381 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _SPARC64_TSB_H
 | |
| #define _SPARC64_TSB_H
 | |
| 
 | |
| /* The sparc64 TSB is similar to the powerpc hashtables.  It's a
 | |
|  * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
 | |
|  * pointers into this table for 8K and 64K page sizes, and also a
 | |
|  * comparison TAG based upon the virtual address and context which
 | |
|  * faults.
 | |
|  *
 | |
|  * TLB miss trap handler software does the actual lookup via something
 | |
|  * of the form:
 | |
|  *
 | |
|  * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
 | |
|  * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
 | |
|  *	sllx		%g6, 22, %g6
 | |
|  *	srlx		%g6, 22, %g6
 | |
|  * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
 | |
|  * 	cmp		%g4, %g6
 | |
|  * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
 | |
|  * 	 mov		FAULT_CODE_{D,I}TLB, %g3
 | |
|  * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
 | |
|  * 	retry
 | |
|  *
 | |
|  *
 | |
|  * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
 | |
|  * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
 | |
|  * register which is:
 | |
|  *
 | |
|  * -------------------------------------------------
 | |
|  * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
 | |
|  * -------------------------------------------------
 | |
|  *  63 61 60      48 47 42 41                     0
 | |
|  *
 | |
|  * But actually, since we use per-mm TSB's, we zero out the CONTEXT
 | |
|  * field.
 | |
|  *
 | |
|  * Like the powerpc hashtables we need to use locking in order to
 | |
|  * synchronize while we update the entries.  PTE updates need locking
 | |
|  * as well.
 | |
|  *
 | |
|  * We need to carefully choose a lock bits for the TSB entry.  We
 | |
|  * choose to use bit 47 in the tag.  Also, since we never map anything
 | |
|  * at page zero in context zero, we use zero as an invalid tag entry.
 | |
|  * When the lock bit is set, this forces a tag comparison failure.
 | |
|  */
 | |
| 
 | |
| #define TSB_TAG_LOCK_BIT	47
 | |
| #define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))
 | |
| 
 | |
| #define TSB_TAG_INVALID_BIT	46
 | |
| #define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))
 | |
| 
 | |
| /* Some cpus support physical address quad loads.  We want to use
 | |
|  * those if possible so we don't need to hard-lock the TSB mapping
 | |
|  * into the TLB.  We encode some instruction patching in order to
 | |
|  * support this.
 | |
|  *
 | |
|  * The kernel TSB is locked into the TLB by virtue of being in the
 | |
|  * kernel image, so we don't play these games for swapper_tsb access.
 | |
|  */
 | |
| #ifndef __ASSEMBLY__
 | |
| struct tsb_ldquad_phys_patch_entry {
 | |
| 	unsigned int	addr;
 | |
| 	unsigned int	sun4u_insn;
 | |
| 	unsigned int	sun4v_insn;
 | |
| };
 | |
| extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
 | |
| 	__tsb_ldquad_phys_patch_end;
 | |
| 
 | |
| struct tsb_phys_patch_entry {
 | |
| 	unsigned int	addr;
 | |
| 	unsigned int	insn;
 | |
| };
 | |
| extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
 | |
| #endif
 | |
| #define TSB_LOAD_QUAD(TSB, REG)	\
 | |
| 661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
 | |
| 	.section	.tsb_ldquad_phys_patch, "ax"; \
 | |
| 	.word		661b; \
 | |
| 	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
 | |
| 	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
 | |
| 	.previous
 | |
| 
 | |
| #define TSB_LOAD_TAG_HIGH(TSB, REG) \
 | |
| 661:	lduwa		[TSB] ASI_N, REG; \
 | |
| 	.section	.tsb_phys_patch, "ax"; \
 | |
| 	.word		661b; \
 | |
| 	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
 | |
| 	.previous
 | |
| 
 | |
| #define TSB_LOAD_TAG(TSB, REG) \
 | |
| 661:	ldxa		[TSB] ASI_N, REG; \
 | |
| 	.section	.tsb_phys_patch, "ax"; \
 | |
| 	.word		661b; \
 | |
| 	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
 | |
| 	.previous
 | |
| 
 | |
| #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
 | |
| 661:	casa		[TSB] ASI_N, REG1, REG2; \
 | |
| 	.section	.tsb_phys_patch, "ax"; \
 | |
| 	.word		661b; \
 | |
| 	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
 | |
| 	.previous
