1253 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1253 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
 | |
|  *
 | |
|  *  Copyright (C) 2011 Weinmann Medical GmbH
 | |
|  *  Author: Nikolaus Voss <n.voss@weinmann.de>
 | |
|  *
 | |
|  *  Evolved from original work by:
 | |
|  *  Copyright (C) 2004 Rick Bronson
 | |
|  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
 | |
|  *
 | |
|  *  Borrowed heavily from original work by:
 | |
|  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/platform_data/dma-atmel.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/pinctrl/consumer.h>
 | |
| 
 | |
| #define DEFAULT_TWI_CLK_HZ		100000		/* max 400 Kbits/s */
 | |
| #define AT91_I2C_TIMEOUT	msecs_to_jiffies(100)	/* transfer timeout */
 | |
| #define AT91_I2C_DMA_THRESHOLD	8			/* enable DMA if transfer size is bigger than this threshold */
 | |
| #define AUTOSUSPEND_TIMEOUT		2000
 | |
| #define AT91_I2C_MAX_ALT_CMD_DATA_SIZE	256
 | |
| 
 | |
| /* AT91 TWI register definitions */
 | |
| #define	AT91_TWI_CR		0x0000	/* Control Register */
 | |
| #define	AT91_TWI_START		BIT(0)	/* Send a Start Condition */
 | |
| #define	AT91_TWI_STOP		BIT(1)	/* Send a Stop Condition */
 | |
| #define	AT91_TWI_MSEN		BIT(2)	/* Master Transfer Enable */
 | |
| #define	AT91_TWI_MSDIS		BIT(3)	/* Master Transfer Disable */
 | |
| #define	AT91_TWI_SVEN		BIT(4)	/* Slave Transfer Enable */
 | |
| #define	AT91_TWI_SVDIS		BIT(5)	/* Slave Transfer Disable */
 | |
| #define	AT91_TWI_QUICK		BIT(6)	/* SMBus quick command */
 | |
| #define	AT91_TWI_SWRST		BIT(7)	/* Software Reset */
 | |
| #define	AT91_TWI_ACMEN		BIT(16) /* Alternative Command Mode Enable */
 | |
| #define	AT91_TWI_ACMDIS		BIT(17) /* Alternative Command Mode Disable */
 | |
| #define	AT91_TWI_THRCLR		BIT(24) /* Transmit Holding Register Clear */
 | |
| #define	AT91_TWI_RHRCLR		BIT(25) /* Receive Holding Register Clear */
 | |
| #define	AT91_TWI_LOCKCLR	BIT(26) /* Lock Clear */
 | |
| #define	AT91_TWI_FIFOEN		BIT(28) /* FIFO Enable */
 | |
| #define	AT91_TWI_FIFODIS	BIT(29) /* FIFO Disable */
 | |
| 
 | |
| #define	AT91_TWI_MMR		0x0004	/* Master Mode Register */
 | |
| #define	AT91_TWI_IADRSZ_1	0x0100	/* Internal Device Address Size */
 | |
| #define	AT91_TWI_MREAD		BIT(12)	/* Master Read Direction */
 | |
| 
 | |
| #define	AT91_TWI_IADR		0x000c	/* Internal Address Register */
 | |
| 
 | |
| #define	AT91_TWI_CWGR		0x0010	/* Clock Waveform Generator Reg */
 | |
| #define	AT91_TWI_CWGR_HOLD_MAX	0x1f
 | |
| #define	AT91_TWI_CWGR_HOLD(x)	(((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)
 | |
| 
 | |
| #define	AT91_TWI_SR		0x0020	/* Status Register */
 | |
| #define	AT91_TWI_TXCOMP		BIT(0)	/* Transmission Complete */
 | |
| #define	AT91_TWI_RXRDY		BIT(1)	/* Receive Holding Register Ready */
 | |
| #define	AT91_TWI_TXRDY		BIT(2)	/* Transmit Holding Register Ready */
 | |
| #define	AT91_TWI_OVRE		BIT(6)	/* Overrun Error */
 | |
| #define	AT91_TWI_UNRE		BIT(7)	/* Underrun Error */
 | |
| #define	AT91_TWI_NACK		BIT(8)	/* Not Acknowledged */
 | |
| #define	AT91_TWI_LOCK		BIT(23) /* TWI Lock due to Frame Errors */
 | |
| 
 | |
| #define	AT91_TWI_INT_MASK \
 | |
| 	(AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
 | |
| 
 | |
| #define	AT91_TWI_IER		0x0024	/* Interrupt Enable Register */
 | |
| #define	AT91_TWI_IDR		0x0028	/* Interrupt Disable Register */
 | |
| #define	AT91_TWI_IMR		0x002c	/* Interrupt Mask Register */
 | |
| #define	AT91_TWI_RHR		0x0030	/* Receive Holding Register */
 | |
| #define	AT91_TWI_THR		0x0034	/* Transmit Holding Register */
 | |
| 
 | |
| #define	AT91_TWI_ACR		0x0040	/* Alternative Command Register */
 | |
| #define	AT91_TWI_ACR_DATAL(len)	((len) & 0xff)
 | |
| #define	AT91_TWI_ACR_DIR	BIT(8)
 | |
| 
 | |
| #define	AT91_TWI_FMR		0x0050	/* FIFO Mode Register */
 | |
| #define	AT91_TWI_FMR_TXRDYM(mode)	(((mode) & 0x3) << 0)
 | |
| #define	AT91_TWI_FMR_TXRDYM_MASK	(0x3 << 0)
 | |
| #define	AT91_TWI_FMR_RXRDYM(mode)	(((mode) & 0x3) << 4)
 | |
| #define	AT91_TWI_FMR_RXRDYM_MASK	(0x3 << 4)
 | |
| #define	AT91_TWI_ONE_DATA	0x0
 | |
| #define	AT91_TWI_TWO_DATA	0x1
 | |
| #define	AT91_TWI_FOUR_DATA	0x2
 | |
| 
 | |
| #define	AT91_TWI_FLR		0x0054	/* FIFO Level Register */
 | |
| 
 | |
| #define	AT91_TWI_FSR		0x0060	/* FIFO Status Register */
 | |
| #define	AT91_TWI_FIER		0x0064	/* FIFO Interrupt Enable Register */
 | |
| #define	AT91_TWI_FIDR		0x0068	/* FIFO Interrupt Disable Register */
 | |
| #define	AT91_TWI_FIMR		0x006c	/* FIFO Interrupt Mask Register */
 | |
| 
 | |
| #define	AT91_TWI_VER		0x00fc	/* Version Register */
 | |
| 
 | |
| struct at91_twi_pdata {
 | |
| 	unsigned clk_max_div;
 | |
| 	unsigned clk_offset;
 | |
| 	bool has_unre_flag;
 | |
| 	bool has_alt_cmd;
 | |
| 	bool has_hold_field;
 | |
| 	struct at_dma_slave dma_slave;
 | |
| };
 | |
| 
 | |
| struct at91_twi_dma {
 | |
| 	struct dma_chan *chan_rx;
 | |
| 	struct dma_chan *chan_tx;
 | |
| 	struct scatterlist sg[2];
 | |
| 	struct dma_async_tx_descriptor *data_desc;
 | |
| 	enum dma_data_direction direction;
 | |
| 	bool buf_mapped;
 | |
| 	bool xfer_in_progress;
 | |
| };
 | |
| 
 | |
| struct at91_twi_dev {
 | |
| 	struct device *dev;
 | |
| 	void __iomem *base;
