828 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			828 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Re-map IO memory to kernel address space so that we can access it.
 | |
|  * This is needed for high PCI addresses that aren't mapped in the
 | |
|  * 640k-1MB IO memory area on PC's
 | |
|  *
 | |
|  * (C) Copyright 1995 1996 Linus Torvalds
 | |
|  */
 | |
| 
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/mmiotrace.h>
 | |
| #include <linux/mem_encrypt.h>
 | |
| #include <linux/efi.h>
 | |
| 
 | |
| #include <asm/set_memory.h>
 | |
| #include <asm/e820/api.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pat.h>
 | |
| #include <asm/setup.h>
 | |
| 
 | |
| #include "physaddr.h"
 | |
| 
 | |
| struct ioremap_mem_flags {
 | |
| 	bool system_ram;
 | |
| 	bool desc_other;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Fix up the linear direct mapping of the kernel to avoid cache attribute
 | |
|  * conflicts.
 | |
|  */
 | |
| int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 | |
| 			enum page_cache_mode pcm)
 | |
| {
 | |
| 	unsigned long nrpages = size >> PAGE_SHIFT;
 | |
| 	int err;
 | |
| 
 | |
| 	switch (pcm) {
 | |
| 	case _PAGE_CACHE_MODE_UC:
 | |
| 	default:
 | |
| 		err = _set_memory_uc(vaddr, nrpages);
 | |
| 		break;
 | |
| 	case _PAGE_CACHE_MODE_WC:
 | |
| 		err = _set_memory_wc(vaddr, nrpages);
 | |
| 		break;
 | |
| 	case _PAGE_CACHE_MODE_WT:
 | |
| 		err = _set_memory_wt(vaddr, nrpages);
 | |
| 		break;
 | |
| 	case _PAGE_CACHE_MODE_WB:
 | |
| 		err = _set_memory_wb(vaddr, nrpages);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static bool __ioremap_check_ram(struct resource *res)
 | |
| {
 | |
| 	unsigned long start_pfn, stop_pfn;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 | |
| 		return false;
 | |
| 
 | |
| 	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 | |
| 	if (stop_pfn > start_pfn) {
 | |
| 		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 | |
| 			if (pfn_valid(start_pfn + i) &&
 | |
| 			    !PageReserved(pfn_to_page(start_pfn + i)))
 | |
| 				return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int __ioremap_check_desc_other(struct resource *res)
 | |
| {
 | |
| 	return (res->desc != IORES_DESC_NONE);
 | |
| }
 | |
| 
 | |
| static int __ioremap_res_check(struct resource *res, void *arg)
 | |
| {
 | |
| 	struct ioremap_mem_flags *flags = arg;
 | |
| 
 | |
| 	if (!flags->system_ram)
 | |
| 		flags->system_ram = __ioremap_check_ram(res);
 | |
| 
 | |
| 	if (!flags->desc_other)
 | |
| 		flags->desc_other = __ioremap_check_desc_other(res);
 | |
| 
 | |
| 	return flags->system_ram && flags->desc_other;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To avoid multiple resource walks, this function walks resources marked as
 | |
|  * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
 | |
|  * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
 | |
|  */
 | |
| static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
 | |
| 				struct ioremap_mem_flags *flags)
 | |
| {
 | |
| 	u64 start, end;
 | |
| 
 | |
| 	start = (u64)addr;
 | |
| 	end = start + size - 1;
 | |
| 	memset(flags, 0, sizeof(*flags));
 | |
| 
 | |
| 	walk_mem_res(start, end, flags, __ioremap_res_check);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remap an arbitrary physical address space into the kernel virtual
 | |
|  * address space. It transparently creates kernel huge I/O mapping when
 | |
|  * the physical address is aligned by a huge page size (1GB or 2MB) and
 | |
|  * the requested size is at least the huge page size.
 | |
|  *
 | |
|  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
 | |
|  * Therefore, the mapping code falls back to use a smaller page toward 4KB
 | |
|  * when a mapping range is covered by non-WB type of MTRRs.
