nt9856x/BSP/linux-kernel/drivers/bluetooth/hci_ldisc.c
2023-10-13 10:20:38 +08:00

1455 lines
33 KiB
C

/*
*
* Bluetooth HCI UART driver
*
* Copyright (C) 2000-2001 Qualcomm Incorporated
* Copyright (C) 2002-2003 Maxim Krasnyansky <maxk@qualcomm.com>
* Copyright (C) 2004-2005 Marcel Holtmann <marcel@holtmann.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/signal.h>
#include <linux/ioctl.h>
#include <linux/skbuff.h>
#include <linux/version.h>
#include <linux/reboot.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "hci_uart.h"
#define NEW_TX_SCHED_POLICY
#if WOBT_NOTIFY
#include <linux/suspend.h>
#endif
#ifdef BTCOEX
#include "rtk_coex.h"
#endif
#define VERSION "2.2.0d4bd5a.20230801-094613"
#if HCI_VERSION_CODE > KERNEL_VERSION(3, 4, 0)
#define GET_DRV_DATA(x) hci_get_drvdata(x)
#else
#define GET_DRV_DATA(x) (struct hci_uart *)(x->driver_data)
#endif
#define SEMWAIT_TIMEOUT 50
#if WOBT_NOTIFY
struct hci_rsp_read_local {
__u8 status;
__u8 hci_ver;
__le16 hci_rev;
__u8 lmp_ver;
__le16 manufacturer;
__le16 lmp_subver;
} __packed;
#endif
#if HCI_VERSION_CODE < KERNEL_VERSION(3, 4, 0)
static int reset = 0;
#endif
static struct hci_uart_proto *hup[HCI_UART_MAX_PROTO];
static int hci_uart_flush(struct hci_dev *hdev);
int hci_uart_register_proto(struct hci_uart_proto *p)
{
if (p->id >= HCI_UART_MAX_PROTO)
return -EINVAL;
if (hup[p->id])
return -EEXIST;
hup[p->id] = p;
return 0;
}
int hci_uart_unregister_proto(struct hci_uart_proto *p)
{
if (p->id >= HCI_UART_MAX_PROTO)
return -EINVAL;
if (!hup[p->id])
return -EINVAL;
hup[p->id] = NULL;
return 0;
}
static struct hci_uart_proto *hci_uart_get_proto(unsigned int id)
{
if (id >= HCI_UART_MAX_PROTO)
return NULL;
return hup[id];
}
static inline void hci_uart_tx_complete(struct hci_uart *hu, int pkt_type)
{
struct hci_dev *hdev = hu->hdev;
/* Update HCI stat counters */
switch (pkt_type) {
case HCI_COMMAND_PKT:
hdev->stat.cmd_tx++;
break;
case HCI_ACLDATA_PKT:
hdev->stat.acl_tx++;
break;
case HCI_SCODATA_PKT:
hdev->stat.sco_tx++;
break;
}
}
static inline void hci_proto_read_lock(struct hci_uart *hu)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0)
percpu_down_read(&hu->proto_lock);
#else
down_read(&hu->proto_lock);
#endif
}
static inline int hci_proto_read_trylock(struct hci_uart *hu)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0)
return percpu_down_read_trylock(&hu->proto_lock);
#else
return down_read_trylock(&hu->proto_lock);
#endif
}
static inline void hci_proto_read_unlock(struct hci_uart *hu)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0)
percpu_up_read(&hu->proto_lock);
#else
up_read(&hu->proto_lock);
#endif
}
static inline void hci_proto_write_lock(struct hci_uart *hu)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0)
percpu_down_write(&hu->proto_lock);
#else
down_write(&hu->proto_lock);
#endif
}
static inline void hci_proto_write_unlock(struct hci_uart *hu)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0)
percpu_up_write(&hu->proto_lock);
#else
up_write(&hu->proto_lock);
#endif
}
static inline int hci_proto_init_rwlock(struct hci_uart *hu)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0)
return percpu_init_rwsem(&hu->proto_lock);
#else
init_rwsem(&hu->proto_lock);
return 0;
#endif
}
static inline void hci_proto_free_rwlock(struct hci_uart *hu)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0)
percpu_free_rwsem(&hu->proto_lock);
#endif
}
static inline struct sk_buff *hci_uart_dequeue(struct hci_uart *hu)
{
struct sk_buff *skb = hu->tx_skb;
if (!skb) {
hci_proto_read_lock(hu);
if (test_bit(HCI_UART_PROTO_READY, &hu->flags))
skb = hu->proto->dequeue(hu);
hci_proto_read_unlock(hu);
} else {
hu->tx_skb = NULL;
}
return skb;
}
/* This may be called in an IRQ context */
int hci_uart_tx_wakeup(struct hci_uart *hu)
{
/* If acquiring lock fails we assume the tty is being closed because
* that is the only time the write lock is acquired. If, however,
* at some point in the future the write lock is also acquired in
* other situations, then this must be revisited.
