | |
| 	3, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	3, 0, 0, 0, 0, 0, 0, 0,
 | |
| };
 | |
| 
 | |
| static const u8 diffserv3[] = {
 | |
| 	0, 0, 0, 0, 2, 0, 0, 0,
 | |
| 	1, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 2, 0, 2, 0,
 | |
| 	2, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	2, 0, 0, 0, 0, 0, 0, 0,
 | |
| };
 | |
| 
 | |
| static const u8 besteffort[] = {
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| };
 | |
| 
 | |
| /* tin priority order for stats dumping */
 | |
| 
 | |
| static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
 | |
| static const u8 bulk_order[] = {1, 0, 2, 3};
 | |
| 
 | |
| #define REC_INV_SQRT_CACHE (16)
 | |
| static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
 | |
| 
 | |
| /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
 | |
|  * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
 | |
|  *
 | |
|  * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
 | |
|  */
 | |
| 
 | |
| static void cobalt_newton_step(struct cobalt_vars *vars)
 | |
| {
 | |
| 	u32 invsqrt, invsqrt2;
 | |
| 	u64 val;
 | |
| 
 | |
| 	invsqrt = vars->rec_inv_sqrt;
 | |
| 	invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
 | |
| 	val = (3LL << 32) - ((u64)vars->count * invsqrt2);
 | |
| 
 | |
| 	val >>= 2; /* avoid overflow in following multiply */
 | |
| 	val = (val * invsqrt) >> (32 - 2 + 1);
 | |
| 
 | |
| 	vars->rec_inv_sqrt = val;
 | |
| }
 | |
| 
 | |
| static void cobalt_invsqrt(struct cobalt_vars *vars)
 | |
| {
 | |
| 	if (vars->count < REC_INV_SQRT_CACHE)
 | |
| 		vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
 | |
| 	else
 | |
| 		cobalt_newton_step(vars);
 | |
| }
 | |
| 
 | |
| /* There is a big difference in timing between the accurate values placed in
 | |
|  * the cache and the approximations given by a single Newton step for small
 | |
|  * count values, particularly when stepping from count 1 to 2 or vice versa.
 | |
|  * Above 16, a single Newton step gives sufficient accuracy in either
 | |
|  * direction, given the precision stored.
 | |
|  *
 | |
|  * The magnitude of the error when stepping up to count 2 is such as to give
 | |
|  * the value that *should* have been produced at count 4.
 | |
|  */
 | |
| 
 | |
| static void cobalt_cache_init(void)
 | |
| {
 | |
| 	struct cobalt_vars v;
 | |
| 
 | |
| 	memset(&v, 0, sizeof(v));
 | |
| 	v.rec_inv_sqrt = ~0U;
 | |
| 	cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
 | |
| 
 | |
| 	for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
 | |
| 		cobalt_newton_step(&v);
 | |
| 		cobalt_newton_step(&v);
 | |
| 		cobalt_newton_step(&v);
 | |
| 		cobalt_newton_step(&v);
 | |
| 
 | |
| 		cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cobalt_vars_init(struct cobalt_vars *vars)
 | |
| {
 | |
| 	memset(vars, 0, sizeof(*vars));
 | |
| 
 | |
| 	if (!cobalt_rec_inv_sqrt_cache[0]) {
 | |
| 		cobalt_cache_init();
 | |
| 		cobalt_rec_inv_sqrt_cache[0] = ~0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* CoDel control_law is t + interval/sqrt(count)
 | |
|  * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
 | |
|  * both sqrt() and divide operation.
 | |
|  */
 | |
| static ktime_t cobalt_control(ktime_t t,
 | |
| 			      u64 interval,
 | |
| 			      u32 rec_inv_sqrt)
 | |
| {
 | |
| 	return ktime_add_ns(t, reciprocal_scale(interval,
 | |
| 						rec_inv_sqrt));
 | |
| }
 | |
| 
 | |
| /* Call this when a packet had to be dropped due to queue overflow.  Returns
 | |
|  * true if the BLUE state was quiescent before but active after this call.
 | |
|  */
 | |
| static bool cobalt_queue_full(struct cobalt_vars *vars,
 | |
| 			      struct cobalt_params *p,
 | |
| 			      ktime_t now)
 | |
| {
 | |
| 	bool up = false;
 | |
| 
 | |
| 	if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
 | |
| 		up = !vars->p_drop;
 | |
| 		vars->p_drop += p->p_inc;
 | |
| 		if (vars->p_drop < p->p_inc)
 | |
| 			vars->p_drop = ~0;
 | |
| 		vars->blue_timer = now;
 | |
| 	}
 | |
| 	vars->dropping = true;
 | |
| 	vars->drop_next = now;
 | |
| 	if (!vars->count)
 | |
| 		vars->count = 1;
 | |
| 
 | |
| 	return up;
 | |
| }
 | |
| 
 | |
| /* Call this when the queue was serviced but turned out to be empty.  Returns
 | |
|  * true if the BLUE state was active before but quiescent after this call.
 | |
|  */
 | |
| static bool cobalt_queue_empty(struct cobalt_vars *vars,
 | |
| 			       struct cobalt_params *p,
 | |
| 			       ktime_t now)
 | |
| {
 | |
| 	bool down = false;
 | |
| 
 | |
| 	if (vars->p_drop &&
 | |
| 	    ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
 | |
| 		if (vars->p_drop < p->p_dec)
 | |
| 			vars->p_drop = 0;
 | |
| 		else
 | |
| 			vars->p_drop -= p->p_dec;
 | |
| 		vars->blue_timer = now;
 | |
| 		down = !vars->p_drop;
 | |
| 	}
 | |
| 	vars->dropping = false;
 | |
| 
 | |
| 	if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
 | |
| 		vars->count--;
 | |
| 		cobalt_invsqrt(vars);
 | |
| 		vars->drop_next = cobalt_control(vars->drop_next,
 | |
| 						 p->interval,
 | |
| 						 vars->rec_inv_sqrt);
 | |
| 	}
 | |
| 
 | |
| 	return down;
 | |
| }
 | |
| 
 | |
| /* Call this with a freshly dequeued packet for possible congestion marking.
 | |
|  * Returns true as an instruction to drop the packet, false for delivery.
 | |
|  */
 | |
| static bool cobalt_should_drop(struct cobalt_vars *vars,
 | |
| 			       struct cobalt_params *p,
 | |
| 			       ktime_t now,
 | |
| 			       struct sk_buff *skb,
 | |
| 			       u32 bulk_flows)
 | |
| {
 | |
| 	bool next_due, over_target, drop = false;
 | |
| 	ktime_t schedule;
 | |
| 	u64 sojourn;
 | |
| 
 | |
| /* The 'schedule' variable records, in its sign, whether 'now' is before or
 | |
|  * after 'drop_next'.  This allows 'drop_next' to be updated before the next
 | |
|  * scheduling decision is actually branched, without destroying that
 | |
|  * information.  Similarly, the first 'schedule' value calculated is preserved
 | |
|  * in the boolean 'next_due'.
 | |
|  *
 | |
|  * As for 'drop_next', we take advantage of the fact that 'interval' is both
 | |
|  * the delay between first exceeding 'target' and the first signalling event,
 | |
|  * *and* the scaling factor for the signalling frequency.  It's therefore very
 | |
|  * natural to use a single mechanism for both purposes, and eliminates a
 | |
|  * significant amount of reference Codel's spaghetti code.  To help with this,
 | |
|  * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
 | |
|  * as possible to 1.0 in fixed-point.
 | |
|  */
 | |
| 
 | |
| 	sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
 | |
| 	schedule = ktime_sub(now, vars->drop_next);
 | |
| 	over_target = sojourn > p->target &&
 | |
| 		      sojourn > p->mtu_time * bulk_flows * 2 &&
 | |
| 		      sojourn > p->mtu_time * 4;
 | |
| 	next_due = vars->count && ktime_to_ns(schedule) >= 0;
 | |
| 
 | |
| 	vars->ecn_marked = false;
 | |
| 
 | |
| 	if (over_target) {
 | |
| 		if (!vars->dropping) {
 | |
| 			vars->dropping = true;
 | |
| 			vars->drop_next = cobalt_control(now,
 | |
| 							 p->interval,
 | |
| 							 vars->rec_inv_sqrt);
 | |
| 		}
 | |
| 		if (!vars->count)
 | |
| 			vars->count = 1;
 | |
| 	} else if (vars->dropping) {
 | |
| 		vars->dropping = false;
 | |
| 	}
 | |
| 
 | |
| 	if (next_due && vars->dropping) {
 | |
| 		/* Use ECN mark if possible, otherwise drop */
 | |
| 		drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
 | |
| 
 | |
| 		vars->count++;
 | |
| 		if (!vars->count)
 | |
| 			vars->count--;
 | |
| 		cobalt_invsqrt(vars);
 | |
| 		vars->drop_next = cobalt_control(vars->drop_next,
 | |
| 						 p->interval,
 | |
| 						 vars->rec_inv_sqrt);
 | |
| 		schedule = ktime_sub(now, vars->drop_next);
 | |
| 	} else {
 | |
| 		while (next_due) {
 | |
| 			vars->count--;
 | |
| 			cobalt_invsqrt(vars);
 | |
| 			vars->drop_next = cobalt_control(vars->drop_next,
 | |
| 							 p->interval,
 | |
| 							 vars->rec_inv_sqrt);
 | |
| 			schedule = ktime_sub(now, vars->drop_next);
 | |
| 			next_due = vars->count && ktime_to_ns(schedule) >= 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Simple BLUE implementation.  Lack of ECN is deliberate. */
 | |
| 	if (vars->p_drop)
 | |
| 		drop |= (prandom_u32() < vars->p_drop);
 | |
| 
 | |
| 	/* Overload the drop_next field as an activity timeout */
 | |
| 	if (!vars->count)
 | |
| 		vars->drop_next = ktime_add_ns(now, p->interval);
 | |
| 	else if (ktime_to_ns(schedule) > 0 && !drop)
 | |
| 		vars->drop_next = now;
 | |
| 
 | |
| 	return drop;
 | |
| }
 | |
| 
 | |
| static void cake_update_flowkeys(struct flow_keys *keys,
 | |
| 				 const struct sk_buff *skb)
 | |
| {
 | |
| #if IS_ENABLED(CONFIG_NF_CONNTRACK)
 | |
| 	struct nf_conntrack_tuple tuple = {};
 | |
| 	bool rev = !skb->_nfct;
 | |
| 
 | |
| 	if (tc_skb_protocol(skb) != htons(ETH_P_IP))
 | |
| 		return;
 | |
| 
 | |
| 	if (!nf_ct_get_tuple_skb(&tuple, skb))
 | |
| 		return;
 | |
| 
 | |
| 	keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
 | |
| 	keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
 | |
| 
 | |
| 	if (keys->ports.ports) {
 | |
| 		keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all;
 | |
| 		keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Cake has several subtle multiple bit settings. In these cases you
 | |
|  *  would be matching triple isolate mode as well.
 | |
|  */
 | |
| 
 | |
| static bool cake_dsrc(int flow_mode)
 | |
| {
 | |
| 	return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
 | |
| }
 | |
| 
 | |
| static bool cake_ddst(int flow_mode)
 | |
| {
 | |
| 	return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
 | |
| }
 | |
| 
 | |
| static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
 | |
| 		     int flow_mode, u16 flow_override, u16 host_override)
 | |
| {
 | |
| 	u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
 | |
| 	u16 reduced_hash, srchost_idx, dsthost_idx;
 | |
| 	struct flow_keys keys, host_keys;
 | |
| 
 | |
| 	if (unlikely(flow_mode == CAKE_FLOW_NONE))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If both overrides are set we can skip packet dissection entirely */
 | |
| 	if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) &&
 | |
| 	    (host_override || !(flow_mode & CAKE_FLOW_HOSTS)))
 | |
| 		goto skip_hash;
 | |
| 
 | |
| 	skb_flow_dissect_flow_keys(skb, &keys,
 | |
| 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
 | |
| 
 | |
| 	if (flow_mode & CAKE_FLOW_NAT_FLAG)
 | |
| 		cake_update_flowkeys(&keys, skb);
 | |
| 
 | |
| 	/* flow_hash_from_keys() sorts the addresses by value, so we have
 | |
| 	 * to preserve their order in a separate data structure to treat
 | |
| 	 * src and dst host addresses as independently selectable.