 | |
|  *
 | |
|  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
 | |
|  * have to convert them into an offset in a page-aligned mapping, but the
 | |
|  * caller shouldn't need to know that small detail.
 | |
|  */
 | |
| static void __iomem *__ioremap_caller(resource_size_t phys_addr,
 | |
| 		unsigned long size, enum page_cache_mode pcm, void *caller)
 | |
| {
 | |
| 	unsigned long offset, vaddr;
 | |
| 	resource_size_t last_addr;
 | |
| 	const resource_size_t unaligned_phys_addr = phys_addr;
 | |
| 	const unsigned long unaligned_size = size;
 | |
| 	struct ioremap_mem_flags mem_flags;
 | |
| 	struct vm_struct *area;
 | |
| 	enum page_cache_mode new_pcm;
 | |
| 	pgprot_t prot;
 | |
| 	int retval;
 | |
| 	void __iomem *ret_addr;
 | |
| 
 | |
| 	/* Don't allow wraparound or zero size */
 | |
| 	last_addr = phys_addr + size - 1;
 | |
| 	if (!size || last_addr < phys_addr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!phys_addr_valid(phys_addr)) {
 | |
| 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
 | |
| 		       (unsigned long long)phys_addr);
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	__ioremap_check_mem(phys_addr, size, &mem_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow anybody to remap normal RAM that we're using..
 | |
| 	 */
 | |
| 	if (mem_flags.system_ram) {
 | |
| 		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
 | |
| 			  &phys_addr, &last_addr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mappings have to be page-aligned
 | |
| 	 */
 | |
| 	offset = phys_addr & ~PAGE_MASK;
 | |
| 	phys_addr &= PHYSICAL_PAGE_MASK;
 | |
| 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
 | |
| 
 | |
| 	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
 | |
| 						pcm, &new_pcm);
 | |
| 	if (retval) {
 | |
| 		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (pcm != new_pcm) {
 | |
| 		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
 | |
| 			printk(KERN_ERR
 | |
| 		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
 | |
| 				(unsigned long long)phys_addr,
 | |
| 				(unsigned long long)(phys_addr + size),
 | |
| 				pcm, new_pcm);
 | |
| 			goto err_free_memtype;
 | |
| 		}
 | |
| 		pcm = new_pcm;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the page being mapped is in memory and SEV is active then
 | |
| 	 * make sure the memory encryption attribute is enabled in the
 | |
| 	 * resulting mapping.
 | |
| 	 */
 | |
| 	prot = PAGE_KERNEL_IO;
 | |
| 	if (sev_active() && mem_flags.desc_other)
 | |
| 		prot = pgprot_encrypted(prot);
 | |
| 
 | |
| 	switch (pcm) {
 | |
| 	case _PAGE_CACHE_MODE_UC:
 | |
| 	default:
 | |
| 		prot = __pgprot(pgprot_val(prot) |
 | |
| 				cachemode2protval(_PAGE_CACHE_MODE_UC));
 | |
| 		break;
 | |
| 	case _PAGE_CACHE_MODE_UC_MINUS:
 | |
| 		prot = __pgprot(pgprot_val(prot) |
 | |
| 				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
 | |
| 		break;
 | |
| 	case _PAGE_CACHE_MODE_WC:
 | |
| 		prot = __pgprot(pgprot_val(prot) |
 | |
| 				cachemode2protval(_PAGE_CACHE_MODE_WC));
 | |
| 		break;
 | |
| 	case _PAGE_CACHE_MODE_WT:
 | |
| 		prot = __pgprot(pgprot_val(prot) |
 | |
| 				cachemode2protval(_PAGE_CACHE_MODE_WT));
 | |
| 		break;
 | |
| 	case _PAGE_CACHE_MODE_WB:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, go for it..
