nt9856x/BSP/u-boot/drivers/usb/gadget/nvt_udc.c
2023-03-28 15:07:53 +08:00

2515 lines
61 KiB
C
Executable File

/*
* Novatek USB 2.0 OTG Controller
*
* (C) Copyright 2019 Novatek Microelectronics Corp.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <config.h>
#include <net.h>
#include <malloc.h>
#include <asm/io.h>
#include <linux/types.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <usb/nvt_udc.h>
#include <asm/arch/IOAddress.h>
#include <asm/arch/hardware.h>
#define CFG_NUM_ENDPOINTS 4
#define CFG_EP0_MAX_PACKET_SIZE 64
#define CFG_EPX_MAX_PACKET_SIZE 512
#define CFG_CMD_TIMEOUT (CONFIG_SYS_HZ >> 2) /* 250 ms */
struct nvt_udc_chip;
struct nvt_udc_ep {
struct usb_ep ep;
uint maxpacket;
uint id;
uint stopped;
struct list_head queue;
struct nvt_udc_chip *chip;
const struct usb_endpoint_descriptor *desc;
};
struct nvt_udc_request {
struct usb_request req;
struct list_head queue;
struct nvt_udc_ep *ep;
};
struct nvt_udc_chip {
struct usb_gadget gadget;
struct usb_gadget_driver *driver;
struct nvt_udc_regs *regs;
struct nvt_udc_ext_regs *ext_regs;
uint8_t irq;
uint16_t addr;
int pullup;
enum usb_device_state state;
struct nvt_udc_ep ep[1 + CFG_NUM_ENDPOINTS];
};
static struct usb_endpoint_descriptor ep0_desc = {
.bLength = sizeof(struct usb_endpoint_descriptor),
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
};
#define U2PHY_SETREG(ofs,value) writel((value), (volatile void __iomem *)(IOADDR_USB_REG_BASE + 0x1000 + ((ofs)<<2)))
#define U2PHY_GETREG(ofs) readl((volatile void __iomem *)(IOADDR_USB_REG_BASE + 0x1000 + ((ofs)<<2)))
static void nvtim_init_usbhc(void)
{
u32 usbbase;
u32 tmpval = 0;
/* Disable Reset*/
tmpval = readl((volatile unsigned long *)(IOADDR_CG_REG_BASE+0x84));
tmpval |= 0x1<<19;
writel(tmpval, (volatile unsigned long *)(IOADDR_CG_REG_BASE+0x84));
/* Release sram shutdown*/
tmpval = readl((volatile unsigned long *)(IOADDR_TOP_REG_BASE+0x1000));
tmpval &= ~(0x1<<19);
writel(tmpval, (volatile unsigned long *)(IOADDR_TOP_REG_BASE+0x1000));
mdelay(10);
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055)
usbbase = IOADDR_USB_REG_BASE;
else
usbbase = IOADDR_USB528_REG_BASE;
/* Set USB ID & VBUSI */
if (nvt_get_chip_id() == CHIP_NA51055)
writel((u32)0x3, (volatile unsigned long *)(usbbase+0x310));
else {
tmpval = readl((volatile unsigned long *)(usbbase+0x400));
tmpval |= 0x3 << 20;
writel(tmpval, (volatile unsigned long *)(usbbase+0x400));
}
#else
usbbase = IOADDR_USB528_REG_BASE;
/* Set USB ID & VBUSI */
tmpval = readl((volatile unsigned long *)(usbbase+0x400));
tmpval |= 0x3 << 20;
writel(tmpval, (volatile unsigned long *)(usbbase+0x400));
#endif
/* Clear FORCE_FS[9] and handle HALF_SPEED[1] */
tmpval = readl((volatile unsigned long *)(usbbase+0x100));
tmpval &= ~(0x1<<9);
//#ifdef CONFIG_FPGA_EMULATION
//tmpval |= (0x1<<1);
//#endif
writel(tmpval, (volatile unsigned long *)(usbbase+0x100));
/* Clear DEVPHY_SUSPEND[5] */
tmpval = readl((volatile unsigned long *)(usbbase+0x1C8));
tmpval &= ~(0x1<<5);
writel(tmpval, (volatile unsigned long *)(usbbase+0x1C8));
/* Clear HOSTPHY_SUSPEND[6] */
tmpval = readl((volatile unsigned long *)(usbbase+0x40));
tmpval &= ~(0x1<<6);
writel(tmpval, (volatile unsigned long *)(usbbase+0x40));
/* USB_ACCESS_SELECT[2] to 0 (DRAM only) */
tmpval = readl((volatile unsigned long *)(usbbase+0x1C4));
tmpval &= ~(0x1<<2);
writel(tmpval, (volatile unsigned long *)(usbbase+0x1C4));
/* Host EOF_BEHAVE[31] = 0 */
tmpval = readl((volatile unsigned long *)(usbbase+0x80));
tmpval &= ~(0x1<<31);
writel(tmpval, (volatile unsigned long *)(usbbase+0x80));
/* Clear EOF1=3[3:2] EOF2[5:4]=0 */
tmpval = readl((volatile unsigned long *)(usbbase+0x40));
tmpval &= ~(0x3<<4);
tmpval |= (0x3<<2);
tmpval &= ~(0x3F<<8);
tmpval |= (0x22<<8);
writel(tmpval, (volatile unsigned long *)(usbbase+0x40));
/* A_BUS_DROP[5] = 0 */
tmpval = readl((volatile unsigned long *)(usbbase+0x80));
tmpval &= ~(0x1<<5);
writel(tmpval, (volatile unsigned long *)(usbbase+0x80));
mdelay(2);
/* A_BUS_REQ[4] = 1 */
tmpval = readl((volatile unsigned long *)(usbbase+0x80));
tmpval |= (0x1<<4);
writel(tmpval, (volatile unsigned long *)(usbbase+0x80));
/* Configure PHY related settings below */
{
//u16 data=0;
//INT32 result;
u32 temp;
u8 u2_trim_swctrl=4, u2_trim_sqsel=4;
// result= efuse_read_param_ops(EFUSE_USBC_TRIM_DATA, &data);
// if(result >= 0) {
// u2_trim_swctrl = data&0x7;
// u2_trim_sqsel = (data>>3)&0x7;
// }
temp = U2PHY_GETREG(0x06);
temp &= ~(0x7<<1);
temp |= (u2_trim_swctrl<<1);
U2PHY_SETREG(0x06, temp);
temp = U2PHY_GETREG(0x05);
temp &= ~(0x7<<2);
temp |= (u2_trim_sqsel<<2);
U2PHY_SETREG(0x05, temp);
}
}
static inline int fifo_to_ep(struct nvt_udc_chip *chip, int id, int in)
{
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055)
return (id < 0) ? 0 : ((id & 0x07) + 1);
else
return (id < 0) ? 0 : ((id & 0x03) + 1);
#else
return (id < 0) ? 0 : ((id & 0x03) + 1);
#endif
}
static inline int ep_to_fifo(struct nvt_udc_chip *chip, int id)
{
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055)
return (id <= 0) ? -1 : ((id - 1) & 0x07);
else
return (id <= 0) ? -1 : ((id - 1) & 0x03);
#else
if ( id == 0 )
return DMAFIFO_CX_NO;
else
return (id < 0) ? -1 : ((id - 1) & 0x03);
#endif
}
static inline int ep_reset(struct nvt_udc_chip *chip, uint8_t ep_addr)
{
int ep = ep_addr & USB_ENDPOINT_NUMBER_MASK;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
/* reset endpoint */
setbits_le32(&regs->ep[ep - 1], EP_RESET);
mdelay(1);
clrbits_le32(&regs->ep[ep - 1], EP_RESET);
/* clear endpoint stall */
clrbits_le32(&regs->ep[ep - 1], EP_STALL);
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
if (ep_addr & USB_DIR_IN) {
/* reset endpoint */
setbits_le32(&regs->iep[ep - 1], IEP_RESET);
mdelay(1);
clrbits_le32(&regs->iep[ep - 1], IEP_RESET);
/* clear endpoint stall */
clrbits_le32(&regs->iep[ep - 1], IEP_STALL);
} else {
/* reset endpoint */
setbits_le32(&regs->oep[ep - 1], OEP_RESET);
mdelay(1);
clrbits_le32(&regs->oep[ep - 1], OEP_RESET);
/* clear endpoint stall */
clrbits_le32(&regs->oep[ep - 1], OEP_STALL);
}
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
if (ep_addr & USB_DIR_IN) {
/* reset endpoint */
setbits_le32(&regs->iep[ep - 1], IEP_RESET);
mdelay(1);
clrbits_le32(&regs->iep[ep - 1], IEP_RESET);
/* clear endpoint stall */
clrbits_le32(&regs->iep[ep - 1], IEP_STALL);
} else {
/* reset endpoint */
setbits_le32(&regs->oep[ep - 1], OEP_RESET);
mdelay(1);
clrbits_le32(&regs->oep[ep - 1], OEP_RESET);
/* clear endpoint stall */
clrbits_le32(&regs->oep[ep - 1], OEP_STALL);
}
#endif
return 0;
}
static int nvt_udc_reset(struct nvt_udc_chip *chip)
{
uint32_t i;
nvtim_init_usbhc();
chip->state = USB_STATE_POWERED;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
/* chip enable */
writel(DEVCTRL_EN, &regs->dev_ctrl);
/* device address reset */
chip->addr = 0;
writel(0, &regs->dev_addr);
/* set idle counter to 7ms */
writel(7, &regs->idle);
/* disable all interrupts */
writel(IMR_MASK, &regs->imr);
writel(GIMR_MASK, &regs->gimr);
writel(GIMR0_MASK, &regs->gimr0);
writel(GIMR1_MASK, &regs->gimr1);
writel(GIMR2_MASK, &regs->gimr2);
/* clear interrupts */
writel(ISR_MASK, &regs->isr);
writel(0xFFFFFFFF, &regs->gisr);
writel(0xFFFFFFFF, &regs->gisr0);
