507 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			507 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
 | |
| #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
 | |
| 
 | |
| #define __ARCH_USE_5LEVEL_HACK
 | |
| #include <asm-generic/pgtable-nopmd.h>
 | |
| 
 | |
| #include <asm/book3s/32/hash.h>
 | |
| 
 | |
| /* And here we include common definitions */
 | |
| #include <asm/pte-common.h>
 | |
| 
 | |
| #define PTE_INDEX_SIZE	PTE_SHIFT
 | |
| #define PMD_INDEX_SIZE	0
 | |
| #define PUD_INDEX_SIZE	0
 | |
| #define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
 | |
| 
 | |
| #define PMD_CACHE_INDEX	PMD_INDEX_SIZE
 | |
| #define PUD_CACHE_INDEX	PUD_INDEX_SIZE
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| #define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
 | |
| #define PMD_TABLE_SIZE	0
 | |
| #define PUD_TABLE_SIZE	0
 | |
| #define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
 | |
| #endif	/* __ASSEMBLY__ */
 | |
| 
 | |
| #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
 | |
| #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
 | |
| 
 | |
| /*
 | |
|  * The normal case is that PTEs are 32-bits and we have a 1-page
 | |
|  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
 | |
|  *
 | |
|  * For any >32-bit physical address platform, we can use the following
 | |
|  * two level page table layout where the pgdir is 8KB and the MS 13 bits
 | |
|  * are an index to the second level table.  The combined pgdir/pmd first
 | |
|  * level has 2048 entries and the second level has 512 64-bit PTE entries.
 | |
|  * -Matt
 | |
|  */
 | |
| /* PGDIR_SHIFT determines what a top-level page table entry can map */
 | |
| #define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
 | |
| #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
 | |
| #define PGDIR_MASK	(~(PGDIR_SIZE-1))
 | |
| 
 | |
| #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
 | |
| /*
 | |
|  * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
 | |
|  * value (for now) on others, from where we can start layout kernel
 | |
|  * virtual space that goes below PKMAP and FIXMAP
 | |
|  */
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| #define KVIRT_TOP	PKMAP_BASE
 | |
| #else
 | |
| #define KVIRT_TOP	(0xfe000000UL)	/* for now, could be FIXMAP_BASE ? */
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * ioremap_bot starts at that address. Early ioremaps move down from there,
 | |
|  * until mem_init() at which point this becomes the top of the vmalloc
 | |
|  * and ioremap space
 | |
|  */
 | |
| #ifdef CONFIG_NOT_COHERENT_CACHE
 | |
| #define IOREMAP_TOP	((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
 | |
| #else
 | |
| #define IOREMAP_TOP	KVIRT_TOP
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Just any arbitrary offset to the start of the vmalloc VM area: the
 | |
|  * current 16MB value just means that there will be a 64MB "hole" after the
 | |
|  * physical memory until the kernel virtual memory starts.  That means that
 | |
|  * any out-of-bounds memory accesses will hopefully be caught.
 | |
|  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 | |
|  * area for the same reason. ;)
 | |
|  *
 | |
|  * We no longer map larger than phys RAM with the BATs so we don't have
 | |
|  * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
 | |
|  * about clashes between our early calls to ioremap() that start growing down
 | |
|  * from ioremap_base being run into the VM area allocations (growing upwards
 | |
|  * from VMALLOC_START).  For this reason we have ioremap_bot to check when
 | |
|  * we actually run into our mappings setup in the early boot with the VM
 | |
|  * system.  This really does become a problem for machines with good amounts
 | |
|  * of RAM.  -- Cort
 | |
|  */
 | |
| #define VMALLOC_OFFSET (0x1000000) /* 16M */
 | |
| #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
 | |
| #define VMALLOC_END	ioremap_bot
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| #include <linux/sched.h>
 | |
| #include <linux/threads.h>
 | |
| 
 | |
| extern unsigned long ioremap_bot;
 | |
| 
 | |
| /* Bits to mask out from a PGD to get to the PUD page */
 | |
| #define PGD_MASKED_BITS		0
 | |
| 
 | |
| #define pte_ERROR(e) \
 | |
| 	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
 | |
| 		(unsigned long long)pte_val(e))
 | |
| #define pgd_ERROR(e) \
 | |
| 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 | |
| /*
 | |
|  * Bits in a linux-style PTE.  These match the bits in the
 | |
|  * (hardware-defined) PowerPC PTE as closely as possible.