 | |
| 	struct completion cmd_complete;
 | |
| 	struct clk *clk;
 | |
| 	u8 *buf;
 | |
| 	size_t buf_len;
 | |
| 	struct i2c_msg *msg;
 | |
| 	int irq;
 | |
| 	unsigned imr;
 | |
| 	unsigned transfer_status;
 | |
| 	struct i2c_adapter adapter;
 | |
| 	unsigned twi_cwgr_reg;
 | |
| 	struct at91_twi_pdata *pdata;
 | |
| 	bool use_dma;
 | |
| 	bool use_alt_cmd;
 | |
| 	bool recv_len_abort;
 | |
| 	u32 fifo_size;
 | |
| 	struct at91_twi_dma dma;
 | |
| };
 | |
| 
 | |
| static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
 | |
| {
 | |
| 	return readl_relaxed(dev->base + reg);
 | |
| }
 | |
| 
 | |
| static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
 | |
| {
 | |
| 	writel_relaxed(val, dev->base + reg);
 | |
| }
 | |
| 
 | |
| static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
 | |
| }
 | |
| 
 | |
| static void at91_twi_irq_save(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
 | |
| 	at91_disable_twi_interrupts(dev);
 | |
| }
 | |
| 
 | |
| static void at91_twi_irq_restore(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	at91_twi_write(dev, AT91_TWI_IER, dev->imr);
 | |
| }
 | |
| 
 | |
| static void at91_init_twi_bus(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	at91_disable_twi_interrupts(dev);
 | |
| 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
 | |
| 	/* FIFO should be enabled immediately after the software reset */
 | |
| 	if (dev->fifo_size)
 | |
| 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
 | |
| 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
 | |
| 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
 | |
| 	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate symmetric clock as stated in datasheet:
 | |
|  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
 | |
|  */
 | |
| static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
 | |
| {
 | |
| 	int ckdiv, cdiv, div, hold = 0;
 | |
| 	struct at91_twi_pdata *pdata = dev->pdata;
 | |
| 	int offset = pdata->clk_offset;
 | |
| 	int max_ckdiv = pdata->clk_max_div;
 | |
| 	u32 twd_hold_time_ns = 0;
 | |
| 
 | |
| 	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
 | |
| 				       2 * twi_clk) - offset);
 | |
| 	ckdiv = fls(div >> 8);
 | |
| 	cdiv = div >> ckdiv;
 | |
| 
 | |
| 	if (ckdiv > max_ckdiv) {
 | |
| 		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
 | |
| 			 ckdiv, max_ckdiv);
 | |
| 		ckdiv = max_ckdiv;
 | |
| 		cdiv = 255;
 | |
| 	}
 | |
| 
 | |
| 	if (pdata->has_hold_field) {
 | |
| 		of_property_read_u32(dev->dev->of_node, "i2c-sda-hold-time-ns",
 | |
| 				     &twd_hold_time_ns);
 | |
| 
 | |
| 		/*
 | |
| 		 * hold time = HOLD + 3 x T_peripheral_clock
 | |
| 		 * Use clk rate in kHz to prevent overflows when computing
 | |
| 		 * hold.
 | |
| 		 */
 | |
| 		hold = DIV_ROUND_UP(twd_hold_time_ns
 | |
| 				    * (clk_get_rate(dev->clk) / 1000), 1000000);
 | |
| 		hold -= 3;
 | |
| 		if (hold < 0)
 | |
| 			hold = 0;
 | |
| 		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
 | |
| 			dev_warn(dev->dev,
 | |
| 				 "HOLD field set to its maximum value (%d instead of %d)\n",
 | |
| 				 AT91_TWI_CWGR_HOLD_MAX, hold);
 | |
| 			hold = AT91_TWI_CWGR_HOLD_MAX;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
 | |
| 			    | AT91_TWI_CWGR_HOLD(hold);
 | |
| 
 | |
| 	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
 | |
| 		cdiv, ckdiv, hold, twd_hold_time_ns);
 | |
| }
 | |
| 
 | |
| static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	struct at91_twi_dma *dma = &dev->dma;
 | |
| 
 | |
| 	at91_twi_irq_save(dev);
 | |
| 
 | |
| 	if (dma->xfer_in_progress) {
 | |
| 		if (dma->direction == DMA_FROM_DEVICE)
 | |
| 			dmaengine_terminate_all(dma->chan_rx);
 | |
| 		else
 | |
| 			dmaengine_terminate_all(dma->chan_tx);
 | |
| 		dma->xfer_in_progress = false;
 | |
| 	}
 | |
| 	if (dma->buf_mapped) {
 | |
| 		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
 | |
| 				 dev->buf_len, dma->direction);
 | |
| 		dma->buf_mapped = false;
 | |
| 	}
 | |
| 
 | |
| 	at91_twi_irq_restore(dev);
 | |
| }
 | |
| 
 | |
| static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	if (!dev->buf_len)
 | |
| 		return;
 | |
| 
 | |
| 	/* 8bit write works with and without FIFO */
 | |
| 	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
 | |
| 
 | |
| 	/* send stop when last byte has been written */
 | |
| 	if (--dev->buf_len == 0) {
 | |
| 		if (!dev->use_alt_cmd)
 | |
| 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 | |
| 		at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
 | |
| 
 | |
| 	++dev->buf;
 | |
| }
 | |
| 
 | |
| static void at91_twi_write_data_dma_callback(void *data)
 | |
| {
 | |
| 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 | |
| 
 | |
| 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 | |
| 			 dev->buf_len, DMA_TO_DEVICE);
 | |
| 
 | |
| 	/*
 | |
| 	 * When this callback is called, THR/TX FIFO is likely not to be empty
 | |
| 	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
 | |
| 	 * Status Register to be sure that the STOP bit has been sent and the
 | |
| 	 * transfer is completed. The NACK interrupt has already been enabled,
 | |
| 	 * we just have to enable TXCOMP one.