writel(0xFFFFFFFF, &regs->gisr1);
writel(0xFFFFFFFF, &regs->gisr2);
/* chip reset */
setbits_le32(&regs->dev_ctrl, DEVCTRL_RESET);
mdelay(10);
if (readl(&regs->dev_ctrl) & DEVCTRL_RESET) {
printf("nvt_udc: chip reset failed\n");
return -1;
}
/* CX FIFO reset */
setbits_le32(&regs->cxfifo, CXFIFO_CXFIFOCLR);
mdelay(10);
if (readl(&regs->cxfifo) & CXFIFO_CXFIFOCLR) {
printf("nvt_udc: ep0 fifo reset failed\n");
return -1;
}
/* create static ep-fifo map (EP1 <-> FIFO0, EP2 <-> FIFO1 ...) */
for (i = 0; i < 15; ++i) {
writel(0, &regs->ep[i]);
writel(CFG_EPX_MAX_PACKET_SIZE, &regs->ep[i]);
//writel((i << 24) | (i << 28), &regs->ep[i]);
}
/* FIFO reset */
for (i = 0; i < 4; ++i) {
writel(FIFOCSR_RESET, &regs->fifocsr[i]);
mdelay(10);
if (readl(&regs->fifocsr[i]) & FIFOCSR_RESET) {
printf("nvt_udc: fifo%d reset failed\n", i);
return -1;
}
}
/* enable only device interrupt and triggered at level-high */
writel(IMR_HOST | IMR_OTG, &regs->imr);
writel(ISR_MASK, &regs->isr);
/* disable EP0 IN/OUT interrupt */
writel(GIMR0_CXOUT | GIMR0_CXIN, &regs->gimr0);
/* disable EPX IN+SPK+OUT interrupts */
writel(GIMR1_MASK, &regs->gimr1);
/* disable wakeup+idle+dma+zlp interrupts */
writel(GIMR2_WAKEUP | GIMR2_IDLE \
| GIMR2_DMA5FIN | GIMR2_DMA4FIN | GIMR2_DMA3FIN \
| GIMR2_DMA2FIN | GIMR2_DMA1FIN | GIMR2_DMA0FIN \
| GIMR2_ZLPRX | GIMR2_ZLPTX, &regs->gimr2);
/* enable all group interrupt */
writel(0, &regs->gimr);
/* suspend delay = 3 ms */
writel(3, &regs->idle);
/* turn-on device interrupts */
setbits_le32(&regs->dev_ctrl, DEVCTRL_GIRQ_EN);
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
/* chip enable */
writel(DEVCTRL_EN, &regs->dev_ctrl);
/* device address reset */
chip->addr = 0;
writel(0, &regs->dev_addr);
/* set idle counter to 7ms */
writel(7, &regs->idle);
/* disable all interrupts */
writel(IMR_MASK, &regs->imr);
writel(GIMR_MASK, &regs->gimr);
writel(GIMR0_MASK, &regs->gimr0);
writel(GIMR1_EXT_MASK, &regs->gimr1);
writel(GIMR2_EXT_MASK, &regs->gimr2);
/* clear interrupts */
writel(ISR_MASK, &regs->isr);
writel(0xFFFFFFFF, &regs->gisr);
writel(0xFFFFFFFF, &regs->gisr0);
writel(0xFFFFFFFF, &regs->gisr1);
writel(0xFFFFFFFF, &regs->gisr2);
/* chip reset */
setbits_le32(&regs->dev_ctrl, DEVCTRL_RESET);
mdelay(10);
if (readl(&regs->dev_ctrl) & DEVCTRL_RESET) {
printf("nvt_udc: chip reset failed\n");
return -1;
}
/* CX FIFO reset */
setbits_le32(&regs->cxfifo, CXFIFO_CXFIFOCLR);
mdelay(10);
if (readl(&regs->cxfifo) & CXFIFO_CXFIFOCLR) {
printf("nvt_udc: ep0 fifo reset failed\n");
return -1;
}
/* create static ep-fifo map (EP1 <-> FIFO0, EP2 <-> FIFO1 ...) */
writel(EPMAP14_DEFAULT, &regs->epmap14);
writel(EPMAP58_DEFAULT, &regs->epmap58);
writel(FIFOMAP_DEFAULT, &regs->fifomap);
writel(0, &regs->fifocfg);
for (i = 0; i < 8; ++i) {
writel(CFG_EPX_MAX_PACKET_SIZE, &regs->iep[i]);
writel(CFG_EPX_MAX_PACKET_SIZE, &regs->oep[i]);
}
/* FIFO reset */
for (i = 0; i < 4; ++i) {
writel(FIFOCSR_EXT_RESET, &regs->fifocsr[i]);
mdelay(10);
if (readl(&regs->fifocsr[i]) & FIFOCSR_EXT_RESET) {
printf("nvt_udc: fifo%d reset failed\n", i);
return -1;
}
}
/* enable only device interrupt and triggered at level-high */
writel(IMR_IRQLH | IMR_HOST | IMR_OTG, &regs->imr);
writel(ISR_MASK, &regs->isr);
/* disable EP0 IN/OUT interrupt */
writel(GIMR0_CXOUT | GIMR0_CXIN, &regs->gimr0);
/* disable EPX IN+SPK+OUT interrupts */
writel(GIMR1_EXT_MASK, &regs->gimr1);
/* disable wakeup+idle+dma+zlp interrupts */
writel(GIMR2_EXT_WAKEUP | GIMR2_EXT_IDLE | GIMR2_EXT_DMAERR | GIMR2_EXT_DMAFIN
| GIMR2_ZLPRX | GIMR2_ZLPTX, &regs->gimr2);
/* enable all group interrupt */
writel(0, &regs->gimr);
/* suspend delay = 3 ms */
writel(3, &regs->idle);
/* turn-on device interrupts */
setbits_le32(&regs->dev_ctrl, DEVCTRL_GIRQ_EN);
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
/* chip enable */
writel(DEVCTRL_EN, &regs->dev_ctrl);
/* device address reset */
chip->addr = 0;
writel(0, &regs->dev_addr);
/* set idle counter to 7ms */
writel(7, &regs->idle);
/* disable all interrupts */
writel(IMR_MASK, &regs->imr);
writel(GIMR_MASK, &regs->gimr);
writel(GIMR0_MASK, &regs->gimr0);
writel(GIMR1_EXT_MASK, &regs->gimr1);
writel(GIMR2_EXT_MASK, &regs->gimr2);
/* clear interrupts */
writel(ISR_MASK, &regs->isr);
writel(0xFFFFFFFF, &regs->gisr);
writel(0xFFFFFFFF, &regs->gisr0);
writel(0xFFFFFFFF, &regs->gisr1);
writel(0xFFFFFFFF, &regs->gisr2);
/* chip reset */
setbits_le32(&regs->dev_ctrl, DEVCTRL_RESET);
mdelay(10);
if (readl(&regs->dev_ctrl) & DEVCTRL_RESET) {
printf("nvt_udc: chip reset failed\n");
return -1;
}
/* CX FIFO reset */
setbits_le32(&regs->cxfifo, CXFIFO_CXFIFOCLR);
mdelay(10);
if (readl(&regs->cxfifo) & CXFIFO_CXFIFOCLR) {
printf("nvt_udc: ep0 fifo reset failed\n");
return -1;
}
/* create static ep-fifo map (EP1 <-> FIFO0, EP2 <-> FIFO1 ...) */
writel(EPMAP14_DEFAULT, &regs->epmap14);
writel(EPMAP58_DEFAULT, &regs->epmap58);
writel(FIFOMAP_DEFAULT, &regs->fifomap);
writel(0, &regs->fifocfg);
for (i = 0; i < 8; ++i) {
writel(CFG_EPX_MAX_PACKET_SIZE, &regs->iep[i]);
writel(CFG_EPX_MAX_PACKET_SIZE, &regs->oep[i]);
}
/* FIFO reset */
for (i = 0; i < 4; ++i) {
writel(FIFOCSR_EXT_RESET, &regs->fifocsr[i]);
mdelay(10);
if (readl(&regs->fifocsr[i]) & FIFOCSR_EXT_RESET) {
printf("nvt_udc: fifo%d reset failed\n", i);
return -1;
}
}
/* enable only device interrupt and triggered at level-high */
writel(IMR_IRQLH | IMR_HOST | IMR_OTG, &regs->imr);
writel(ISR_MASK, &regs->isr);
/* disable EP0 IN/OUT interrupt */
writel(GIMR0_CXOUT | GIMR0_CXIN, &regs->gimr0);
/* disable EPX IN+SPK+OUT interrupts */
writel(GIMR1_EXT_MASK, &regs->gimr1);
/* disable wakeup+idle+dma+zlp interrupts */
writel(GIMR2_EXT_WAKEUP | GIMR2_EXT_IDLE | GIMR2_EXT_DMAERR | GIMR2_EXT_DMAFIN
| GIMR2_ZLPRX | GIMR2_ZLPTX, &regs->gimr2);
/* enable all group interrupt */
writel(0, &regs->gimr);
/* suspend delay = 3 ms */
writel(3, &regs->idle);
/* turn-on device interrupts */
setbits_le32(&regs->dev_ctrl, DEVCTRL_GIRQ_EN);
#endif
return 0;
}
static inline int nvt_udc_cxwait(struct nvt_udc_chip *chip, uint32_t mask)
{
int ret = -1;
ulong ts;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
if ((readl(&regs->cxfifo) & mask) != mask)
continue;
ret = 0;
break;
}
if (ret)
printf("nvt_udc: cx/ep0 timeout value 0x%x mask 0x%x\n", readl(&regs->cxfifo), mask);
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
if ((readl(&regs->cxfifo) & mask) != mask)
continue;
ret = 0;
break;
}
if (ret)
printf("nvt_udc: cx/ep0 timeout value 0x%x mask 0x%x\n", readl(&regs->cxfifo), mask);
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
if ((readl(&regs->cxfifo) & mask) != mask)
continue;
ret = 0;
break;
}
if (ret)
printf("nvt_udc: cx/ep0 timeout value 0x%x mask 0x%x\n", readl(&regs->cxfifo), mask);
#endif
return ret;
}
static int usb_cx_fifo_rdwr(struct nvt_udc_ep *ep, struct nvt_udc_regs *regs, struct nvt_udc_request *req)
{
struct nvt_udc_chip *chip = ep->chip;
uint8_t *buf = req->req.buf + req->req.actual;
uint32_t count = req->req.length - req->req.actual;
signed int i, ep0_dma_size, ep0_rx_size;
u32 *pbuf;
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
u32 reg;
ep0_dma_size = count;
if (ep0_dma_size > EP0_PACKET_SIZE) {
ep0_dma_size = EP0_PACKET_SIZE;
}