 | |
| 
 | |
| #define TSB_CAS_TAG(TSB, REG1, REG2) \
 | |
| 661:	casxa		[TSB] ASI_N, REG1, REG2; \
 | |
| 	.section	.tsb_phys_patch, "ax"; \
 | |
| 	.word		661b; \
 | |
| 	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
 | |
| 	.previous
 | |
| 
 | |
| #define TSB_STORE(ADDR, VAL) \
 | |
| 661:	stxa		VAL, [ADDR] ASI_N; \
 | |
| 	.section	.tsb_phys_patch, "ax"; \
 | |
| 	.word		661b; \
 | |
| 	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
 | |
| 	.previous
 | |
| 
 | |
| #define TSB_LOCK_TAG(TSB, REG1, REG2)	\
 | |
| 99:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
 | |
| 	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
 | |
| 	andcc	REG1, REG2, %g0;	\
 | |
| 	bne,pn	%icc, 99b;		\
 | |
| 	 nop;				\
 | |
| 	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
 | |
| 	cmp	REG1, REG2;		\
 | |
| 	bne,pn	%icc, 99b;		\
 | |
| 	 nop;				\
 | |
| 
 | |
| #define TSB_WRITE(TSB, TTE, TAG) \
 | |
| 	add	TSB, 0x8, TSB;   \
 | |
| 	TSB_STORE(TSB, TTE);     \
 | |
| 	sub	TSB, 0x8, TSB;   \
 | |
| 	TSB_STORE(TSB, TAG);
 | |
| 
 | |
| 	/* Do a kernel page table walk.  Leaves valid PTE value in
 | |
| 	 * REG1.  Jumps to FAIL_LABEL on early page table walk
 | |
| 	 * termination.  VADDR will not be clobbered, but REG2 will.
 | |
| 	 *
 | |
| 	 * There are two masks we must apply to propagate bits from
 | |
| 	 * the virtual address into the PTE physical address field
 | |
| 	 * when dealing with huge pages.  This is because the page
 | |
| 	 * table boundaries do not match the huge page size(s) the
 | |
| 	 * hardware supports.
 | |
| 	 *
 | |
| 	 * In these cases we propagate the bits that are below the
 | |
| 	 * page table level where we saw the huge page mapping, but
 | |
| 	 * are still within the relevant physical bits for the huge
 | |
| 	 * page size in question.  So for PMD mappings (which fall on
 | |
| 	 * bit 23, for 8MB per PMD) we must propagate bit 22 for a
 | |
| 	 * 4MB huge page.  For huge PUDs (which fall on bit 33, for
 | |
| 	 * 8GB per PUD), we have to accommodate 256MB and 2GB huge
 | |
| 	 * pages.  So for those we propagate bits 32 to 28.
 | |
| 	 */
 | |
| #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
 | |
| 	sethi		%hi(swapper_pg_dir), REG1; \
 | |
| 	or		REG1, %lo(swapper_pg_dir), REG1; \
 | |
| 	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
 | |
| 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 | |
| 	andn		REG2, 0x7, REG2; \
 | |
| 	ldx		[REG1 + REG2], REG1; \
 | |
| 	brz,pn		REG1, FAIL_LABEL; \
 | |
| 	 sllx		VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
 | |
| 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 | |
| 	andn		REG2, 0x7, REG2; \
 | |
| 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 | |
| 	brz,pn		REG1, FAIL_LABEL; \
 | |
| 	sethi		%uhi(_PAGE_PUD_HUGE), REG2; \
 | |
| 	brz,pn		REG1, FAIL_LABEL; \
 | |
| 	 sllx		REG2, 32, REG2; \
 | |
| 	andcc		REG1, REG2, %g0; \
 | |
| 	sethi		%hi(0xf8000000), REG2; \
 | |
| 	bne,pt		%xcc, 697f; \
 | |
| 	 sllx		REG2, 1, REG2; \
 | |
| 	sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
 | |
| 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 | |
| 	andn		REG2, 0x7, REG2; \
 | |
| 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 | |
| 	sethi		%uhi(_PAGE_PMD_HUGE), REG2; \
 | |
| 	brz,pn		REG1, FAIL_LABEL; \
 | |
| 	 sllx		REG2, 32, REG2; \
 | |
| 	andcc		REG1, REG2, %g0; \
 | |
| 	be,pn		%xcc, 698f; \
 | |
| 	 sethi		%hi(0x400000), REG2; \
 | |
| 697:	brgez,pn	REG1, FAIL_LABEL; \
 | |
| 	 andn		REG1, REG2, REG1; \
 | |
| 	and		VADDR, REG2, REG2; \
 | |
| 	ba,pt		%xcc, 699f; \
 | |
| 	 or		REG1, REG2, REG1; \
 | |
| 698:	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
 | |
| 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 | |
| 	andn		REG2, 0x7, REG2; \
 | |
| 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 | |
| 	brgez,pn	REG1, FAIL_LABEL; \
 | |
| 	 nop; \
 | |
| 699:
 | |
| 
 | |
| 	/* PUD has been loaded into REG1, interpret the value, seeing
 | |
| 	 * if it is a HUGE PUD or a normal one.  If it is not valid
 | |
| 	 * then jump to FAIL_LABEL.  If it is a HUGE PUD, and it
 | |
| 	 * translates to a valid PTE, branch to PTE_LABEL.
