875 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			875 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  Copyright (C) 1994  Linus Torvalds
 | |
|  *
 | |
|  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
 | |
|  *                stack - Manfred Spraul <manfred@colorfullife.com>
 | |
|  *
 | |
|  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
 | |
|  *                them correctly. Now the emulation will be in a
 | |
|  *                consistent state after stackfaults - Kasper Dupont
 | |
|  *                <kasperd@daimi.au.dk>
 | |
|  *
 | |
|  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
 | |
|  *                <kasperd@daimi.au.dk>
 | |
|  *
 | |
|  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
 | |
|  *                caused by Kasper Dupont's changes - Stas Sergeev
 | |
|  *
 | |
|  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
 | |
|  *                Kasper Dupont <kasperd@daimi.au.dk>
 | |
|  *
 | |
|  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
 | |
|  *                Kasper Dupont <kasperd@daimi.au.dk>
 | |
|  *
 | |
|  *   9 apr 2002 - Changed stack access macros to jump to a label
 | |
|  *                instead of returning to userspace. This simplifies
 | |
|  *                do_int, and is needed by handle_vm6_fault. Kasper
 | |
|  *                Dupont <kasperd@daimi.au.dk>
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/capability.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/security.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/vm86.h>
 | |
| #include <asm/switch_to.h>
 | |
| 
 | |
| /*
 | |
|  * Known problems:
 | |
|  *
 | |
|  * Interrupt handling is not guaranteed:
 | |
|  * - a real x86 will disable all interrupts for one instruction
 | |
|  *   after a "mov ss,xx" to make stack handling atomic even without
 | |
|  *   the 'lss' instruction. We can't guarantee this in v86 mode,
 | |
|  *   as the next instruction might result in a page fault or similar.
 | |
|  * - a real x86 will have interrupts disabled for one instruction
 | |
|  *   past the 'sti' that enables them. We don't bother with all the
 | |
|  *   details yet.
 | |
|  *
 | |
|  * Let's hope these problems do not actually matter for anything.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * 8- and 16-bit register defines..
 | |
|  */
 | |
| #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
 | |
| #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
 | |
| #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
 | |
| #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
 | |
| 
 | |
| /*
 | |
|  * virtual flags (16 and 32-bit versions)
 | |
|  */
 | |
| #define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
 | |
| #define VEFLAGS	(current->thread.vm86->veflags)
 | |
| 
 | |
| #define set_flags(X, new, mask) \
 | |
| ((X) = ((X) & ~(mask)) | ((new) & (mask)))
 | |
| 
 | |
| #define SAFE_MASK	(0xDD5)
 | |
| #define RETURN_MASK	(0xDFF)
 | |
| 
 | |
| void save_v86_state(struct kernel_vm86_regs *regs, int retval)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct vm86plus_struct __user *user;
 | |
| 	struct vm86 *vm86 = current->thread.vm86;
 | |
| 	long err = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This gets called from entry.S with interrupts disabled, but
 | |
| 	 * from process context. Enable interrupts here, before trying
 | |
| 	 * to access user space.
 | |
| 	 */
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	if (!vm86 || !vm86->user_vm86) {
 | |
| 		pr_alert("no user_vm86: BAD\n");
 | |
| 		do_exit(SIGSEGV);
 | |
| 	}
 | |
| 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
 | |
| 	user = vm86->user_vm86;
 | |
| 
 | |
| 	if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
 | |
| 		       sizeof(struct vm86plus_struct) :
 | |
| 		       sizeof(struct vm86_struct))) {
 | |
| 		pr_alert("could not access userspace vm86 info\n");
 | |
| 		do_exit(SIGSEGV);
 | |
| 	}
 | |
| 
 | |
| 	put_user_try {
 | |
| 		put_user_ex(regs->pt.bx, &user->regs.ebx);
 | |
| 		put_user_ex(regs->pt.cx, &user->regs.ecx);
 | |