nvt_udc_cxwait(chip, CXFIFO_CXFIFOE);
// Enable DATAPORT
reg = readl(&regs->cxfifo);
reg = (reg & ~(0x7F<<16)) | (CXFIFO_DATA_EN | (ep0_dma_size << 16));
writel(reg, &regs->cxfifo);
pbuf = (u32 *)buf;
i = 0;
while (ep0_dma_size > 0) {
writel(pbuf[i++], &regs->ep0_data);
ep0_dma_size -= 4;
};
clrbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
req->req.status = 0;
if (count > EP0_PACKET_SIZE) {
req->req.actual += EP0_PACKET_SIZE;
return EP0_PACKET_SIZE;
} else {
req->req.actual += count;
return count;
}
} else {
ep0_dma_size = count;
ep0_rx_size = (readl(&regs->cxfifo) & 0x7F000000) >> 24;
// Make sure fifo got something to start read
if (count > EP0_PACKET_SIZE) {
while (ep0_rx_size != EP0_PACKET_SIZE) {
ep0_rx_size = (readl(&regs->cxfifo) & 0x7F000000) >> 24;
}
} else {
while (ep0_rx_size != count) {
ep0_rx_size = (readl(&regs->cxfifo) & 0x7F000000) >> 24;
}
}
// Enable DATAPORT
setbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
pbuf = (u32 *)buf;
i = 0;
while (ep0_rx_size > 0) {
u32 temp;
temp = readl(&regs->ep0_data);
ep0_rx_size -= 4;
if (ep0_dma_size >= 4) {
pbuf[i++] = temp;
ep0_dma_size -= 4;
} else if (ep0_dma_size == 1) {
pbuf[i] &= ~0xFF;
temp &= 0xFF;
pbuf[i] += temp;
ep0_dma_size = 0;
} else if (ep0_dma_size == 2) {
pbuf[i] &= ~0xFFFF;
temp &= 0xFFFF;
pbuf[i] += temp;
ep0_dma_size = 0;
} else if (ep0_dma_size == 3) {
pbuf[i] &= ~0xFFFFFF;
temp &= 0xFFFFFF;
pbuf[i] += temp;
ep0_dma_size = 0;
}
};
clrbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
req->req.status = 0;
req->req.actual += count - ep0_dma_size;
return count - ep0_dma_size;
}
}
static int usb_cx_fifo_rdwr_ext(struct nvt_udc_ep *ep, struct nvt_udc_ext_regs *regs, struct nvt_udc_request *req)
{
struct nvt_udc_chip *chip = ep->chip;
uint8_t *buf = req->req.buf + req->req.actual;
uint32_t count = req->req.length - req->req.actual;
signed int i, ep0_dma_size, ep0_rx_size;
u32 *pbuf;
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
u32 reg;
ep0_dma_size = count;
if (ep0_dma_size > EP0_PACKET_SIZE) {
ep0_dma_size = EP0_PACKET_SIZE;
}
nvt_udc_cxwait(chip, CXFIFO_CXFIFOE);
// Enable DATAPORT
reg = readl(&regs->cxfifo);
reg = (reg & ~(0x7F<<16)) | (CXFIFO_DATA_EN | (ep0_dma_size << 16));
writel(reg, &regs->cxfifo);
pbuf = (u32 *)buf;
i = 0;
while (ep0_dma_size > 0) {
writel(pbuf[i++], &regs->ep0_data);
ep0_dma_size -= 4;
};
clrbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
req->req.status = 0;
if (count > EP0_PACKET_SIZE) {
req->req.actual += EP0_PACKET_SIZE;
return EP0_PACKET_SIZE;
} else {
req->req.actual += count;
return count;
}
} else {
ep0_dma_size = count;
ep0_rx_size = (readl(&regs->cxfifo) & 0x7F000000) >> 24;
// Make sure fifo got something to start read
if (count > EP0_PACKET_SIZE) {
while (ep0_rx_size != EP0_PACKET_SIZE) {
ep0_rx_size = (readl(&regs->cxfifo) & 0x7F000000) >> 24;
}
} else {
while (ep0_rx_size != count) {
ep0_rx_size = (readl(&regs->cxfifo) & 0x7F000000) >> 24;
}
}
// Enable DATAPORT
setbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
pbuf = (u32 *)buf;
i = 0;
while (ep0_rx_size > 0) {
u32 temp;
temp = readl(&regs->ep0_data);
ep0_rx_size -= 4;
if (ep0_dma_size >= 4) {
pbuf[i++] = temp;
ep0_dma_size -= 4;
} else if (ep0_dma_size == 1) {
pbuf[i] &= ~0xFF;
temp &= 0xFF;
pbuf[i] += temp;
ep0_dma_size = 0;
} else if (ep0_dma_size == 2) {
pbuf[i] &= ~0xFFFF;
temp &= 0xFFFF;
pbuf[i] += temp;
ep0_dma_size = 0;
} else if (ep0_dma_size == 3) {
pbuf[i] &= ~0xFFFFFF;
temp &= 0xFFFFFF;
pbuf[i] += temp;
ep0_dma_size = 0;
}
};
clrbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
req->req.status = 0;
req->req.actual += count - ep0_dma_size;
return count - ep0_dma_size;
}
}
static int nvt_udc_dma(struct nvt_udc_ep *ep, struct nvt_udc_request *req)
{
struct nvt_udc_chip *chip = ep->chip;
uint32_t tmp = 0x0, ts;
uint8_t *buf = req->req.buf + req->req.actual;
uint32_t len = req->req.length - req->req.actual;
int fifo = ep_to_fifo(chip, ep->id);
int ret = -EBUSY;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
if (ep->id == 0)
return usb_cx_fifo_rdwr(ep, regs, req);
/* 1. init dma buffer */
if (len > ep->maxpacket)
len = ep->maxpacket;
/* 2. wait for dma ready (hardware) */
for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
if (!(readl(&regs->dma_ctrl) & DMACTRL_START)) {
ret = 0;
break;
}
}
if (ret) {
printf("nvt_udc: dma busy\n");
req->req.status = ret;
return ret;
}
writel(fifo, &regs->dma_fifo);
/* 3. DMA target setup */
if (ep->desc->bEndpointAddress & USB_DIR_IN)
flush_dcache_range((ulong)buf, (ulong)buf + roundup(len, ARCH_DMA_MINALIGN));
else
invalidate_dcache_range((ulong)buf, (ulong)buf + roundup(len, ARCH_DMA_MINALIGN));
writel(virt_to_phys(buf), &regs->dma_addr);
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
/* Wait until epx fifo empty */
nvt_udc_cxwait(chip, CXFIFO_FIFOE(fifo));
writel(DMACTRL_LEN(len) | DMACTRL_MEM2FIFO, &regs->dma_ctrl);
} else {
uint32_t blen;
if (fifo % 2) {
blen = FIFOCSR_ODD_BYTES(readl(&regs->fifocsr[fifo/2]));
} else {
blen = FIFOCSR_EVEN_BYTES(readl(&regs->fifocsr[fifo/2]));
}
len = (len < blen) ? len : blen;
writel(DMACTRL_LEN(len) | DMACTRL_FIFO2MEM, &regs->dma_ctrl);
}
/* 4. DMA start */
setbits_le32(&regs->dma_ctrl, DMACTRL_START);
/* 5. DMA wait */
ret = -EBUSY;
for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
tmp = readl(&regs->gisr2);
/* DMA complete */
if (tmp & (GISR2_DMA0FIN)) {
ret = 0;
break;
}
/* resume, suspend, reset */
if (tmp & (GISR2_RESUME | GISR2_SUSPEND | GISR2_RESET | \
GISR2_DMAERR)) {
printf("nvt_udc: dma reset by host 0x%x\n", tmp);
break;
}
}
/* 7. DMA target reset */
if (ret) {
writel(DMACTRL_ABORT | DMACTRL_CLRFF, &regs->dma_ctrl);
}
writel(tmp, &regs->gisr2);
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
if (ep->id == 0)
return usb_cx_fifo_rdwr_ext(ep, regs, req);
/* 1. init dma buffer */
if (len > ep->maxpacket)
len = ep->maxpacket;
/* 2. wait for dma ready (hardware) */
for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
if (!(readl(&regs->dma_ctrl) & DMACTRL_START)) {
ret = 0;
break;
}
}
if (ret) {
printf("nvt_udc: dma busy\n");
req->req.status = ret;
return ret;
}
/* 3. DMA target setup */
if (ep->desc->bEndpointAddress & USB_DIR_IN)
flush_dcache_range((ulong)buf, (ulong)buf + roundup(len, ARCH_DMA_MINALIGN));
else
invalidate_dcache_range((ulong)buf, (ulong)buf + roundup(len, ARCH_DMA_MINALIGN));
writel(virt_to_phys(buf), &regs->dma_addr);
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
/* Wait until epx fifo empty */
nvt_udc_cxwait(chip, CXFIFO_EXT_FIFOE(fifo));
writel(DMAFIFO_FIFO(fifo), &regs->dma_fifo);
writel(DMACTRL_LEN(len) | DMACTRL_MEM2FIFO, &regs->dma_ctrl);
} else {
uint32_t blen;
writel(DMAFIFO_FIFO(fifo), &regs->dma_fifo);
blen = FIFOCSR_BYTES(readl(&regs->fifocsr[fifo]));
len = (len < blen) ? len : blen;
writel(DMACTRL_LEN(len) | DMACTRL_FIFO2MEM, &regs->dma_ctrl);
}
/* 4. DMA start */
setbits_le32(&regs->dma_ctrl, DMACTRL_START);
/* 5. DMA wait */
ret = -EBUSY;
for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
tmp = readl(&regs->gisr2);
/* DMA complete */
if (tmp & GISR2_EXT_DMAFIN) {
ret = 0;
break;
}
/* DMA error */
if (tmp & GISR2_EXT_DMAERR) {
printf("nvt_udc: dma error\n");
break;
}
/* resume, suspend, reset */