 | |
| 	 *
 | |
| 	 * We have to propagate bits [32:22] from the virtual address
 | |
| 	 * to resolve at 4M granularity.
 | |
| 	 */
 | |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| #define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
 | |
| 700:	ba 700f;					\
 | |
| 	 nop;						\
 | |
| 	.section	.pud_huge_patch, "ax";		\
 | |
| 	.word		700b;				\
 | |
| 	nop;						\
 | |
| 	.previous;					\
 | |
| 	brz,pn		REG1, FAIL_LABEL;		\
 | |
| 	 sethi		%uhi(_PAGE_PUD_HUGE), REG2;	\
 | |
| 	sllx		REG2, 32, REG2;			\
 | |
| 	andcc		REG1, REG2, %g0;		\
 | |
| 	be,pt		%xcc, 700f;			\
 | |
| 	 sethi		%hi(0xffe00000), REG2;		\
 | |
| 	sllx		REG2, 1, REG2;			\
 | |
| 	brgez,pn	REG1, FAIL_LABEL;		\
 | |
| 	 andn		REG1, REG2, REG1;		\
 | |
| 	and		VADDR, REG2, REG2;		\
 | |
| 	brlz,pt		REG1, PTE_LABEL;		\
 | |
| 	 or		REG1, REG2, REG1;		\
 | |
| 700:
 | |
| #else
 | |
| #define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
 | |
| 	brz,pn		REG1, FAIL_LABEL; \
 | |
| 	 nop;
 | |
| #endif
 | |
| 
 | |
| 	/* PMD has been loaded into REG1, interpret the value, seeing
 | |
| 	 * if it is a HUGE PMD or a normal one.  If it is not valid
 | |
| 	 * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
 | |
| 	 * translates to a valid PTE, branch to PTE_LABEL.
 | |
| 	 *
 | |
| 	 * We have to propagate the 4MB bit of the virtual address
 | |
| 	 * because we are fabricating 8MB pages using 4MB hw pages.
 | |
| 	 */
 | |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
 | |
| 	brz,pn		REG1, FAIL_LABEL;		\
 | |
| 	 sethi		%uhi(_PAGE_PMD_HUGE), REG2;	\
 | |
| 	sllx		REG2, 32, REG2;			\
 | |
| 	andcc		REG1, REG2, %g0;		\
 | |
| 	be,pt		%xcc, 700f;			\
 | |
| 	 sethi		%hi(4 * 1024 * 1024), REG2;	\
 | |
| 	brgez,pn	REG1, FAIL_LABEL;		\
 | |
| 	 andn		REG1, REG2, REG1;		\
 | |
| 	and		VADDR, REG2, REG2;		\
 | |
| 	brlz,pt		REG1, PTE_LABEL;		\
 | |
| 	 or		REG1, REG2, REG1;		\
 | |
| 700:
 | |
| #else
 | |
| #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
 | |
| 	brz,pn		REG1, FAIL_LABEL; \
 | |
| 	 nop;
 | |
| #endif
 | |
| 
 | |
| 	/* Do a user page table walk in MMU globals.  Leaves final,
 | |
| 	 * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
 | |
| 	 * page table walk termination or if the PTE is not valid.
 | |
| 	 *
 | |
| 	 * Physical base of page tables is in PHYS_PGD which will not
 | |
| 	 * be modified.
 | |
| 	 *
 | |
| 	 * VADDR will not be clobbered, but REG1 and REG2 will.
 | |
| 	 */
 | |
| #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
 | |
| 	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
 | |
| 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 | |
| 	andn		REG2, 0x7, REG2; \
 | |
| 	ldxa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
 | |
| 	brz,pn		REG1, FAIL_LABEL; \
 | |
| 	 sllx		VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
 | |
| 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 | |
| 	andn		REG2, 0x7, REG2; \
 | |
| 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 | |
| 	USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
 | |
| 	brz,pn		REG1, FAIL_LABEL; \
 | |
| 	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
 | |
| 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 | |
| 	andn		REG2, 0x7, REG2; \
 | |
| 	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
 | |
| 	USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
 | |
| 	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
 | |
| 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
 | |
| 	andn		REG2, 0x7, REG2; \
 | |
| 	add		REG1, REG2, REG1; \
 | |
| 	ldxa		[REG1] ASI_PHYS_USE_EC, REG1; \
 | |
| 	brgez,pn	REG1, FAIL_LABEL; \
 | |
| 	 nop; \
 | |
| 800:
 | |
| 
 | |
| /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
 | |
|  * If no entry is found, FAIL_LABEL will be branched to.  On success
 | |
|  * the resulting PTE value will be left in REG1.  VADDR is preserved
 | |
|  * by this routine.