 | |
| 	 */
 | |
| 	host_keys = keys;
 | |
| 	host_keys.ports.ports     = 0;
 | |
| 	host_keys.basic.ip_proto  = 0;
 | |
| 	host_keys.keyid.keyid     = 0;
 | |
| 	host_keys.tags.flow_label = 0;
 | |
| 
 | |
| 	switch (host_keys.control.addr_type) {
 | |
| 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
 | |
| 		host_keys.addrs.v4addrs.src = 0;
 | |
| 		dsthost_hash = flow_hash_from_keys(&host_keys);
 | |
| 		host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
 | |
| 		host_keys.addrs.v4addrs.dst = 0;
 | |
| 		srchost_hash = flow_hash_from_keys(&host_keys);
 | |
| 		break;
 | |
| 
 | |
| 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
 | |
| 		memset(&host_keys.addrs.v6addrs.src, 0,
 | |
| 		       sizeof(host_keys.addrs.v6addrs.src));
 | |
| 		dsthost_hash = flow_hash_from_keys(&host_keys);
 | |
| 		host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
 | |
| 		memset(&host_keys.addrs.v6addrs.dst, 0,
 | |
| 		       sizeof(host_keys.addrs.v6addrs.dst));
 | |
| 		srchost_hash = flow_hash_from_keys(&host_keys);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		dsthost_hash = 0;
 | |
| 		srchost_hash = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* This *must* be after the above switch, since as a
 | |
| 	 * side-effect it sorts the src and dst addresses.
 | |
| 	 */
 | |
| 	if (flow_mode & CAKE_FLOW_FLOWS)
 | |
| 		flow_hash = flow_hash_from_keys(&keys);
 | |
| 
 | |
| skip_hash:
 | |
| 	if (flow_override)
 | |
| 		flow_hash = flow_override - 1;
 | |
| 	if (host_override) {
 | |
| 		dsthost_hash = host_override - 1;
 | |
| 		srchost_hash = host_override - 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!(flow_mode & CAKE_FLOW_FLOWS)) {
 | |
| 		if (flow_mode & CAKE_FLOW_SRC_IP)
 | |
| 			flow_hash ^= srchost_hash;
 | |
| 
 | |
| 		if (flow_mode & CAKE_FLOW_DST_IP)
 | |
| 			flow_hash ^= dsthost_hash;
 | |
| 	}
 | |
| 
 | |
| 	reduced_hash = flow_hash % CAKE_QUEUES;
 | |
| 
 | |
| 	/* set-associative hashing */
 | |
| 	/* fast path if no hash collision (direct lookup succeeds) */
 | |
| 	if (likely(q->tags[reduced_hash] == flow_hash &&
 | |
| 		   q->flows[reduced_hash].set)) {
 | |
| 		q->way_directs++;
 | |
| 	} else {
 | |
| 		u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
 | |
| 		u32 outer_hash = reduced_hash - inner_hash;
 | |
| 		bool allocate_src = false;
 | |
| 		bool allocate_dst = false;
 | |
| 		u32 i, k;
 | |
| 
 | |
| 		/* check if any active queue in the set is reserved for
 | |
| 		 * this flow.
 | |
| 		 */
 | |
| 		for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
 | |
| 		     i++, k = (k + 1) % CAKE_SET_WAYS) {
 | |
| 			if (q->tags[outer_hash + k] == flow_hash) {
 | |
| 				if (i)
 | |
| 					q->way_hits++;
 | |
| 
 | |
| 				if (!q->flows[outer_hash + k].set) {
 | |
| 					/* need to increment host refcnts */
 | |
| 					allocate_src = cake_dsrc(flow_mode);
 | |
| 					allocate_dst = cake_ddst(flow_mode);
 | |
| 				}
 | |
| 
 | |
| 				goto found;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* no queue is reserved for this flow, look for an
 | |
| 		 * empty one.
 | |
| 		 */
 | |
| 		for (i = 0; i < CAKE_SET_WAYS;
 | |
| 			 i++, k = (k + 1) % CAKE_SET_WAYS) {
 | |
| 			if (!q->flows[outer_hash + k].set) {
 | |
| 				q->way_misses++;
 | |
| 				allocate_src = cake_dsrc(flow_mode);
 | |
| 				allocate_dst = cake_ddst(flow_mode);
 | |
| 				goto found;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* With no empty queues, default to the original
 | |
| 		 * queue, accept the collision, update the host tags.
 | |
| 		 */
 | |
| 		q->way_collisions++;
 | |
| 		q->hosts[q->flows[reduced_hash].srchost].srchost_refcnt--;
 | |
| 		q->hosts[q->flows[reduced_hash].dsthost].dsthost_refcnt--;
 | |
| 		allocate_src = cake_dsrc(flow_mode);
 | |
| 		allocate_dst = cake_ddst(flow_mode);
 | |
| found:
 | |
| 		/* reserve queue for future packets in same flow */
 | |
| 		reduced_hash = outer_hash + k;
 | |
| 		q->tags[reduced_hash] = flow_hash;
 | |
| 
 | |
| 		if (allocate_src) {
 | |
| 			srchost_idx = srchost_hash % CAKE_QUEUES;
 | |
| 			inner_hash = srchost_idx % CAKE_SET_WAYS;
 | |
| 			outer_hash = srchost_idx - inner_hash;
 | |
| 			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
 | |
| 				i++, k = (k + 1) % CAKE_SET_WAYS) {
 | |
| 				if (q->hosts[outer_hash + k].srchost_tag ==
 | |
| 				    srchost_hash)
 | |
| 					goto found_src;
 | |
| 			}
 | |
| 			for (i = 0; i < CAKE_SET_WAYS;
 | |
| 				i++, k = (k + 1) % CAKE_SET_WAYS) {
 | |
| 				if (!q->hosts[outer_hash + k].srchost_refcnt)
 | |
| 					break;
 | |
| 			}
 | |
| 			q->hosts[outer_hash + k].srchost_tag = srchost_hash;
 | |
| found_src:
 | |
| 			srchost_idx = outer_hash + k;
 | |
| 			q->hosts[srchost_idx].srchost_refcnt++;
 | |
| 			q->flows[reduced_hash].srchost = srchost_idx;
 | |
| 		}
 | |
| 
 | |
| 		if (allocate_dst) {
 | |
| 			dsthost_idx = dsthost_hash % CAKE_QUEUES;
 | |
| 			inner_hash = dsthost_idx % CAKE_SET_WAYS;
 | |
| 			outer_hash = dsthost_idx - inner_hash;
 | |
| 			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
 | |
| 			     i++, k = (k + 1) % CAKE_SET_WAYS) {
 | |
| 				if (q->hosts[outer_hash + k].dsthost_tag ==
 | |
| 				    dsthost_hash)
 | |
| 					goto found_dst;
 | |
| 			}
 | |
| 			for (i = 0; i < CAKE_SET_WAYS;
 | |
| 			     i++, k = (k + 1) % CAKE_SET_WAYS) {
 | |
| 				if (!q->hosts[outer_hash + k].dsthost_refcnt)
 | |
| 					break;
 | |
| 			}
 | |
| 			q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
 | |
| found_dst:
 | |
| 			dsthost_idx = outer_hash + k;
 | |
| 			q->hosts[dsthost_idx].dsthost_refcnt++;
 | |
| 			q->flows[reduced_hash].dsthost = dsthost_idx;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return reduced_hash;
 | |
| }
 | |
| 
 | |
| /* helper functions : might be changed when/if skb use a standard list_head */
 | |
| /* remove one skb from head of slot queue */
 | |
| 
 | |
| static struct sk_buff *dequeue_head(struct cake_flow *flow)
 | |
| {
 | |
| 	struct sk_buff *skb = flow->head;
 | |
| 
 | |
| 	if (skb) {
 | |
| 		flow->head = skb->next;
 | |
| 		skb->next = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /* add skb to flow queue (tail add) */
 | |
| 
 | |
| static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
 | |
| {
 | |
| 	if (!flow->head)
 | |
| 		flow->head = skb;
 | |
| 	else
 | |
| 		flow->tail->next = skb;
 | |
| 	flow->tail = skb;
 | |
| 	skb->next = NULL;
 | |
| }
 | |
| 
 | |
| static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
 | |
| 				    struct ipv6hdr *buf)
 | |
| {
 | |
| 	unsigned int offset = skb_network_offset(skb);
 | |
| 	struct iphdr *iph;
 | |
| 
 | |
| 	iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
 | |
| 
 | |
| 	if (!iph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
 | |
| 		return skb_header_pointer(skb, offset + iph->ihl * 4,
 | |
| 					  sizeof(struct ipv6hdr), buf);
 | |
| 
 | |
| 	else if (iph->version == 4)
 | |
| 		return iph;
 | |
| 
 | |
| 	else if (iph->version == 6)
 | |
| 		return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
 | |
| 					  buf);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
 | |
| 				      void *buf, unsigned int bufsize)
 | |
| {
 | |
| 	unsigned int offset = skb_network_offset(skb);
 | |
| 	const struct ipv6hdr *ipv6h;
 | |
| 	const struct tcphdr *tcph;
 | |
| 	const struct iphdr *iph;
 | |
| 	struct ipv6hdr _ipv6h;
 | |
| 	struct tcphdr _tcph;
 | |
| 
 | |
| 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
 | |
| 
 | |
| 	if (!ipv6h)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (ipv6h->version == 4) {
 | |
| 		iph = (struct iphdr *)ipv6h;
 | |
| 		offset += iph->ihl * 4;
 | |
| 
 | |
| 		/* special-case 6in4 tunnelling, as that is a common way to get
 | |
| 		 * v6 connectivity in the home
 | |
| 		 */
 | |
| 		if (iph->protocol == IPPROTO_IPV6) {
 | |
| 			ipv6h = skb_header_pointer(skb, offset,
 | |
| 						   sizeof(_ipv6h), &_ipv6h);
 | |
| 
 | |
| 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
 | |
| 				return NULL;
 | |
| 
 | |
| 			offset += sizeof(struct ipv6hdr);
 | |
| 
 | |
| 		} else if (iph->protocol != IPPROTO_TCP) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 	} else if (ipv6h->version == 6) {
 | |
| 		if (ipv6h->nexthdr != IPPROTO_TCP)
 | |
| 			return NULL;
 | |
| 
 | |
| 		offset += sizeof(struct ipv6hdr);
 | |
| 	} else {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
 | |
| 	if (!tcph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return skb_header_pointer(skb, offset,
 | |
| 				  min(__tcp_hdrlen(tcph), bufsize), buf);
 | |
| }
 | |
| 
 | |
| static const void *cake_get_tcpopt(const struct tcphdr *tcph,
 | |
| 				   int code, int *oplen)
 | |
| {
 | |
| 	/* inspired by tcp_parse_options in tcp_input.c */
 | |
| 	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
 | |
| 	const u8 *ptr = (const u8 *)(tcph + 1);
 | |
| 
 | |
| 	while (length > 0) {
 | |
| 		int opcode = *ptr++;
 | |
| 		int opsize;
 | |
| 
 | |
| 		if (opcode == TCPOPT_EOL)
 | |
| 			break;
 | |
| 		if (opcode == TCPOPT_NOP) {
 | |
| 			length--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		opsize = *ptr++;
 | |
| 		if (opsize < 2 || opsize > length)
 | |
| 			break;
 | |
| 
 | |
| 		if (opcode == code) {
 | |
| 			*oplen = opsize;
 | |
| 			return ptr;
 | |
| 		}
 | |
| 
 | |
| 		ptr += opsize - 2;
 | |
| 		length -= opsize;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
 | |
|  * bytes than the other. In the case where both sequences ACKs bytes that the
 | |
|  * other doesn't, A is considered greater. DSACKs in A also makes A be
 | |
|  * considered greater.
 | |
|  *
 | |
|  * @return -1, 0 or 1 as normal compare functions
 | |
|  */
 | |
| static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
 | |
| 				  const struct tcphdr *tcph_b)
 | |
| {
 | |
| 	const struct tcp_sack_block_wire *sack_a, *sack_b;
 | |
| 	u32 ack_seq_a = ntohl(tcph_a->ack_seq);
 | |
| 	u32 bytes_a = 0, bytes_b = 0;
 | |
| 	int oplen_a, oplen_b;
 | |
| 	bool first = true;
 | |
| 
 | |
| 	sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
 | |
| 	sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
 | |
| 
 | |
| 	/* pointers point to option contents */
 | |
| 	oplen_a -= TCPOLEN_SACK_BASE;
 | |
| 	oplen_b -= TCPOLEN_SACK_BASE;
 | |
| 
 | |
| 	if (sack_a && oplen_a >= sizeof(*sack_a) &&
 | |
| 	    (!sack_b || oplen_b < sizeof(*sack_b)))
 | |
| 		return -1;
 | |
| 	else if (sack_b && oplen_b >= sizeof(*sack_b) &&
 | |
| 		 (!sack_a || oplen_a < sizeof(*sack_a)))
 | |
| 		return 1;
 | |
| 	else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
 | |
| 		 (!sack_b || oplen_b < sizeof(*sack_b)))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (oplen_a >= sizeof(*sack_a)) {
 | |
| 		const struct tcp_sack_block_wire *sack_tmp = sack_b;
 | |
| 		u32 start_a = get_unaligned_be32(&sack_a->start_seq);
 | |
| 		u32 end_a = get_unaligned_be32(&sack_a->end_seq);
 | |
| 		int oplen_tmp = oplen_b;
 | |
| 		bool found = false;
 | |
| 
 | |
| 		/* DSACK; always considered greater to prevent dropping */
 | |
| 		if (before(start_a, ack_seq_a))
 | |
| 			return -1;
 | |
| 
 | |
| 		bytes_a += end_a - start_a;
 | |
| 
 | |
| 		while (oplen_tmp >= sizeof(*sack_tmp)) {
 | |
| 			u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
 | |
| 			u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
 | |
| 
 | |
| 			/* first time through we count the total size */
 | |
| 			if (first)
 | |
| 				bytes_b += end_b - start_b;
 | |
| 
 | |
| 			if (!after(start_b, start_a) && !before(end_b, end_a)) {
 | |
| 				found = true;
 | |
| 				if (!first)
 | |
| 					break;
 | |
| 			}
 | |
| 			oplen_tmp -= sizeof(*sack_tmp);
 | |
| 			sack_tmp++;
 | |
| 		}
 | |
| 
 | |
| 		if (!found)
 | |
| 			return -1;
 | |
| 
 | |
| 		oplen_a -= sizeof(*sack_a);
 | |
| 		sack_a++;
 | |
| 		first = false;
 | |
| 	}
 | |
| 
 | |
| 	/* If we made it this far, all ranges SACKed by A are covered by B, so
 | |
| 	 * either the SACKs are equal, or B SACKs more bytes.