if (tmp & (GISR2_RESUME | GISR2_SUSPEND | GISR2_RESET)) {
printf("nvt_udc: dma reset by host\n");
break;
}
}
/* 7. DMA target reset */
if (ret)
writel(DMACTRL_ABORT | DMACTRL_CLRFF, &regs->dma_ctrl);
writel(tmp, &regs->gisr2);
writel(0, &regs->dma_fifo);
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
/* 1. init dma buffer */
if (len > ep->maxpacket)
len = ep->maxpacket;
/* 2. wait for dma ready (hardware) */
for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
if (!(readl(&regs->dma_ctrl) & DMACTRL_START)) {
ret = 0;
break;
}
}
if (ret) {
printf("nvt_udc: dma busy\n");
req->req.status = ret;
return ret;
}
/* 3. DMA target setup */
if (ep->desc->bEndpointAddress & USB_DIR_IN)
flush_dcache_range((ulong)buf, (ulong)buf + roundup(len, ARCH_DMA_MINALIGN));
else
invalidate_dcache_range((ulong)buf, (ulong)buf + roundup(len, ARCH_DMA_MINALIGN));
writel(virt_to_phys(buf), &regs->dma_addr);
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
if (ep->id == 0) {
/* Wait until cx/ep0 fifo empty */
nvt_udc_cxwait(chip, CXFIFO_CXFIFOE);
udelay(1);
writel(DMAFIFO_FIFO(fifo), &regs->dma_fifo);
} else {
/* Wait until epx fifo empty */
nvt_udc_cxwait(chip, CXFIFO_EXT_FIFOE(fifo));
writel(DMAFIFO_FIFO(fifo), &regs->dma_fifo);
}
writel(DMACTRL_LEN(len) | DMACTRL_MEM2FIFO, &regs->dma_ctrl);
} else {
uint32_t blen;
if (ep->id == 0) {
writel(DMAFIFO_FIFO(fifo), &regs->dma_fifo);
do {
blen = CXFIFO_BYTES(readl(&regs->cxfifo));
} while (blen < len);
} else {
writel(DMAFIFO_FIFO(fifo), &regs->dma_fifo);
blen = FIFOCSR_BYTES(readl(&regs->fifocsr[fifo]));
}
len = (len < blen) ? len : blen;
writel(DMACTRL_LEN(len) | DMACTRL_FIFO2MEM, &regs->dma_ctrl);
}
/* 4. DMA start */
setbits_le32(&regs->dma_ctrl, DMACTRL_START);
/* 5. DMA wait */
ret = -EBUSY;
for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
tmp = readl(&regs->gisr2);
/* DMA complete */
if (tmp & GISR2_EXT_DMAFIN) {
ret = 0;
break;
}
/* DMA error */
if (tmp & GISR2_EXT_DMAERR) {
printf("nvt_udc: dma error\n");
break;
}
/* resume, suspend, reset */
if (tmp & (GISR2_RESUME | GISR2_SUSPEND | GISR2_RESET)) {
printf("nvt_udc: dma reset by host\n");
break;
}
}
/* 7. DMA target reset */
if (ret)
writel(DMACTRL_ABORT | DMACTRL_CLRFF, &regs->dma_ctrl);
writel(tmp, &regs->gisr2);
writel(0, &regs->dma_fifo);
#endif
req->req.status = ret;
if (!ret)
req->req.actual += len;
else
printf("nvt_udc: ep%d dma error(code=%d)\n", ep->id, ret);
return len;
}
/*
* result of setup packet
*/
#define CX_IDLE 0
#define CX_FINISH 1
#define CX_STALL 2
static void nvt_udc_setup(struct nvt_udc_chip *chip)
{
int id, ret = CX_IDLE;
uint32_t tmp[2];
struct usb_ctrlrequest *req = (struct usb_ctrlrequest *)tmp;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
/*
* If this is the first Cx 8 byte command,
* we can now query USB mode (high/full speed; USB 2.0/USB 1.0)
*/
if (chip->state == USB_STATE_POWERED) {
chip->state = USB_STATE_DEFAULT;
if (readl(&regs->otgcsr) & OTGCSR_DEV_B) {
/* Mini-B */
if (readl(&regs->dev_ctrl) & DEVCTRL_HS) {
puts("nvt_udc: HS\n");
chip->gadget.speed = USB_SPEED_HIGH;
/* SOF mask timer = 1100 ticks */
writel(SOFMTR_TMR(1100), &regs->sof_mtr);
} else {
puts("nvt_udc: FS\n");
chip->gadget.speed = USB_SPEED_FULL;
/* SOF mask timer = 10000 ticks */
writel(SOFMTR_TMR(10000), &regs->sof_mtr);
}
} else {
printf("nvt_udc: mini-A?\n");
}
}
setbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
/* fetch 8 bytes setup packet */
tmp[0] = readl(&regs->ep0_data);
tmp[1] = readl(&regs->ep0_data);
clrbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
if (req->bRequestType & USB_DIR_IN)
ep0_desc.bEndpointAddress = USB_DIR_IN;
else
ep0_desc.bEndpointAddress = USB_DIR_OUT;
ret = CX_IDLE;
if ((req->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
switch (req->bRequest) {
case USB_REQ_SET_CONFIGURATION:
debug("nvt_udc: set_cfg(%d)\n", req->wValue & 0x00FF);
if (!(req->wValue & 0x00FF)) {
chip->state = USB_STATE_ADDRESS;
writel(chip->addr, &regs->dev_addr);
} else {
chip->state = USB_STATE_CONFIGURED;
writel(chip->addr | DEVADDR_CONF,
&regs->dev_addr);
}
ret = CX_IDLE;
break;
case USB_REQ_SET_ADDRESS:
debug("nvt_udc: set_addr(0x%04X)\n", req->wValue);
chip->state = USB_STATE_ADDRESS;
chip->addr = req->wValue & DEVADDR_ADDR_MASK;
ret = CX_FINISH;
writel(chip->addr, &regs->dev_addr);
break;
case USB_REQ_CLEAR_FEATURE:
debug("nvt_udc: clr_feature(%d, %d)\n",
req->bRequestType & 0x03, req->wValue);
switch (req->wValue) {
case 0: /* [Endpoint] halt */
ep_reset(chip, req->wIndex);
ret = CX_FINISH;
break;
case 1: /* [Device] remote wake-up */
case 2: /* [Device] test mode */
default:
ret = CX_STALL;
break;
}
break;
case USB_REQ_SET_FEATURE:
debug("nvt_udc: set_feature(%d, %d)\n",
req->wValue, req->wIndex & 0xf);
switch (req->wValue) {
case 0: /* Endpoint Halt */
id = req->wIndex & 0xf;
setbits_le32(&regs->ep[id - 1], EP_STALL);
ret = CX_FINISH;
break;
case 1: /* Remote Wakeup */
case 2: /* Test Mode */
default:
ret = CX_STALL;
break;
}
break;
case USB_REQ_GET_STATUS:
debug("nvt_udc: get_status\n");
ret = CX_STALL;
break;
case USB_REQ_SET_DESCRIPTOR:
debug("nvt_udc: set_descriptor\n");
ret = CX_STALL;
break;
case USB_REQ_SYNCH_FRAME:
debug("nvt_udc: sync frame\n");
ret = CX_STALL;
break;
}
} /* if ((req->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) */
if (ret == CX_IDLE && chip->driver->setup) {
if (chip->driver->setup(&chip->gadget, req) < 0)
ret = CX_STALL;
else
ret = CX_FINISH;
}
switch (ret) {
case CX_FINISH:
setbits_le32(&regs->cxfifo, CXFIFO_CXFIN);
break;
case CX_STALL:
setbits_le32(&regs->cxfifo, CXFIFO_CXSTALL | CXFIFO_CXFIN);
debug("nvt_udc: cx_stall!\n");
break;
case CX_IDLE:
debug("nvt_udc: cx_idle?\n");
default:
break;
}
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
/*
* If this is the first Cx 8 byte command,
* we can now query USB mode (high/full speed; USB 2.0/USB 1.0)
*/
if (chip->state == USB_STATE_POWERED) {
chip->state = USB_STATE_DEFAULT;
if (readl(&regs->otgcsr) & OTGCSR_DEV_B) {
/* Mini-B */
if (readl(&regs->dev_ctrl) & DEVCTRL_HS) {
puts("nvt_udc: HS\n");
chip->gadget.speed = USB_SPEED_HIGH;
/* SOF mask timer = 1100 ticks */
writel(SOFMTR_TMR(1100), &regs->sof_mtr);
} else {
puts("nvt_udc: FS\n");
chip->gadget.speed = USB_SPEED_FULL;
/* SOF mask timer = 10000 ticks */
writel(SOFMTR_TMR(10000), &regs->sof_mtr);
}
} else {
printf("nvt_udc: mini-A?\n");
}
}
setbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
/* fetch 8 bytes setup packet */
tmp[0] = readl(&regs->ep0_data);
tmp[1] = readl(&regs->ep0_data);
clrbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
if (req->bRequestType & USB_DIR_IN)
ep0_desc.bEndpointAddress = USB_DIR_IN;
else
ep0_desc.bEndpointAddress = USB_DIR_OUT;
ret = CX_IDLE;
if ((req->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
switch (req->bRequest) {
case USB_REQ_SET_CONFIGURATION:
debug("nvt_udc: set_cfg(%d)\n", req->wValue & 0x00FF);
if (!(req->wValue & 0x00FF)) {
chip->state = USB_STATE_ADDRESS;
writel(chip->addr, &regs->dev_addr);
} else {
chip->state = USB_STATE_CONFIGURED;
writel(chip->addr | DEVADDR_CONF,
&regs->dev_addr);
}
ret = CX_IDLE;
break;
case USB_REQ_SET_ADDRESS:
debug("nvt_udc: set_addr(0x%04X)\n", req->wValue);
chip->state = USB_STATE_ADDRESS;
chip->addr = req->wValue & DEVADDR_ADDR_MASK;