 | |
|  */
 | |
| 
 | |
| #define pte_clear(mm, addr, ptep) \
 | |
| 	do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
 | |
| 
 | |
| #define pmd_none(pmd)		(!pmd_val(pmd))
 | |
| #define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
 | |
| #define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
 | |
| static inline void pmd_clear(pmd_t *pmdp)
 | |
| {
 | |
| 	*pmdp = __pmd(0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * When flushing the tlb entry for a page, we also need to flush the hash
 | |
|  * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
 | |
|  */
 | |
| extern int flush_hash_pages(unsigned context, unsigned long va,
 | |
| 			    unsigned long pmdval, int count);
 | |
| 
 | |
| /* Add an HPTE to the hash table */
 | |
| extern void add_hash_page(unsigned context, unsigned long va,
 | |
| 			  unsigned long pmdval);
 | |
| 
 | |
| /* Flush an entry from the TLB/hash table */
 | |
| extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
 | |
| 			     unsigned long address);
 | |
| 
 | |
| /*
 | |
|  * PTE updates. This function is called whenever an existing
 | |
|  * valid PTE is updated. This does -not- include set_pte_at()
 | |
|  * which nowadays only sets a new PTE.
 | |
|  *
 | |
|  * Depending on the type of MMU, we may need to use atomic updates
 | |
|  * and the PTE may be either 32 or 64 bit wide. In the later case,
 | |
|  * when using atomic updates, only the low part of the PTE is
 | |
|  * accessed atomically.
 | |
|  *
 | |
|  * In addition, on 44x, we also maintain a global flag indicating
 | |
|  * that an executable user mapping was modified, which is needed
 | |
|  * to properly flush the virtually tagged instruction cache of
 | |
|  * those implementations.
 | |
|  */
 | |
| #ifndef CONFIG_PTE_64BIT
 | |
| static inline unsigned long pte_update(pte_t *p,
 | |
| 				       unsigned long clr,
 | |
| 				       unsigned long set)
 | |
| {
 | |
| 	unsigned long old, tmp;
 | |
| 
 | |
| 	__asm__ __volatile__("\
 | |
| 1:	lwarx	%0,0,%3\n\
 | |
| 	andc	%1,%0,%4\n\
 | |
| 	or	%1,%1,%5\n"
 | |
| "	stwcx.	%1,0,%3\n\
 | |
| 	bne-	1b"
 | |
| 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
 | |
| 	: "r" (p), "r" (clr), "r" (set), "m" (*p)
 | |
| 	: "cc" );
 | |
| 
 | |
| 	return old;
 | |
| }
 | |
| #else /* CONFIG_PTE_64BIT */
 | |
| static inline unsigned long long pte_update(pte_t *p,
 | |
| 					    unsigned long clr,
 | |
| 					    unsigned long set)
 | |
| {
 | |
| 	unsigned long long old;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	__asm__ __volatile__("\
 | |
| 1:	lwarx	%L0,0,%4\n\
 | |
| 	lwzx	%0,0,%3\n\
 | |
| 	andc	%1,%L0,%5\n\
 | |
| 	or	%1,%1,%6\n"
 | |
| "	stwcx.	%1,0,%4\n\
 | |
| 	bne-	1b"
 | |
| 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
 | |
| 	: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
 | |
| 	: "cc" );
 | |
| 
 | |
| 	return old;
 | |
| }
 | |
| #endif /* CONFIG_PTE_64BIT */
 | |
| 
 | |
| /*
 | |
|  * 2.6 calls this without flushing the TLB entry; this is wrong
 | |
|  * for our hash-based implementation, we fix that up here.