 | |
| 	 */
 | |
| 	return bytes_b > bytes_a ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
 | |
| 				 u32 *tsval, u32 *tsecr)
 | |
| {
 | |
| 	const u8 *ptr;
 | |
| 	int opsize;
 | |
| 
 | |
| 	ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
 | |
| 
 | |
| 	if (ptr && opsize == TCPOLEN_TIMESTAMP) {
 | |
| 		*tsval = get_unaligned_be32(ptr);
 | |
| 		*tsecr = get_unaligned_be32(ptr + 4);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool cake_tcph_may_drop(const struct tcphdr *tcph,
 | |
| 			       u32 tstamp_new, u32 tsecr_new)
 | |
| {
 | |
| 	/* inspired by tcp_parse_options in tcp_input.c */
 | |
| 	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
 | |
| 	const u8 *ptr = (const u8 *)(tcph + 1);
 | |
| 	u32 tstamp, tsecr;
 | |
| 
 | |
| 	/* 3 reserved flags must be unset to avoid future breakage
 | |
| 	 * ACK must be set
 | |
| 	 * ECE/CWR are handled separately
 | |
| 	 * All other flags URG/PSH/RST/SYN/FIN must be unset
 | |
| 	 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
 | |
| 	 * 0x00C00000 = CWR/ECE (handled separately)
 | |
| 	 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
 | |
| 	 */
 | |
| 	if (((tcp_flag_word(tcph) &
 | |
| 	      cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
 | |
| 		return false;
 | |
| 
 | |
| 	while (length > 0) {
 | |
| 		int opcode = *ptr++;
 | |
| 		int opsize;
 | |
| 
 | |
| 		if (opcode == TCPOPT_EOL)
 | |
| 			break;
 | |
| 		if (opcode == TCPOPT_NOP) {
 | |
| 			length--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		opsize = *ptr++;
 | |
| 		if (opsize < 2 || opsize > length)
 | |
| 			break;
 | |
| 
 | |
| 		switch (opcode) {
 | |
| 		case TCPOPT_MD5SIG: /* doesn't influence state */
 | |
| 			break;
 | |
| 
 | |
| 		case TCPOPT_SACK: /* stricter checking performed later */
 | |
| 			if (opsize % 8 != 2)
 | |
| 				return false;
 | |
| 			break;
 | |
| 
 | |
| 		case TCPOPT_TIMESTAMP:
 | |
| 			/* only drop timestamps lower than new */
 | |
| 			if (opsize != TCPOLEN_TIMESTAMP)
 | |
| 				return false;
 | |
| 			tstamp = get_unaligned_be32(ptr);
 | |
| 			tsecr = get_unaligned_be32(ptr + 4);
 | |
| 			if (after(tstamp, tstamp_new) ||
 | |
| 			    after(tsecr, tsecr_new))
 | |
| 				return false;
 | |
| 			break;
 | |
| 
 | |
| 		case TCPOPT_MSS:  /* these should only be set on SYN */
 | |
| 		case TCPOPT_WINDOW:
 | |
| 		case TCPOPT_SACK_PERM:
 | |
| 		case TCPOPT_FASTOPEN:
 | |
| 		case TCPOPT_EXP:
 | |
| 		default: /* don't drop if any unknown options are present */
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		ptr += opsize - 2;
 | |
| 		length -= opsize;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
 | |
| 				       struct cake_flow *flow)
 | |
| {
 | |
| 	bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
 | |
| 	struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
 | |
| 	struct sk_buff *skb_check, *skb_prev = NULL;
 | |
| 	const struct ipv6hdr *ipv6h, *ipv6h_check;
 | |
| 	unsigned char _tcph[64], _tcph_check[64];
 | |
| 	const struct tcphdr *tcph, *tcph_check;
 | |
| 	const struct iphdr *iph, *iph_check;
 | |
| 	struct ipv6hdr _iph, _iph_check;
 | |
| 	const struct sk_buff *skb;
 | |
| 	int seglen, num_found = 0;
 | |
| 	u32 tstamp = 0, tsecr = 0;
 | |
| 	__be32 elig_flags = 0;
 | |
| 	int sack_comp;
 | |
| 
 | |
| 	/* no other possible ACKs to filter */
 | |
| 	if (flow->head == flow->tail)
 | |
| 		return NULL;
 | |
| 
 | |
| 	skb = flow->tail;
 | |
| 	tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
 | |
| 	iph = cake_get_iphdr(skb, &_iph);
 | |
| 	if (!tcph)
 | |
| 		return NULL;
 | |
| 
 | |
| 	cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
 | |
| 
 | |
| 	/* the 'triggering' packet need only have the ACK flag set.
 | |
| 	 * also check that SYN is not set, as there won't be any previous ACKs.
 | |
| 	 */
 | |
| 	if ((tcp_flag_word(tcph) &
 | |
| 	     (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* the 'triggering' ACK is at the tail of the queue, we have already
 | |
| 	 * returned if it is the only packet in the flow. loop through the rest
 | |
| 	 * of the queue looking for pure ACKs with the same 5-tuple as the
 | |
| 	 * triggering one.
 | |
| 	 */
 | |
| 	for (skb_check = flow->head;
 | |
| 	     skb_check && skb_check != skb;
 | |
| 	     skb_prev = skb_check, skb_check = skb_check->next) {
 | |
| 		iph_check = cake_get_iphdr(skb_check, &_iph_check);
 | |
| 		tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
 | |
| 					     sizeof(_tcph_check));
 | |
| 
 | |
| 		/* only TCP packets with matching 5-tuple are eligible, and only
 | |
| 		 * drop safe headers
 | |
| 		 */
 | |
| 		if (!tcph_check || iph->version != iph_check->version ||
 | |
| 		    tcph_check->source != tcph->source ||
 | |
| 		    tcph_check->dest != tcph->dest)
 | |
| 			continue;
 | |
| 
 | |
| 		if (iph_check->version == 4) {
 | |
| 			if (iph_check->saddr != iph->saddr ||
 | |
| 			    iph_check->daddr != iph->daddr)
 | |
| 				continue;
 | |
| 
 | |
| 			seglen = ntohs(iph_check->tot_len) -
 | |
| 				       (4 * iph_check->ihl);
 | |
| 		} else if (iph_check->version == 6) {
 | |
| 			ipv6h = (struct ipv6hdr *)iph;
 | |
| 			ipv6h_check = (struct ipv6hdr *)iph_check;
 | |
| 
 | |
| 			if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
 | |
| 			    ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
 | |
| 				continue;
 | |
| 
 | |
| 			seglen = ntohs(ipv6h_check->payload_len);
 | |
| 		} else {
 | |
| 			WARN_ON(1);  /* shouldn't happen */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* If the ECE/CWR flags changed from the previous eligible
 | |
| 		 * packet in the same flow, we should no longer be dropping that
 | |
| 		 * previous packet as this would lose information.
 | |
| 		 */
 | |
| 		if (elig_ack && (tcp_flag_word(tcph_check) &
 | |
| 				 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
 | |
| 			elig_ack = NULL;
 | |
| 			elig_ack_prev = NULL;
 | |
| 			num_found--;
 | |
| 		}
 | |
| 
 | |
| 		/* Check TCP options and flags, don't drop ACKs with segment
 | |
| 		 * data, and don't drop ACKs with a higher cumulative ACK
 | |
| 		 * counter than the triggering packet. Check ACK seqno here to
 | |
| 		 * avoid parsing SACK options of packets we are going to exclude
 | |
| 		 * anyway.
 | |
| 		 */
 | |
| 		if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
 | |
| 		    (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
 | |
| 		    after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Check SACK options. The triggering packet must SACK more data
 | |
| 		 * than the ACK under consideration, or SACK the same range but
 | |
| 		 * have a larger cumulative ACK counter. The latter is a
 | |
| 		 * pathological case, but is contained in the following check
 | |
| 		 * anyway, just to be safe.
 | |
| 		 */
 | |
| 		sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
 | |
| 
 | |
| 		if (sack_comp < 0 ||
 | |
| 		    (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
 | |
| 		     sack_comp == 0))
 | |
| 			continue;
 | |
| 
 | |
| 		/* At this point we have found an eligible pure ACK to drop; if
 | |
| 		 * we are in aggressive mode, we are done. Otherwise, keep
 | |
| 		 * searching unless this is the second eligible ACK we
 | |
| 		 * found.
 | |
| 		 *
 | |
| 		 * Since we want to drop ACK closest to the head of the queue,
 | |
| 		 * save the first eligible ACK we find, even if we need to loop
 | |
| 		 * again.
 | |
| 		 */
 | |
| 		if (!elig_ack) {
 | |
| 			elig_ack = skb_check;
 | |
| 			elig_ack_prev = skb_prev;
 | |
| 			elig_flags = (tcp_flag_word(tcph_check)
 | |
| 				      & (TCP_FLAG_ECE | TCP_FLAG_CWR));
 | |
| 		}
 | |
| 
 | |
| 		if (num_found++ > 0)
 | |
| 			goto found;
 | |
| 	}
 | |
| 
 | |
| 	/* We made it through the queue without finding two eligible ACKs . If
 | |
| 	 * we found a single eligible ACK we can drop it in aggressive mode if
 | |
| 	 * we can guarantee that this does not interfere with ECN flag
 | |
| 	 * information. We ensure this by dropping it only if the enqueued
 | |
| 	 * packet is consecutive with the eligible ACK, and their flags match.
 | |
| 	 */
 | |
| 	if (elig_ack && aggressive && elig_ack->next == skb &&
 | |
| 	    (elig_flags == (tcp_flag_word(tcph) &
 | |
| 			    (TCP_FLAG_ECE | TCP_FLAG_CWR))))
 | |
| 		goto found;
 | |
| 
 | |
| 	return NULL;
 | |
| 
 | |
| found:
 | |
| 	if (elig_ack_prev)
 | |
| 		elig_ack_prev->next = elig_ack->next;
 | |
| 	else
 | |
| 		flow->head = elig_ack->next;
 | |
| 
 | |
| 	elig_ack->next = NULL;
 | |
| 
 | |
| 	return elig_ack;
 | |
| }
 | |
| 
 | |
| static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
 | |
| {
 | |
| 	avg -= avg >> shift;
 | |
| 	avg += sample >> shift;
 | |
| 	return avg;
 | |
| }
 | |
| 
 | |
| static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
 | |
| {
 | |
| 	if (q->rate_flags & CAKE_FLAG_OVERHEAD)
 | |
| 		len -= off;
 | |
| 
 | |
| 	if (q->max_netlen < len)
 | |
| 		q->max_netlen = len;
 | |
| 	if (q->min_netlen > len)
 | |
| 		q->min_netlen = len;
 | |
| 
 | |
| 	len += q->rate_overhead;
 | |
| 
 | |
| 	if (len < q->rate_mpu)
 | |
| 		len = q->rate_mpu;
 | |
| 
 | |
| 	if (q->atm_mode == CAKE_ATM_ATM) {
 | |
| 		len += 47;
 | |
| 		len /= 48;
 | |
| 		len *= 53;
 | |
| 	} else if (q->atm_mode == CAKE_ATM_PTM) {
 | |
| 		/* Add one byte per 64 bytes or part thereof.
 | |
| 		 * This is conservative and easier to calculate than the
 | |
| 		 * precise value.