ret = CX_FINISH;
writel(chip->addr, &regs->dev_addr);
break;
case USB_REQ_CLEAR_FEATURE:
debug("nvt_udc: clr_feature(%d, %d)\n",
req->bRequestType & 0x03, req->wValue);
switch (req->wValue) {
case 0: /* [Endpoint] halt */
ep_reset(chip, req->wIndex);
ret = CX_FINISH;
break;
case 1: /* [Device] remote wake-up */
case 2: /* [Device] test mode */
default:
ret = CX_STALL;
break;
}
break;
case USB_REQ_SET_FEATURE:
debug("nvt_udc: set_feature(%d, %d)\n",
req->wValue, req->wIndex & 0xf);
switch (req->wValue) {
case 0: /* Endpoint Halt */
id = req->wIndex & 0xf;
setbits_le32(&regs->iep[id - 1], IEP_STALL);
setbits_le32(&regs->oep[id - 1], OEP_STALL);
ret = CX_FINISH;
break;
case 1: /* Remote Wakeup */
case 2: /* Test Mode */
default:
ret = CX_STALL;
break;
}
break;
case USB_REQ_GET_STATUS:
debug("nvt_udc: get_status\n");
ret = CX_STALL;
break;
case USB_REQ_SET_DESCRIPTOR:
debug("nvt_udc: set_descriptor\n");
ret = CX_STALL;
break;
case USB_REQ_SYNCH_FRAME:
debug("nvt_udc: sync frame\n");
ret = CX_STALL;
break;
}
} /* if ((req->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) */
if (ret == CX_IDLE && chip->driver->setup) {
if (chip->driver->setup(&chip->gadget, req) < 0)
ret = CX_STALL;
else
ret = CX_FINISH;
}
switch (ret) {
case CX_FINISH:
setbits_le32(&regs->cxfifo, CXFIFO_CXFIN);
break;
case CX_STALL:
setbits_le32(&regs->cxfifo, CXFIFO_CXSTALL | CXFIFO_CXFIN);
printf("nvt_udc: cx_stall!\n");
break;
case CX_IDLE:
debug("nvt_udc: cx_idle?\n");
default:
break;
}
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
/*
* If this is the first Cx 8 byte command,
* we can now query USB mode (high/full speed; USB 2.0/USB 1.0)
*/
if (chip->state == USB_STATE_POWERED) {
chip->state = USB_STATE_DEFAULT;
if (readl(&regs->otgcsr) & OTGCSR_DEV_B) {
/* Mini-B */
if (readl(&regs->dev_ctrl) & DEVCTRL_HS) {
puts("nvt_udc: HS\n");
chip->gadget.speed = USB_SPEED_HIGH;
/* SOF mask timer = 1100 ticks */
writel(SOFMTR_TMR(1100), &regs->sof_mtr);
} else {
puts("nvt_udc: FS\n");
chip->gadget.speed = USB_SPEED_FULL;
/* SOF mask timer = 10000 ticks */
writel(SOFMTR_TMR(10000), &regs->sof_mtr);
}
} else {
printf("nvt_udc: mini-A?\n");
}
}
// enable data port
setbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
/* fetch 8 bytes setup packet */
tmp[0] = readl(&regs->ep0_setup_data);
tmp[1] = readl(&regs->ep0_setup_data);
clrbits_le32(&regs->cxfifo, CXFIFO_DATA_EN);
if (req->bRequestType & USB_DIR_IN)
ep0_desc.bEndpointAddress = USB_DIR_IN;
else
ep0_desc.bEndpointAddress = USB_DIR_OUT;
ret = CX_IDLE;
if ((req->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
switch (req->bRequest) {
case USB_REQ_SET_CONFIGURATION:
debug("nvt_udc: set_cfg(%d)\n", req->wValue & 0x00FF);
if (!(req->wValue & 0x00FF)) {
chip->state = USB_STATE_ADDRESS;
writel(chip->addr, &regs->dev_addr);
} else {
chip->state = USB_STATE_CONFIGURED;
writel(chip->addr | DEVADDR_CONF,
&regs->dev_addr);
}
ret = CX_IDLE;
break;
case USB_REQ_SET_ADDRESS:
printf("nvt_udc: set_addr(0x%04X)\n", req->wValue);
chip->state = USB_STATE_ADDRESS;
chip->addr = req->wValue & DEVADDR_ADDR_MASK;
ret = CX_FINISH;
writel(chip->addr, &regs->dev_addr);
break;
case USB_REQ_CLEAR_FEATURE:
printf("nvt_udc: clr_feature(%d, %d)\n",
req->bRequestType & 0x03, req->wValue);
switch (req->wValue) {
case 0: /* [Endpoint] halt */
ep_reset(chip, req->wIndex);
ret = CX_FINISH;
break;
case 1: /* [Device] remote wake-up */
case 2: /* [Device] test mode */
default:
ret = CX_STALL;
break;
}
break;
case USB_REQ_SET_FEATURE:
printf("nvt_udc: set_feature(%d, %d)\n",
req->wValue, req->wIndex & 0xf);
switch (req->wValue) {
case 0: /* Endpoint Halt */
id = req->wIndex & 0xf;
setbits_le32(&regs->iep[id - 1], IEP_STALL);
setbits_le32(&regs->oep[id - 1], OEP_STALL);
ret = CX_FINISH;
break;
case 1: /* Remote Wakeup */
case 2: /* Test Mode */
default:
ret = CX_STALL;
break;
}
break;
case USB_REQ_GET_STATUS:
debug("nvt_udc: get_status\n");
ret = CX_STALL;
break;
case USB_REQ_SET_DESCRIPTOR:
debug("nvt_udc: set_descriptor\n");
ret = CX_STALL;
break;
case USB_REQ_SYNCH_FRAME:
debug("nvt_udc: sync frame\n");
ret = CX_STALL;
break;
}
} /* if ((req->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) */
if (ret == CX_IDLE && chip->driver->setup) {
if (chip->driver->setup(&chip->gadget, req) < 0)
ret = CX_STALL;
else
ret = CX_FINISH;
}
switch (ret) {
case CX_FINISH:
setbits_le32(&regs->cxfifo, CXFIFO_CXFIN);
break;
case CX_STALL:
setbits_le32(&regs->cxfifo, CXFIFO_CXSTALL | CXFIFO_CXFIN);
printf("nvt_udc: cx_stall!\n");
break;
case CX_IDLE:
debug("nvt_udc: cx_idle?\n");
default:
break;
}
#endif
}
/*
* fifo - FIFO id
* zlp - zero length packet
*/
static void nvt_udc_recv(struct nvt_udc_chip *chip, int ep_id)
{
struct nvt_udc_ep *ep = chip->ep + ep_id;
struct nvt_udc_request *req;
int len;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
if (ep->stopped || (ep->desc->bEndpointAddress & USB_DIR_IN)) {
printf("nvt_udc: ep%d recv, invalid!\n", ep->id);
return;
}
if (list_empty(&ep->queue)) {
printf("nvt_udc: ep%d recv, drop!\n", ep->id);
return;
}
req = list_first_entry(&ep->queue, struct nvt_udc_request, queue);
len = nvt_udc_dma(ep, req);
if (len < ep->ep.maxpacket || req->req.length <= req->req.actual) {
list_del_init(&req->queue);
if (req->req.complete)
req->req.complete(&ep->ep, &req->req);
}
if (ep->id > 0 && list_empty(&ep->queue)) {
setbits_le32(&regs->gimr1,
GIMR1_FIFO_RX(ep_to_fifo(chip, ep->id)));
}
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
if (ep->stopped || (ep->desc->bEndpointAddress & USB_DIR_IN)) {
printf("nvt_udc: ep%d recv, invalid!\n", ep->id);
return;
}
if (list_empty(&ep->queue)) {
printf("nvt_udc: ep%d recv, drop!\n", ep->id);
return;
}
req = list_first_entry(&ep->queue, struct nvt_udc_request, queue);
len = nvt_udc_dma(ep, req);
if (len < ep->ep.maxpacket || req->req.length <= req->req.actual) {
list_del_init(&req->queue);
if (req->req.complete)
req->req.complete(&ep->ep, &req->req);
}
if (ep->id > 0 && list_empty(&ep->queue)) {
setbits_le32(&regs->gimr1,
GIMR1_FIFO_RX(ep_to_fifo(chip, ep->id)));
}
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
if (ep->stopped || (ep->desc->bEndpointAddress & USB_DIR_IN)) {
printf("nvt_udc: ep%d recv, invalid!\n", ep->id);
return;
}
if (list_empty(&ep->queue)) {
printf("nvt_udc: ep%d recv, drop!\n", ep->id);
return;
}
req = list_first_entry(&ep->queue, struct nvt_udc_request, queue);
len = nvt_udc_dma(ep, req);
if (len < ep->ep.maxpacket || req->req.length <= req->req.actual) {
list_del_init(&req->queue);
if (req->req.complete)
req->req.complete(&ep->ep, &req->req);
}
if (ep->id > 0 && list_empty(&ep->queue)) {
setbits_le32(&regs->gimr1,
GIMR1_FIFO_RX(ep_to_fifo(chip, ep->id)));
}
#endif
}
/*
* USB Gadget Layer
*/
static int nvt_udc_ep_enable(
struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc)
{
struct nvt_udc_ep *ep = container_of(_ep, struct nvt_udc_ep, ep);
struct nvt_udc_chip *chip = ep->chip;
int id = ep_to_fifo(chip, ep->id);
int in = (desc->bEndpointAddress & USB_DIR_IN) ? 1 : 0;
if (!_ep || !desc
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| le16_to_cpu(desc->wMaxPacketSize) == 0) {
printf("nvt_udc: bad ep or descriptor\n");
return -EINVAL;
}
ep->desc = desc;
