272 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This test checks the response of the system clock to frequency
 | |
|  * steps made with adjtimex(). The frequency error and stability of
 | |
|  * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock
 | |
|  * is measured in two intervals following the step. The test fails if
 | |
|  * values from the second interval exceed specified limits.
 | |
|  *
 | |
|  * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com>  2017
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of version 2 of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stdio.h>
 | |
| #include <sys/timex.h>
 | |
| #include <time.h>
 | |
| #include <unistd.h>
 | |
| 
 | |
| #include "../kselftest.h"
 | |
| 
 | |
| #define SAMPLES 100
 | |
| #define SAMPLE_READINGS 10
 | |
| #define MEAN_SAMPLE_INTERVAL 0.1
 | |
| #define STEP_INTERVAL 1.0
 | |
| #define MAX_PRECISION 100e-9
 | |
| #define MAX_FREQ_ERROR 10e-6
 | |
| #define MAX_STDDEV 1000e-9
 | |
| 
 | |
| #ifndef ADJ_SETOFFSET
 | |
|   #define ADJ_SETOFFSET 0x0100
 | |
| #endif
 | |
| 
 | |
| struct sample {
 | |
| 	double offset;
 | |
| 	double time;
 | |
| };
 | |
| 
 | |
| static time_t mono_raw_base;
 | |
| static time_t mono_base;
 | |
| static long user_hz;
 | |
| static double precision;
 | |
| static double mono_freq_offset;
 | |
| 
 | |
| static double diff_timespec(struct timespec *ts1, struct timespec *ts2)
 | |
| {
 | |
| 	return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9;
 | |
| }
 | |
| 
 | |
| static double get_sample(struct sample *sample)
 | |
| {
 | |
| 	double delay, mindelay = 0.0;
 | |
| 	struct timespec ts1, ts2, ts3;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < SAMPLE_READINGS; i++) {
 | |
| 		clock_gettime(CLOCK_MONOTONIC_RAW, &ts1);
 | |
| 		clock_gettime(CLOCK_MONOTONIC, &ts2);
 | |
| 		clock_gettime(CLOCK_MONOTONIC_RAW, &ts3);
 | |
| 
 | |
| 		ts1.tv_sec -= mono_raw_base;
 | |
| 		ts2.tv_sec -= mono_base;
 | |
| 		ts3.tv_sec -= mono_raw_base;
 | |
| 
 | |
| 		delay = diff_timespec(&ts3, &ts1);
 | |
| 		if (delay <= 1e-9) {
 | |
| 			i--;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!i || delay < mindelay) {
 | |
| 			sample->offset = diff_timespec(&ts2, &ts1);
 | |
| 			sample->offset -= delay / 2.0;
 | |
| 			sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9;
 | |
| 			mindelay = delay;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return mindelay;
 | |
| }
 | |
| 
 | |
| static void reset_ntp_error(void)
 | |
| {
 | |
| 	struct timex txc;
 | |
| 
 | |
| 	txc.modes = ADJ_SETOFFSET;
 | |
| 	txc.time.tv_sec = 0;
 | |
| 	txc.time.tv_usec = 0;
 | |
| 
 | |
| 	if (adjtimex(&txc) < 0) {
 | |
| 		perror("[FAIL] adjtimex");
 | |
| 		ksft_exit_fail();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_frequency(double freq)
 | |
| {
 | |
| 	struct timex txc;
 | |
| 	int tick_offset;
 | |
| 
 | |
| 	tick_offset = 1e6 * freq / user_hz;
 | |
| 
 | |
| 	txc.modes = ADJ_TICK | ADJ_FREQUENCY;
 | |
| 	txc.tick = 1000000 / user_hz + tick_offset;
 | |
| 	txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16);
 | |
| 
 | |
| 	if (adjtimex(&txc) < 0) {
 | |
| 		perror("[FAIL] adjtimex");
 | |
| 		ksft_exit_fail();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void regress(struct sample *samples, int n, double *intercept,
 | |
| 		    double *slope, double *r_stddev, double *r_max)
 | |
| {
 | |
| 	double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum;
 | |
| 	int i;
 | |
| 
 | |
| 	x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0;
 | |
| 
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		x = samples[i].time;
 | |
| 		y = samples[i].offset;
 | |
| 
 | |
| 		x_sum += x;
 | |
| 		y_sum += y;
 | |
| 		xy_sum += x * y;
 | |
| 		x2_sum += x * x;
 | |
| 	}
 | |
| 
 | |
| 	*slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n);
 | |
| 	*intercept = (y_sum - *slope * x_sum) / n;
 | |
| 
 | |
| 	*r_max = 0.0, r2_sum = 0.0;
 | |
| 