 | |
| 		 */
 | |
| 		len += (len + 63) / 64;
 | |
| 	}
 | |
| 
 | |
| 	if (q->max_adjlen < len)
 | |
| 		q->max_adjlen = len;
 | |
| 	if (q->min_adjlen > len)
 | |
| 		q->min_adjlen = len;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
 | |
| {
 | |
| 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
 | |
| 	unsigned int hdr_len, last_len = 0;
 | |
| 	u32 off = skb_network_offset(skb);
 | |
| 	u32 len = qdisc_pkt_len(skb);
 | |
| 	u16 segs = 1;
 | |
| 
 | |
| 	q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
 | |
| 
 | |
| 	if (!shinfo->gso_size)
 | |
| 		return cake_calc_overhead(q, len, off);
 | |
| 
 | |
| 	/* borrowed from qdisc_pkt_len_init() */
 | |
| 	hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
 | |
| 
 | |
| 	/* + transport layer */
 | |
| 	if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
 | |
| 						SKB_GSO_TCPV6))) {
 | |
| 		const struct tcphdr *th;
 | |
| 		struct tcphdr _tcphdr;
 | |
| 
 | |
| 		th = skb_header_pointer(skb, skb_transport_offset(skb),
 | |
| 					sizeof(_tcphdr), &_tcphdr);
 | |
| 		if (likely(th))
 | |
| 			hdr_len += __tcp_hdrlen(th);
 | |
| 	} else {
 | |
| 		struct udphdr _udphdr;
 | |
| 
 | |
| 		if (skb_header_pointer(skb, skb_transport_offset(skb),
 | |
| 				       sizeof(_udphdr), &_udphdr))
 | |
| 			hdr_len += sizeof(struct udphdr);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
 | |
| 		segs = DIV_ROUND_UP(skb->len - hdr_len,
 | |
| 				    shinfo->gso_size);
 | |
| 	else
 | |
| 		segs = shinfo->gso_segs;
 | |
| 
 | |
| 	len = shinfo->gso_size + hdr_len;
 | |
| 	last_len = skb->len - shinfo->gso_size * (segs - 1);
 | |
| 
 | |
| 	return (cake_calc_overhead(q, len, off) * (segs - 1) +
 | |
| 		cake_calc_overhead(q, last_len, off));
 | |
| }
 | |
| 
 | |
| static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
 | |
| {
 | |
| 	struct cake_heap_entry ii = q->overflow_heap[i];
 | |
| 	struct cake_heap_entry jj = q->overflow_heap[j];
 | |
| 
 | |
| 	q->overflow_heap[i] = jj;
 | |
| 	q->overflow_heap[j] = ii;
 | |
| 
 | |
| 	q->tins[ii.t].overflow_idx[ii.b] = j;
 | |
| 	q->tins[jj.t].overflow_idx[jj.b] = i;
 | |
| }
 | |
| 
 | |
| static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
 | |
| {
 | |
| 	struct cake_heap_entry ii = q->overflow_heap[i];
 | |
| 
 | |
| 	return q->tins[ii.t].backlogs[ii.b];
 | |
| }
 | |
| 
 | |
| static void cake_heapify(struct cake_sched_data *q, u16 i)
 | |
| {
 | |
| 	static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
 | |
| 	u32 mb = cake_heap_get_backlog(q, i);
 | |
| 	u32 m = i;
 | |
| 
 | |
| 	while (m < a) {
 | |
| 		u32 l = m + m + 1;
 | |
| 		u32 r = l + 1;
 | |
| 
 | |
| 		if (l < a) {
 | |
| 			u32 lb = cake_heap_get_backlog(q, l);
 | |
| 
 | |
| 			if (lb > mb) {
 | |
| 				m  = l;
 | |
| 				mb = lb;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (r < a) {
 | |
| 			u32 rb = cake_heap_get_backlog(q, r);
 | |
| 
 | |
| 			if (rb > mb) {
 | |
| 				m  = r;
 | |
| 				mb = rb;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (m != i) {
 | |
| 			cake_heap_swap(q, i, m);
 | |
| 			i = m;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cake_heapify_up(struct cake_sched_data *q, u16 i)
 | |
| {
 | |
| 	while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
 | |
| 		u16 p = (i - 1) >> 1;
 | |
| 		u32 ib = cake_heap_get_backlog(q, i);
 | |
| 		u32 pb = cake_heap_get_backlog(q, p);
 | |
| 
 | |
| 		if (ib > pb) {
 | |
| 			cake_heap_swap(q, i, p);
 | |
| 			i = p;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cake_advance_shaper(struct cake_sched_data *q,
 | |
| 			       struct cake_tin_data *b,
 | |
| 			       struct sk_buff *skb,
 | |
| 			       ktime_t now, bool drop)
 | |
| {
 | |
| 	u32 len = get_cobalt_cb(skb)->adjusted_len;
 | |
| 
 | |
| 	/* charge packet bandwidth to this tin
 | |
| 	 * and to the global shaper.
 | |
| 	 */
 | |
| 	if (q->rate_ns) {
 | |
| 		u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
 | |
| 		u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
 | |
| 		u64 failsafe_dur = global_dur + (global_dur >> 1);
 | |
| 
 | |
| 		if (ktime_before(b->time_next_packet, now))
 | |
| 			b->time_next_packet = ktime_add_ns(b->time_next_packet,
 | |
| 							   tin_dur);
 | |
| 
 | |
| 		else if (ktime_before(b->time_next_packet,
 | |
| 				      ktime_add_ns(now, tin_dur)))
 | |
| 			b->time_next_packet = ktime_add_ns(now, tin_dur);
 | |
| 
 | |
| 		q->time_next_packet = ktime_add_ns(q->time_next_packet,
 | |
| 						   global_dur);
 | |
| 		if (!drop)
 | |
| 			q->failsafe_next_packet = \
 | |
| 				ktime_add_ns(q->failsafe_next_packet,
 | |
| 					     failsafe_dur);
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	ktime_t now = ktime_get();
 | |
| 	u32 idx = 0, tin = 0, len;
 | |
| 	struct cake_heap_entry qq;
 | |
| 	struct cake_tin_data *b;
 | |
| 	struct cake_flow *flow;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	if (!q->overflow_timeout) {
 | |
| 		int i;
 | |
| 		/* Build fresh max-heap */
 | |
| 		for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
 | |
| 			cake_heapify(q, i);
 | |
| 	}
 | |
| 	q->overflow_timeout = 65535;
 | |
| 
 | |
| 	/* select longest queue for pruning */
 | |
| 	qq  = q->overflow_heap[0];
 | |
| 	tin = qq.t;
 | |
| 	idx = qq.b;
 | |
| 
 | |
| 	b = &q->tins[tin];
 | |
| 	flow = &b->flows[idx];
 | |
| 	skb = dequeue_head(flow);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		/* heap has gone wrong, rebuild it next time */
 | |
| 		q->overflow_timeout = 0;
 | |
| 		return idx + (tin << 16);
 | |
| 	}
 | |
| 
 | |
| 	if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
 | |
| 		b->unresponsive_flow_count++;
 | |
| 
 | |
| 	len = qdisc_pkt_len(skb);
 | |
| 	q->buffer_used      -= skb->truesize;
 | |
| 	b->backlogs[idx]    -= len;
 | |
| 	b->tin_backlog      -= len;
 | |
| 	sch->qstats.backlog -= len;
 | |
| 	qdisc_tree_reduce_backlog(sch, 1, len);
 | |
| 
 | |
| 	flow->dropped++;
 | |
| 	b->tin_dropped++;
 | |
| 	sch->qstats.drops++;
 | |
| 
 | |
| 	if (q->rate_flags & CAKE_FLAG_INGRESS)
 | |
| 		cake_advance_shaper(q, b, skb, now, true);
 | |
| 
 | |
| 	__qdisc_drop(skb, to_free);
 | |
| 	sch->q.qlen--;
 | |
| 
 | |
| 	cake_heapify(q, 0);
 | |
| 
 | |
| 	return idx + (tin << 16);
 | |
| }
 | |
| 
 | |
| static u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash)
 | |
| {
 | |
| 	int wlen = skb_network_offset(skb);
 | |
| 	u8 dscp;
 | |
| 
 | |
| 	switch (tc_skb_protocol(skb)) {
 | |
| 	case htons(ETH_P_IP):
 | |
| 		wlen += sizeof(struct iphdr);
 | |
| 		if (!pskb_may_pull(skb, wlen) ||
 | |
| 		    skb_try_make_writable(skb, wlen))
 | |
| 			return 0;
 | |
| 
 | |
| 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
 | |
| 		if (wash && dscp)
 | |
| 			ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
 | |
| 		return dscp;
 | |
| 
 | |
| 	case htons(ETH_P_IPV6):
 | |
| 		wlen += sizeof(struct ipv6hdr);
 | |
| 		if (!pskb_may_pull(skb, wlen) ||
 | |
| 		    skb_try_make_writable(skb, wlen))
 | |
| 			return 0;
 | |
| 
 | |
| 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
 | |
| 		if (wash && dscp)
 | |
| 			ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
 | |
| 		return dscp;
 | |
| 
 | |
| 	case htons(ETH_P_ARP):
 | |
| 		return 0x38;  /* CS7 - Net Control */
 | |
| 
 | |
| 	default:
 | |
| 		/* If there is no Diffserv field, treat as best-effort */
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
 | |
| 					     struct sk_buff *skb)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	u32 tin;
 | |
| 	u8 dscp;
 | |
| 
 | |
| 	/* Tin selection: Default to diffserv-based selection, allow overriding
 | |
| 	 * using firewall marks or skb->priority.