 | |
|  */
 | |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | |
| static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	unsigned long old;
 | |
| 	old = pte_update(ptep, _PAGE_ACCESSED, 0);
 | |
| 	if (old & _PAGE_HASHPTE) {
 | |
| 		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
 | |
| 		flush_hash_pages(context, addr, ptephys, 1);
 | |
| 	}
 | |
| 	return (old & _PAGE_ACCESSED) != 0;
 | |
| }
 | |
| #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
 | |
| 	__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
 | |
| 
 | |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
 | |
| 				       pte_t *ptep)
 | |
| {
 | |
| 	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
 | |
| }
 | |
| 
 | |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT
 | |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 | |
| 				      pte_t *ptep)
 | |
| {
 | |
| 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
 | |
| }
 | |
| static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 | |
| 					   unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	ptep_set_wrprotect(mm, addr, ptep);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
 | |
| 					   pte_t *ptep, pte_t entry,
 | |
| 					   unsigned long address,
 | |
| 					   int psize)
 | |
| {
 | |
| 	unsigned long set = pte_val(entry) &
 | |
| 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
 | |
| 	unsigned long clr = ~pte_val(entry) & _PAGE_RO;
 | |
| 
 | |
| 	pte_update(ptep, clr, set);
 | |
| 
 | |
| 	flush_tlb_page(vma, address);
 | |
| }
 | |
| 
 | |
| #define __HAVE_ARCH_PTE_SAME
 | |
| #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
 | |
| 
 | |
| /*
 | |
|  * Note that on Book E processors, the pmd contains the kernel virtual
 | |
|  * (lowmem) address of the pte page.  The physical address is less useful
 | |
|  * because everything runs with translation enabled (even the TLB miss
 | |
|  * handler).  On everything else the pmd contains the physical address
 | |
|  * of the pte page.  -- paulus
 | |
|  */
 | |
| #ifndef CONFIG_BOOKE
 | |
| #define pmd_page_vaddr(pmd)	\
 | |
| 	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 | |
| #define pmd_page(pmd)		\
 | |
| 	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
 | |
| #else
 | |
| #define pmd_page_vaddr(pmd)	\
 | |
| 	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
 | |
| #define pmd_page(pmd)		\
 | |
| 	pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
 | |
| #endif
 | |
| 
 | |
| /* to find an entry in a kernel page-table-directory */
 | |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address)
 | |
| 
 | |
| /* to find an entry in a page-table-directory */
 | |
| #define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
 | |
| #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
 | |
| 
 | |
| /* Find an entry in the third-level page table.. */
 | |
| #define pte_index(address)		\
 | |
| 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 | |
| #define pte_offset_kernel(dir, addr)	\
 | |
| 	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
 | |
| #define pte_offset_map(dir, addr)		\
 | |
| 	((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
 | |
| #define pte_unmap(pte)		kunmap_atomic(pte)
 | |
| 
 | |
| /*
 | |
|  * Encode and decode a swap entry.
 | |
|  * Note that the bits we use in a PTE for representing a swap entry
 | |
|  * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
 | |
|  *   -- paulus
 | |
|  */
 | |
| #define __swp_type(entry)		((entry).val & 0x1f)
 | |
| #define __swp_offset(entry)		((entry).val >> 5)
 | |
| #define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
 | |
| #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
 | |
| #define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
 | |
| 
 | |
| int map_kernel_page(unsigned long va, phys_addr_t pa, int flags);
 | |
| 
 | |
| /* Generic accessors to PTE bits */
 | |
| static inline int pte_write(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_RW);}
 | |
| static inline int pte_read(pte_t pte)		{ return 1; }
 | |
| static inline int pte_dirty(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_DIRTY); }
 | |
| static inline int pte_young(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_ACCESSED); }
 | |
| static inline int pte_special(pte_t pte)	{ return !!(pte_val(pte) & _PAGE_SPECIAL); }
 | |
| static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
 | |
| static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
 | |
| 
 | |
| static inline int pte_present(pte_t pte)
 | |
| {
 | |
| 	return pte_val(pte) & _PAGE_PRESENT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We only find page table entry in the last level
 | |
|  * Hence no need for other accessors
 | |
|  */
 | |
| #define pte_access_permitted pte_access_permitted
 | |
| static inline bool pte_access_permitted(pte_t pte, bool write)
 | |
| {
 | |
| 	unsigned long pteval = pte_val(pte);
 | |
| 	/*
 | |
| 	 * A read-only access is controlled by _PAGE_USER bit.
 | |
| 	 * We have _PAGE_READ set for WRITE and EXECUTE
 | |
| 	 */
 | |
| 	unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_USER;
 | |
| 
 | |
| 	if (write)
 | |
| 		need_pte_bits |= _PAGE_WRITE;
 | |
| 
 | |
| 	if ((pteval & need_pte_bits) != need_pte_bits)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Conversion functions: convert a page and protection to a page entry,
 | |
|  * and a page entry and page directory to the page they refer to.
 | |
|  *
 | |
|  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
 | |
|  * long for now.