 | |
| 	 */
 | |
| 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 | |
| 	if (!dev->use_alt_cmd)
 | |
| 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 | |
| }
 | |
| 
 | |
| static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	dma_addr_t dma_addr;
 | |
| 	struct dma_async_tx_descriptor *txdesc;
 | |
| 	struct at91_twi_dma *dma = &dev->dma;
 | |
| 	struct dma_chan *chan_tx = dma->chan_tx;
 | |
| 	unsigned int sg_len = 1;
 | |
| 
 | |
| 	if (!dev->buf_len)
 | |
| 		return;
 | |
| 
 | |
| 	dma->direction = DMA_TO_DEVICE;
 | |
| 
 | |
| 	at91_twi_irq_save(dev);
 | |
| 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
 | |
| 				  DMA_TO_DEVICE);
 | |
| 	if (dma_mapping_error(dev->dev, dma_addr)) {
 | |
| 		dev_err(dev->dev, "dma map failed\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	dma->buf_mapped = true;
 | |
| 	at91_twi_irq_restore(dev);
 | |
| 
 | |
| 	if (dev->fifo_size) {
 | |
| 		size_t part1_len, part2_len;
 | |
| 		struct scatterlist *sg;
 | |
| 		unsigned fifo_mr;
 | |
| 
 | |
| 		sg_len = 0;
 | |
| 
 | |
| 		part1_len = dev->buf_len & ~0x3;
 | |
| 		if (part1_len) {
 | |
| 			sg = &dma->sg[sg_len++];
 | |
| 			sg_dma_len(sg) = part1_len;
 | |
| 			sg_dma_address(sg) = dma_addr;
 | |
| 		}
 | |
| 
 | |
| 		part2_len = dev->buf_len & 0x3;
 | |
| 		if (part2_len) {
 | |
| 			sg = &dma->sg[sg_len++];
 | |
| 			sg_dma_len(sg) = part2_len;
 | |
| 			sg_dma_address(sg) = dma_addr + part1_len;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * DMA controller is triggered when at least 4 data can be
 | |
| 		 * written into the TX FIFO
 | |
| 		 */
 | |
| 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 | |
| 		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
 | |
| 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
 | |
| 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 | |
| 	} else {
 | |
| 		sg_dma_len(&dma->sg[0]) = dev->buf_len;
 | |
| 		sg_dma_address(&dma->sg[0]) = dma_addr;
 | |
| 	}
 | |
| 
 | |
| 	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
 | |
| 					 DMA_MEM_TO_DEV,
 | |
| 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!txdesc) {
 | |
| 		dev_err(dev->dev, "dma prep slave sg failed\n");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	txdesc->callback = at91_twi_write_data_dma_callback;
 | |
| 	txdesc->callback_param = dev;
 | |
| 
 | |
| 	dma->xfer_in_progress = true;
 | |
| 	dmaengine_submit(txdesc);
 | |
| 	dma_async_issue_pending(chan_tx);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| error:
 | |
| 	at91_twi_dma_cleanup(dev);
 | |
| }
 | |
| 
 | |
| static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we are in this case, it means there is garbage data in RHR, so
 | |
| 	 * delete them.
 | |
| 	 */
 | |
| 	if (!dev->buf_len) {
 | |
| 		at91_twi_read(dev, AT91_TWI_RHR);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* 8bit read works with and without FIFO */
 | |
| 	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
 | |
| 	--dev->buf_len;
 | |
| 
 | |
| 	/* return if aborting, we only needed to read RHR to clear RXRDY*/
 | |
| 	if (dev->recv_len_abort)
 | |
| 		return;
 | |
| 
 | |
| 	/* handle I2C_SMBUS_BLOCK_DATA */
 | |
| 	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
 | |
| 		/* ensure length byte is a valid value */
 | |
| 		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
 | |
| 			dev->msg->flags &= ~I2C_M_RECV_LEN;
 | |
| 			dev->buf_len += *dev->buf;
 | |
| 			dev->msg->len = dev->buf_len + 1;
 | |
| 			dev_dbg(dev->dev, "received block length %zu\n",
 | |
| 					 dev->buf_len);
 | |
| 		} else {
 | |
| 			/* abort and send the stop by reading one more byte */
 | |
| 			dev->recv_len_abort = true;
 | |
| 			dev->buf_len = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* send stop if second but last byte has been read */
 | |
| 	if (!dev->use_alt_cmd && dev->buf_len == 1)
 | |
| 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
 | |
| 
 | |
| 	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
 | |
| 
 | |
| 	++dev->buf;
 | |
| }
 | |
| 
 | |
| static void at91_twi_read_data_dma_callback(void *data)
 | |
| {
 | |
| 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
 | |
| 	unsigned ier = AT91_TWI_TXCOMP;
 | |
| 
 | |
| 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
 | |
| 			 dev->buf_len, DMA_FROM_DEVICE);
 | |
| 
 | |
| 	if (!dev->use_alt_cmd) {
 | |
| 		/* The last two bytes have to be read without using dma */
 | |
| 		dev->buf += dev->buf_len - 2;
 | |
| 		dev->buf_len = 2;
 | |
| 		ier |= AT91_TWI_RXRDY;
 | |
| 	}
 | |
| 	at91_twi_write(dev, AT91_TWI_IER, ier);
 | |
| }
 | |
| 
 | |
| static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	dma_addr_t dma_addr;
 | |
| 	struct dma_async_tx_descriptor *rxdesc;
 | |
| 	struct at91_twi_dma *dma = &dev->dma;
 | |
| 	struct dma_chan *chan_rx = dma->chan_rx;
 | |
| 	size_t buf_len;
 | |
| 
 | |
| 	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
 | |
| 	dma->direction = DMA_FROM_DEVICE;
 | |
| 
 | |
| 	/* Keep in mind that we won't use dma to read the last two bytes */
 | |
| 	at91_twi_irq_save(dev);
 | |
| 	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
 | |
| 	if (dma_mapping_error(dev->dev, dma_addr)) {
 | |
| 		dev_err(dev->dev, "dma map failed\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	dma->buf_mapped = true;
 | |
| 	at91_twi_irq_restore(dev);
 | |
| 
 | |
| 	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
 | |
| 		unsigned fifo_mr;
 | |
| 
 | |
| 		/*
 | |
| 		 * DMA controller is triggered when at least 4 data can be
 | |
| 		 * read from the RX FIFO
 | |