*/
if (!hci_proto_read_trylock(hu))
return 0;
/* proto_lock is locked */
if (!test_bit(HCI_UART_PROTO_READY, &hu->flags))
goto no_schedule;
#ifdef NEW_TX_SCHED_POLICY
set_bit(HCI_UART_TX_WAKEUP, &hu->tx_state);
if (test_and_set_bit(HCI_UART_SENDING, &hu->tx_state))
goto no_schedule;
#else
if (in_interrupt() || in_atomic()) {
if (test_and_set_bit(HCI_UART_SENDING, &hu->tx_state)) {
set_bit(HCI_UART_TX_WAKEUP, &hu->tx_state);
goto no_schedule;
}
} else {
/* NOTE: proto_lock can't be spin lock, because it may
* schedule here. Schedule is not allowed while atomic
*/
if (down_timeout(&hu->tx_sem,
msecs_to_jiffies(SEMWAIT_TIMEOUT)) == -ETIME) {
pr_warn("%s: Something went wrong with wait\n",
__func__);
goto no_schedule;
}
/* semaphore is locked */
if (test_and_set_bit(HCI_UART_SENDING, &hu->tx_state)) {
set_bit(HCI_UART_TX_WAKEUP, &hu->tx_state);
up(&hu->tx_sem);
goto no_schedule;
}
up(&hu->tx_sem);
}
#endif
BT_DBG("");
schedule_work(&hu->write_work);
no_schedule:
hci_proto_read_unlock(hu);
return 0;
}
static void hci_uart_write_work(struct work_struct *work)
{
struct hci_uart *hu = container_of(work, struct hci_uart, write_work);
struct tty_struct *tty = hu->tty;
struct hci_dev *hdev = hu->hdev;
struct sk_buff *skb;
/* REVISIT: should we cope with bad skbs or ->write() returning
* and error value ?
*/
restart:
clear_bit(HCI_UART_TX_WAKEUP, &hu->tx_state);
while ((skb = hci_uart_dequeue(hu))) {
int len;
set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
len = tty->ops->write(tty, skb->data, skb->len);
hdev->stat.byte_tx += len;
skb_pull(skb, len);
if (skb->len) {
hu->tx_skb = skb;
break;
}
hci_uart_tx_complete(hu, bt_cb(skb)->pkt_type);
kfree_skb(skb);
}
#ifdef NEW_TX_SCHED_POLICY
clear_bit(HCI_UART_SENDING, &hu->tx_state);
if (test_bit(HCI_UART_TX_WAKEUP, &hu->tx_state))
goto restart;
#else
if (down_timeout(&hu->tx_sem, msecs_to_jiffies(SEMWAIT_TIMEOUT))) {
pr_warn("%s: Something went wrong with wait\n", __func__);
goto restart;
}
/* semaphore is locked */
if (test_bit(HCI_UART_TX_WAKEUP, &hu->tx_state)) {
up(&hu->tx_sem);
goto restart;
}
clear_bit(HCI_UART_SENDING, &hu->tx_state);
up(&hu->tx_sem);
#endif
return;
}
/* ------- Interface to HCI layer ------ */
/* Initialize device */
static int hci_uart_open(struct hci_dev *hdev)
{
BT_DBG("%s %p", hdev->name, hdev);
/* Undo clearing this from hci_uart_close() */
hdev->flush = hci_uart_flush;
set_bit(HCI_UP, &hdev->flags);
#if HCI_VERSION_CODE < KERNEL_VERSION(4, 4, 0)
set_bit(HCI_RUNNING, &hdev->flags);
#endif
#ifdef BTCOEX
rtk_btcoex_open(hdev);
#endif
return 0;
}
/* static void hci_flush_sync(struct hci_dev *hdev)
* {
* #if HCI_VERSION_CODE >= KERNEL_VERSION(3, 10, 0)
* u8 buf[2] = { 0, 0 };
* struct sk_buff *skb;
*
* BT_INFO("hci flush sync");
*
* set_bit(HCI_INIT, &hdev->flags);
* skb = __hci_cmd_sync(hdev, 0xfc19, 2, buf, msecs_to_jiffies(2000));
* clear_bit(HCI_INIT, &hdev->flags);
*
* if (IS_ERR(skb)) {
* BT_ERR("command 0xfc19 tx failed (%ld)\n", PTR_ERR(skb));
* return;
* }
*
* if (skb->len == 1)
* BT_INFO("hci flush sync status %u", skb->data[0]);
*
* kfree_skb(skb);
* #endif
* }
*/
static int __hci_uart_flush(struct hci_dev *hdev, u8 sync)
{
struct hci_uart *hu = GET_DRV_DATA(hdev); //(struct hci_uart *) hdev->driver_data;
struct tty_struct *tty = hu->tty;
BT_INFO("%s: hdev %p tty %p", __func__, hdev, tty);
/* Make sure all HCI packets has been transmitted */
/* if (sync && test_bit(HCI_RUNNING, &hdev->flags))
* hci_flush_sync(hdev);
*/
if (hu->tx_skb) {
kfree_skb(hu->tx_skb);
hu->tx_skb = NULL;
}
/* Flush any pending characters in the driver and discipline. */
/* tty_ldisc_flush(tty);
* tty_driver_flush_buffer(tty);
*/
/* Don't flush the tty. Sometime, the hdev is closed abnormally.