 | |
| 	 */
 | |
| 	dscp = cake_handle_diffserv(skb,
 | |
| 				    q->rate_flags & CAKE_FLAG_WASH);
 | |
| 
 | |
| 	if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
 | |
| 		tin = 0;
 | |
| 
 | |
| 	else if (TC_H_MAJ(skb->priority) == sch->handle &&
 | |
| 		 TC_H_MIN(skb->priority) > 0 &&
 | |
| 		 TC_H_MIN(skb->priority) <= q->tin_cnt)
 | |
| 		tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
 | |
| 
 | |
| 	else {
 | |
| 		tin = q->tin_index[dscp];
 | |
| 
 | |
| 		if (unlikely(tin >= q->tin_cnt))
 | |
| 			tin = 0;
 | |
| 	}
 | |
| 
 | |
| 	return &q->tins[tin];
 | |
| }
 | |
| 
 | |
| static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
 | |
| 			 struct sk_buff *skb, int flow_mode, int *qerr)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	struct tcf_proto *filter;
 | |
| 	struct tcf_result res;
 | |
| 	u16 flow = 0, host = 0;
 | |
| 	int result;
 | |
| 
 | |
| 	filter = rcu_dereference_bh(q->filter_list);
 | |
| 	if (!filter)
 | |
| 		goto hash;
 | |
| 
 | |
| 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 | |
| 	result = tcf_classify(skb, filter, &res, false);
 | |
| 
 | |
| 	if (result >= 0) {
 | |
| #ifdef CONFIG_NET_CLS_ACT
 | |
| 		switch (result) {
 | |
| 		case TC_ACT_STOLEN:
 | |
| 		case TC_ACT_QUEUED:
 | |
| 		case TC_ACT_TRAP:
 | |
| 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
 | |
| 			/* fall through */
 | |
| 		case TC_ACT_SHOT:
 | |
| 			return 0;
 | |
| 		}
 | |
| #endif
 | |
| 		if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
 | |
| 			flow = TC_H_MIN(res.classid);
 | |
| 		if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
 | |
| 			host = TC_H_MAJ(res.classid) >> 16;
 | |
| 	}
 | |
| hash:
 | |
| 	*t = cake_select_tin(sch, skb);
 | |
| 	return cake_hash(*t, skb, flow_mode, flow, host) + 1;
 | |
| }
 | |
| 
 | |
| static void cake_reconfigure(struct Qdisc *sch);
 | |
| 
 | |
| static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 | |
| 			struct sk_buff **to_free)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	int len = qdisc_pkt_len(skb);
 | |
| 	int uninitialized_var(ret);
 | |
| 	struct sk_buff *ack = NULL;
 | |
| 	ktime_t now = ktime_get();
 | |
| 	struct cake_tin_data *b;
 | |
| 	struct cake_flow *flow;
 | |
| 	u32 idx;
 | |
| 
 | |
| 	/* choose flow to insert into */
 | |
| 	idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
 | |
| 	if (idx == 0) {
 | |
| 		if (ret & __NET_XMIT_BYPASS)
 | |
| 			qdisc_qstats_drop(sch);
 | |
| 		__qdisc_drop(skb, to_free);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	idx--;
 | |
| 	flow = &b->flows[idx];
 | |
| 
 | |
| 	/* ensure shaper state isn't stale */
 | |
| 	if (!b->tin_backlog) {
 | |
| 		if (ktime_before(b->time_next_packet, now))
 | |
| 			b->time_next_packet = now;
 | |
| 
 | |
| 		if (!sch->q.qlen) {
 | |
| 			if (ktime_before(q->time_next_packet, now)) {
 | |
| 				q->failsafe_next_packet = now;
 | |
| 				q->time_next_packet = now;
 | |
| 			} else if (ktime_after(q->time_next_packet, now) &&
 | |
| 				   ktime_after(q->failsafe_next_packet, now)) {
 | |
| 				u64 next = \
 | |
| 					min(ktime_to_ns(q->time_next_packet),
 | |
| 					    ktime_to_ns(
 | |
| 						   q->failsafe_next_packet));
 | |
| 				sch->qstats.overlimits++;
 | |
| 				qdisc_watchdog_schedule_ns(&q->watchdog, next);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(len > b->max_skblen))
 | |
| 		b->max_skblen = len;
 | |
| 
 | |
| 	if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
 | |
| 		struct sk_buff *segs, *nskb;
 | |
| 		netdev_features_t features = netif_skb_features(skb);
 | |
| 		unsigned int slen = 0, numsegs = 0;
 | |
| 
 | |
| 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 | |
| 		if (IS_ERR_OR_NULL(segs))
 | |
| 			return qdisc_drop(skb, sch, to_free);
 | |
| 
 | |
| 		while (segs) {
 | |
| 			nskb = segs->next;
 | |
| 			segs->next = NULL;
 | |
| 			qdisc_skb_cb(segs)->pkt_len = segs->len;
 | |
| 			cobalt_set_enqueue_time(segs, now);
 | |
| 			get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
 | |
| 									  segs);
 | |
| 			flow_queue_add(flow, segs);
 | |
| 
 | |
| 			sch->q.qlen++;
 | |
| 			numsegs++;
 | |
| 			slen += segs->len;
 | |
| 			q->buffer_used += segs->truesize;
 | |
| 			b->packets++;
 | |
| 			segs = nskb;
 | |
| 		}
 | |
| 
 | |
| 		/* stats */
 | |
| 		b->bytes	    += slen;
 | |
| 		b->backlogs[idx]    += slen;
 | |
| 		b->tin_backlog      += slen;
 | |
| 		sch->qstats.backlog += slen;
 | |
| 		q->avg_window_bytes += slen;
 | |
| 
 | |
| 		qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
 | |
| 		consume_skb(skb);
 | |
| 	} else {
 | |
| 		/* not splitting */
 | |
| 		cobalt_set_enqueue_time(skb, now);
 | |
| 		get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
 | |
| 		flow_queue_add(flow, skb);
 | |
| 
 | |
| 		if (q->ack_filter)
 | |
| 			ack = cake_ack_filter(q, flow);
 | |
| 
 | |
| 		if (ack) {
 | |
| 			b->ack_drops++;
 | |
| 			sch->qstats.drops++;
 | |
| 			b->bytes += qdisc_pkt_len(ack);
 | |
| 			len -= qdisc_pkt_len(ack);
 | |
| 			q->buffer_used += skb->truesize - ack->truesize;
 | |
| 			if (q->rate_flags & CAKE_FLAG_INGRESS)
 | |
| 				cake_advance_shaper(q, b, ack, now, true);
 | |
| 
 | |
| 			qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
 | |
| 			consume_skb(ack);
 | |
| 		} else {
 | |
| 			sch->q.qlen++;
 | |
| 			q->buffer_used      += skb->truesize;
 | |
| 		}
 | |
| 
 | |
| 		/* stats */
 | |
| 		b->packets++;
 | |
| 		b->bytes	    += len;
 | |
| 		b->backlogs[idx]    += len;
 | |
| 		b->tin_backlog      += len;
 | |
| 		sch->qstats.backlog += len;
 | |
| 		q->avg_window_bytes += len;
 | |
| 	}
 | |
| 
 | |
| 	if (q->overflow_timeout)
 | |
| 		cake_heapify_up(q, b->overflow_idx[idx]);
 | |
| 
 | |
| 	/* incoming bandwidth capacity estimate */
 | |
| 	if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
 | |
| 		u64 packet_interval = \
 | |
| 			ktime_to_ns(ktime_sub(now, q->last_packet_time));
 | |
| 
 | |
| 		if (packet_interval > NSEC_PER_SEC)
 | |
| 			packet_interval = NSEC_PER_SEC;
 | |
| 
 | |
| 		/* filter out short-term bursts, eg. wifi aggregation */
 | |
| 		q->avg_packet_interval = \
 | |
| 			cake_ewma(q->avg_packet_interval,
 | |
| 				  packet_interval,
 | |
| 				  (packet_interval > q->avg_packet_interval ?
 | |
| 					  2 : 8));
 | |
| 
 | |
| 		q->last_packet_time = now;
 | |
| 
 | |
| 		if (packet_interval > q->avg_packet_interval) {
 | |
| 			u64 window_interval = \
 | |
| 				ktime_to_ns(ktime_sub(now,
 | |
| 						      q->avg_window_begin));
 | |
| 			u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
 | |
| 
 | |
| 			do_div(b, window_interval);
 | |
| 			q->avg_peak_bandwidth =
 | |
| 				cake_ewma(q->avg_peak_bandwidth, b,
 | |
| 					  b > q->avg_peak_bandwidth ? 2 : 8);
 | |
| 			q->avg_window_bytes = 0;
 | |
| 			q->avg_window_begin = now;
 | |
| 
 | |
| 			if (ktime_after(now,
 | |
| 					ktime_add_ms(q->last_reconfig_time,
 | |
| 						     250))) {
 | |
| 				q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
 | |
| 				cake_reconfigure(sch);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		q->avg_window_bytes = 0;
 | |
| 		q->last_packet_time = now;
 | |
| 	}
 | |
| 
 | |
| 	/* flowchain */
 | |
| 	if (!flow->set || flow->set == CAKE_SET_DECAYING) {
 | |
| 		struct cake_host *srchost = &b->hosts[flow->srchost];
 | |
| 		struct cake_host *dsthost = &b->hosts[flow->dsthost];
 | |
| 		u16 host_load = 1;
 | |
| 
 | |
| 		if (!flow->set) {
 | |
| 			list_add_tail(&flow->flowchain, &b->new_flows);
 | |
| 		} else {
 | |
| 			b->decaying_flow_count--;
 | |
| 			list_move_tail(&flow->flowchain, &b->new_flows);
 | |
| 		}
 | |
| 		flow->set = CAKE_SET_SPARSE;
 | |
| 		b->sparse_flow_count++;
 | |
| 
 | |
| 		if (cake_dsrc(q->flow_mode))
 | |
| 			host_load = max(host_load, srchost->srchost_refcnt);
 | |
| 
 | |
| 		if (cake_ddst(q->flow_mode))
 | |
| 			host_load = max(host_load, dsthost->dsthost_refcnt);
 | |
| 
 | |
| 		flow->deficit = (b->flow_quantum *
 | |
| 				 quantum_div[host_load]) >> 16;
 | |
| 	} else if (flow->set == CAKE_SET_SPARSE_WAIT) {
 | |
| 		/* this flow was empty, accounted as a sparse flow, but actually
 | |
| 		 * in the bulk rotation.
 | |
| 		 */
 | |
| 		flow->set = CAKE_SET_BULK;
 | |
| 		b->sparse_flow_count--;
 | |
| 		b->bulk_flow_count++;
 | |
| 	}
 | |
| 
 | |
| 	if (q->buffer_used > q->buffer_max_used)
 | |
| 		q->buffer_max_used = q->buffer_used;
 | |
| 
 | |
| 	if (q->buffer_used > q->buffer_limit) {
 | |
| 		u32 dropped = 0;
 | |
| 
 | |
| 		while (q->buffer_used > q->buffer_limit) {
 | |
| 			dropped++;
 | |
| 			cake_drop(sch, to_free);
 | |
| 		}
 | |
| 		b->drop_overlimit += dropped;
 | |
| 	}
 | |
| 	return NET_XMIT_SUCCESS;
 | |
| }
 | |
| 
 | |
| static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	struct cake_tin_data *b = &q->tins[q->cur_tin];
 | |
| 	struct cake_flow *flow = &b->flows[q->cur_flow];
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 	u32 len;
 | |
| 
 | |
| 	if (flow->head) {
 | |
| 		skb = dequeue_head(flow);
 | |
| 		len = qdisc_pkt_len(skb);
 | |
| 		b->backlogs[q->cur_flow] -= len;
 | |
| 		b->tin_backlog		 -= len;
 | |
| 		sch->qstats.backlog      -= len;
 | |
| 		q->buffer_used		 -= skb->truesize;
 | |
| 		sch->q.qlen--;
 | |
| 
 | |
| 		if (q->overflow_timeout)
 | |
| 			cake_heapify(q, b->overflow_idx[q->cur_flow]);
 | |
| 	}
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /* Discard leftover packets from a tin no longer in use. */
 | |
| static void cake_clear_tin(struct Qdisc *sch, u16 tin)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	q->cur_tin = tin;
 | |
| 	for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
 | |
| 		while (!!(skb = cake_dequeue_one(sch)))
 | |
| 			kfree_skb(skb);
 | |
| }
 | |
| 
 | |
| static struct sk_buff *cake_dequeue(struct Qdisc *sch)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	struct cake_tin_data *b = &q->tins[q->cur_tin];
 | |
| 	struct cake_host *srchost, *dsthost;
 | |
| 	ktime_t now = ktime_get();
 | |
| 	struct cake_flow *flow;
 | |
| 	struct list_head *head;
 | |
| 	bool first_flow = true;
 | |
| 	struct sk_buff *skb;
 | |
| 	u16 host_load;
 | |
| 	u64 delay;
 | |
| 	u32 len;
 | |
| 
 | |
| begin:
 | |
| 	if (!sch->q.qlen)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* global hard shaper */
 | |
| 	if (ktime_after(q->time_next_packet, now) &&
 | |
| 	    ktime_after(q->failsafe_next_packet, now)) {
 | |
| 		u64 next = min(ktime_to_ns(q->time_next_packet),
 | |
| 			       ktime_to_ns(q->failsafe_next_packet));
 | |
| 
 | |
| 		sch->qstats.overlimits++;
 | |
| 		qdisc_watchdog_schedule_ns(&q->watchdog, next);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Choose a class to work on. */
 | |
| 	if (!q->rate_ns) {
 | |
| 		/* In unlimited mode, can't rely on shaper timings, just balance
 | |
| 		 * with DRR
 | |
| 		 */
 | |
| 		bool wrapped = false, empty = true;
 | |
| 
 | |
| 		while (b->tin_deficit < 0 ||
 | |
| 		       !(b->sparse_flow_count + b->bulk_flow_count)) {
 | |
| 			if (b->tin_deficit <= 0)
 | |
| 				b->tin_deficit += b->tin_quantum_band;
 | |
| 			if (b->sparse_flow_count + b->bulk_flow_count)
 | |
| 				empty = false;
 | |
| 
 | |
| 			q->cur_tin++;
 | |
| 			b++;
 | |
| 			if (q->cur_tin >= q->tin_cnt) {
 | |
| 				q->cur_tin = 0;
 | |
| 				b = q->tins;
 | |
| 
 | |
| 				if (wrapped) {
 | |
| 					/* It's possible for q->qlen to be
 | |
| 					 * nonzero when we actually have no
 | |
| 					 * packets anywhere.
 | |
| 					 */
 | |
| 					if (empty)
 | |
| 						return NULL;
 | |
| 				} else {
 | |
| 					wrapped = true;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* In shaped mode, choose:
 | |
| 		 * - Highest-priority tin with queue and meeting schedule, or
 | |
| 		 * - The earliest-scheduled tin with queue.
 | |
| 		 */
 | |
| 		ktime_t best_time = KTIME_MAX;
 | |
| 		int tin, best_tin = 0;
 | |
| 
 | |
| 		for (tin = 0; tin < q->tin_cnt; tin++) {
 | |
| 			b = q->tins + tin;
 | |
| 			if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
 | |
| 				ktime_t time_to_pkt = \
 | |
| 					ktime_sub(b->time_next_packet, now);
 | |
| 
 | |
| 				if (ktime_to_ns(time_to_pkt) <= 0 ||
 | |
| 				    ktime_compare(time_to_pkt,
 | |
| 						  best_time) <= 0) {
 | |
| 					best_time = time_to_pkt;
 | |
| 					best_tin = tin;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		q->cur_tin = best_tin;
 | |
| 		b = q->tins + best_tin;
 | |
| 
 | |
| 		/* No point in going further if no packets to deliver. */
 | |
| 		if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	/* service this class */
 | |
| 	head = &b->decaying_flows;
 | |
| 	if (!first_flow || list_empty(head)) {
 | |
| 		head = &b->new_flows;
 | |
| 		if (list_empty(head)) {
 | |
| 			head = &b->old_flows;
 | |
| 			if (unlikely(list_empty(head))) {
 | |
| 				head = &b->decaying_flows;
 | |
| 				if (unlikely(list_empty(head)))
 | |
| 					goto begin;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	flow = list_first_entry(head, struct cake_flow, flowchain);
 | |
| 	q->cur_flow = flow - b->flows;
 | |
| 	first_flow = false;
 | |
| 
 | |
| 	/* triple isolation (modified DRR++) */
 | |
| 	srchost = &b->hosts[flow->srchost];
 | |
| 	dsthost = &b->hosts[flow->dsthost];
 | |
| 	host_load = 1;
 | |
| 
 | |
| 	if (cake_dsrc(q->flow_mode))
 | |
| 		host_load = max(host_load, srchost->srchost_refcnt);
 | |
| 
 | |
| 	if (cake_ddst(q->flow_mode))
 | |
| 		host_load = max(host_load, dsthost->dsthost_refcnt);
 | |
| 
 | |
| 	WARN_ON(host_load > CAKE_QUEUES);
 | |
| 
 | |
| 	/* flow isolation (DRR++) */
 | |
| 	if (flow->deficit <= 0) {
 | |
| 		/* The shifted prandom_u32() is a way to apply dithering to
 | |
| 		 * avoid accumulating roundoff errors
 | |
| 		 */
 | |
| 		flow->deficit += (b->flow_quantum * quantum_div[host_load] +
 | |
| 				  (prandom_u32() >> 16)) >> 16;
 | |
| 		list_move_tail(&flow->flowchain, &b->old_flows);
 | |
| 
 | |
| 		/* Keep all flows with deficits out of the sparse and decaying
 | |
| 		 * rotations.  No non-empty flow can go into the decaying
 | |
| 		 * rotation, so they can't get deficits
 | |
| 		 */
 | |
| 		if (flow->set == CAKE_SET_SPARSE) {
 | |
| 			if (flow->head) {
 | |
| 				b->sparse_flow_count--;
 | |
| 				b->bulk_flow_count++;
 | |
| 				flow->set = CAKE_SET_BULK;
 | |
| 			} else {
 | |
| 				/* we've moved it to the bulk rotation for
 | |
| 				 * correct deficit accounting but we still want
 | |
| 				 * to count it as a sparse flow, not a bulk one.