| 		put_user_ex(regs->pt.dx, &user->regs.edx);
 | |
| 		put_user_ex(regs->pt.si, &user->regs.esi);
 | |
| 		put_user_ex(regs->pt.di, &user->regs.edi);
 | |
| 		put_user_ex(regs->pt.bp, &user->regs.ebp);
 | |
| 		put_user_ex(regs->pt.ax, &user->regs.eax);
 | |
| 		put_user_ex(regs->pt.ip, &user->regs.eip);
 | |
| 		put_user_ex(regs->pt.cs, &user->regs.cs);
 | |
| 		put_user_ex(regs->pt.flags, &user->regs.eflags);
 | |
| 		put_user_ex(regs->pt.sp, &user->regs.esp);
 | |
| 		put_user_ex(regs->pt.ss, &user->regs.ss);
 | |
| 		put_user_ex(regs->es, &user->regs.es);
 | |
| 		put_user_ex(regs->ds, &user->regs.ds);
 | |
| 		put_user_ex(regs->fs, &user->regs.fs);
 | |
| 		put_user_ex(regs->gs, &user->regs.gs);
 | |
| 
 | |
| 		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
 | |
| 	} put_user_catch(err);
 | |
| 	if (err) {
 | |
| 		pr_alert("could not access userspace vm86 info\n");
 | |
| 		do_exit(SIGSEGV);
 | |
| 	}
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	tsk->thread.sp0 = vm86->saved_sp0;
 | |
| 	tsk->thread.sysenter_cs = __KERNEL_CS;
 | |
| 	update_task_stack(tsk);
 | |
| 	refresh_sysenter_cs(&tsk->thread);
 | |
| 	vm86->saved_sp0 = 0;
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	memcpy(®s->pt, &vm86->regs32, sizeof(struct pt_regs));
 | |
| 
 | |
| 	lazy_load_gs(vm86->regs32.gs);
 | |
| 
 | |
| 	regs->pt.ax = retval;
 | |
| }
 | |
| 
 | |
| static void mark_screen_rdonly(struct mm_struct *mm)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	spinlock_t *ptl;
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	int i;
 | |
| 
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	pgd = pgd_offset(mm, 0xA0000);
 | |
| 	if (pgd_none_or_clear_bad(pgd))
 | |
| 		goto out;
 | |
| 	p4d = p4d_offset(pgd, 0xA0000);
 | |
| 	if (p4d_none_or_clear_bad(p4d))
 | |
| 		goto out;
 | |
| 	pud = pud_offset(p4d, 0xA0000);
 | |
| 	if (pud_none_or_clear_bad(pud))
 | |
| 		goto out;
 | |
| 	pmd = pmd_offset(pud, 0xA0000);
 | |
| 
 | |
| 	if (pmd_trans_huge(*pmd)) {
 | |
| 		vma = find_vma(mm, 0xA0000);
 | |
| 		split_huge_pmd(vma, pmd, 0xA0000);
 | |
| 	}
 | |
| 	if (pmd_none_or_clear_bad(pmd))
 | |
| 		goto out;
 | |
| 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
 | |
| 	for (i = 0; i < 32; i++) {
 | |
| 		if (pte_present(*pte))
 | |
| 			set_pte(pte, pte_wrprotect(*pte));
 | |
| 		pte++;
 | |
| 	}
 | |
| 	pte_unmap_unlock(pte, ptl);
 | |
| out:
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static int do_vm86_irq_handling(int subfunction, int irqnumber);
 | |
| static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
 | |
| 
 | |
| SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
 | |
| {
 | |
| 	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
 | |
| }
 | |
| 
 | |
| 
 | |
| SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 	case VM86_REQUEST_IRQ:
 | |
| 	case VM86_FREE_IRQ:
 | |
| 	case VM86_GET_IRQ_BITS:
 | |
| 	case VM86_GET_AND_RESET_IRQ:
 | |
| 		return do_vm86_irq_handling(cmd, (int)arg);
 | |
| 	case VM86_PLUS_INSTALL_CHECK:
 | |
| 		/*
 | |
| 		 * NOTE: on old vm86 stuff this will return the error
 | |
| 		 *  from access_ok(), because the subfunction is
 | |
| 		 *  interpreted as (invalid) address to vm86_struct.
 | |
| 		 *  So the installation check works.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
 | |
| 	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
 | |
| }
 | |
| 
 | |
| 
 | |
| static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct vm86 *vm86 = tsk->thread.vm86;
 | |
| 	struct kernel_vm86_regs vm86regs;
 | |
| 	struct pt_regs *regs = current_pt_regs();
 | |
| 	unsigned long err = 0;
 | |
| 
 | |
| 	err = security_mmap_addr(0);
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * vm86 cannot virtualize the address space, so vm86 users
 | |
| 		 * need to manage the low 1MB themselves using mmap.  Given
 | |
| 		 * that BIOS places important data in the first page, vm86
 | |
| 		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
 | |
| 		 * for example, won't even bother trying to use vm86 if it
 | |
| 		 * can't map a page at virtual address 0.