* There may be cmd complete event in rx buf or the sent ack in tx buf.
* tty flush will result in hciX: command 0xXXXX tx timeout
*/
tty_wait_until_sent(tty, msecs_to_jiffies(500));
hci_proto_read_lock(hu);
if (test_bit(HCI_UART_PROTO_READY, &hu->flags))
hu->proto->flush(hu);
hci_proto_read_unlock(hu);
return 0;
}
/* Reset device */
static int hci_uart_flush(struct hci_dev *hdev)
{
return __hci_uart_flush(hdev, 1);
}
/* Close device */
static int hci_uart_close(struct hci_dev *hdev)
{
BT_INFO("%s: hdev %p", __func__, hdev);
/* When in kernel 4.4.0 and greater, the HCI_RUNNING bit is
* cleared in hci_dev_do_close(). */
#if HCI_VERSION_CODE < KERNEL_VERSION(4, 4, 0)
if (!test_and_clear_bit(HCI_RUNNING, &hdev->flags))
return 0;
#else
if (test_bit(HCI_RUNNING, &hdev->flags))
BT_ERR("HCI_RUNNING is not cleared before.");
#endif
if (test_bit(HCI_RUNNING, &hdev->flags))
__hci_uart_flush(hdev, 0);
else
__hci_uart_flush(hdev, 1);
hdev->flush = NULL;
#ifdef BTCOEX
rtk_btcoex_close();
#endif
return 0;
}
/* Send frames from HCI layer */
#if HCI_VERSION_CODE < KERNEL_VERSION(3, 13, 0)
int hci_uart_send_frame(struct sk_buff *skb)
#else
int hci_uart_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
#endif
{
#if HCI_VERSION_CODE < KERNEL_VERSION(3, 13, 0)
struct hci_dev *hdev = (struct hci_dev *)skb->dev;
#endif
struct hci_uart *hu;
if (!hdev) {
BT_ERR("Frame for unknown device (hdev=NULL)");
return -ENODEV;
}
#if HCI_VERSION_CODE < KERNEL_VERSION(4, 4, 0)
if (!test_bit(HCI_RUNNING, &hdev->flags))
return -EBUSY;
#endif
hu = GET_DRV_DATA(hdev); //(struct hci_uart *) hdev->driver_data;
BT_DBG("%s: type %d len %d", hdev->name, bt_cb(skb)->pkt_type,
skb->len);
#ifdef BTCOEX
if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)
rtk_btcoex_parse_cmd(skb->data, skb->len);
if (bt_cb(skb)->pkt_type == HCI_ACLDATA_PKT)
rtk_btcoex_parse_l2cap_data_tx(skb->data, skb->len);
#endif
hci_proto_read_lock(hu);
if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) {
hci_proto_read_unlock(hu);
return -EUNATCH;
}
hu->proto->enqueue(hu, skb);
hci_proto_read_unlock(hu);
hci_uart_tx_wakeup(hu);
return 0;
}
#if HCI_VERSION_CODE < KERNEL_VERSION(3, 4, 0)
static void hci_uart_destruct(struct hci_dev *hdev)
{
if (!hdev)
return;
BT_DBG("%s", hdev->name);
kfree(hdev->driver_data);
}
#endif
#if WOBT_NOTIFY
#if HCI_VERSION_CODE < KERNEL_VERSION(4, 13, 0)
static inline void *skb_put_data(struct sk_buff *skb, const void *data,
unsigned int len)
{
void *tmp = skb_put(skb, len);
memcpy(tmp, data, len);
return tmp;
}
#endif
static int hci_uart_async_send(struct hci_uart *hu, u16 opcode,
u32 plen, const void *param)
{
int len = HCI_COMMAND_HDR_SIZE + plen;
struct hci_command_hdr *hdr;
struct sk_buff *skb;
skb = bt_skb_alloc(len, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
hdr = (struct hci_command_hdr *)skb_put(skb, HCI_COMMAND_HDR_SIZE);
hdr->opcode = cpu_to_le16(opcode);
hdr->plen = plen;
if (plen)
memcpy(skb_put(skb, plen), param, plen);
BT_INFO("rtl: skb len %d", skb->len);
bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
#if HCI_VERSION_CODE >= KERNEL_VERSION(3, 18, 0)
#if HCI_VERSION_CODE < KERNEL_VERSION(4, 4, 0)
bt_cb(skb)->opcode = opcode;
#else
bt_cb(skb)->hci.opcode = opcode;
#endif
#endif
/* Stand-alone HCI commands must be flagged as
* single-command requests.