 | |
| 				 */
 | |
| 				flow->set = CAKE_SET_SPARSE_WAIT;
 | |
| 			}
 | |
| 		}
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/* Retrieve a packet via the AQM */
 | |
| 	while (1) {
 | |
| 		skb = cake_dequeue_one(sch);
 | |
| 		if (!skb) {
 | |
| 			/* this queue was actually empty */
 | |
| 			if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
 | |
| 				b->unresponsive_flow_count--;
 | |
| 
 | |
| 			if (flow->cvars.p_drop || flow->cvars.count ||
 | |
| 			    ktime_before(now, flow->cvars.drop_next)) {
 | |
| 				/* keep in the flowchain until the state has
 | |
| 				 * decayed to rest
 | |
| 				 */
 | |
| 				list_move_tail(&flow->flowchain,
 | |
| 					       &b->decaying_flows);
 | |
| 				if (flow->set == CAKE_SET_BULK) {
 | |
| 					b->bulk_flow_count--;
 | |
| 					b->decaying_flow_count++;
 | |
| 				} else if (flow->set == CAKE_SET_SPARSE ||
 | |
| 					   flow->set == CAKE_SET_SPARSE_WAIT) {
 | |
| 					b->sparse_flow_count--;
 | |
| 					b->decaying_flow_count++;
 | |
| 				}
 | |
| 				flow->set = CAKE_SET_DECAYING;
 | |
| 			} else {
 | |
| 				/* remove empty queue from the flowchain */
 | |
| 				list_del_init(&flow->flowchain);
 | |
| 				if (flow->set == CAKE_SET_SPARSE ||
 | |
| 				    flow->set == CAKE_SET_SPARSE_WAIT)
 | |
| 					b->sparse_flow_count--;
 | |
| 				else if (flow->set == CAKE_SET_BULK)
 | |
| 					b->bulk_flow_count--;
 | |
| 				else
 | |
| 					b->decaying_flow_count--;
 | |
| 
 | |
| 				flow->set = CAKE_SET_NONE;
 | |
| 				srchost->srchost_refcnt--;
 | |
| 				dsthost->dsthost_refcnt--;
 | |
| 			}
 | |
| 			goto begin;
 | |
| 		}
 | |
| 
 | |
| 		/* Last packet in queue may be marked, shouldn't be dropped */
 | |
| 		if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
 | |
| 					(b->bulk_flow_count *
 | |
| 					 !!(q->rate_flags &
 | |
| 					    CAKE_FLAG_INGRESS))) ||
 | |
| 		    !flow->head)
 | |
| 			break;
 | |
| 
 | |
| 		/* drop this packet, get another one */
 | |
| 		if (q->rate_flags & CAKE_FLAG_INGRESS) {
 | |
| 			len = cake_advance_shaper(q, b, skb,
 | |
| 						  now, true);
 | |
| 			flow->deficit -= len;
 | |
| 			b->tin_deficit -= len;
 | |
| 		}
 | |
| 		flow->dropped++;
 | |
| 		b->tin_dropped++;
 | |
| 		qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
 | |
| 		qdisc_qstats_drop(sch);
 | |
| 		kfree_skb(skb);
 | |
| 		if (q->rate_flags & CAKE_FLAG_INGRESS)
 | |
| 			goto retry;
 | |
| 	}
 | |
| 
 | |
| 	b->tin_ecn_mark += !!flow->cvars.ecn_marked;
 | |
| 	qdisc_bstats_update(sch, skb);
 | |
| 
 | |
| 	/* collect delay stats */
 | |
| 	delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
 | |
| 	b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
 | |
| 	b->peak_delay = cake_ewma(b->peak_delay, delay,
 | |
| 				  delay > b->peak_delay ? 2 : 8);
 | |
| 	b->base_delay = cake_ewma(b->base_delay, delay,
 | |
| 				  delay < b->base_delay ? 2 : 8);
 | |
| 
 | |
| 	len = cake_advance_shaper(q, b, skb, now, false);
 | |
| 	flow->deficit -= len;
 | |
| 	b->tin_deficit -= len;
 | |
| 
 | |
| 	if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
 | |
| 		u64 next = min(ktime_to_ns(q->time_next_packet),
 | |
| 			       ktime_to_ns(q->failsafe_next_packet));
 | |
| 
 | |
| 		qdisc_watchdog_schedule_ns(&q->watchdog, next);
 | |
| 	} else if (!sch->q.qlen) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < q->tin_cnt; i++) {
 | |
| 			if (q->tins[i].decaying_flow_count) {
 | |
| 				ktime_t next = \
 | |
| 					ktime_add_ns(now,
 | |
| 						     q->tins[i].cparams.target);
 | |
| 
 | |
| 				qdisc_watchdog_schedule_ns(&q->watchdog,
 | |
| 							   ktime_to_ns(next));
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (q->overflow_timeout)
 | |
| 		q->overflow_timeout--;
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static void cake_reset(struct Qdisc *sch)
 | |
| {
 | |
| 	u32 c;
 | |
| 
 | |
| 	for (c = 0; c < CAKE_MAX_TINS; c++)
 | |
| 		cake_clear_tin(sch, c);
 | |
| }
 | |
| 
 | |
| static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
 | |
| 	[TCA_CAKE_BASE_RATE64]   = { .type = NLA_U64 },
 | |
| 	[TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_ATM]		 = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_FLOW_MODE]     = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_OVERHEAD]      = { .type = NLA_S32 },
 | |
| 	[TCA_CAKE_RTT]		 = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_TARGET]	 = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_AUTORATE]      = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_MEMORY]	 = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_NAT]		 = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_RAW]		 = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_WASH]		 = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_MPU]		 = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_INGRESS]	 = { .type = NLA_U32 },
 | |
| 	[TCA_CAKE_ACK_FILTER]	 = { .type = NLA_U32 },
 | |
| };
 | |
| 
 | |
| static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
 | |
| 			  u64 target_ns, u64 rtt_est_ns)
 | |
| {
 | |
| 	/* convert byte-rate into time-per-byte
 | |
| 	 * so it will always unwedge in reasonable time.
 | |
| 	 */
 | |
| 	static const u64 MIN_RATE = 64;
 | |
| 	u32 byte_target = mtu;
 | |
| 	u64 byte_target_ns;
 | |
| 	u8  rate_shft = 0;
 | |
| 	u64 rate_ns = 0;
 | |
| 
 | |
| 	b->flow_quantum = 1514;
 | |
| 	if (rate) {
 | |
| 		b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
 | |
| 		rate_shft = 34;
 | |
| 		rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
 | |
| 		rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
 | |
| 		while (!!(rate_ns >> 34)) {
 | |
| 			rate_ns >>= 1;
 | |
| 			rate_shft--;
 | |
| 		}
 | |
| 	} /* else unlimited, ie. zero delay */
 | |
| 
 | |
| 	b->tin_rate_bps  = rate;
 | |
| 	b->tin_rate_ns   = rate_ns;
 | |
| 	b->tin_rate_shft = rate_shft;
 | |
| 
 | |
| 	byte_target_ns = (byte_target * rate_ns) >> rate_shft;
 | |
| 
 | |
| 	b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
 | |
| 	b->cparams.interval = max(rtt_est_ns +
 | |
| 				     b->cparams.target - target_ns,
 | |
| 				     b->cparams.target * 2);
 | |
| 	b->cparams.mtu_time = byte_target_ns;
 | |
| 	b->cparams.p_inc = 1 << 24; /* 1/256 */
 | |
| 	b->cparams.p_dec = 1 << 20; /* 1/4096 */
 | |
| }
 | |
| 
 | |
| static int cake_config_besteffort(struct Qdisc *sch)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	struct cake_tin_data *b = &q->tins[0];
 | |
| 	u32 mtu = psched_mtu(qdisc_dev(sch));
 | |
| 	u64 rate = q->rate_bps;
 | |
| 
 | |
| 	q->tin_cnt = 1;
 | |
| 
 | |
| 	q->tin_index = besteffort;
 | |
| 	q->tin_order = normal_order;
 | |
| 
 | |
| 	cake_set_rate(b, rate, mtu,
 | |
| 		      us_to_ns(q->target), us_to_ns(q->interval));
 | |
| 	b->tin_quantum_band = 65535;
 | |
| 	b->tin_quantum_prio = 65535;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cake_config_precedence(struct Qdisc *sch)
 | |
| {
 | |
| 	/* convert high-level (user visible) parameters into internal format */
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	u32 mtu = psched_mtu(qdisc_dev(sch));
 | |
| 	u64 rate = q->rate_bps;
 | |
| 	u32 quantum1 = 256;
 | |
| 	u32 quantum2 = 256;
 | |
| 	u32 i;
 | |
| 
 | |
| 	q->tin_cnt = 8;
 | |
| 	q->tin_index = precedence;
 | |
| 	q->tin_order = normal_order;
 | |
| 
 | |
| 	for (i = 0; i < q->tin_cnt; i++) {
 | |
| 		struct cake_tin_data *b = &q->tins[i];
 | |
| 
 | |
| 		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
 | |
| 			      us_to_ns(q->interval));
 | |
| 
 | |
| 		b->tin_quantum_prio = max_t(u16, 1U, quantum1);
 | |
| 		b->tin_quantum_band = max_t(u16, 1U, quantum2);
 | |
| 
 | |
| 		/* calculate next class's parameters */
 | |
| 		rate  *= 7;
 | |
| 		rate >>= 3;
 | |
| 
 | |
| 		quantum1  *= 3;
 | |
| 		quantum1 >>= 1;
 | |
| 
 | |
| 		quantum2  *= 7;
 | |
| 		quantum2 >>= 3;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*	List of known Diffserv codepoints:
 | |
|  *
 | |
|  *	Least Effort (CS1)
 | |
|  *	Best Effort (CS0)
 | |
|  *	Max Reliability & LLT "Lo" (TOS1)
 | |
|  *	Max Throughput (TOS2)
 | |
|  *	Min Delay (TOS4)
 | |
|  *	LLT "La" (TOS5)
 | |
|  *	Assured Forwarding 1 (AF1x) - x3
 | |
|  *	Assured Forwarding 2 (AF2x) - x3
 | |
|  *	Assured Forwarding 3 (AF3x) - x3
 | |
|  *	Assured Forwarding 4 (AF4x) - x3
 | |
|  *	Precedence Class 2 (CS2)
 | |
|  *	Precedence Class 3 (CS3)
 | |
|  *	Precedence Class 4 (CS4)
 | |
|  *	Precedence Class 5 (CS5)
 | |
|  *	Precedence Class 6 (CS6)
 | |
|  *	Precedence Class 7 (CS7)
 | |
|  *	Voice Admit (VA)
 | |
|  *	Expedited Forwarding (EF)
 | |
| 
 | |
|  *	Total 25 codepoints.