 | |
| 	 */
 | |
| 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
 | |
| 	if (!area)
 | |
| 		goto err_free_memtype;
 | |
| 	area->phys_addr = phys_addr;
 | |
| 	vaddr = (unsigned long) area->addr;
 | |
| 
 | |
| 	if (kernel_map_sync_memtype(phys_addr, size, pcm))
 | |
| 		goto err_free_area;
 | |
| 
 | |
| 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
 | |
| 		goto err_free_area;
 | |
| 
 | |
| 	ret_addr = (void __iomem *) (vaddr + offset);
 | |
| 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the request spans more than any BAR in the iomem resource
 | |
| 	 * tree.
 | |
| 	 */
 | |
| 	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
 | |
| 		pr_warn("caller %pS mapping multiple BARs\n", caller);
 | |
| 
 | |
| 	return ret_addr;
 | |
| err_free_area:
 | |
| 	free_vm_area(area);
 | |
| err_free_memtype:
 | |
| 	free_memtype(phys_addr, phys_addr + size);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ioremap_nocache     -   map bus memory into CPU space
 | |
|  * @phys_addr:    bus address of the memory
 | |
|  * @size:      size of the resource to map
 | |
|  *
 | |
|  * ioremap_nocache performs a platform specific sequence of operations to
 | |
|  * make bus memory CPU accessible via the readb/readw/readl/writeb/
 | |
|  * writew/writel functions and the other mmio helpers. The returned
 | |
|  * address is not guaranteed to be usable directly as a virtual
 | |
|  * address.
 | |
|  *
 | |
|  * This version of ioremap ensures that the memory is marked uncachable
 | |
|  * on the CPU as well as honouring existing caching rules from things like
 | |
|  * the PCI bus. Note that there are other caches and buffers on many
 | |
|  * busses. In particular driver authors should read up on PCI writes
 | |
|  *
 | |
|  * It's useful if some control registers are in such an area and
 | |
|  * write combining or read caching is not desirable:
 | |
|  *
 | |
|  * Must be freed with iounmap.
 | |
|  */
 | |
| void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
 | |
| {
 | |
| 	/*
 | |
| 	 * Ideally, this should be:
 | |
| 	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
 | |
| 	 *
 | |
| 	 * Till we fix all X drivers to use ioremap_wc(), we will use
 | |
| 	 * UC MINUS. Drivers that are certain they need or can already
 | |
| 	 * be converted over to strong UC can use ioremap_uc().
 | |
| 	 */
 | |
| 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
 | |
| 
 | |
| 	return __ioremap_caller(phys_addr, size, pcm,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(ioremap_nocache);
 | |
| 
 | |
| /**
 | |
|  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
 | |
|  * @phys_addr:    bus address of the memory
 | |
|  * @size:      size of the resource to map
 | |
|  *
 | |
|  * ioremap_uc performs a platform specific sequence of operations to
 | |
|  * make bus memory CPU accessible via the readb/readw/readl/writeb/
 | |
|  * writew/writel functions and the other mmio helpers. The returned
 | |
|  * address is not guaranteed to be usable directly as a virtual
 | |
|  * address.
 | |
|  *
 | |
|  * This version of ioremap ensures that the memory is marked with a strong
 | |
|  * preference as completely uncachable on the CPU when possible. For non-PAT
 | |
|  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
 | |
|  * systems this will set the PAT entry for the pages as strong UC.  This call
 | |
|  * will honor existing caching rules from things like the PCI bus. Note that
 | |
|  * there are other caches and buffers on many busses. In particular driver
 | |
|  * authors should read up on PCI writes.
 | |
|  *
 | |
|  * It's useful if some control registers are in such an area and
 | |
|  * write combining or read caching is not desirable:
 | |
|  *
 | |
|  * Must be freed with iounmap.
 | |
|  */
 | |
| void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
 | |
| {
 | |
| 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
 | |
| 
 | |
| 	return __ioremap_caller(phys_addr, size, pcm,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ioremap_uc);
 | |
| 
 | |
| /**
 | |
|  * ioremap_wc	-	map memory into CPU space write combined
 | |
|  * @phys_addr:	bus address of the memory
 | |
|  * @size:	size of the resource to map
 | |
|  *
 | |
|  * This version of ioremap ensures that the memory is marked write combining.