ep->stopped = 0;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
if (in) {
setbits_le32(&regs->ep[id], (id << 24));
clrbits_le32(&regs->ep[id], (0xF << 28));
clrbits_le32(&regs->ep[id], (0x1 << 16));
setbits_le32(&regs->fifocfg0 + (id/4), \
FIFOCFG_DIR(((id >= 4) ? id-4 : id), 0x1));
} else {
setbits_le32(&regs->ep[id], (id << 28));
clrbits_le32(&regs->ep[id], (0xF << 24));
setbits_le32(&regs->ep[id], (0x1 << 16));
clrbits_le32(&regs->fifocfg0 + (id/4), \
FIFOCFG_DIR(((id >= 4) ? id-4 : id), 0x1));
}
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_CONTROL:
return -EINVAL;
case USB_ENDPOINT_XFER_ISOC:
setbits_le32(&regs->fifocfg0 + (id/4),
FIFOCFG(((id >= 4) ? id-4 : id), FIFOCFG_EN | FIFOCFG_ISOC));
break;
case USB_ENDPOINT_XFER_BULK:
setbits_le32(&regs->fifocfg0 + (id/4),
FIFOCFG(((id >= 4) ? id-4 : id), FIFOCFG_EN | FIFOCFG_BULK));
break;
case USB_ENDPOINT_XFER_INT:
setbits_le32(&regs->fifocfg0 + (id/4),
FIFOCFG(((id >= 4) ? id-4 : id), FIFOCFG_EN | FIFOCFG_INTR));
break;
}
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
if (in)
setbits_le32(&regs->fifomap, FIFOMAP(id, FIFOMAP_IN));
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_CONTROL:
return -EINVAL;
case USB_ENDPOINT_XFER_ISOC:
setbits_le32(&regs->fifocfg,
FIFOCFG_EXT(id, FIFOCFG_EXT_EN | FIFOCFG_ISOC));
break;
case USB_ENDPOINT_XFER_BULK:
setbits_le32(&regs->fifocfg,
FIFOCFG_EXT(id, FIFOCFG_EXT_EN | FIFOCFG_BULK));
break;
case USB_ENDPOINT_XFER_INT:
setbits_le32(&regs->fifocfg,
FIFOCFG_EXT(id, FIFOCFG_EXT_EN | FIFOCFG_INTR));
break;
}
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
if (in)
setbits_le32(&regs->fifomap, FIFOMAP(id, FIFOMAP_IN));
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_CONTROL:
return -EINVAL;
case USB_ENDPOINT_XFER_ISOC:
setbits_le32(&regs->fifocfg,
FIFOCFG_EXT(id, FIFOCFG_EXT_EN | FIFOCFG_ISOC));
break;
case USB_ENDPOINT_XFER_BULK:
setbits_le32(&regs->fifocfg,
FIFOCFG_EXT(id, FIFOCFG_EXT_EN | FIFOCFG_BULK));
break;
case USB_ENDPOINT_XFER_INT:
setbits_le32(&regs->fifocfg,
FIFOCFG_EXT(id, FIFOCFG_EXT_EN | FIFOCFG_INTR));
break;
}
#endif
return 0;
}
static int nvt_udc_ep_disable(struct usb_ep *_ep)
{
struct nvt_udc_ep *ep = container_of(_ep, struct nvt_udc_ep, ep);
struct nvt_udc_chip *chip = ep->chip;
int id = ep_to_fifo(chip, ep->id);
ep->desc = NULL;
ep->stopped = 1;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
clrbits_le32(&regs->fifocfg0, \
FIFOCFG(((id >= 4) ? id-4 : id), FIFOCFG_CFG_MASK));
clrbits_le32(&regs->fifocfg1, \
FIFOCFG(((id >= 4) ? id-4 : id), FIFOCFG_CFG_MASK));
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
clrbits_le32(&regs->fifocfg, FIFOCFG_EXT(id, FIFOCFG_EXT_CFG_MASK));
clrbits_le32(&regs->fifomap, FIFOMAP(id, FIFOMAP_DIR_MASK));
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
clrbits_le32(&regs->fifocfg, FIFOCFG_EXT(id, FIFOCFG_EXT_CFG_MASK));
clrbits_le32(&regs->fifomap, FIFOMAP(id, FIFOMAP_DIR_MASK));
#endif
return 0;
}
static struct usb_request *nvt_udc_ep_alloc_request(
struct usb_ep *_ep, gfp_t gfp_flags)
{
struct nvt_udc_request *req = malloc(sizeof(*req));
if (req) {
memset(req, 0, sizeof(*req));
INIT_LIST_HEAD(&req->queue);
}
return &req->req;
}
static void nvt_udc_ep_free_request(
struct usb_ep *_ep, struct usb_request *_req)
{
struct nvt_udc_request *req;
req = container_of(_req, struct nvt_udc_request, req);
free(req);
}
static int nvt_udc_ep_queue(
struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct nvt_udc_ep *ep = container_of(_ep, struct nvt_udc_ep, ep);
struct nvt_udc_chip *chip = ep->chip;
struct nvt_udc_request *req;
req = container_of(_req, struct nvt_udc_request, req);
if (!_req || !_req->complete || !_req->buf
|| !list_empty(&req->queue)) {
printf("nvt_udc: invalid request to ep%d\n", ep->id);
return -EINVAL;
}
if (!chip || chip->state == USB_STATE_SUSPENDED) {
printf("nvt_udc: request while chip suspended\n");
return -EINVAL;
}
req->req.actual = 0;
req->req.status = -EINPROGRESS;
if (req->req.length == 0) {
req->req.status = 0;
if (req->req.complete)
req->req.complete(&ep->ep, &req->req);
return 0;
}
if (ep->id == 0) {
do {
int len = nvt_udc_dma(ep, req);
if (len < ep->ep.maxpacket)
break;
if (ep->desc->bEndpointAddress & USB_DIR_IN)
udelay(100);
} while (req->req.length > req->req.actual);
} else {
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
do {
int len = nvt_udc_dma(ep, req);
if (len < ep->ep.maxpacket)
break;
} while (req->req.length > req->req.actual);
} else {
list_add_tail(&req->queue, &ep->queue);
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
clrbits_le32(&regs->gimr1,
GIMR1_FIFO_RX(ep_to_fifo(chip, ep->id)));
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
clrbits_le32(&regs->gimr1,
GIMR1_FIFO_RX(ep_to_fifo(chip, ep->id)));
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
clrbits_le32(&regs->gimr1,
GIMR1_FIFO_RX(ep_to_fifo(chip, ep->id)));
#endif
}
}
if (ep->id == 0 || (ep->desc->bEndpointAddress & USB_DIR_IN)) {
if (req->req.complete)
req->req.complete(&ep->ep, &req->req);
}
return 0;
}
static int nvt_udc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct nvt_udc_ep *ep = container_of(_ep, struct nvt_udc_ep, ep);
struct nvt_udc_request *req;
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req)
return -EINVAL;
/* remove the request */
list_del_init(&req->queue);
/* update status & invoke complete callback */
if (req->req.status == -EINPROGRESS) {
req->req.status = -ECONNRESET;
if (req->req.complete)
req->req.complete(_ep, &req->req);
}
return 0;
}
static int nvt_udc_ep_halt(struct usb_ep *_ep, int halt)
{
struct nvt_udc_ep *ep = container_of(_ep, struct nvt_udc_ep, ep);
struct nvt_udc_chip *chip = ep->chip;
int ret = -1;
debug("nvt_udc: ep%d halt=%d\n", ep->id, halt);
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
/* Endpoint STALL */
if (ep->id > 0 && ep->id <= CFG_NUM_ENDPOINTS) {
if (halt) {
/* wait until all ep fifo empty */
nvt_udc_cxwait(chip, 0xf00);
/* stall */
setbits_le32(&regs->ep[ep->id - 1], EP_STALL);
} else {
clrbits_le32(&regs->ep[ep->id - 1], EP_STALL);
}
ret = 0;
}
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
/* Endpoint STALL */
if (ep->id > 0 && ep->id <= CFG_NUM_ENDPOINTS) {
if (halt) {
/* wait until all ep fifo empty */
nvt_udc_cxwait(chip, 0xf00);
/* stall */
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
setbits_le32(&regs->iep[ep->id - 1],
IEP_STALL);
} else {
setbits_le32(&regs->oep[ep->id - 1],
OEP_STALL);
}
} else {
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
clrbits_le32(&regs->iep[ep->id - 1],
IEP_STALL);
} else {
clrbits_le32(&regs->oep[ep->id - 1],
OEP_STALL);
}
}
ret = 0;
}
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
/* Endpoint STALL */
if (ep->id > 0 && ep->id <= CFG_NUM_ENDPOINTS) {
if (halt) {
/* wait until all ep fifo empty */
nvt_udc_cxwait(chip, 0xf00);
/* stall */
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
setbits_le32(&regs->iep[ep->id - 1],
IEP_STALL);
} else {
setbits_le32(&regs->oep[ep->id - 1],
OEP_STALL);
}
} else {
if (ep->desc->bEndpointAddress & USB_DIR_IN) {
clrbits_le32(&regs->iep[ep->id - 1],
IEP_STALL);
} else {
clrbits_le32(&regs->oep[ep->id - 1],
OEP_STALL);
}
}
ret = 0;
}
#endif
return ret;
}
/*
* activate/deactivate link with host.