 | |
|  */
 | |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
 | |
| {
 | |
| 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
 | |
| 		     pgprot_val(pgprot));
 | |
| }
 | |
| 
 | |
| static inline unsigned long pte_pfn(pte_t pte)
 | |
| {
 | |
| 	return pte_val(pte) >> PTE_RPN_SHIFT;
 | |
| }
 | |
| 
 | |
| /* Generic modifiers for PTE bits */
 | |
| static inline pte_t pte_wrprotect(pte_t pte)
 | |
| {
 | |
| 	return __pte(pte_val(pte) & ~_PAGE_RW);
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkclean(pte_t pte)
 | |
| {
 | |
| 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkold(pte_t pte)
 | |
| {
 | |
| 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkwrite(pte_t pte)
 | |
| {
 | |
| 	return __pte(pte_val(pte) | _PAGE_RW);
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkdirty(pte_t pte)
 | |
| {
 | |
| 	return __pte(pte_val(pte) | _PAGE_DIRTY);
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkyoung(pte_t pte)
 | |
| {
 | |
| 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkspecial(pte_t pte)
 | |
| {
 | |
| 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkhuge(pte_t pte)
 | |
| {
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 | |
| {
 | |
| 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* This low level function performs the actual PTE insertion
 | |
|  * Setting the PTE depends on the MMU type and other factors. It's
 | |
|  * an horrible mess that I'm not going to try to clean up now but
 | |
|  * I'm keeping it in one place rather than spread around
 | |
|  */
 | |
| static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
 | |
| 				pte_t *ptep, pte_t pte, int percpu)
 | |
| {
 | |
| #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
 | |
| 	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
 | |
| 	 * helper pte_update() which does an atomic update. We need to do that
 | |
| 	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
 | |
| 	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
 | |
| 	 * the hash bits instead (ie, same as the non-SMP case)
 | |
| 	 */
 | |
| 	if (percpu)
 | |
| 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 | |
| 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
 | |
| 	else
 | |
| 		pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
 | |
| 
 | |
| #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
 | |
| 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
 | |
| 	 * can just store as long as we do the two halves in the right order
 | |
| 	 * with a barrier in between. This is possible because we take care,
 | |
| 	 * in the hash code, to pre-invalidate if the PTE was already hashed,
 | |
| 	 * which synchronizes us with any concurrent invalidation.
 | |
| 	 * In the percpu case, we also fallback to the simple update preserving
 | |
| 	 * the hash bits
 | |
| 	 */
 | |
| 	if (percpu) {
 | |
| 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 | |
| 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
 | |
| 		return;
 | |
| 	}
 | |
| 	if (pte_val(*ptep) & _PAGE_HASHPTE)
 | |
| 		flush_hash_entry(mm, ptep, addr);
 | |
| 	__asm__ __volatile__("\
 | |
| 		stw%U0%X0 %2,%0\n\
 | |
| 		eieio\n\
 | |
| 		stw%U0%X0 %L2,%1"
 | |
| 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
 | |
| 	: "r" (pte) : "memory");
 | |
| 
 | |
| #elif defined(CONFIG_PPC_STD_MMU_32)
 | |
| 	/* Third case is 32-bit hash table in UP mode, we need to preserve
 | |
| 	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
 | |
| 	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
 | |
| 	 * and see we need to keep track that this PTE needs invalidating
 | |
| 	 */
 | |
| 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 | |
| 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
 | |
| 
 | |
| #else
 | |
| #error "Not supported "
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Macro to mark a page protection value as "uncacheable".
 | |
|  */
 | |
| 
 | |
| #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
 | |
| 			 _PAGE_WRITETHRU)
 | |
| 
 | |
| #define pgprot_noncached pgprot_noncached
 | |
| static inline pgprot_t pgprot_noncached(pgprot_t prot)
 | |
| {
 | |
| 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 | |
| 			_PAGE_NO_CACHE | _PAGE_GUARDED);
 | |
| }
 | |
| 
 | |
| #define pgprot_noncached_wc pgprot_noncached_wc
 | |
| static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
 | |
| {
 | |
| 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 | |
| 			_PAGE_NO_CACHE);
 | |
| }
 | |
| 
 | |
| #define pgprot_cached pgprot_cached
 | |
| static inline pgprot_t pgprot_cached(pgprot_t prot)
 | |
| {
 | |
| 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 | |
| 			_PAGE_COHERENT);
 | |
| }
 | |
| 
 | |
| #define pgprot_cached_wthru pgprot_cached_wthru
 | |
| static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
 | |
| {
 | |
| 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 | |
| 			_PAGE_COHERENT | _PAGE_WRITETHRU);
 | |
| }
 | |
| 
 | |
| #define pgprot_cached_noncoherent pgprot_cached_noncoherent
 | |
| static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
 | |
| {
 | |
| 	return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
 | |
| }
 | |
| 
 | |
| #define pgprot_writecombine pgprot_writecombine
 | |
| static inline pgprot_t pgprot_writecombine(pgprot_t prot)
 | |
| {
 | |
| 	return pgprot_noncached_wc(prot);
 | |
| }
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #endif /*  _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
 | 