 | |
|  */
 | |
| #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
 | |
| 	sethi		%hi(prom_trans), REG1; \
 | |
| 	or		REG1, %lo(prom_trans), REG1; \
 | |
| 97:	ldx		[REG1 + 0x00], REG2; \
 | |
| 	brz,pn		REG2, FAIL_LABEL; \
 | |
| 	 nop; \
 | |
| 	ldx		[REG1 + 0x08], REG3; \
 | |
| 	add		REG2, REG3, REG3; \
 | |
| 	cmp		REG2, VADDR; \
 | |
| 	bgu,pt		%xcc, 98f; \
 | |
| 	 cmp		VADDR, REG3; \
 | |
| 	bgeu,pt		%xcc, 98f; \
 | |
| 	 ldx		[REG1 + 0x10], REG3; \
 | |
| 	sub		VADDR, REG2, REG2; \
 | |
| 	ba,pt		%xcc, 99f; \
 | |
| 	 add		REG3, REG2, REG1; \
 | |
| 98:	ba,pt		%xcc, 97b; \
 | |
| 	 add		REG1, (3 * 8), REG1; \
 | |
| 99:
 | |
| 
 | |
| 	/* We use a 32K TSB for the whole kernel, this allows to
 | |
| 	 * handle about 16MB of modules and vmalloc mappings without
 | |
| 	 * incurring many hash conflicts.
 | |
| 	 */
 | |
| #define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
 | |
| #define KERNEL_TSB_NENTRIES	\
 | |
| 	(KERNEL_TSB_SIZE_BYTES / 16)
 | |
| #define KERNEL_TSB4M_NENTRIES	4096
 | |
| 
 | |
| 	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
 | |
| 	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
 | |
| 	 * and the found TTE will be left in REG1.  REG3 and REG4 must
 | |
| 	 * be an even/odd pair of registers.
 | |
| 	 *
 | |
| 	 * VADDR and TAG will be preserved and not clobbered by this macro.
 | |
| 	 */
 | |
| #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
 | |
| 661:	sethi		%uhi(swapper_tsb), REG1; \
 | |
| 	sethi		%hi(swapper_tsb), REG2; \
 | |
| 	or		REG1, %ulo(swapper_tsb), REG1; \
 | |
| 	or		REG2, %lo(swapper_tsb), REG2; \
 | |
| 	.section	.swapper_tsb_phys_patch, "ax"; \
 | |
| 	.word		661b; \
 | |
| 	.previous; \
 | |
| 	sllx		REG1, 32, REG1; \
 | |
| 	or		REG1, REG2, REG1; \
 | |
| 	srlx		VADDR, PAGE_SHIFT, REG2; \
 | |
| 	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
 | |
| 	sllx		REG2, 4, REG2; \
 | |
| 	add		REG1, REG2, REG2; \
 | |
| 	TSB_LOAD_QUAD(REG2, REG3); \
 | |
| 	cmp		REG3, TAG; \
 | |
| 	be,a,pt		%xcc, OK_LABEL; \
 | |
| 	 mov		REG4, REG1;
 | |
| 
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	/* This version uses a trick, the TAG is already (VADDR >> 22) so
 | |
| 	 * we can make use of that for the index computation.
 | |
| 	 */
 | |
| #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
 | |
| 661:	sethi		%uhi(swapper_4m_tsb), REG1; \
 | |
| 	sethi		%hi(swapper_4m_tsb), REG2; \
 | |
| 	or		REG1, %ulo(swapper_4m_tsb), REG1; \
 | |
| 	or		REG2, %lo(swapper_4m_tsb), REG2; \
 | |
| 	.section	.swapper_4m_tsb_phys_patch, "ax"; \
 | |
| 	.word		661b; \
 | |
| 	.previous; \
 | |
| 	sllx		REG1, 32, REG1; \
 | |
| 	or		REG1, REG2, REG1; \
 | |
| 	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
 | |
| 	sllx		REG2, 4, REG2; \
 | |
| 	add		REG1, REG2, REG2; \
 | |
| 	TSB_LOAD_QUAD(REG2, REG3); \
 | |
| 	cmp		REG3, TAG; \
 | |
| 	be,a,pt		%xcc, OK_LABEL; \
 | |
| 	 mov		REG4, REG1;
 | |
| #endif
 | |
| 
 | |
| #endif /* !(_SPARC64_TSB_H) */
 | 