 | |
|  * Write combining allows faster writes to some hardware devices.
 | |
|  *
 | |
|  * Must be freed with iounmap.
 | |
|  */
 | |
| void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
 | |
| {
 | |
| 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
 | |
| 					__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(ioremap_wc);
 | |
| 
 | |
| /**
 | |
|  * ioremap_wt	-	map memory into CPU space write through
 | |
|  * @phys_addr:	bus address of the memory
 | |
|  * @size:	size of the resource to map
 | |
|  *
 | |
|  * This version of ioremap ensures that the memory is marked write through.
 | |
|  * Write through stores data into memory while keeping the cache up-to-date.
 | |
|  *
 | |
|  * Must be freed with iounmap.
 | |
|  */
 | |
| void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
 | |
| {
 | |
| 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
 | |
| 					__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(ioremap_wt);
 | |
| 
 | |
| void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
 | |
| {
 | |
| 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(ioremap_cache);
 | |
| 
 | |
| void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
 | |
| 				unsigned long prot_val)
 | |
| {
 | |
| 	return __ioremap_caller(phys_addr, size,
 | |
| 				pgprot2cachemode(__pgprot(prot_val)),
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(ioremap_prot);
 | |
| 
 | |
| /**
 | |
|  * iounmap - Free a IO remapping
 | |
|  * @addr: virtual address from ioremap_*
 | |
|  *
 | |
|  * Caller must ensure there is only one unmapping for the same pointer.
 | |
|  */
 | |
| void iounmap(volatile void __iomem *addr)
 | |
| {
 | |
| 	struct vm_struct *p, *o;
 | |
| 
 | |
| 	if ((void __force *)addr <= high_memory)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The PCI/ISA range special-casing was removed from __ioremap()
 | |
| 	 * so this check, in theory, can be removed. However, there are
 | |
| 	 * cases where iounmap() is called for addresses not obtained via
 | |
| 	 * ioremap() (vga16fb for example). Add a warning so that these
 | |
| 	 * cases can be caught and fixed.
 | |
| 	 */
 | |
| 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
 | |
| 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
 | |
| 		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mmiotrace_iounmap(addr);
 | |
| 
 | |
| 	addr = (volatile void __iomem *)
 | |
| 		(PAGE_MASK & (unsigned long __force)addr);
 | |
| 
 | |
| 	/* Use the vm area unlocked, assuming the caller
 | |
| 	   ensures there isn't another iounmap for the same address
 | |
| 	   in parallel. Reuse of the virtual address is prevented by
 | |
| 	   leaving it in the global lists until we're done with it.
 | |
| 	   cpa takes care of the direct mappings. */
 | |
| 	p = find_vm_area((void __force *)addr);
 | |
| 
 | |
| 	if (!p) {
 | |
| 		printk(KERN_ERR "iounmap: bad address %p\n", addr);
 | |
| 		dump_stack();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
 | |
| 
 | |
| 	/* Finally remove it */
 | |
| 	o = remove_vm_area((void __force *)addr);
 | |
| 	BUG_ON(p != o || o == NULL);
 | |
| 	kfree(p);
 | |
| }
 | |
| EXPORT_SYMBOL(iounmap);
 | |
| 
 | |
| int __init arch_ioremap_pud_supported(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	return boot_cpu_has(X86_FEATURE_GBPAGES);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int __init arch_ioremap_pmd_supported(void)
 | |
| {
 | |
| 	return boot_cpu_has(X86_FEATURE_PSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 | |
|  * access
 | |
|  */
 | |
| void *xlate_dev_mem_ptr(phys_addr_t phys)
 | |
| {
 | |
| 	unsigned long start  = phys &  PAGE_MASK;
 | |
| 	unsigned long offset = phys & ~PAGE_MASK;
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	/* memremap() maps if RAM, otherwise falls back to ioremap() */
 | |
| 	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
 | |
| 
 | |
| 	/* Only add the offset on success and return NULL if memremap() failed */
 | |
| 	if (vaddr)
 | |
| 		vaddr += offset;
 | |
| 
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
 | |
| {
 | |
| 	memunmap((void *)((unsigned long)addr & PAGE_MASK));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Examine the physical address to determine if it is an area of memory
 | |
|  * that should be mapped decrypted.  If the memory is not part of the
 | |
|  * kernel usable area it was accessed and created decrypted, so these
 | |
|  * areas should be mapped decrypted. And since the encryption key can
 | |
|  * change across reboots, persistent memory should also be mapped
 | |
|  * decrypted.