*/
#if HCI_VERSION_CODE >= KERNEL_VERSION(3, 10, 0)
#if HCI_VERSION_CODE < KERNEL_VERSION(4, 4, 0)
bt_cb(skb)->req.start = true;
#else
#if HCI_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
bt_cb(skb)->hci.req_start = true;
#else
bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
#endif
#endif /* 4.4.0 */
#endif /* 3.10.0 */
#if HCI_VERSION_CODE < KERNEL_VERSION(3, 13, 0)
hci_uart_send_frame(skb);
#else
hci_uart_send_frame(hu->hdev, skb);
#endif
/* hci_proto_read_lock(hu);
* if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) {
* hci_proto_read_unlock(hu);
* BT_ERR("rtl send: proto not ready");
* return -EUNATCH;
* }
* hu->proto->enqueue(hu, skb);
* hci_proto_read_unlock(hu);
* hci_uart_tx_wakeup(hu);
*/
return 0;
}
static int rtl_read_local_version(struct hci_dev *hdev, u8 *hci_ver,
u16 *hci_rev, u16 *lmp_subver)
{
struct hci_rsp_read_local *ver;
struct sk_buff *skb;
skb = __hci_cmd_sync(hdev, 0x1001, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
BT_ERR("rtl: Could not read lmp subversion");
return PTR_ERR(skb);
}
if (skb->len != sizeof(struct hci_rsp_read_local)) {
BT_ERR("%s: rtl: Local version length mismatch", hdev->name);
kfree_skb(skb);
return -EIO;
}
ver = (struct hci_rsp_read_local *)skb->data;
*hci_ver = ver->hci_ver;
*hci_rev = le16_to_cpu(ver->hci_rev);
*lmp_subver = le16_to_cpu(ver->lmp_subver);
kfree_skb(skb);
return 0;
}
#if RTKBT_TV_POWERON_WHITELIST
static int rtkbt_lookup_le_device_poweron_whitelist(struct hci_uart *hu)
{
struct hci_conn_params *p;
u8 *params;
int result = 0;
hci_dev_lock(hu->hdev);
list_for_each_entry(p, &hu->hdev->le_conn_params, list) {
#if 0 // for debug message
BT_INFO("%s(): auto_connect = %d", __FUNCTION__, p->auto_connect);
BT_INFO("%s(): addr_type = 0x%02x", __FUNCTION__, p->addr_type);
BT_INFO("%s(): addr=%02x:%02x:%02x:%02x:%02x:%02x", __FUNCTION__,
p->addr.b[5], p->addr.b[4], p->addr.b[3],
p->addr.b[2], p->addr.b[1], p->addr.b[0]);
#endif
if ( p->auto_connect == HCI_AUTO_CONN_ALWAYS &&
p->addr_type == ADDR_LE_DEV_PUBLIC ) {
BT_INFO("%s(): Set RTKBT LE Power-on Whitelist for "
"%02x:%02x:%02x:%02x:%02x:%02x", __FUNCTION__,
p->addr.b[5], p->addr.b[4], p->addr.b[3],
p->addr.b[2], p->addr.b[1], p->addr.b[0]);
params = kzalloc(8, GFP_ATOMIC);
if (!params) {
BT_ERR("Can't allocate memory for params");
return -ENOMEM;
}
params[0] = 0x00;
params[1] = p->addr.b[0];
params[2] = p->addr.b[1];
params[3] = p->addr.b[2];
params[4] = p->addr.b[3];
params[5] = p->addr.b[4];
params[6] = p->addr.b[5];
result = hci_uart_async_send(hu, 0xfc7b, 7, params);
if (result)
BT_ERR("rtl: Command failed for power-on whitelist");
msleep(500);
kfree(params);
}
}
hci_dev_unlock(hu->hdev);
return result;
}
#endif
#if RTKBT_TV_POWERON_DATA_FILTER
static int rtkbt_set_le_device_poweron_data_filter(struct hci_uart *hu)
{
/* Set data filter on Manufacturer field of Advertising data */
/* Manufacturer | ID | Additional data*/
/* Technicolor | 0x02af | 0x57, 0x41, 0x4b, 0x45, 0x55, 0x50 */
u8 params[8] = { 0xaf, 0x02, // Manufacturer ID
0x57, 0x41, 0x4b, 0x45, 0x55, 0x50 }; // Additional data
int result = 0;
result = hci_uart_async_send(hu, 0xfc7f, 8, params);
if (result)
BT_ERR("rtl: Command failed for set data filter");
return result;
}
#endif
static int rtkbt_simulate_disconnect_event(struct hci_uart *hu)
{
struct hci_conn *conn;
struct sk_buff *rx_skb;
u8 event_params[6] = { 0x05, 0x04, 0x00, 0x10, 0x00, 0x13 };
int result = 0;
hci_dev_lock(hu->hdev);
conn = hci_conn_hash_lookup_state(hu->hdev, LE_LINK, BT_CONNECTED);
if (conn && (conn->state == BT_CONNECTED)){
rx_skb = alloc_skb(6, GFP_ATOMIC);
if (!rx_skb)
return -1;
event_params[3] = (u8)(conn->handle);
event_params[4] = (u8)(conn->handle >> 8);
hci_skb_pkt_type(rx_skb) = HCI_EVENT_PKT;
skb_put_data(rx_skb, event_params, 6);
BT_INFO("Send Disconnect Complete EVENT to upper stack");
hci_recv_frame(hu->hdev, rx_skb);
}
hci_dev_unlock(hu->hdev);
msleep(1000);
return result;
}
static int rtkbt_notify_suspend(struct hci_uart *hu)
{
u8 params_suspend_notify[1] = { 0x01 };
int result = 0;
result = hci_uart_async_send(hu, 0xfc28, 1, params_suspend_notify);
if (result)
BT_ERR("Realtek suspend h5-bt failed");
msleep(500);
return result;
}
static void le_scan_disable(struct hci_uart *hu)