*/
static void pullup(struct nvt_udc_chip *chip, int is_on)
{
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs = chip->regs;
if (is_on) {
if (!chip->pullup) {
chip->state = USB_STATE_POWERED;
chip->pullup = 1;
/* enable the chip */
setbits_le32(&regs->dev_ctrl, DEVCTRL_EN);
/* clear unplug bit (BIT0) */
clrbits_le32(&regs->phy_tmsr, PHYTMSR_UNPLUG);
}
} else {
chip->state = USB_STATE_NOTATTACHED;
chip->pullup = 0;
chip->addr = 0;
writel(chip->addr, &regs->dev_addr);
/* set unplug bit (BIT0) */
setbits_le32(&regs->phy_tmsr, PHYTMSR_UNPLUG);
/* disable the chip */
clrbits_le32(&regs->dev_ctrl, DEVCTRL_EN);
}
} else {
struct nvt_udc_ext_regs *regs = chip->ext_regs;
if (is_on) {
if (!chip->pullup) {
chip->state = USB_STATE_POWERED;
chip->pullup = 1;
/* enable the chip */
setbits_le32(&regs->dev_ctrl, DEVCTRL_EN);
/* clear unplug bit (BIT0) */
clrbits_le32(&regs->phy_tmsr, PHYTMSR_UNPLUG);
}
} else {
chip->state = USB_STATE_NOTATTACHED;
chip->pullup = 0;
chip->addr = 0;
writel(chip->addr, &regs->dev_addr);
/* set unplug bit (BIT0) */
setbits_le32(&regs->phy_tmsr, PHYTMSR_UNPLUG);
/* disable the chip */
clrbits_le32(&regs->dev_ctrl, DEVCTRL_EN);
}
}
#else
struct nvt_udc_ext_regs *regs = chip->ext_regs;
if (is_on) {
if (!chip->pullup) {
chip->state = USB_STATE_POWERED;
chip->pullup = 1;
/* enable the chip */
setbits_le32(&regs->dev_ctrl, DEVCTRL_EN);
/* clear unplug bit (BIT0) */
clrbits_le32(&regs->phy_tmsr, PHYTMSR_UNPLUG);
}
} else {
chip->state = USB_STATE_NOTATTACHED;
chip->pullup = 0;
chip->addr = 0;
writel(chip->addr, &regs->dev_addr);
/* set unplug bit (BIT0) */
setbits_le32(&regs->phy_tmsr, PHYTMSR_UNPLUG);
/* disable the chip */
clrbits_le32(&regs->dev_ctrl, DEVCTRL_EN);
}
#endif
}
static int nvt_udc_pullup(struct usb_gadget *_gadget, int is_on)
{
struct nvt_udc_chip *chip;
chip = container_of(_gadget, struct nvt_udc_chip, gadget);
debug("nvt_udc: pullup=%d\n", is_on);
pullup(chip, is_on);
return 0;
}
static int nvt_udc_get_frame(struct usb_gadget *_gadget)
{
struct nvt_udc_chip *chip;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_regs *regs;
chip = container_of(_gadget, struct nvt_udc_chip, gadget);
regs = chip->regs;
return SOFFNR_FNR(readl(&regs->sof_fnr));
} else {
struct nvt_udc_ext_regs *regs;
chip = container_of(_gadget, struct nvt_udc_chip, gadget);
regs = chip->ext_regs;
return SOFFNR_FNR(readl(&regs->sof_fnr));
}
#else
struct nvt_udc_ext_regs *regs;
chip = container_of(_gadget, struct nvt_udc_chip, gadget);
regs = chip->ext_regs;
return SOFFNR_FNR(readl(&regs->sof_fnr));
#endif
}
static struct usb_gadget_ops nvt_udc_gadget_ops = {
.get_frame = nvt_udc_get_frame,
.pullup = nvt_udc_pullup,
};
static struct usb_ep_ops nvt_udc_ep_ops = {
.enable = nvt_udc_ep_enable,
.disable = nvt_udc_ep_disable,
.queue = nvt_udc_ep_queue,
.dequeue = nvt_udc_ep_dequeue,
.set_halt = nvt_udc_ep_halt,
.alloc_request = nvt_udc_ep_alloc_request,
.free_request = nvt_udc_ep_free_request,
};
static struct nvt_udc_chip controller = {
.regs = (void __iomem *)IOADDR_USB_REG_BASE,
.gadget = {
.name = "nvt_udc",
.ops = &nvt_udc_gadget_ops,
.ep0 = &controller.ep[0].ep,
.speed = USB_SPEED_UNKNOWN,
.is_dualspeed = 1,
.is_otg = 0,
.is_a_peripheral = 0,
.b_hnp_enable = 0,
.a_hnp_support = 0,
.a_alt_hnp_support = 0,
},
.ep[0] = {
.id = 0,
.ep = {
.name = "ep0",
.ops = &nvt_udc_ep_ops,
},
.desc = &ep0_desc,
.chip = &controller,
.maxpacket = CFG_EP0_MAX_PACKET_SIZE,
},
.ep[1] = {
.id = 1,
.ep = {
.name = "ep1",
.ops = &nvt_udc_ep_ops,
},
.chip = &controller,
.maxpacket = CFG_EPX_MAX_PACKET_SIZE,
},
.ep[2] = {
.id = 2,
.ep = {
.name = "ep2",
.ops = &nvt_udc_ep_ops,
},
.chip = &controller,
.maxpacket = CFG_EPX_MAX_PACKET_SIZE,
},
.ep[3] = {
.id = 3,
.ep = {
.name = "ep3",
.ops = &nvt_udc_ep_ops,
},
.chip = &controller,
.maxpacket = CFG_EPX_MAX_PACKET_SIZE,
},
.ep[4] = {
.id = 4,
.ep = {
.name = "ep4",
.ops = &nvt_udc_ep_ops,
},
.chip = &controller,
.maxpacket = CFG_EPX_MAX_PACKET_SIZE,
},
};
static struct nvt_udc_chip ext_controller = {
.ext_regs = (void __iomem *)IOADDR_USB528_REG_BASE,
.gadget = {
.name = "nvt_udc",
.ops = &nvt_udc_gadget_ops,
.ep0 = &ext_controller.ep[0].ep,
.speed = USB_SPEED_UNKNOWN,
.is_dualspeed = 1,
.is_otg = 0,
.is_a_peripheral = 0,
.b_hnp_enable = 0,
.a_hnp_support = 0,
.a_alt_hnp_support = 0,
},
.ep[0] = {
.id = 0,
.ep = {
.name = "ep0",
.ops = &nvt_udc_ep_ops,
},
.desc = &ep0_desc,
.chip = &ext_controller,
.maxpacket = CFG_EP0_MAX_PACKET_SIZE,
},
.ep[1] = {
.id = 1,
.ep = {
.name = "ep1",
.ops = &nvt_udc_ep_ops,
},
.chip = &ext_controller,
.maxpacket = CFG_EPX_MAX_PACKET_SIZE,
},
.ep[2] = {
.id = 2,
.ep = {
.name = "ep2",
.ops = &nvt_udc_ep_ops,
},
.chip = &ext_controller,
.maxpacket = CFG_EPX_MAX_PACKET_SIZE,
},
.ep[3] = {
.id = 3,
.ep = {
.name = "ep3",
.ops = &nvt_udc_ep_ops,
},
.chip = &ext_controller,
.maxpacket = CFG_EPX_MAX_PACKET_SIZE,
},
.ep[4] = {
.id = 4,
.ep = {
.name = "ep4",
.ops = &nvt_udc_ep_ops,
},
.chip = &ext_controller,
.maxpacket = CFG_EPX_MAX_PACKET_SIZE,
},
};
int usb_gadget_handle_interrupts(int index)
{
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_chip *chip = &controller;
struct nvt_udc_regs *regs = chip->regs;
uint32_t id, st, isr, gisr;
isr = readl(&regs->isr) & (~readl(&regs->imr));
gisr = readl(&regs->gisr) & (~readl(&regs->gimr));
if (!(isr & ISR_DEV) || !gisr)
return 0;
writel(ISR_DEV, &regs->isr);
/* CX interrupts */
if (gisr & GISR_GRP0) {
st = readl(&regs->gisr0);
/*
* Write 1 and then 0 works for both W1C & RW.
*
* HW v1.11.0+: It's a W1C register (write 1 clear)
* HW v1.10.0-: It's a R/W register (write 0 clear)
*/
writel(st & GISR0_CXABORT, &regs->gisr0);
writel(0, &regs->gisr0);
if (st & GISR0_CXERR)
printf("nvt_udc: cmd error\n");
if (st & GISR0_CXABORT)
printf("nvt_udc: cmd abort\n");
if (st & GISR0_CXSETUP) /* setup */
nvt_udc_setup(chip);
else if (st & GISR0_CXEND) /* command finish */
setbits_le32(&regs->cxfifo, CXFIFO_CXFIN);
}
/* FIFO interrupts */
if (gisr & GISR_GRP1) {
st = readl(&regs->gisr1);
for (id = 0; id < 4; ++id) {
if (st & GISR1_RX_FIFO(id))
nvt_udc_recv(chip, fifo_to_ep(chip, id, 0));
}
}
/* Device Status Interrupts */
if (gisr & GISR_GRP2) {
st = readl(&regs->gisr2);
/*
* Write 1 and then 0 works for both W1C & RW.