 | |
|  *
 | |
|  * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
 | |
|  * only persistent memory should be mapped decrypted.
 | |
|  */
 | |
| static bool memremap_should_map_decrypted(resource_size_t phys_addr,
 | |
| 					  unsigned long size)
 | |
| {
 | |
| 	int is_pmem;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the address is part of a persistent memory region.
 | |
| 	 * This check covers areas added by E820, EFI and ACPI.
 | |
| 	 */
 | |
| 	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
 | |
| 				    IORES_DESC_PERSISTENT_MEMORY);
 | |
| 	if (is_pmem != REGION_DISJOINT)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the non-volatile attribute is set for an EFI
 | |
| 	 * reserved area.
 | |
| 	 */
 | |
| 	if (efi_enabled(EFI_BOOT)) {
 | |
| 		switch (efi_mem_type(phys_addr)) {
 | |
| 		case EFI_RESERVED_TYPE:
 | |
| 			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
 | |
| 				return true;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check if the address is outside kernel usable area */
 | |
| 	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
 | |
| 	case E820_TYPE_RESERVED:
 | |
| 	case E820_TYPE_ACPI:
 | |
| 	case E820_TYPE_NVS:
 | |
| 	case E820_TYPE_UNUSABLE:
 | |
| 		/* For SEV, these areas are encrypted */
 | |
| 		if (sev_active())
 | |
| 			break;
 | |
| 		/* Fallthrough */
 | |
| 
 | |
| 	case E820_TYPE_PRAM:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Examine the physical address to determine if it is EFI data. Check
 | |
|  * it against the boot params structure and EFI tables and memory types.
 | |
|  */
 | |
| static bool memremap_is_efi_data(resource_size_t phys_addr,
 | |
| 				 unsigned long size)
 | |
| {
 | |
| 	u64 paddr;
 | |
| 
 | |
| 	/* Check if the address is part of EFI boot/runtime data */
 | |
| 	if (!efi_enabled(EFI_BOOT))
 | |
| 		return false;
 | |
| 
 | |
| 	paddr = boot_params.efi_info.efi_memmap_hi;
 | |
| 	paddr <<= 32;
 | |
| 	paddr |= boot_params.efi_info.efi_memmap;
 | |
| 	if (phys_addr == paddr)
 | |
| 		return true;
 | |
| 
 | |
| 	paddr = boot_params.efi_info.efi_systab_hi;
 | |
| 	paddr <<= 32;
 | |
| 	paddr |= boot_params.efi_info.efi_systab;
 | |
| 	if (phys_addr == paddr)
 | |
| 		return true;
 | |
| 
 | |
| 	if (efi_is_table_address(phys_addr))
 | |
| 		return true;
 | |
| 
 | |
| 	switch (efi_mem_type(phys_addr)) {
 | |
| 	case EFI_BOOT_SERVICES_DATA:
 | |
| 	case EFI_RUNTIME_SERVICES_DATA:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Examine the physical address to determine if it is boot data by checking
 | |
|  * it against the boot params setup_data chain.