{
#if HCI_VERSION_CODE >= KERNEL_VERSION(4, 19, 0)
if (use_ext_scan(hu->hdev)) {
u8 ext_enable_cp[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
hci_uart_async_send(hu, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 6, ext_enable_cp);
} else {
u8 enable_cp[2] = {0x00, 0x00};
hci_uart_async_send(hu, HCI_OP_LE_SET_SCAN_ENABLE, 2, enable_cp);
}
#else
u8 enable_cp[2] = {0x00, 0x00};
hci_uart_async_send(hu, HCI_OP_LE_SET_SCAN_ENABLE, 2, enable_cp);
#endif
return;
}
static void le_scan_restart(struct hci_uart *hu)
{
int result;
#if HCI_VERSION_CODE >= KERNEL_VERSION(4, 19, 0)
if (use_ext_scan(hu->hdev)) {
u8 ext_enable_cp[6] = { 0x01, 0x01, 0x00, 0x00, 0x00, 0x00};
BT_INFO("LE Extended Scan Restart...");
le_scan_disable(hu);
result = hci_uart_async_send(hu, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 6, ext_enable_cp);
if (result)
BT_ERR("LE Extended Scan Restart: Failed");
} else {
u8 enable_cp[2] = {0x01, 0x01};
BT_INFO("LE Scan Restart...");
le_scan_disable(hu);
result = hci_uart_async_send(hu, HCI_OP_LE_SET_SCAN_ENABLE, 2, enable_cp);
if (result)
BT_ERR("LE Scan Restart: Failed");
}
#else
u8 enable_cp[2] = {0x01, 0x01};
BT_INFO("LE Scan Restart");
le_scan_disable(hu);
result = hci_uart_async_send(hu, HCI_OP_LE_SET_SCAN_ENABLE, 2, enable_cp);
if (result)
BT_ERR("LE Scan Restart: Failed");
#endif
return;
}
static bool le_aoto_conn_always_exist(struct hci_uart *hu)
{
struct hci_conn_params *p;
bool ret = false;
hci_dev_lock(hu->hdev);
list_for_each_entry(p, &hu->hdev->le_conn_params, list) {
if ( p->auto_connect == HCI_AUTO_CONN_ALWAYS &&
p->addr_type == ADDR_LE_DEV_PUBLIC ) {
ret = true;
}
}
hci_dev_unlock(hu->hdev);
return ret;
}
static int hci_uart_pm_notifier(struct notifier_block *b, unsigned long v, void *d)
{
int result;
struct hci_uart *hu = container_of(b, struct hci_uart, pm_notify_block);
u8 hci_ver = 0;
u16 hci_rev = 0;
u16 lmp_subver = 0;
#if WOBT_NOTIFY_BG_SCAN_LE_WHITELIST_ONLY
u8 params_bg_scan[5] = { 0x60, 0x01, 0x10, 0x00, 0x01 };
#endif
BT_INFO("%s: %lu", __func__, v);
switch (v) {
case PM_SUSPEND_PREPARE:
BT_INFO("rtl: bt suspending");
#if WOBT_NOTIFY_BG_SCAN_LE_WHITELIST_ONLY
/* Send set back ground scan parameters to Controller for power-on mode */
result = hci_uart_async_send(hu, 0xfc7a, 5, params_bg_scan);
if (result)
BT_ERR("Realtek bg-scan h5-bt failed");
/* FIXME: Ensure the above vendor command is sent to Controller
* and we received the h5 ack from Controller
* */
msleep(500);
#endif
#if RTKBT_TV_POWERON_WHITELIST
result = rtkbt_lookup_le_device_poweron_whitelist(hu);
if (result < 0) {
BT_ERR("rtkbt_lookup_le_device_poweron_whitelist error: %d", result);
}
#endif
#if RTKBT_TV_POWERON_DATA_FILTER
result = rtkbt_set_le_device_poweron_data_filter(hu);
if (result < 0) {
BT_ERR("rtkbt_set_le_device_poweron_data_filter error: %d", result);
}
#endif
#ifndef RTKBT_POWERKEY_WAKEUP
/*for any key wakeup, don't need to send 0xfc28 */
break;
#endif
result = rtkbt_notify_suspend(hu);
if (result < 0) {
BT_ERR("rtkbt_notify_suspend error: %d", result);
}
break;
case PM_POST_SUSPEND:
result = rtl_read_local_version(hu->hdev, &hci_ver, &hci_rev,
&lmp_subver);
if (result)
break;
BT_INFO("rtl resume: hci ver %u, hci rev %04x, lmp subver %04x",
hci_ver, hci_rev, lmp_subver);
#ifndef RTKBT_POWERKEY_WAKEUP
/*for any key wakeup, keep connections for key event report */
break;
#endif
result = rtkbt_simulate_disconnect_event(hu);
if (result < 0)
BT_ERR("rtkbt_simulate_disconnect_event error: %d", result);
if (le_aoto_conn_always_exist(hu))
le_scan_restart(hu);
break;
default:
BT_INFO("Caught msg %lu other than SUSPEND_PREPARE", v);
break;
}
return 0;
}
int rtkbt_shutdown_notify(struct notifier_block *notifier,
ulong pm_event, void *unused)
{
int result;
struct hci_uart *hu = container_of(notifier, struct hci_uart, shutdown_notifier);
BT_INFO("%s: pm_event %ld", __func__, pm_event);
switch (pm_event) {
case SYS_POWER_OFF:
case SYS_RESTART:
result = rtkbt_notify_suspend(hu);
if (result < 0) {
BT_ERR("rtkbt_notify_suspend error: %d", result);
}
break;
default:
break;
}
return NOTIFY_DONE;
}
#endif
/* ------ LDISC part ------ */
/* hci_uart_tty_open
*
* Called when line discipline changed to HCI_UART.