| 		 */
 | |
| 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 | |
| 		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
 | |
| 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
 | |
| 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 | |
| 	}
 | |
| 
 | |
| 	sg_dma_len(&dma->sg[0]) = buf_len;
 | |
| 	sg_dma_address(&dma->sg[0]) = dma_addr;
 | |
| 
 | |
| 	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
 | |
| 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!rxdesc) {
 | |
| 		dev_err(dev->dev, "dma prep slave sg failed\n");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	rxdesc->callback = at91_twi_read_data_dma_callback;
 | |
| 	rxdesc->callback_param = dev;
 | |
| 
 | |
| 	dma->xfer_in_progress = true;
 | |
| 	dmaengine_submit(rxdesc);
 | |
| 	dma_async_issue_pending(dma->chan_rx);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| error:
 | |
| 	at91_twi_dma_cleanup(dev);
 | |
| }
 | |
| 
 | |
| static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct at91_twi_dev *dev = dev_id;
 | |
| 	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
 | |
| 	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
 | |
| 
 | |
| 	if (!irqstatus)
 | |
| 		return IRQ_NONE;
 | |
| 	/*
 | |
| 	 * In reception, the behavior of the twi device (before sama5d2) is
 | |
| 	 * weird. There is some magic about RXRDY flag! When a data has been
 | |
| 	 * almost received, the reception of a new one is anticipated if there
 | |
| 	 * is no stop command to send. That is the reason why ask for sending
 | |
| 	 * the stop command not on the last data but on the second last one.
 | |
| 	 *
 | |
| 	 * Unfortunately, we could still have the RXRDY flag set even if the
 | |
| 	 * transfer is done and we have read the last data. It might happen
 | |
| 	 * when the i2c slave device sends too quickly data after receiving the
 | |
| 	 * ack from the master. The data has been almost received before having
 | |
| 	 * the order to send stop. In this case, sending the stop command could
 | |
| 	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
 | |
| 	 * the RXRDY interrupt first in order to not keep garbage data in the
 | |
| 	 * Receive Holding Register for the next transfer.
 | |
| 	 */
 | |
| 	if (irqstatus & AT91_TWI_RXRDY) {
 | |
| 		/*
 | |
| 		 * Read all available bytes at once by polling RXRDY usable w/
 | |
| 		 * and w/o FIFO. With FIFO enabled we could also read RXFL and
 | |
| 		 * avoid polling RXRDY.
 | |
| 		 */
 | |
| 		do {
 | |
| 			at91_twi_read_next_byte(dev);
 | |
| 		} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When a NACK condition is detected, the I2C controller sets the NACK,
 | |
| 	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
 | |
| 	 *
 | |
| 	 * 1 - Handling NACK errors with CPU write transfer.
 | |
| 	 *
 | |
| 	 * In such case, we should not write the next byte into the Transmit
 | |
| 	 * Holding Register (THR) otherwise the I2C controller would start a new
 | |
| 	 * transfer and the I2C slave is likely to reply by another NACK.
 | |
| 	 *
 | |
| 	 * 2 - Handling NACK errors with DMA write transfer.
 | |
| 	 *
 | |
| 	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
 | |
| 	 * the DMA controller to write the next data into the THR. Then the
 | |
| 	 * result depends on the hardware version of the I2C controller.
 | |
| 	 *
 | |
| 	 * 2a - Without support of the Alternative Command mode.
 | |
| 	 *
 | |
| 	 * This is the worst case: the DMA controller is triggered to write the
 | |
| 	 * next data into the THR, hence starting a new transfer: the I2C slave
 | |
| 	 * is likely to reply by another NACK.
 | |
| 	 * Concurrently, this interrupt handler is likely to be called to manage
 | |
| 	 * the first NACK before the I2C controller detects the second NACK and
 | |
| 	 * sets once again the NACK bit into the SR.
 | |
| 	 * When handling the first NACK, this interrupt handler disables the I2C
 | |
| 	 * controller interruptions, especially the NACK interrupt.
 | |
| 	 * Hence, the NACK bit is pending into the SR. This is why we should
 | |
| 	 * read the SR to clear all pending interrupts at the beginning of
 | |
| 	 * at91_do_twi_transfer() before actually starting a new transfer.
 | |
| 	 *
 | |
| 	 * 2b - With support of the Alternative Command mode.
 | |
| 	 *
 | |
| 	 * When a NACK condition is detected, the I2C controller also locks the
 | |
| 	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
 | |
| 	 * is triggered by the TXRDY bit to write the next data into the THR,
 | |
| 	 * this data actually won't go on the I2C bus hence a second NACK is not
 | |
| 	 * generated.
 | |
| 	 */
 | |
| 	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
 | |
| 		at91_disable_twi_interrupts(dev);
 | |
| 		complete(&dev->cmd_complete);
 | |
| 	} else if (irqstatus & AT91_TWI_TXRDY) {
 | |
| 		at91_twi_write_next_byte(dev);
 | |
| 	}
 | |
| 
 | |
| 	/* catch error flags */
 | |
| 	dev->transfer_status |= status;
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int at91_do_twi_transfer(struct at91_twi_dev *dev)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long time_left;
 | |
| 	bool has_unre_flag = dev->pdata->has_unre_flag;
 | |
| 	bool has_alt_cmd = dev->pdata->has_alt_cmd;
 | |
| 
 | |
| 	/*
 | |
| 	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
 | |
| 	 * read flag but shows the state of the transmission at the time the
 | |
| 	 * Status Register is read. According to the programmer datasheet,
 | |
| 	 * TXCOMP is set when both holding register and internal shifter are
 | |
| 	 * empty and STOP condition has been sent.