 | |
|  */
 | |
| static bool memremap_is_setup_data(resource_size_t phys_addr,
 | |
| 				   unsigned long size)
 | |
| {
 | |
| 	struct setup_data *data;
 | |
| 	u64 paddr, paddr_next;
 | |
| 
 | |
| 	paddr = boot_params.hdr.setup_data;
 | |
| 	while (paddr) {
 | |
| 		unsigned int len;
 | |
| 
 | |
| 		if (phys_addr == paddr)
 | |
| 			return true;
 | |
| 
 | |
| 		data = memremap(paddr, sizeof(*data),
 | |
| 				MEMREMAP_WB | MEMREMAP_DEC);
 | |
| 
 | |
| 		paddr_next = data->next;
 | |
| 		len = data->len;
 | |
| 
 | |
| 		memunmap(data);
 | |
| 
 | |
| 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
 | |
| 			return true;
 | |
| 
 | |
| 		paddr = paddr_next;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Examine the physical address to determine if it is boot data by checking
 | |
|  * it against the boot params setup_data chain (early boot version).
 | |
|  */
 | |
| static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
 | |
| 						unsigned long size)
 | |
| {
 | |
| 	struct setup_data *data;
 | |
| 	u64 paddr, paddr_next;
 | |
| 
 | |
| 	paddr = boot_params.hdr.setup_data;
 | |
| 	while (paddr) {
 | |
| 		unsigned int len;
 | |
| 
 | |
| 		if (phys_addr == paddr)
 | |
| 			return true;
 | |
| 
 | |
| 		data = early_memremap_decrypted(paddr, sizeof(*data));
 | |
| 
 | |
| 		paddr_next = data->next;
 | |
| 		len = data->len;
 | |
| 
 | |
| 		early_memunmap(data, sizeof(*data));
 | |
| 
 | |
| 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
 | |
| 			return true;
 | |
| 
 | |
| 		paddr = paddr_next;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Architecture function to determine if RAM remap is allowed. By default, a
 | |
|  * RAM remap will map the data as encrypted. Determine if a RAM remap should
 | |
|  * not be done so that the data will be mapped decrypted.
 | |
|  */
 | |
| bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
 | |
| 				 unsigned long flags)
 | |
| {
 | |
| 	if (!mem_encrypt_active())
 | |
| 		return true;
 | |
| 
 | |
| 	if (flags & MEMREMAP_ENC)
 | |
| 		return true;
 | |
| 
 | |
| 	if (flags & MEMREMAP_DEC)
 | |
| 		return false;
 | |
| 
 | |
| 	if (sme_active()) {
 | |
| 		if (memremap_is_setup_data(phys_addr, size) ||
 | |
| 		    memremap_is_efi_data(phys_addr, size))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return !memremap_should_map_decrypted(phys_addr, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Architecture override of __weak function to adjust the protection attributes
 | |
|  * used when remapping memory. By default, early_memremap() will map the data
 | |
|  * as encrypted. Determine if an encrypted mapping should not be done and set
 | |
|  * the appropriate protection attributes.