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		x = samples[i].time;
 | |
| 		y = samples[i].offset;
 | |
| 		r = fabs(x * *slope + *intercept - y);
 | |
| 		if (*r_max < r)
 | |
| 			*r_max = r;
 | |
| 		r2_sum += r * r;
 | |
| 	}
 | |
| 
 | |
| 	*r_stddev = sqrt(r2_sum / n);
 | |
| }
 | |
| 
 | |
| static int run_test(int calibration, double freq_base, double freq_step)
 | |
| {
 | |
| 	struct sample samples[SAMPLES];
 | |
| 	double intercept, slope, stddev1, max1, stddev2, max2;
 | |
| 	double freq_error1, freq_error2;
 | |
| 	int i;
 | |
| 
 | |
| 	set_frequency(freq_base);
 | |
| 
 | |
| 	for (i = 0; i < 10; i++)
 | |
| 		usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10);
 | |
| 
 | |
| 	reset_ntp_error();
 | |
| 
 | |
| 	set_frequency(freq_base + freq_step);
 | |
| 
 | |
| 	for (i = 0; i < 10; i++)
 | |
| 		usleep(rand() % 2000000 * STEP_INTERVAL / 10);
 | |
| 
 | |
| 	set_frequency(freq_base);
 | |
| 
 | |
| 	for (i = 0; i < SAMPLES; i++) {
 | |
| 		usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL);
 | |
| 		get_sample(&samples[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (calibration) {
 | |
| 		regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1);
 | |
| 		mono_freq_offset = slope;
 | |
| 		printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n",
 | |
| 		       1e6 * mono_freq_offset);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1);
 | |
| 	freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
 | |
| 			freq_base;
 | |
| 
 | |
| 	regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope,
 | |
| 		&stddev2, &max2);
 | |
| 	freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
 | |
| 			freq_base;
 | |
| 
 | |
| 	printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t",
 | |
| 	       1e6 * freq_step,
 | |
| 	       1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1,
 | |
| 	       1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2);
 | |
| 
 | |
| 	if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) {
 | |
| 		printf("[FAIL]\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	printf("[OK]\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void init_test(void)
 | |
| {
 | |
| 	struct timespec ts;
 | |
| 	struct sample sample;
 | |
| 
 | |
| 	if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) {
 | |
| 		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)");
 | |
| 		ksft_exit_fail();
 | |
| 	}
 | |
| 
 | |
| 	mono_raw_base = ts.tv_sec;
 | |
| 
 | |
| 	if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
 | |
| 		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)");
 | |
| 		ksft_exit_fail();
 | |
| 	}
 | |
| 
 | |
| 	mono_base = ts.tv_sec;
 | |
| 
 | |
| 	user_hz = sysconf(_SC_CLK_TCK);
 | |
| 
 | |
| 	precision = get_sample(&sample) / 2.0;
 | |
| 	printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t",
 | |
| 	       1e9 * precision);
 | |
| 
 | |
| 	if (precision > MAX_PRECISION)
 | |
| 		ksft_exit_skip("precision: %.0f ns > MAX_PRECISION: %.0f ns\n",
 | |
| 				1e9 * precision, 1e9 * MAX_PRECISION);
 | |
| 
 | |
| 	printf("[OK]\n");
 | |
| 	srand(ts.tv_sec ^ ts.tv_nsec);
 | |
| 
 | |
| 	run_test(1, 0.0, 0.0);
 | |
| }
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
| 	double freq_base, freq_step;
 | |
| 	int i, j, fails = 0;
 | |
| 
 | |
| 	init_test();
 | |
| 
 | |
| 	printf("Checking response to frequency step:\n");
 | |
| 	printf("  Step           1st interval              2nd interval\n");
 | |
| 	printf("             Freq    Dev     Max       Freq    Dev     Max\n");
 | |
| 
 | |
| 	for (i = 2; i >= 0; i--) {
 | |
| 		for (j = 0; j < 5; j++) {
 | |
| 			freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6;
 | |
| 			freq_step = 10e-6 * (1 << (6 * i));
 | |
| 			fails += run_test(0, freq_base, freq_step);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	set_frequency(0.0);
 | |
| 
 | |
| 	if (fails)
 | |
| 		return ksft_exit_fail();
 | |
| 
 | |
| 	return ksft_exit_pass();
 | |
| }
 | 