 | |
|  */
 | |
| 
 | |
| /*	List of traffic classes in RFC 4594:
 | |
|  *		(roughly descending order of contended priority)
 | |
|  *		(roughly ascending order of uncontended throughput)
 | |
|  *
 | |
|  *	Network Control (CS6,CS7)      - routing traffic
 | |
|  *	Telephony (EF,VA)         - aka. VoIP streams
 | |
|  *	Signalling (CS5)               - VoIP setup
 | |
|  *	Multimedia Conferencing (AF4x) - aka. video calls
 | |
|  *	Realtime Interactive (CS4)     - eg. games
 | |
|  *	Multimedia Streaming (AF3x)    - eg. YouTube, NetFlix, Twitch
 | |
|  *	Broadcast Video (CS3)
 | |
|  *	Low Latency Data (AF2x,TOS4)      - eg. database
 | |
|  *	Ops, Admin, Management (CS2,TOS1) - eg. ssh
 | |
|  *	Standard Service (CS0 & unrecognised codepoints)
 | |
|  *	High Throughput Data (AF1x,TOS2)  - eg. web traffic
 | |
|  *	Low Priority Data (CS1)           - eg. BitTorrent
 | |
| 
 | |
|  *	Total 12 traffic classes.
 | |
|  */
 | |
| 
 | |
| static int cake_config_diffserv8(struct Qdisc *sch)
 | |
| {
 | |
| /*	Pruned list of traffic classes for typical applications:
 | |
|  *
 | |
|  *		Network Control          (CS6, CS7)
 | |
|  *		Minimum Latency          (EF, VA, CS5, CS4)
 | |
|  *		Interactive Shell        (CS2, TOS1)
 | |
|  *		Low Latency Transactions (AF2x, TOS4)
 | |
|  *		Video Streaming          (AF4x, AF3x, CS3)
 | |
|  *		Bog Standard             (CS0 etc.)
 | |
|  *		High Throughput          (AF1x, TOS2)
 | |
|  *		Background Traffic       (CS1)
 | |
|  *
 | |
|  *		Total 8 traffic classes.
 | |
|  */
 | |
| 
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	u32 mtu = psched_mtu(qdisc_dev(sch));
 | |
| 	u64 rate = q->rate_bps;
 | |
| 	u32 quantum1 = 256;
 | |
| 	u32 quantum2 = 256;
 | |
| 	u32 i;
 | |
| 
 | |
| 	q->tin_cnt = 8;
 | |
| 
 | |
| 	/* codepoint to class mapping */
 | |
| 	q->tin_index = diffserv8;
 | |
| 	q->tin_order = normal_order;
 | |
| 
 | |
| 	/* class characteristics */
 | |
| 	for (i = 0; i < q->tin_cnt; i++) {
 | |
| 		struct cake_tin_data *b = &q->tins[i];
 | |
| 
 | |
| 		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
 | |
| 			      us_to_ns(q->interval));
 | |
| 
 | |
| 		b->tin_quantum_prio = max_t(u16, 1U, quantum1);
 | |
| 		b->tin_quantum_band = max_t(u16, 1U, quantum2);
 | |
| 
 | |
| 		/* calculate next class's parameters */
 | |
| 		rate  *= 7;
 | |
| 		rate >>= 3;
 | |
| 
 | |
| 		quantum1  *= 3;
 | |
| 		quantum1 >>= 1;
 | |
| 
 | |
| 		quantum2  *= 7;
 | |
| 		quantum2 >>= 3;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cake_config_diffserv4(struct Qdisc *sch)
 | |
| {
 | |
| /*  Further pruned list of traffic classes for four-class system:
 | |
|  *
 | |
|  *	    Latency Sensitive  (CS7, CS6, EF, VA, CS5, CS4)
 | |
|  *	    Streaming Media    (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
 | |
|  *	    Best Effort        (CS0, AF1x, TOS2, and those not specified)
 | |
|  *	    Background Traffic (CS1)
 | |
|  *
 | |
|  *		Total 4 traffic classes.
 | |
|  */
 | |
| 
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	u32 mtu = psched_mtu(qdisc_dev(sch));
 | |
| 	u64 rate = q->rate_bps;
 | |
| 	u32 quantum = 1024;
 | |
| 
 | |
| 	q->tin_cnt = 4;
 | |
| 
 | |
| 	/* codepoint to class mapping */
 | |
| 	q->tin_index = diffserv4;
 | |
| 	q->tin_order = bulk_order;
 | |
| 
 | |
| 	/* class characteristics */
 | |
| 	cake_set_rate(&q->tins[0], rate, mtu,
 | |
| 		      us_to_ns(q->target), us_to_ns(q->interval));
 | |
| 	cake_set_rate(&q->tins[1], rate >> 4, mtu,
 | |
| 		      us_to_ns(q->target), us_to_ns(q->interval));
 | |
| 	cake_set_rate(&q->tins[2], rate >> 1, mtu,
 | |
| 		      us_to_ns(q->target), us_to_ns(q->interval));
 | |
| 	cake_set_rate(&q->tins[3], rate >> 2, mtu,
 | |
| 		      us_to_ns(q->target), us_to_ns(q->interval));
 | |
| 
 | |
| 	/* priority weights */
 | |
| 	q->tins[0].tin_quantum_prio = quantum;
 | |
| 	q->tins[1].tin_quantum_prio = quantum >> 4;
 | |
| 	q->tins[2].tin_quantum_prio = quantum << 2;
 | |
| 	q->tins[3].tin_quantum_prio = quantum << 4;
 | |
| 
 | |
| 	/* bandwidth-sharing weights */
 | |
| 	q->tins[0].tin_quantum_band = quantum;
 | |
| 	q->tins[1].tin_quantum_band = quantum >> 4;
 | |
| 	q->tins[2].tin_quantum_band = quantum >> 1;
 | |
| 	q->tins[3].tin_quantum_band = quantum >> 2;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cake_config_diffserv3(struct Qdisc *sch)
 | |
| {
 | |
| /*  Simplified Diffserv structure with 3 tins.
 | |
|  *		Low Priority		(CS1)
 | |
|  *		Best Effort
 | |
|  *		Latency Sensitive	(TOS4, VA, EF, CS6, CS7)
 | |
|  */
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	u32 mtu = psched_mtu(qdisc_dev(sch));
 | |
| 	u64 rate = q->rate_bps;
 | |
| 	u32 quantum = 1024;
 | |
| 
 | |
| 	q->tin_cnt = 3;
 | |
| 
 | |
| 	/* codepoint to class mapping */
 | |
| 	q->tin_index = diffserv3;
 | |
| 	q->tin_order = bulk_order;
 | |
| 
 | |
| 	/* class characteristics */
 | |
| 	cake_set_rate(&q->tins[0], rate, mtu,
 | |
| 		      us_to_ns(q->target), us_to_ns(q->interval));
 | |
| 	cake_set_rate(&q->tins[1], rate >> 4, mtu,
 | |
| 		      us_to_ns(q->target), us_to_ns(q->interval));
 | |
| 	cake_set_rate(&q->tins[2], rate >> 2, mtu,
 | |
| 		      us_to_ns(q->target), us_to_ns(q->interval));
 | |
| 
 | |
| 	/* priority weights */
 | |
| 	q->tins[0].tin_quantum_prio = quantum;
 | |
| 	q->tins[1].tin_quantum_prio = quantum >> 4;
 | |
| 	q->tins[2].tin_quantum_prio = quantum << 4;
 | |
| 
 | |
| 	/* bandwidth-sharing weights */
 | |
| 	q->tins[0].tin_quantum_band = quantum;
 | |
| 	q->tins[1].tin_quantum_band = quantum >> 4;
 | |
| 	q->tins[2].tin_quantum_band = quantum >> 2;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cake_reconfigure(struct Qdisc *sch)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	int c, ft;
 | |
| 
 | |
| 	switch (q->tin_mode) {
 | |
| 	case CAKE_DIFFSERV_BESTEFFORT:
 | |
| 		ft = cake_config_besteffort(sch);
 | |
| 		break;
 | |
| 
 | |
| 	case CAKE_DIFFSERV_PRECEDENCE:
 | |
| 		ft = cake_config_precedence(sch);
 | |
| 		break;
 | |
| 
 | |
| 	case CAKE_DIFFSERV_DIFFSERV8:
 | |
| 		ft = cake_config_diffserv8(sch);
 | |
| 		break;
 | |
| 
 | |
| 	case CAKE_DIFFSERV_DIFFSERV4:
 | |
| 		ft = cake_config_diffserv4(sch);
 | |
| 		break;
 | |
| 
 | |
| 	case CAKE_DIFFSERV_DIFFSERV3:
 | |
| 	default:
 | |
| 		ft = cake_config_diffserv3(sch);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
 | |
| 		cake_clear_tin(sch, c);
 | |
| 		q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
 | |
| 	}
 | |
| 
 | |
| 	q->rate_ns   = q->tins[ft].tin_rate_ns;
 | |
| 	q->rate_shft = q->tins[ft].tin_rate_shft;
 | |
| 
 | |
| 	if (q->buffer_config_limit) {
 | |
| 		q->buffer_limit = q->buffer_config_limit;
 | |
| 	} else if (q->rate_bps) {
 | |
| 		u64 t = q->rate_bps * q->interval;
 | |
| 
 | |
| 		do_div(t, USEC_PER_SEC / 4);
 | |
| 		q->buffer_limit = max_t(u32, t, 4U << 20);
 | |
| 	} else {
 | |
| 		q->buffer_limit = ~0;
 | |
| 	}
 | |
| 
 | |
| 	sch->flags &= ~TCQ_F_CAN_BYPASS;
 | |
| 
 | |
| 	q->buffer_limit = min(q->buffer_limit,
 | |
| 			      max(sch->limit * psched_mtu(qdisc_dev(sch)),
 | |
| 				  q->buffer_config_limit));
 | |
| }
 | |
| 
 | |
| static int cake_change(struct Qdisc *sch, struct nlattr *opt,
 | |
| 		       struct netlink_ext_ack *extack)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *tb[TCA_CAKE_MAX + 1];
 | |
| 	int err;
 | |
| 
 | |
| 	if (!opt)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	if (tb[TCA_CAKE_NAT]) {
 | |
| #if IS_ENABLED(CONFIG_NF_CONNTRACK)
 | |
| 		q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
 | |
| 		q->flow_mode |= CAKE_FLOW_NAT_FLAG *
 | |
| 			!!nla_get_u32(tb[TCA_CAKE_NAT]);
 | |
| #else
 | |
| 		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
 | |
| 				    "No conntrack support in kernel");
 | |
| 		return -EOPNOTSUPP;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_CAKE_BASE_RATE64])
 | |
| 		q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
 | |
| 
 | |
| 	if (tb[TCA_CAKE_DIFFSERV_MODE])
 | |
| 		q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
 | |
| 
 | |
| 	if (tb[TCA_CAKE_WASH]) {
 | |
| 		if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
 | |
| 			q->rate_flags |= CAKE_FLAG_WASH;
 | |
| 		else
 | |
| 			q->rate_flags &= ~CAKE_FLAG_WASH;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_CAKE_FLOW_MODE])
 | |
| 		q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
 | |
| 				(nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
 | |
| 					CAKE_FLOW_MASK));
 | |
| 
 | |
| 	if (tb[TCA_CAKE_ATM])
 | |
| 		q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
 | |
| 
 | |
| 	if (tb[TCA_CAKE_OVERHEAD]) {
 | |
| 		q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
 | |
| 		q->rate_flags |= CAKE_FLAG_OVERHEAD;
 | |
| 
 | |
| 		q->max_netlen = 0;
 | |
| 		q->max_adjlen = 0;
 | |
| 		q->min_netlen = ~0;
 | |
| 		q->min_adjlen = ~0;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_CAKE_RAW]) {
 | |
| 		q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
 | |
| 
 | |
| 		q->max_netlen = 0;
 | |
| 		q->max_adjlen = 0;
 | |
| 		q->min_netlen = ~0;
 | |
| 		q->min_adjlen = ~0;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_CAKE_MPU])
 | |
| 		q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
 | |
| 
 | |
| 	if (tb[TCA_CAKE_RTT]) {
 | |
| 		q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
 | |
| 
 | |
| 		if (!q->interval)
 | |
| 			q->interval = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_CAKE_TARGET]) {
 | |
| 		q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
 | |
| 
 | |
| 		if (!q->target)
 | |
| 			q->target = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_CAKE_AUTORATE]) {
 | |
| 		if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
 | |
| 			q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
 | |
| 		else
 | |
| 			q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_CAKE_INGRESS]) {
 | |
| 		if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
 | |
| 			q->rate_flags |= CAKE_FLAG_INGRESS;
 | |
| 		else
 | |
| 			q->rate_flags &= ~CAKE_FLAG_INGRESS;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_CAKE_ACK_FILTER])
 | |
| 		q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
 | |
| 
 | |
| 	if (tb[TCA_CAKE_MEMORY])
 | |
| 		q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
 | |
| 
 | |
| 	if (tb[TCA_CAKE_SPLIT_GSO]) {
 | |
| 		if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
 | |
| 			q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
 | |
| 		else
 | |
| 			q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
 | |
| 	}
 | |
| 
 | |
| 	if (q->tins) {
 | |
| 		sch_tree_lock(sch);
 | |
| 		cake_reconfigure(sch);
 | |
| 		sch_tree_unlock(sch);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cake_destroy(struct Qdisc *sch)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	qdisc_watchdog_cancel(&q->watchdog);
 | |
| 	tcf_block_put(q->block);
 | |
| 	kvfree(q->tins);
 | |
| }
 | |
| 
 | |
| static int cake_init(struct Qdisc *sch, struct nlattr *opt,
 | |
| 		     struct netlink_ext_ack *extack)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	int i, j, err;
 | |
| 
 | |
| 	sch->limit = 10240;
 | |
| 	q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
 | |
| 	q->flow_mode  = CAKE_FLOW_TRIPLE;
 | |
| 
 | |
| 	q->rate_bps = 0; /* unlimited by default */
 | |
| 
 | |
| 	q->interval = 100000; /* 100ms default */