*
* Arguments:
* tty pointer to tty info structure
* Return Value:
* 0 if success, otherwise error code
*/
static int hci_uart_tty_open(struct tty_struct *tty)
{
struct hci_uart *hu = (void *)tty->disc_data;
BT_DBG("tty %p", tty);
/* But nothing ensures disc_data to be NULL. And since ld->ops->open
* shall be called only once, we do not need the check at all.
* So remove it.
*
* Note that this is not an issue now, but n_tty will start using the
* disc_data pointer and this invalid 'if' would trigger then rendering
* TTYs over BT unusable.
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0)
/* FIXME: This btw is bogus, nothing requires the old ldisc to clear
* the pointer
*/
if (hu)
return -EEXIST;
#endif
/* Error if the tty has no write op instead of leaving an exploitable
* hole
*/
if (tty->ops->write == NULL)
return -EOPNOTSUPP;
if (!(hu = kzalloc(sizeof(struct hci_uart), GFP_KERNEL))) {
BT_ERR("Can't allocate control structure");
return -ENFILE;
}
tty->disc_data = hu;
hu->tty = tty;
tty->receive_room = 65536;
INIT_WORK(&hu->write_work, hci_uart_write_work);
hci_proto_init_rwlock(hu);
sema_init(&hu->tx_sem, 1);
/* Flush any pending characters in the driver and line discipline. */
/* FIXME: why is this needed. Note don't use ldisc_ref here as the
open path is before the ldisc is referencable */
if (tty->ldisc->ops->flush_buffer)
tty->ldisc->ops->flush_buffer(tty);
tty_driver_flush_buffer(tty);
#if WOBT_NOTIFY
hu->pm_notify_block.notifier_call = hci_uart_pm_notifier;
register_pm_notifier(&hu->pm_notify_block);
/* Register POWER-OFF notifier */
BT_INFO("%s, register power off", __func__);
hu->shutdown_notifier.notifier_call = rtkbt_shutdown_notify;
register_reboot_notifier(&hu->shutdown_notifier);
#endif
return 0;
}
/* hci_uart_tty_close()
*
* Called when the line discipline is changed to something
* else, the tty is closed, or the tty detects a hangup.
*/
static void hci_uart_tty_close(struct tty_struct *tty)
{
struct hci_uart *hu = (void *)tty->disc_data;
struct hci_dev *hdev;
BT_INFO("%s: tty %p", __func__, tty);
/* Detach from the tty */
tty->disc_data = NULL;
if (!hu)
return;
hdev = hu->hdev;
if (hdev)
hci_uart_close(hdev);
if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) {
hci_proto_write_lock(hu);
clear_bit(HCI_UART_PROTO_READY, &hu->flags);
hci_proto_write_unlock(hu);
cancel_work_sync(&hu->write_work);
if (hdev) {
if (test_bit(HCI_UART_REGISTERED, &hu->flags))
hci_unregister_dev(hdev);
hci_free_dev(hdev);
}
hu->proto->close(hu);
}
clear_bit(HCI_UART_PROTO_SET, &hu->flags);
hci_proto_free_rwlock(hu);
#if WOBT_NOTIFY
unregister_pm_notifier(&hu->pm_notify_block);
unregister_reboot_notifier(&hu->shutdown_notifier);
#endif
kfree(hu);
}
/* hci_uart_tty_wakeup()
*
* Callback for transmit wakeup. Called when low level
* device driver can accept more send data.
*
* Arguments: tty pointer to associated tty instance data
* Return Value: None
*/
static void hci_uart_tty_wakeup(struct tty_struct *tty)
{
struct hci_uart *hu = (void *)tty->disc_data;
BT_DBG("");
if (!hu)
return;
clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
if (tty != hu->tty)
return;
if (test_bit(HCI_UART_PROTO_READY, &hu->flags))
hci_uart_tx_wakeup(hu);
}
/* hci_uart_tty_receive()
*
* Called by tty low level driver when receive data is
* available.