 | |
|  */
 | |
| pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
 | |
| 					     unsigned long size,
 | |
| 					     pgprot_t prot)
 | |
| {
 | |
| 	bool encrypted_prot;
 | |
| 
 | |
| 	if (!mem_encrypt_active())
 | |
| 		return prot;
 | |
| 
 | |
| 	encrypted_prot = true;
 | |
| 
 | |
| 	if (sme_active()) {
 | |
| 		if (early_memremap_is_setup_data(phys_addr, size) ||
 | |
| 		    memremap_is_efi_data(phys_addr, size))
 | |
| 			encrypted_prot = false;
 | |
| 	}
 | |
| 
 | |
| 	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
 | |
| 		encrypted_prot = false;
 | |
| 
 | |
| 	return encrypted_prot ? pgprot_encrypted(prot)
 | |
| 			      : pgprot_decrypted(prot);
 | |
| }
 | |
| 
 | |
| bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
 | |
| {
 | |
| 	return arch_memremap_can_ram_remap(phys_addr, size, 0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_USE_MEMREMAP_PROT
 | |
| /* Remap memory with encryption */
 | |
| void __init *early_memremap_encrypted(resource_size_t phys_addr,
 | |
| 				      unsigned long size)
 | |
| {
 | |
| 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remap memory with encryption and write-protected - cannot be called
 | |
|  * before pat_init() is called
 | |
|  */
 | |
| void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
 | |
| 					 unsigned long size)
 | |
| {
 | |
| 	/* Be sure the write-protect PAT entry is set for write-protect */
 | |
| 	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
 | |
| }
 | |
| 
 | |
| /* Remap memory without encryption */
 | |
| void __init *early_memremap_decrypted(resource_size_t phys_addr,
 | |
| 				      unsigned long size)
 | |
| {
 | |
| 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remap memory without encryption and write-protected - cannot be called
 | |
|  * before pat_init() is called
 | |
|  */
 | |
| void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
 | |
| 					 unsigned long size)
 | |
| {
 | |
| 	/* Be sure the write-protect PAT entry is set for write-protect */
 | |
| 	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
 | |
| }
 | |
| #endif	/* CONFIG_ARCH_USE_MEMREMAP_PROT */
 | |
| 
 | |
| static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
 | |
| 
 | |
| static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
 | |
| {
 | |
| 	/* Don't assume we're using swapper_pg_dir at this point */
 | |
| 	pgd_t *base = __va(read_cr3_pa());
 | |
| 	pgd_t *pgd = &base[pgd_index(addr)];
 | |
| 	p4d_t *p4d = p4d_offset(pgd, addr);
 | |
| 	pud_t *pud = pud_offset(p4d, addr);
 | |
| 	pmd_t *pmd = pmd_offset(pud, addr);
 | |
| 
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| static inline pte_t * __init early_ioremap_pte(unsigned long addr)
 | |
| {
 | |
| 	return &bm_pte[pte_index(addr)];
 | |
| }
 | |
| 
 | |
| bool __init is_early_ioremap_ptep(pte_t *ptep)
 | |
| {
 | |
| 	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
 | |
| }
 | |
| 
 | |
| void __init early_ioremap_init(void)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
 | |
| #else
 | |
| 	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
 | |
| #endif
 | |
| 
 | |
| 	early_ioremap_setup();
 | |
| 
 | |
| 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
 | |
| 	memset(bm_pte, 0, sizeof(bm_pte));
 | |
| 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
 | |
| 
 | |
| 	/*
 | |
| 	 * The boot-ioremap range spans multiple pmds, for which
 | |
| 	 * we are not prepared:
 | |
| 	 */
 | |
| #define __FIXADDR_TOP (-PAGE_SIZE)
 | |
| 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
 | |
| 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
 | |
| #undef __FIXADDR_TOP
 | |
| 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
 | |
| 		WARN_ON(1);
 | |
| 		printk(KERN_WARNING "pmd %p != %p\n",
 | |
| 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
 | |
| 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
 | |
| 			fix_to_virt(FIX_BTMAP_BEGIN));
 | |
| 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
 | |
| 			fix_to_virt(FIX_BTMAP_END));
 | |
| 
 | |
| 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
 | |
| 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
 | |
| 		       FIX_BTMAP_BEGIN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init __early_set_fixmap(enum fixed_addresses idx,
 | |
| 			       phys_addr_t phys, pgprot_t flags)
 | |
| {
 | |
| 	unsigned long addr = __fix_to_virt(idx);
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (idx >= __end_of_fixed_addresses) {
 | |
| 		BUG();
 | |
| 		return;
 | |
| 	}
 | |
| 	pte = early_ioremap_pte(addr);
 | |
| 
 | |
| 	/* Sanitize 'prot' against any unsupported bits: */
 | |
| 	pgprot_val(flags) &= __default_kernel_pte_mask;
 | |
| 
 | |
| 	if (pgprot_val(flags))
 | |
| 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
 | |
| 	else
 | |
| 		pte_clear(&init_mm, addr, pte);
 | |
| 	__flush_tlb_one_kernel(addr);
 | |
| }
 | 