 | |
| 	q->target   =   5000; /* 5ms: codel RFC argues
 | |
| 			       * for 5 to 10% of interval
 | |
| 			       */
 | |
| 	q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
 | |
| 	q->cur_tin = 0;
 | |
| 	q->cur_flow  = 0;
 | |
| 
 | |
| 	qdisc_watchdog_init(&q->watchdog, sch);
 | |
| 
 | |
| 	if (opt) {
 | |
| 		int err = cake_change(sch, opt, extack);
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	quantum_div[0] = ~0;
 | |
| 	for (i = 1; i <= CAKE_QUEUES; i++)
 | |
| 		quantum_div[i] = 65535 / i;
 | |
| 
 | |
| 	q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
 | |
| 			   GFP_KERNEL);
 | |
| 	if (!q->tins)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	for (i = 0; i < CAKE_MAX_TINS; i++) {
 | |
| 		struct cake_tin_data *b = q->tins + i;
 | |
| 
 | |
| 		INIT_LIST_HEAD(&b->new_flows);
 | |
| 		INIT_LIST_HEAD(&b->old_flows);
 | |
| 		INIT_LIST_HEAD(&b->decaying_flows);
 | |
| 		b->sparse_flow_count = 0;
 | |
| 		b->bulk_flow_count = 0;
 | |
| 		b->decaying_flow_count = 0;
 | |
| 
 | |
| 		for (j = 0; j < CAKE_QUEUES; j++) {
 | |
| 			struct cake_flow *flow = b->flows + j;
 | |
| 			u32 k = j * CAKE_MAX_TINS + i;
 | |
| 
 | |
| 			INIT_LIST_HEAD(&flow->flowchain);
 | |
| 			cobalt_vars_init(&flow->cvars);
 | |
| 
 | |
| 			q->overflow_heap[k].t = i;
 | |
| 			q->overflow_heap[k].b = j;
 | |
| 			b->overflow_idx[j] = k;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cake_reconfigure(sch);
 | |
| 	q->avg_peak_bandwidth = q->rate_bps;
 | |
| 	q->min_netlen = ~0;
 | |
| 	q->min_adjlen = ~0;
 | |
| 	return 0;
 | |
| 
 | |
| nomem:
 | |
| 	cake_destroy(sch);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *opts;
 | |
| 
 | |
| 	opts = nla_nest_start(skb, TCA_OPTIONS);
 | |
| 	if (!opts)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
 | |
| 			      TCA_CAKE_PAD))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
 | |
| 			q->flow_mode & CAKE_FLOW_MASK))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
 | |
| 			!!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_INGRESS,
 | |
| 			!!(q->rate_flags & CAKE_FLAG_INGRESS)))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_NAT,
 | |
| 			!!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_WASH,
 | |
| 			!!(q->rate_flags & CAKE_FLAG_WASH)))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
 | |
| 		if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
 | |
| 			goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
 | |
| 			!!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	return nla_nest_end(skb, opts);
 | |
| 
 | |
| nla_put_failure:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 | |
| {
 | |
| 	struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP);
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *tstats, *ts;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!stats)
 | |
| 		return -1;
 | |
| 
 | |
| #define PUT_STAT_U32(attr, data) do {				       \
 | |
| 		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
 | |
| 			goto nla_put_failure;			       \
 | |
| 	} while (0)
 | |
| #define PUT_STAT_U64(attr, data) do {				       \
 | |
| 		if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
 | |
| 					data, TCA_CAKE_STATS_PAD)) \
 | |
| 			goto nla_put_failure;			       \
 | |
| 	} while (0)
 | |
| 
 | |
| 	PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
 | |
| 	PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
 | |
| 	PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
 | |
| 	PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
 | |
| 	PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
 | |
| 	PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
 | |
| 	PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
 | |
| 	PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
 | |
| 
 | |
| #undef PUT_STAT_U32
 | |
| #undef PUT_STAT_U64
 | |
| 
 | |
| 	tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS);
 | |
| 	if (!tstats)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| #define PUT_TSTAT_U32(attr, data) do {					\
 | |
| 		if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
 | |
| 			goto nla_put_failure;				\
 | |
| 	} while (0)
 | |
| #define PUT_TSTAT_U64(attr, data) do {					\
 | |
| 		if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
 | |
| 					data, TCA_CAKE_TIN_STATS_PAD))	\
 | |
| 			goto nla_put_failure;				\
 | |
| 	} while (0)
 | |
| 
 | |
| 	for (i = 0; i < q->tin_cnt; i++) {
 | |
| 		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
 | |
| 
 | |
| 		ts = nla_nest_start(d->skb, i + 1);
 | |
| 		if (!ts)
 | |
| 			goto nla_put_failure;
 | |
| 
 | |
| 		PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
 | |
| 		PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
 | |
| 		PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
 | |
| 
 | |
| 		PUT_TSTAT_U32(TARGET_US,
 | |
| 			      ktime_to_us(ns_to_ktime(b->cparams.target)));
 | |
| 		PUT_TSTAT_U32(INTERVAL_US,
 | |
| 			      ktime_to_us(ns_to_ktime(b->cparams.interval)));
 | |
| 
 | |
| 		PUT_TSTAT_U32(SENT_PACKETS, b->packets);
 | |
| 		PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
 | |
| 		PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
 | |
| 		PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
 | |
| 
 | |
| 		PUT_TSTAT_U32(PEAK_DELAY_US,
 | |
| 			      ktime_to_us(ns_to_ktime(b->peak_delay)));
 | |
| 		PUT_TSTAT_U32(AVG_DELAY_US,
 | |
| 			      ktime_to_us(ns_to_ktime(b->avge_delay)));
 | |
| 		PUT_TSTAT_U32(BASE_DELAY_US,
 | |
| 			      ktime_to_us(ns_to_ktime(b->base_delay)));
 | |
| 
 | |
| 		PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
 | |
| 		PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
 | |
| 		PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
 | |
| 
 | |
| 		PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
 | |
| 					    b->decaying_flow_count);
 | |
| 		PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
 | |
| 		PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
 | |
| 		PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
 | |
| 
 | |
| 		PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
 | |
| 		nla_nest_end(d->skb, ts);
 | |
| 	}
 | |
| 
 | |
| #undef PUT_TSTAT_U32
 | |
| #undef PUT_TSTAT_U64
 | |
| 
 | |
| 	nla_nest_end(d->skb, tstats);
 | |
| 	return nla_nest_end(d->skb, stats);
 | |
| 
 | |
| nla_put_failure:
 | |
| 	nla_nest_cancel(d->skb, stats);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static unsigned long cake_find(struct Qdisc *sch, u32 classid)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
 | |
| 			       u32 classid)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cake_unbind(struct Qdisc *q, unsigned long cl)
 | |
| {
 | |
| }
 | |
| 
 | |
| static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
 | |
| 					struct netlink_ext_ack *extack)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	if (cl)
 | |
| 		return NULL;
 | |
| 	return q->block;
 | |
| }
 | |
| 
 | |
| static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
 | |
| 			   struct sk_buff *skb, struct tcmsg *tcm)
 | |
| {
 | |
| 	tcm->tcm_handle |= TC_H_MIN(cl);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
 | |
| 				 struct gnet_dump *d)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	const struct cake_flow *flow = NULL;
 | |
| 	struct gnet_stats_queue qs = { 0 };
 | |
| 	struct nlattr *stats;
 | |
| 	u32 idx = cl - 1;
 | |
| 
 | |
| 	if (idx < CAKE_QUEUES * q->tin_cnt) {
 | |
| 		const struct cake_tin_data *b = \
 | |
| 			&q->tins[q->tin_order[idx / CAKE_QUEUES]];
 | |
| 		const struct sk_buff *skb;
 | |
| 
 | |
| 		flow = &b->flows[idx % CAKE_QUEUES];
 | |
| 
 | |
| 		if (flow->head) {
 | |
| 			sch_tree_lock(sch);
 | |
| 			skb = flow->head;
 | |
| 			while (skb) {
 | |
| 				qs.qlen++;
 | |
| 				skb = skb->next;
 | |
| 			}
 | |
| 			sch_tree_unlock(sch);
 | |
| 		}
 | |
| 		qs.backlog = b->backlogs[idx % CAKE_QUEUES];
 | |
| 		qs.drops = flow->dropped;
 | |
| 	}
 | |
| 	if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
 | |
| 		return -1;
 | |
| 	if (flow) {
 | |
| 		ktime_t now = ktime_get();
 | |
| 
 | |
| 		stats = nla_nest_start(d->skb, TCA_STATS_APP);
 | |
| 		if (!stats)
 | |
| 			return -1;
 | |
| 
 | |
| #define PUT_STAT_U32(attr, data) do {				       \
 | |
| 		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
 | |
| 			goto nla_put_failure;			       \
 | |
| 	} while (0)
 | |
| #define PUT_STAT_S32(attr, data) do {				       \
 | |
| 		if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
 | |
| 			goto nla_put_failure;			       \
 | |
| 	} while (0)
 | |
| 
 | |
| 		PUT_STAT_S32(DEFICIT, flow->deficit);
 | |
| 		PUT_STAT_U32(DROPPING, flow->cvars.dropping);
 | |
| 		PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
 | |
| 		PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
 | |
| 		if (flow->cvars.p_drop) {
 | |
| 			PUT_STAT_S32(BLUE_TIMER_US,
 | |
| 				     ktime_to_us(
 | |
| 					     ktime_sub(now,
 | |
| 						     flow->cvars.blue_timer)));
 | |
| 		}
 | |
| 		if (flow->cvars.dropping) {
 | |
| 			PUT_STAT_S32(DROP_NEXT_US,
 | |
| 				     ktime_to_us(
 | |
| 					     ktime_sub(now,
 | |
| 						       flow->cvars.drop_next)));
 | |
| 		}
 | |
| 
 | |
| 		if (nla_nest_end(d->skb, stats) < 0)
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nla_put_failure:
 | |
| 	nla_nest_cancel(d->skb, stats);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
 | |
| {
 | |
| 	struct cake_sched_data *q = qdisc_priv(sch);
 | |
| 	unsigned int i, j;
 | |
| 
 | |
| 	if (arg->stop)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < q->tin_cnt; i++) {
 | |
| 		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
 | |
| 
 | |
| 		for (j = 0; j < CAKE_QUEUES; j++) {
 | |
| 			if (list_empty(&b->flows[j].flowchain) ||
 | |
| 			    arg->count < arg->skip) {
 | |
| 				arg->count++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
 | |
| 				arg->stop = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			arg->count++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct Qdisc_class_ops cake_class_ops = {
 | |
| 	.leaf		=	cake_leaf,
 | |
| 	.find		=	cake_find,
 | |
| 	.tcf_block	=	cake_tcf_block,
 | |
| 	.bind_tcf	=	cake_bind,
 | |
| 	.unbind_tcf	=	cake_unbind,
 | |
| 	.dump		=	cake_dump_class,
 | |
| 	.dump_stats	=	cake_dump_class_stats,
 | |
| 	.walk		=	cake_walk,
 | |
| };
 | |
| 
 | |
| static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
 | |
| 	.cl_ops		=	&cake_class_ops,
 | |
| 	.id		=	"cake",
 | |
| 	.priv_size	=	sizeof(struct cake_sched_data),
 | |
| 	.enqueue	=	cake_enqueue,
 | |
| 	.dequeue	=	cake_dequeue,
 | |
| 	.peek		=	qdisc_peek_dequeued,
 | |
| 	.init		=	cake_init,
 | |
| 	.reset		=	cake_reset,
 | |
| 	.destroy	=	cake_destroy,
 | |
| 	.change		=	cake_change,
 | |
| 	.dump		=	cake_dump,
 | |
| 	.dump_stats	=	cake_dump_stats,
 | |
| 	.owner		=	THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init cake_module_init(void)
 | |
| {
 | |
| 	return register_qdisc(&cake_qdisc_ops);
 | |
| }
 | |
| 
 | |
| static void __exit cake_module_exit(void)
 | |
| {
 | |
| 	unregister_qdisc(&cake_qdisc_ops);
 | |
| }
 | |
| 
 | |
| module_init(cake_module_init)
 | |
| module_exit(cake_module_exit)
 | |
| MODULE_AUTHOR("Jonathan Morton");
 | |
| MODULE_LICENSE("Dual BSD/GPL");
 | |
| MODULE_DESCRIPTION("The CAKE shaper.");
 | 