*
* Arguments: tty pointer to tty isntance data
* data pointer to received data
* flags pointer to flags for data
* count count of received data in bytes
*
* Return Value: None
*/
static void hci_uart_tty_receive(struct tty_struct *tty, const u8 * data,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 14, 0)
const char *flags, int count)
#else
char *flags, int count)
#endif
{
struct hci_uart *hu = (void *)tty->disc_data;
int (*proto_receive)(struct hci_uart *hu, void *data, int len);
if (!hu || tty != hu->tty)
return;
hci_proto_read_lock(hu);
if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) {
hci_proto_read_unlock(hu);
return;
}
proto_receive = hu->proto->recv;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 0, 0)
proto_receive(hu, (void *)data, count);
hci_proto_read_unlock(hu);
#else
hci_proto_read_unlock(hu);
/* It does not need a lock here as it is already protected by a mutex in
* tty caller
*/
proto_receive(hu, (void *)data, count);
#endif
if (hu->hdev)
hu->hdev->stat.byte_rx += count;
tty_unthrottle(tty);
}
static int hci_uart_register_dev(struct hci_uart *hu)
{
struct hci_dev *hdev;
BT_INFO("hci_uart_register_dev");
/* Initialize and register HCI device */
hdev = hci_alloc_dev();
if (!hdev) {
BT_ERR("Can't allocate HCI device");
return -ENOMEM;
}
hu->hdev = hdev;
#if HCI_VERSION_CODE > KERNEL_VERSION(2, 6, 33)
hdev->bus = HCI_UART;
#else
hdev->type = HCI_UART;
#endif
#if HCI_VERSION_CODE >= KERNEL_VERSION(3, 4, 0)
hci_set_drvdata(hdev, hu);
#else
hdev->driver_data = hu;
#endif
hdev->open = hci_uart_open;
hdev->close = hci_uart_close;
hdev->flush = hci_uart_flush;
hdev->send = hci_uart_send_frame;
/* NOTE: No hdev->setup setting for Realtek BTUART because
* the download procedure is done with rtk_hciattach in userspace
* before this function called in hci_uart_set_proto()
*/
SET_HCIDEV_DEV(hdev, hu->tty->dev);
#if HCI_VERSION_CODE < KERNEL_VERSION(3, 4, 0)
hdev->destruct = hci_uart_destruct;
hdev->owner = THIS_MODULE;
#endif
#if HCI_VERSION_CODE < KERNEL_VERSION(3, 4, 0)
if (!reset)
set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks);
#endif
#if HCI_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)
if (test_bit(HCI_UART_RAW_DEVICE, &hu->hdev_flags))
set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
#endif
#if HCI_VERSION_CODE >= KERNEL_VERSION(3, 17, 0)
if (test_bit(HCI_UART_EXT_CONFIG, &hu->hdev_flags))
set_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks);
#endif
#if HCI_VERSION_CODE >= KERNEL_VERSION(3, 4, 0)
if (!test_bit(HCI_UART_RESET_ON_INIT, &hu->hdev_flags))
#if HCI_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)
set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
#else
set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks);
#endif
#endif
#if HCI_VERSION_CODE >= KERNEL_VERSION(3, 4, 0)
if (test_bit(HCI_UART_CREATE_AMP, &hu->hdev_flags))
hdev->dev_type = HCI_AMP;
else
#if HCI_VERSION_CODE < KERNEL_VERSION(4, 8, 0)
hdev->dev_type = HCI_BREDR;
#else
hdev->dev_type = HCI_PRIMARY;
#endif
#endif
#if HCI_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
#endif
#if HCI_VERSION_CODE >= KERNEL_VERSION(5, 10, 21)
#if WOBT_NOTIFY
set_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks);
#endif
#endif
if (hci_register_dev(hdev) < 0) {
BT_ERR("Can't register HCI device");
hci_free_dev(hdev);
return -ENODEV;
}
set_bit(HCI_UART_REGISTERED, &hu->flags);
#ifdef BTCOEX
rtk_btcoex_probe(hdev);
#endif
return 0;
}
static int hci_uart_set_proto(struct hci_uart *hu, int id)
{
struct hci_uart_proto *p;
int err;
p = hci_uart_get_proto(id);
if (!p)
return -EPROTONOSUPPORT;
err = p->open(hu);
if (err)
return err;
hu->proto = p;
set_bit(HCI_UART_PROTO_READY, &hu->flags);
/* Initialize and register HCI dev */
err = hci_uart_register_dev(hu);
if (err) {
clear_bit(HCI_UART_PROTO_READY, &hu->flags);
p->close(hu);
return err;
}
return 0;
}
#if HCI_VERSION_CODE >= KERNEL_VERSION(3, 17, 0)
static int hci_uart_set_flags(struct hci_uart *hu, unsigned long flags)
{
/* TODO: Add HCI_UART_INIT_PENDING, HCI_UART_VND_DETECT check */
unsigned long valid_flags = BIT(HCI_UART_RAW_DEVICE) |
BIT(HCI_UART_RESET_ON_INIT) |
BIT(HCI_UART_CREATE_AMP) |
BIT(HCI_UART_EXT_CONFIG);
if (flags & ~valid_flags)
return -EINVAL;
hu->hdev_flags = flags;
return 0;
}
#endif
/* hci_uart_tty_ioctl()
*
* Process IOCTL system call for the tty device.