 | |
| 	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
 | |
| 	 * detect transmission failure.
 | |
| 	 * Indeed let's take the case of an i2c write command using DMA.
 | |
| 	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
 | |
| 	 * TXCOMP bits are set together into the Status Register.
 | |
| 	 * LOCK is a clear on write bit, which is set to prevent the DMA
 | |
| 	 * controller from sending new data on the i2c bus after a NACK
 | |
| 	 * condition has happened. Once locked, this i2c peripheral stops
 | |
| 	 * triggering the DMA controller for new data but it is more than
 | |
| 	 * likely that a new DMA transaction is already in progress, writing
 | |
| 	 * into the Transmit Holding Register. Since the peripheral is locked,
 | |
| 	 * these new data won't be sent to the i2c bus but they will remain
 | |
| 	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
 | |
| 	 * Then when the interrupt handler is called, the Status Register is
 | |
| 	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
 | |
| 	 * manage the error properly, without waiting for timeout.
 | |
| 	 * This case can be reproduced easyly when writing into an at24 eeprom.
 | |
| 	 *
 | |
| 	 * Besides, the TXCOMP bit is already set before the i2c transaction
 | |
| 	 * has been started. For read transactions, this bit is cleared when
 | |
| 	 * writing the START bit into the Control Register. So the
 | |
| 	 * corresponding interrupt can safely be enabled just after.
 | |
| 	 * However for write transactions managed by the CPU, we first write
 | |
| 	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
 | |
| 	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
 | |
| 	 * the interrupt handler would be called immediately and the i2c command
 | |
| 	 * would be reported as completed.
 | |
| 	 * Also when a write transaction is managed by the DMA controller,
 | |
| 	 * enabling the TXCOMP interrupt in this function may lead to a race
 | |
| 	 * condition since we don't know whether the TXCOMP interrupt is enabled
 | |
| 	 * before or after the DMA has started to write into THR. So the TXCOMP
 | |
| 	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
 | |
| 	 * Immediately after in that DMA callback, if the alternative command
 | |
| 	 * mode is not used, we still need to send the STOP condition manually
 | |
| 	 * writing the corresponding bit into the Control Register.
 | |
| 	 */
 | |
| 
 | |
| 	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
 | |
| 		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
 | |
| 
 | |
| 	reinit_completion(&dev->cmd_complete);
 | |
| 	dev->transfer_status = 0;
 | |
| 
 | |
| 	/* Clear pending interrupts, such as NACK. */
 | |
| 	at91_twi_read(dev, AT91_TWI_SR);
 | |
| 
 | |
| 	if (dev->fifo_size) {
 | |
| 		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
 | |
| 
 | |
| 		/* Reset FIFO mode register */
 | |
| 		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
 | |
| 			     AT91_TWI_FMR_RXRDYM_MASK);
 | |
| 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
 | |
| 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
 | |
| 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
 | |
| 
 | |
| 		/* Flush FIFOs */
 | |
| 		at91_twi_write(dev, AT91_TWI_CR,
 | |
| 			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
 | |
| 	}
 | |
| 
 | |
| 	if (!dev->buf_len) {
 | |
| 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
 | |
| 		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
 | |
| 	} else if (dev->msg->flags & I2C_M_RD) {
 | |
| 		unsigned start_flags = AT91_TWI_START;
 | |
| 
 | |
| 		/* if only one byte is to be read, immediately stop transfer */
 | |
| 		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
 | |
| 		    !(dev->msg->flags & I2C_M_RECV_LEN))
 | |
| 			start_flags |= AT91_TWI_STOP;
 | |
| 		at91_twi_write(dev, AT91_TWI_CR, start_flags);
 | |
| 		/*
 | |
| 		 * When using dma without alternative command mode, the last
 | |
| 		 * byte has to be read manually in order to not send the stop
 | |
| 		 * command too late and then to receive extra data.
 | |
| 		 * In practice, there are some issues if you use the dma to
 | |
| 		 * read n-1 bytes because of latency.
 | |
| 		 * Reading n-2 bytes with dma and the two last ones manually
 | |
| 		 * seems to be the best solution.
 | |
| 		 */
 | |
| 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 | |
| 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 | |
| 			at91_twi_read_data_dma(dev);
 | |
| 		} else {
 | |
| 			at91_twi_write(dev, AT91_TWI_IER,
 | |
| 				       AT91_TWI_TXCOMP |
 | |
| 				       AT91_TWI_NACK |
 | |
| 				       AT91_TWI_RXRDY);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
 | |
| 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
 | |
| 			at91_twi_write_data_dma(dev);
 | |
| 		} else {
 | |
| 			at91_twi_write_next_byte(dev);
 | |
| 			at91_twi_write(dev, AT91_TWI_IER,
 | |
| 				       AT91_TWI_TXCOMP | AT91_TWI_NACK |
 | |
| 				       (dev->buf_len ? AT91_TWI_TXRDY : 0));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	time_left = wait_for_completion_timeout(&dev->cmd_complete,
 | |
| 					      dev->adapter.timeout);
 | |
| 	if (time_left == 0) {
 | |
| 		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
 | |
| 		dev_err(dev->dev, "controller timed out\n");
 | |
| 		at91_init_twi_bus(dev);
 | |
| 		ret = -ETIMEDOUT;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	if (dev->transfer_status & AT91_TWI_NACK) {