 | |
| 		 *
 | |
| 		 * To reduce the available kernel attack surface, simply
 | |
| 		 * disallow vm86(old) for users who cannot mmap at va 0.
 | |
| 		 *
 | |
| 		 * The implementation of security_mmap_addr will allow
 | |
| 		 * suitably privileged users to map va 0 even if
 | |
| 		 * vm.mmap_min_addr is set above 0, and we want this
 | |
| 		 * behavior for vm86 as well, as it ensures that legacy
 | |
| 		 * tools like vbetool will not fail just because of
 | |
| 		 * vm.mmap_min_addr.
 | |
| 		 */
 | |
| 		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
 | |
| 			     current->comm, task_pid_nr(current),
 | |
| 			     from_kuid_munged(&init_user_ns, current_uid()));
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	if (!vm86) {
 | |
| 		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
 | |
| 			return -ENOMEM;
 | |
| 		tsk->thread.vm86 = vm86;
 | |
| 	}
 | |
| 	if (vm86->saved_sp0)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (!access_ok(VERIFY_READ, user_vm86, plus ?
 | |
| 		       sizeof(struct vm86_struct) :
 | |
| 		       sizeof(struct vm86plus_struct)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	memset(&vm86regs, 0, sizeof(vm86regs));
 | |
| 	get_user_try {
 | |
| 		unsigned short seg;
 | |
| 		get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
 | |
| 		get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
 | |
| 		get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
 | |
| 		get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
 | |
| 		get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
 | |
| 		get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
 | |
| 		get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
 | |
| 		get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
 | |
| 		get_user_ex(seg, &user_vm86->regs.cs);
 | |
| 		vm86regs.pt.cs = seg;
 | |
| 		get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
 | |
| 		get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
 | |
| 		get_user_ex(seg, &user_vm86->regs.ss);
 | |
| 		vm86regs.pt.ss = seg;
 | |
| 		get_user_ex(vm86regs.es, &user_vm86->regs.es);
 | |
| 		get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
 | |
| 		get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
 | |
| 		get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
 | |
| 
 | |
| 		get_user_ex(vm86->flags, &user_vm86->flags);
 | |
| 		get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
 | |
| 		get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
 | |
| 	} get_user_catch(err);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (copy_from_user(&vm86->int_revectored,
 | |
| 			   &user_vm86->int_revectored,
 | |
| 			   sizeof(struct revectored_struct)))
 | |
| 		return -EFAULT;
 | |
| 	if (copy_from_user(&vm86->int21_revectored,
 | |
| 			   &user_vm86->int21_revectored,
 | |
| 			   sizeof(struct revectored_struct)))
 | |
| 		return -EFAULT;
 | |
| 	if (plus) {
 | |
| 		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
 | |
| 				   sizeof(struct vm86plus_info_struct)))
 | |
| 			return -EFAULT;
 | |
| 		vm86->vm86plus.is_vm86pus = 1;
 | |
| 	} else
 | |
| 		memset(&vm86->vm86plus, 0,
 | |
| 		       sizeof(struct vm86plus_info_struct));
 | |
| 
 | |
| 	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
 | |
| 	vm86->user_vm86 = user_vm86;
 | |
| 
 | |
| /*
 | |
|  * The flags register is also special: we cannot trust that the user
 | |
|  * has set it up safely, so this makes sure interrupt etc flags are
 | |
|  * inherited from protected mode.