*
* HW v1.11.0+: It's a W1C register (write 1 clear)
* HW v1.10.0-: It's a R/W register (write 0 clear)
*/
writel(st, &regs->gisr2);
if (st & GISR2_RESET)
debug("nvt_udc: reset by host\n");
else if (st & GISR2_SUSPEND)
debug("nvt_udc: suspend/removed\n");
else if (st & GISR2_RESUME)
debug("nvt_udc: resume\n");
/* Errors */
if (st & GISR2_ISOCERR)
printf("nvt_udc: iso error\n");
if (st & GISR2_ISOCABT)
printf("nvt_udc: iso abort\n");
}
} else {
struct nvt_udc_chip *chip = &ext_controller;
struct nvt_udc_ext_regs *regs = chip->ext_regs;
uint32_t id, st, isr, gisr;
isr = readl(&regs->isr) & (~readl(&regs->imr));
gisr = readl(&regs->gisr) & (~readl(&regs->gimr));
if (!(isr & ISR_DEV) || !gisr)
return 0;
writel(ISR_DEV, &regs->isr);
/* CX interrupts */
if (gisr & GISR_GRP0) {
st = readl(&regs->gisr0);
/*
* Write 1 and then 0 works for both W1C & RW.
*
* HW v1.11.0+: It's a W1C register (write 1 clear)
* HW v1.10.0-: It's a R/W register (write 0 clear)
*/
writel(st & GISR0_CXABORT, &regs->gisr0);
writel(0, &regs->gisr0);
if (st & GISR0_CXERR)
printf("nvt_udc: cmd error\n");
if (st & GISR0_CXABORT)
printf("nvt_udc: cmd abort\n");
if (st & GISR0_CXSETUP) /* setup */
nvt_udc_setup(chip);
else if (st & GISR0_CXEND) /* command finish */
setbits_le32(&regs->cxfifo, CXFIFO_CXFIN);
}
/* FIFO interrupts */
if (gisr & GISR_GRP1) {
st = readl(&regs->gisr1);
for (id = 0; id < 4; ++id) {
if (st & GISR1_RX_FIFO(id))
nvt_udc_recv(chip, fifo_to_ep(chip, id, 0));
}
}
/* Device Status Interrupts */
if (gisr & GISR_GRP2) {
st = readl(&regs->gisr2);
/*
* Write 1 and then 0 works for both W1C & RW.
*
* HW v1.11.0+: It's a W1C register (write 1 clear)
* HW v1.10.0-: It's a R/W register (write 0 clear)
*/
writel(st, &regs->gisr2);
if (st & GISR2_RESET)
printf("nvt_udc: reset by host\n");
else if (st & GISR2_SUSPEND)
printf("nvt_udc: suspend/removed\n");
else if (st & GISR2_RESUME)
printf("nvt_udc: resume\n");
/* Errors */
if (st & GISR2_ISOCERR)
printf("nvt_udc: iso error\n");
if (st & GISR2_ISOCABT)
printf("nvt_udc: iso abort\n");
if (st & GISR2_EXT_DMAERR)
printf("nvt_udc: dma error\n");
}
}
#else
struct nvt_udc_chip *chip = &ext_controller;
struct nvt_udc_ext_regs *regs = chip->ext_regs;
uint32_t id, st, isr, gisr;
isr = readl(&regs->isr) & (~readl(&regs->imr));
gisr = readl(&regs->gisr) & (~readl(&regs->gimr));
if (!(isr & ISR_DEV) || !gisr)
return 0;
writel(ISR_DEV, &regs->isr);
/* CX interrupts */
if (gisr & GISR_GRP0) {
st = readl(&regs->gisr0);
/*
* Write 1 and then 0 works for both W1C & RW.
*
* HW v1.11.0+: It's a W1C register (write 1 clear)
* HW v1.10.0-: It's a R/W register (write 0 clear)
*/
writel(st & GISR0_CXABORT, &regs->gisr0);
writel(0, &regs->gisr0);
if (st & GISR0_CXERR)
printf("nvt_udc: cmd error\n");
if (st & GISR0_CXABORT)
printf("nvt_udc: cmd abort\n");
if (st & GISR0_CXSETUP) /* setup */
nvt_udc_setup(chip);
else if (st & GISR0_CXEND) /* command finish */
setbits_le32(&regs->cxfifo, CXFIFO_CXFIN);
}
/* FIFO interrupts */
if (gisr & GISR_GRP1) {
st = readl(&regs->gisr1);
for (id = 0; id < 4; ++id) {
if (st & GISR1_RX_FIFO(id))
nvt_udc_recv(chip, fifo_to_ep(chip, id, 0));
}
}
/* Device Status Interrupts */
if (gisr & GISR_GRP2) {
st = readl(&regs->gisr2);
/*
* Write 1 and then 0 works for both W1C & RW.
*
* HW v1.11.0+: It's a W1C register (write 1 clear)
* HW v1.10.0-: It's a R/W register (write 0 clear)
*/
writel(st, &regs->gisr2);
if (st & GISR2_RESET)
printf("nvt_udc: reset by host\n");
else if (st & GISR2_SUSPEND)
printf("nvt_udc: suspend/removed\n");
else if (st & GISR2_RESUME)
printf("nvt_udc: resume\n");
/* Errors */
if (st & GISR2_ISOCERR)
printf("nvt_udc: iso error\n");
if (st & GISR2_ISOCABT)
printf("nvt_udc: iso abort\n");
if (st & GISR2_EXT_DMAERR)
printf("nvt_udc: dma error\n");
}
#endif
return 0;
}
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
int i, ret = 0;
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_chip *chip = &controller;
if (!driver || !driver->bind || !driver->setup) {
puts("nvt_udc: bad parameter.\n");
return -EINVAL;
}
INIT_LIST_HEAD(&chip->gadget.ep_list);
for (i = 0; i < CFG_NUM_ENDPOINTS + 1; ++i) {
struct nvt_udc_ep *ep = chip->ep + i;
ep->ep.maxpacket = ep->maxpacket;
INIT_LIST_HEAD(&ep->queue);
if (ep->id == 0) {
ep->stopped = 0;
} else {
ep->stopped = 1;
list_add_tail(&ep->ep.ep_list, &chip->gadget.ep_list);
}
}
if (nvt_udc_reset(chip)) {
puts("nvt_udc: reset failed.\n");
return -EINVAL;
}
ret = driver->bind(&chip->gadget);
if (ret) {
debug("nvt_udc: driver->bind() returned %d\n", ret);
return ret;
}
chip->driver = driver;
} else {
struct nvt_udc_chip *chip = &ext_controller;
if (!driver || !driver->bind || !driver->setup) {
puts("nvt_udc: bad parameter.\n");
return -EINVAL;
}
INIT_LIST_HEAD(&chip->gadget.ep_list);
for (i = 0; i < CFG_NUM_ENDPOINTS + 1; ++i) {
struct nvt_udc_ep *ep = chip->ep + i;
ep->ep.maxpacket = ep->maxpacket;
INIT_LIST_HEAD(&ep->queue);
if (ep->id == 0) {
ep->stopped = 0;
} else {
ep->stopped = 1;
list_add_tail(&ep->ep.ep_list, &chip->gadget.ep_list);
}
}
if (nvt_udc_reset(chip)) {
puts("nvt_udc: reset failed.\n");
return -EINVAL;
}
ret = driver->bind(&chip->gadget);
if (ret) {
debug("nvt_udc: driver->bind() returned %d\n", ret);
return ret;
}
chip->driver = driver;
}
#else
struct nvt_udc_chip *chip = &ext_controller;
if (!driver || !driver->bind || !driver->setup) {
puts("nvt_udc: bad parameter.\n");
return -EINVAL;
}
INIT_LIST_HEAD(&chip->gadget.ep_list);
for (i = 0; i < CFG_NUM_ENDPOINTS + 1; ++i) {
struct nvt_udc_ep *ep = chip->ep + i;
ep->ep.maxpacket = ep->maxpacket;
INIT_LIST_HEAD(&ep->queue);
if (ep->id == 0) {
ep->stopped = 0;
} else {
ep->stopped = 1;
list_add_tail(&ep->ep.ep_list, &chip->gadget.ep_list);
}
}
if (nvt_udc_reset(chip)) {
puts("nvt_udc: reset failed.\n");
return -EINVAL;
}
ret = driver->bind(&chip->gadget);
if (ret) {
debug("nvt_udc: driver->bind() returned %d\n", ret);
return ret;
}
chip->driver = driver;
#endif
return ret;
}
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
#ifndef CONFIG_USB_GADGET_CXSETUP_DMA
if (nvt_get_chip_id() == CHIP_NA51055) {
struct nvt_udc_chip *chip = &controller;
driver->disconnect(&chip->gadget);
driver->unbind(&chip->gadget);
chip->driver = NULL;
pullup(chip, 0);
} else {
struct nvt_udc_chip *chip = &ext_controller;
driver->disconnect(&chip->gadget);
driver->unbind(&chip->gadget);
chip->driver = NULL;
pullup(chip, 0);
}
#else
struct nvt_udc_chip *chip = &ext_controller;
driver->disconnect(&chip->gadget);
driver->unbind(&chip->gadget);
chip->driver = NULL;
pullup(chip, 0);
#endif
return 0;
}