 | |
| 		dev_dbg(dev->dev, "received nack\n");
 | |
| 		ret = -EREMOTEIO;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	if (dev->transfer_status & AT91_TWI_OVRE) {
 | |
| 		dev_err(dev->dev, "overrun while reading\n");
 | |
| 		ret = -EIO;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
 | |
| 		dev_err(dev->dev, "underrun while writing\n");
 | |
| 		ret = -EIO;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	if ((has_alt_cmd || dev->fifo_size) &&
 | |
| 	    (dev->transfer_status & AT91_TWI_LOCK)) {
 | |
| 		dev_err(dev->dev, "tx locked\n");
 | |
| 		ret = -EIO;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	if (dev->recv_len_abort) {
 | |
| 		dev_err(dev->dev, "invalid smbus block length recvd\n");
 | |
| 		ret = -EPROTO;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev->dev, "transfer complete\n");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	/* first stop DMA transfer if still in progress */
 | |
| 	at91_twi_dma_cleanup(dev);
 | |
| 	/* then flush THR/FIFO and unlock TX if locked */
 | |
| 	if ((has_alt_cmd || dev->fifo_size) &&
 | |
| 	    (dev->transfer_status & AT91_TWI_LOCK)) {
 | |
| 		dev_dbg(dev->dev, "unlock tx\n");
 | |
| 		at91_twi_write(dev, AT91_TWI_CR,
 | |
| 			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
 | |
| {
 | |
| 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
 | |
| 	int ret;
 | |
| 	unsigned int_addr_flag = 0;
 | |
| 	struct i2c_msg *m_start = msg;
 | |
| 	bool is_read;
 | |
| 
 | |
| 	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
 | |
| 
 | |
| 	ret = pm_runtime_get_sync(dev->dev);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (num == 2) {
 | |
| 		int internal_address = 0;
 | |
| 		int i;
 | |
| 
 | |
| 		/* 1st msg is put into the internal address, start with 2nd */
 | |
| 		m_start = &msg[1];
 | |
| 		for (i = 0; i < msg->len; ++i) {
 | |
| 			const unsigned addr = msg->buf[msg->len - 1 - i];
 | |
| 
 | |
| 			internal_address |= addr << (8 * i);
 | |
| 			int_addr_flag += AT91_TWI_IADRSZ_1;
 | |
| 		}
 | |
| 		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
 | |
| 	}
 | |
| 
 | |
| 	dev->use_alt_cmd = false;
 | |
| 	is_read = (m_start->flags & I2C_M_RD);
 | |
| 	if (dev->pdata->has_alt_cmd) {
 | |
| 		if (m_start->len > 0 &&
 | |
| 		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
 | |
| 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
 | |
| 			at91_twi_write(dev, AT91_TWI_ACR,
 | |
| 				       AT91_TWI_ACR_DATAL(m_start->len) |
 | |
| 				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
 | |
| 			dev->use_alt_cmd = true;
 | |
| 		} else {
 | |
| 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	at91_twi_write(dev, AT91_TWI_MMR,
 | |
| 		       (m_start->addr << 16) |
 | |
| 		       int_addr_flag |
 | |
| 		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
 | |
| 
 | |
| 	dev->buf_len = m_start->len;
 | |
| 	dev->buf = m_start->buf;
 | |
| 	dev->msg = m_start;
 | |
| 	dev->recv_len_abort = false;
 | |
| 
 | |
| 	ret = at91_do_twi_transfer(dev);
 | |
| 
 | |
| 	ret = (ret < 0) ? ret : num;
 | |
| out:
 | |
| 	pm_runtime_mark_last_busy(dev->dev);
 | |
| 	pm_runtime_put_autosuspend(dev->dev);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The hardware can handle at most two messages concatenated by a
 | |
|  * repeated start via it's internal address feature.
 | |
|  */
 | |
| static const struct i2c_adapter_quirks at91_twi_quirks = {
 | |
| 	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
 | |
| 	.max_comb_1st_msg_len = 3,
 | |
| };
 | |
| 
 | |
| static u32 at91_twi_func(struct i2c_adapter *adapter)
 | |
| {
 | |
| 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
 | |
| 		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
 | |
| }
 | |
| 
 | |
| static const struct i2c_algorithm at91_twi_algorithm = {
 | |
| 	.master_xfer	= at91_twi_xfer,
 | |
| 	.functionality	= at91_twi_func,
 | |
| };
 | |
| 
 | |
| static struct at91_twi_pdata at91rm9200_config = {
 | |
| 	.clk_max_div = 5,
 | |
| 	.clk_offset = 3,
 | |
| 	.has_unre_flag = true,
 | |
| 	.has_alt_cmd = false,
 | |
| 	.has_hold_field = false,
 | |
| };
 | |
| 
 | |
| static struct at91_twi_pdata at91sam9261_config = {
 | |
| 	.clk_max_div = 5,
 | |
| 	.clk_offset = 4,
 | |
| 	.has_unre_flag = false,
 | |
| 	.has_alt_cmd = false,
 | |
| 	.has_hold_field = false,
 | |
| };
 | |
| 
 | |
| static struct at91_twi_pdata at91sam9260_config = {
 | |
| 	.clk_max_div = 7,
 | |
| 	.clk_offset = 4,
 | |
| 	.has_unre_flag = false,
 | |
| 	.has_alt_cmd = false,
 | |
| 	.has_hold_field = false,
 | |
| };
 | |
| 
 | |
| static struct at91_twi_pdata at91sam9g20_config = {
 | |
| 	.clk_max_div = 7,
 | |
| 	.clk_offset = 4,
 | |
| 	.has_unre_flag = false,
 | |
| 	.has_alt_cmd = false,
 | |
| 	.has_hold_field = false,
 | |
| };
 | |
| 
 | |
| static struct at91_twi_pdata at91sam9g10_config = {
 | |
| 	.clk_max_div = 7,
 | |
| 	.clk_offset = 4,
 | |
| 	.has_unre_flag = false,
 | |
| 	.has_alt_cmd = false,
 | |
| 	.has_hold_field = false,
 | |
| };
 | |
| 
 | |
| static const struct platform_device_id at91_twi_devtypes[] = {
 | |
| 	{
 | |
| 		.name = "i2c-at91rm9200",
 | |
| 		.driver_data = (unsigned long) &at91rm9200_config,
 | |
| 	}, {
 | |
| 		.name = "i2c-at91sam9261",
 | |
| 		.driver_data = (unsigned long) &at91sam9261_config,
 | |
| 	}, {
 | |
| 		.name = "i2c-at91sam9260",
 | |
| 		.driver_data = (unsigned long) &at91sam9260_config,