 | |
|  */
 | |
| 	VEFLAGS = vm86regs.pt.flags;
 | |
| 	vm86regs.pt.flags &= SAFE_MASK;
 | |
| 	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
 | |
| 	vm86regs.pt.flags |= X86_VM_MASK;
 | |
| 
 | |
| 	vm86regs.pt.orig_ax = regs->orig_ax;
 | |
| 
 | |
| 	switch (vm86->cpu_type) {
 | |
| 	case CPU_286:
 | |
| 		vm86->veflags_mask = 0;
 | |
| 		break;
 | |
| 	case CPU_386:
 | |
| 		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 | |
| 		break;
 | |
| 	case CPU_486:
 | |
| 		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| /*
 | |
|  * Save old state
 | |
|  */
 | |
| 	vm86->saved_sp0 = tsk->thread.sp0;
 | |
| 	lazy_save_gs(vm86->regs32.gs);
 | |
| 
 | |
| 	/* make room for real-mode segments */
 | |
| 	preempt_disable();
 | |
| 	tsk->thread.sp0 += 16;
 | |
| 
 | |
| 	if (static_cpu_has(X86_FEATURE_SEP)) {
 | |
| 		tsk->thread.sysenter_cs = 0;
 | |
| 		refresh_sysenter_cs(&tsk->thread);
 | |
| 	}
 | |
| 
 | |
| 	update_task_stack(tsk);
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	if (vm86->flags & VM86_SCREEN_BITMAP)
 | |
| 		mark_screen_rdonly(tsk->mm);
 | |
| 
 | |
| 	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
 | |
| 	force_iret();
 | |
| 	return regs->ax;
 | |
| }
 | |
| 
 | |
| static inline void set_IF(struct kernel_vm86_regs *regs)
 | |
| {
 | |
| 	VEFLAGS |= X86_EFLAGS_VIF;
 | |
| }
 | |
| 
 | |
| static inline void clear_IF(struct kernel_vm86_regs *regs)
 | |
| {
 | |
| 	VEFLAGS &= ~X86_EFLAGS_VIF;
 | |
| }
 | |
| 
 | |
| static inline void clear_TF(struct kernel_vm86_regs *regs)
 | |
| {
 | |
| 	regs->pt.flags &= ~X86_EFLAGS_TF;
 | |
| }
 | |
| 
 | |
| static inline void clear_AC(struct kernel_vm86_regs *regs)
 | |
| {
 | |
| 	regs->pt.flags &= ~X86_EFLAGS_AC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It is correct to call set_IF(regs) from the set_vflags_*
 | |
|  * functions. However someone forgot to call clear_IF(regs)
 | |
|  * in the opposite case.
 | |
|  * After the command sequence CLI PUSHF STI POPF you should
 | |
|  * end up with interrupts disabled, but you ended up with
 | |
|  * interrupts enabled.
 | |
|  *  ( I was testing my own changes, but the only bug I
 | |
|  *    could find was in a function I had not changed. )
 | |
|  * [KD]
 | |
|  */
 | |
| 
 | |
| static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
 | |
| {
 | |
| 	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
 | |
| 	set_flags(regs->pt.flags, flags, SAFE_MASK);
 | |
| 	if (flags & X86_EFLAGS_IF)
 | |
| 		set_IF(regs);
 | |
| 	else
 | |
| 		clear_IF(regs);
 | |
| }
 | |
| 
 | |
| static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
 | |
| {
 | |
| 	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
 | |
| 	set_flags(regs->pt.flags, flags, SAFE_MASK);
 | |
| 	if (flags & X86_EFLAGS_IF)
 | |
| 		set_IF(regs);
 | |
| 	else
 | |
| 		clear_IF(regs);
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
 | |
| {
 | |
| 	unsigned long flags = regs->pt.flags & RETURN_MASK;
 | |
| 
 | |
| 	if (VEFLAGS & X86_EFLAGS_VIF)
 | |
| 		flags |= X86_EFLAGS_IF;
 | |
| 	flags |= X86_EFLAGS_IOPL;
 | |
| 	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
 | |
| }
 | |
| 
 | |
| static inline int is_revectored(int nr, struct revectored_struct *bitmap)
 | |
| {
 | |
| 	return test_bit(nr, bitmap->__map);
 | |
| }
 | |
| 
 | |
| #define val_byte(val, n) (((__u8 *)&val)[n])
 | |
| 
 | |
| #define pushb(base, ptr, val, err_label) \
 | |
| 	do { \
 | |
| 		__u8 __val = val; \
 | |
| 		ptr--; \
 | |
| 		if (put_user(__val, base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 	} while (0)
 | |
| 
 | |
| #define pushw(base, ptr, val, err_label) \
 | |
| 	do { \
 | |
| 		__u16 __val = val; \
 | |
| 		ptr--; \
 | |
| 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr--; \
 | |
| 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 	} while (0)
 | |
| 
 | |
| #define pushl(base, ptr, val, err_label) \
 | |
| 	do { \
 | |
| 		__u32 __val = val; \
 | |
| 		ptr--; \
 | |
| 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr--; \
 | |