*
* Arguments:
*
* tty pointer to tty instance data
* file pointer to open file object for device
* cmd IOCTL command code
* arg argument for IOCTL call (cmd dependent)
*
* Return Value: Command dependent
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0)
static int hci_uart_tty_ioctl(struct tty_struct *tty, unsigned int cmd,
unsigned long arg)
#else
static int hci_uart_tty_ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg)
#endif
{
struct hci_uart *hu = (void *)tty->disc_data;
int err = 0;
BT_DBG("");
/* Verify the status of the device */
if (!hu)
return -EBADF;
switch (cmd) {
case HCIUARTSETPROTO:
if (!test_and_set_bit(HCI_UART_PROTO_SET, &hu->flags)) {
err = hci_uart_set_proto(hu, arg);
if (err)
clear_bit(HCI_UART_PROTO_SET, &hu->flags);
} else
err = -EBUSY;
break;
case HCIUARTGETPROTO:
if (test_bit(HCI_UART_PROTO_SET, &hu->flags))
err = hu->proto->id;
else
err = -EUNATCH;
break;
case HCIUARTGETDEVICE:
if (test_bit(HCI_UART_REGISTERED, &hu->flags))
err = hu->hdev->id;
else
err = -EUNATCH;
break;
case HCIUARTSETFLAGS:
if (test_bit(HCI_UART_PROTO_SET, &hu->flags))
err = -EBUSY;
else
#if HCI_VERSION_CODE >= KERNEL_VERSION(3, 17, 0)
err = hci_uart_set_flags(hu, arg);
#else
hu->hdev_flags = arg;
#endif
break;
case HCIUARTGETFLAGS:
err = hu->hdev_flags;
break;
default:
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 16, 0)
err = n_tty_ioctl_helper(tty, cmd, arg);
#else
err = n_tty_ioctl_helper(tty, file, cmd, arg);
#endif
break;
};
return err;
}
/*
* We don't provide read/write/poll interface for user space.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 20) && \
((LINUX_VERSION_CODE < KERNEL_VERSION(5, 11, 0)) || \
(LINUX_VERSION_CODE >= KERNEL_VERSION(5, 11, 3)))
static ssize_t hci_uart_tty_read(struct tty_struct *tty, struct file *file,
unsigned char *buf, size_t nr,
void **cookie, unsigned long offset)
#else
static ssize_t hci_uart_tty_read(struct tty_struct *tty, struct file *file,
unsigned char __user * buf, size_t nr)
#endif
{
return 0;
}
static ssize_t hci_uart_tty_write(struct tty_struct *tty, struct file *file,
const unsigned char *data, size_t count)
{
return 0;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 16, 0)
static __poll_t hci_uart_tty_poll(struct tty_struct *tty,
struct file *filp, poll_table * wait)
#else
static unsigned int hci_uart_tty_poll(struct tty_struct *tty,
struct file *filp, poll_table * wait)
#endif
{
return 0;
}
static struct tty_ldisc_ops hci_uart_ldisc = {
.owner = THIS_MODULE,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 14, 0)
.num = N_HCI,
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0)
.magic = TTY_LDISC_MAGIC,
#endif
.name = "n_hci",
.open = hci_uart_tty_open,
.close = hci_uart_tty_close,
.read = hci_uart_tty_read,
.write = hci_uart_tty_write,
.ioctl = hci_uart_tty_ioctl,
#if HCI_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
.compat_ioctl = hci_uart_tty_ioctl,
#endif
.poll = hci_uart_tty_poll,
.receive_buf = hci_uart_tty_receive,
.write_wakeup = hci_uart_tty_wakeup,
};
static int __init hci_uart_init(void)
{
int err;
BT_INFO("HCI UART driver ver %s", VERSION);
/* Register the tty discipline */
#if HCI_VERSION_CODE >= KERNEL_VERSION(5, 14, 0)
if ((err = tty_register_ldisc(&hci_uart_ldisc))) {
#else
if ((err = tty_register_ldisc(N_HCI, &hci_uart_ldisc))) {
#endif
BT_ERR("HCI line discipline registration failed. (%d)", err);
return err;
}
#ifdef CONFIG_BT_HCIUART_H4
h4_init();
#endif
/* Add realtek h5 support */
h5_init();
#ifdef BTCOEX
rtk_btcoex_init();
#endif
return 0;
}
static void __exit hci_uart_exit(void)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 14, 0)
int err;
#endif
#ifdef CONFIG_BT_HCIUART_H4
h4_deinit();
#endif
h5_deinit();
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 14, 0)
tty_unregister_ldisc(&hci_uart_ldisc);
#else
/* Release tty registration of line discipline */
if ((err = tty_unregister_ldisc(N_HCI)))
BT_ERR("Can't unregister HCI line discipline (%d)", err);
#endif
#ifdef BTCOEX
rtk_btcoex_exit();
#endif
}
module_init(hci_uart_init);
module_exit(hci_uart_exit);
#if HCI_VERSION_CODE < KERNEL_VERSION(3, 4, 0)
module_param(reset, bool, 0644);
MODULE_PARM_DESC(reset, "Send HCI reset command on initialization");
#endif
MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
MODULE_DESCRIPTION("Bluetooth HCI UART driver ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
MODULE_ALIAS_LDISC(N_HCI);