 | |
| 	}, {
 | |
| 		.name = "i2c-at91sam9g20",
 | |
| 		.driver_data = (unsigned long) &at91sam9g20_config,
 | |
| 	}, {
 | |
| 		.name = "i2c-at91sam9g10",
 | |
| 		.driver_data = (unsigned long) &at91sam9g10_config,
 | |
| 	}, {
 | |
| 		/* sentinel */
 | |
| 	}
 | |
| };
 | |
| 
 | |
| #if defined(CONFIG_OF)
 | |
| static struct at91_twi_pdata at91sam9x5_config = {
 | |
| 	.clk_max_div = 7,
 | |
| 	.clk_offset = 4,
 | |
| 	.has_unre_flag = false,
 | |
| 	.has_alt_cmd = false,
 | |
| 	.has_hold_field = false,
 | |
| };
 | |
| 
 | |
| static struct at91_twi_pdata sama5d4_config = {
 | |
| 	.clk_max_div = 7,
 | |
| 	.clk_offset = 4,
 | |
| 	.has_unre_flag = false,
 | |
| 	.has_alt_cmd = false,
 | |
| 	.has_hold_field = true,
 | |
| };
 | |
| 
 | |
| static struct at91_twi_pdata sama5d2_config = {
 | |
| 	.clk_max_div = 7,
 | |
| 	.clk_offset = 3,
 | |
| 	.has_unre_flag = true,
 | |
| 	.has_alt_cmd = true,
 | |
| 	.has_hold_field = true,
 | |
| };
 | |
| 
 | |
| static const struct of_device_id atmel_twi_dt_ids[] = {
 | |
| 	{
 | |
| 		.compatible = "atmel,at91rm9200-i2c",
 | |
| 		.data = &at91rm9200_config,
 | |
| 	} , {
 | |
| 		.compatible = "atmel,at91sam9260-i2c",
 | |
| 		.data = &at91sam9260_config,
 | |
| 	} , {
 | |
| 		.compatible = "atmel,at91sam9261-i2c",
 | |
| 		.data = &at91sam9261_config,
 | |
| 	} , {
 | |
| 		.compatible = "atmel,at91sam9g20-i2c",
 | |
| 		.data = &at91sam9g20_config,
 | |
| 	} , {
 | |
| 		.compatible = "atmel,at91sam9g10-i2c",
 | |
| 		.data = &at91sam9g10_config,
 | |
| 	}, {
 | |
| 		.compatible = "atmel,at91sam9x5-i2c",
 | |
| 		.data = &at91sam9x5_config,
 | |
| 	}, {
 | |
| 		.compatible = "atmel,sama5d4-i2c",
 | |
| 		.data = &sama5d4_config,
 | |
| 	}, {
 | |
| 		.compatible = "atmel,sama5d2-i2c",
 | |
| 		.data = &sama5d2_config,
 | |
| 	}, {
 | |
| 		/* sentinel */
 | |
| 	}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
 | |
| #endif
 | |
| 
 | |
| static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct dma_slave_config slave_config;
 | |
| 	struct at91_twi_dma *dma = &dev->dma;
 | |
| 	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 | |
| 
 | |
| 	/*
 | |
| 	 * The actual width of the access will be chosen in
 | |
| 	 * dmaengine_prep_slave_sg():
 | |
| 	 * for each buffer in the scatter-gather list, if its size is aligned
 | |
| 	 * to addr_width then addr_width accesses will be performed to transfer
 | |
| 	 * the buffer. On the other hand, if the buffer size is not aligned to
 | |
| 	 * addr_width then the buffer is transferred using single byte accesses.
 | |
| 	 * Please refer to the Atmel eXtended DMA controller driver.
 | |
| 	 * When FIFOs are used, the TXRDYM threshold can always be set to
 | |
| 	 * trigger the XDMAC when at least 4 data can be written into the TX
 | |
| 	 * FIFO, even if single byte accesses are performed.
 | |
| 	 * However the RXRDYM threshold must be set to fit the access width,
 | |
| 	 * deduced from buffer length, so the XDMAC is triggered properly to
 | |
| 	 * read data from the RX FIFO.
 | |
| 	 */
 | |
| 	if (dev->fifo_size)
 | |
| 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 
 | |
| 	memset(&slave_config, 0, sizeof(slave_config));
 | |
| 	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
 | |
| 	slave_config.src_addr_width = addr_width;
 | |
| 	slave_config.src_maxburst = 1;
 | |
| 	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
 | |
| 	slave_config.dst_addr_width = addr_width;
 | |
| 	slave_config.dst_maxburst = 1;
 | |
| 	slave_config.device_fc = false;
 | |
| 
 | |
| 	dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
 | |
| 	if (IS_ERR(dma->chan_tx)) {
 | |
| 		ret = PTR_ERR(dma->chan_tx);
 | |
| 		dma->chan_tx = NULL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
 | |
| 	if (IS_ERR(dma->chan_rx)) {
 | |
| 		ret = PTR_ERR(dma->chan_rx);
 | |
| 		dma->chan_rx = NULL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	slave_config.direction = DMA_MEM_TO_DEV;
 | |
| 	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
 | |
| 		dev_err(dev->dev, "failed to configure tx channel\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	slave_config.direction = DMA_DEV_TO_MEM;
 | |
| 	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
 | |
| 		dev_err(dev->dev, "failed to configure rx channel\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	sg_init_table(dma->sg, 2);
 | |
| 	dma->buf_mapped = false;
 | |
| 	dma->xfer_in_progress = false;
 | |
| 	dev->use_dma = true;
 | |
| 
 | |
| 	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
 | |
| 		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| error:
 | |
| 	if (ret != -EPROBE_DEFER)
 | |
| 		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
 | |
| 	if (dma->chan_rx)
 | |
| 		dma_release_channel(dma->chan_rx);
 | |
| 	if (dma->chan_tx)
 | |
| 		dma_release_channel(dma->chan_tx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct at91_twi_pdata *at91_twi_get_driver_data(
 | |
| 					struct platform_device *pdev)
 | |
| {
 | |
| 	if (pdev->dev.of_node) {
 | |
| 		const struct of_device_id *match;
 | |
| 		match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
 | |
| 		if (!match)
 | |
| 			return NULL;
 | |
| 		return (struct at91_twi_pdata *)match->data;
 | |
| 	}
 | |
| 	return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
 | |
| }
 | |
| 
 | |
| static int at91_twi_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct at91_twi_dev *dev;
 | |
| 	struct resource *mem;
 | |
| 	int rc;
 | |
| 	u32 phy_addr;
 | |
| 	u32 bus_clk_rate;
 | |
| 
 | |
| 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
 | |
| 	if (!dev)
 | |
| 		return -ENOMEM;
 | |
| 	init_completion(&dev->cmd_complete);
 | |
| 	dev->dev = &pdev->dev;
 | |
| 
 | |
| 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	if (!mem)
 | |
| 		return -ENODEV;
 | |
| 	phy_addr = mem->start;
 | |
| 
 | |
| 	dev->pdata = at91_twi_get_driver_data(pdev);
 | |
| 	if (!dev->pdata)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	dev->base = devm_ioremap_resource(&pdev->dev, mem);
 | |
| 	if (IS_ERR(dev->base))
 | |
| 		return PTR_ERR(dev->base);
 | |
| 
 | |
| 	dev->irq = platform_get_irq(pdev, 0);
 | |
| 	if (dev->irq < 0)
 | |
| 		return dev->irq;
 | |
| 
 | |
| 	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
 | |
| 			 dev_name(dev->dev), dev);
 | |
| 	if (rc) {
 | |
| 		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, dev);
 | |
| 
 | |
| 	dev->clk = devm_clk_get(dev->dev, NULL);
 | |
| 	if (IS_ERR(dev->clk)) {
 | |
| 		dev_err(dev->dev, "no clock defined\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	rc = clk_prepare_enable(dev->clk);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (dev->dev->of_node) {
 | |
| 		rc = at91_twi_configure_dma(dev, phy_addr);
 | |
| 		if (rc == -EPROBE_DEFER) {
 | |
| 			clk_disable_unprepare(dev->clk);
 | |
| 			return rc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
 | |
| 				  &dev->fifo_size)) {
 | |
| 		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
 | |
| 	}
 | |
| 
 | |
| 	rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
 | |
| 			&bus_clk_rate);
 | |
| 	if (rc)
 | |
| 		bus_clk_rate = DEFAULT_TWI_CLK_HZ;
 | |
| 
 | |
| 	at91_calc_twi_clock(dev, bus_clk_rate);
 | |
| 	at91_init_twi_bus(dev);
 | |
| 
 | |
| 	snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
 | |
| 	i2c_set_adapdata(&dev->adapter, dev);
 | |
| 	dev->adapter.owner = THIS_MODULE;
 | |
| 	dev->adapter.class = I2C_CLASS_DEPRECATED;
 | |
| 	dev->adapter.algo = &at91_twi_algorithm;
 | |
| 	dev->adapter.quirks = &at91_twi_quirks;
 | |
| 	dev->adapter.dev.parent = dev->dev;
 | |
| 	dev->adapter.nr = pdev->id;
 | |
| 	dev->adapter.timeout = AT91_I2C_TIMEOUT;
 | |
| 	dev->adapter.dev.of_node = pdev->dev.of_node;
 | |
| 
 | |
| 	pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
 | |
| 	pm_runtime_use_autosuspend(dev->dev);
 | |
| 	pm_runtime_set_active(dev->dev);
 | |
| 	pm_runtime_enable(dev->dev);
 | |
| 
 | |
| 	rc = i2c_add_numbered_adapter(&dev->adapter);
 | |
| 	if (rc) {
 | |
| 		clk_disable_unprepare(dev->clk);
 | |
| 
 | |
| 		pm_runtime_disable(dev->dev);
 | |
| 		pm_runtime_set_suspended(dev->dev);
 | |
| 
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
 | |
| 		 at91_twi_read(dev, AT91_TWI_VER));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int at91_twi_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct at91_twi_dev *dev = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	i2c_del_adapter(&dev->adapter);
 | |
| 	clk_disable_unprepare(dev->clk);
 | |
| 
 | |
| 	pm_runtime_disable(dev->dev);
 | |
| 	pm_runtime_set_suspended(dev->dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| 
 | |
| static int at91_twi_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
 | |
| 
 | |
| 	clk_disable_unprepare(twi_dev->clk);
 | |
| 
 | |
| 	pinctrl_pm_select_sleep_state(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int at91_twi_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
 | |
| 
 | |
| 	pinctrl_pm_select_default_state(dev);
 | |
| 
 | |
| 	return clk_prepare_enable(twi_dev->clk);
 | |
| }
 | |
| 
 | |
| static int at91_twi_suspend_noirq(struct device *dev)
 | |
| {
 | |
| 	if (!pm_runtime_status_suspended(dev))
 | |
| 		at91_twi_runtime_suspend(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int at91_twi_resume_noirq(struct device *dev)
 | |
| {
 | |
| 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pm_runtime_status_suspended(dev)) {
 | |
| 		ret = at91_twi_runtime_resume(dev);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_mark_last_busy(dev);
 | |
| 	pm_request_autosuspend(dev);
 | |
| 
 | |
| 	at91_init_twi_bus(twi_dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct dev_pm_ops at91_twi_pm = {
 | |
| 	.suspend_noirq	= at91_twi_suspend_noirq,
 | |
| 	.resume_noirq	= at91_twi_resume_noirq,
 | |
| 	.runtime_suspend	= at91_twi_runtime_suspend,
 | |
| 	.runtime_resume		= at91_twi_runtime_resume,
 | |
| };
 | |
| 
 | |
| #define at91_twi_pm_ops (&at91_twi_pm)
 | |
| #else
 | |
| #define at91_twi_pm_ops NULL
 | |
| #endif
 | |
| 
 | |
| static struct platform_driver at91_twi_driver = {
 | |
| 	.probe		= at91_twi_probe,
 | |
| 	.remove		= at91_twi_remove,
 | |
| 	.id_table	= at91_twi_devtypes,
 | |
| 	.driver		= {
 | |
| 		.name	= "at91_i2c",
 | |
| 		.of_match_table = of_match_ptr(atmel_twi_dt_ids),
 | |
| 		.pm	= at91_twi_pm_ops,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init at91_twi_init(void)
 | |
| {
 | |
| 	return platform_driver_register(&at91_twi_driver);
 | |
| }
 | |
| 
 | |
| static void __exit at91_twi_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&at91_twi_driver);
 | |
| }
 | |
| 
 | |
| subsys_initcall(at91_twi_init);
 | |
| module_exit(at91_twi_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
 | |
| MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("platform:at91_i2c");
 | 