| 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr--; \
 | |
| 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr--; \
 | |
| 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 	} while (0)
 | |
| 
 | |
| #define popb(base, ptr, err_label) \
 | |
| 	({ \
 | |
| 		__u8 __res; \
 | |
| 		if (get_user(__res, base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr++; \
 | |
| 		__res; \
 | |
| 	})
 | |
| 
 | |
| #define popw(base, ptr, err_label) \
 | |
| 	({ \
 | |
| 		__u16 __res; \
 | |
| 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr++; \
 | |
| 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr++; \
 | |
| 		__res; \
 | |
| 	})
 | |
| 
 | |
| #define popl(base, ptr, err_label) \
 | |
| 	({ \
 | |
| 		__u32 __res; \
 | |
| 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr++; \
 | |
| 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr++; \
 | |
| 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr++; \
 | |
| 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
 | |
| 			goto err_label; \
 | |
| 		ptr++; \
 | |
| 		__res; \
 | |
| 	})
 | |
| 
 | |
| /* There are so many possible reasons for this function to return
 | |
|  * VM86_INTx, so adding another doesn't bother me. We can expect
 | |
|  * userspace programs to be able to handle it. (Getting a problem
 | |
|  * in userspace is always better than an Oops anyway.) [KD]
 | |
|  */
 | |
| static void do_int(struct kernel_vm86_regs *regs, int i,
 | |
|     unsigned char __user *ssp, unsigned short sp)
 | |
| {
 | |
| 	unsigned long __user *intr_ptr;
 | |
| 	unsigned long segoffs;
 | |
| 	struct vm86 *vm86 = current->thread.vm86;
 | |
| 
 | |
| 	if (regs->pt.cs == BIOSSEG)
 | |
| 		goto cannot_handle;
 | |
| 	if (is_revectored(i, &vm86->int_revectored))
 | |
| 		goto cannot_handle;
 | |
| 	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
 | |
| 		goto cannot_handle;
 | |
| 	intr_ptr = (unsigned long __user *) (i << 2);
 | |
| 	if (get_user(segoffs, intr_ptr))
 | |
| 		goto cannot_handle;
 | |
| 	if ((segoffs >> 16) == BIOSSEG)
 | |
| 		goto cannot_handle;
 | |
| 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
 | |
| 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
 | |
| 	pushw(ssp, sp, IP(regs), cannot_handle);
 | |
| 	regs->pt.cs = segoffs >> 16;
 | |
| 	SP(regs) -= 6;
 | |
| 	IP(regs) = segoffs & 0xffff;
 | |
| 	clear_TF(regs);
 | |
| 	clear_IF(regs);
 | |
| 	clear_AC(regs);
 | |
| 	return;
 | |
| 
 | |
| cannot_handle:
 | |
| 	save_v86_state(regs, VM86_INTx + (i << 8));
 | |
| }
 | |
| 
 | |
| int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
 | |
| {
 | |
| 	struct vm86 *vm86 = current->thread.vm86;
 | |
| 
 | |
| 	if (vm86->vm86plus.is_vm86pus) {
 | |
| 		if ((trapno == 3) || (trapno == 1)) {
 | |
| 			save_v86_state(regs, VM86_TRAP + (trapno << 8));
 | |
| 			return 0;
 | |
| 		}
 | |
| 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (trapno != 1)
 | |
| 		return 1; /* we let this handle by the calling routine */
 | |
| 	current->thread.trap_nr = trapno;
 | |
| 	current->thread.error_code = error_code;
 | |
| 	force_sig(SIGTRAP, current);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
 | |
| {
 | |
| 	unsigned char opcode;
 | |
| 	unsigned char __user *csp;
 | |
| 	unsigned char __user *ssp;
 | |
| 	unsigned short ip, sp, orig_flags;
 | |
| 	int data32, pref_done;
 | |
| 	struct vm86plus_info_struct *vmpi = ¤t->thread.vm86->vm86plus;
 | |
| 
 | |
| #define CHECK_IF_IN_TRAP \
 | |
| 	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
 | |
| 		newflags |= X86_EFLAGS_TF
 | |
| 
 | |
| 	orig_flags = *(unsigned short *)®s->pt.flags;
 | |
| 
 | |
| 	csp = (unsigned char __user *) (regs->pt.cs << 4);
 | |
| 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
 | |
| 	sp = SP(regs);
 | |
| 	ip = IP(regs);
 | |
| 
 | |
| 	data32 = 0;
 | |
| 	pref_done = 0;
 | |
| 	do {
 | |
| 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
 | |
| 		case 0x66:      /* 32-bit data */     data32 = 1; break;
 | |
| 		case 0x67:      /* 32-bit address */  break;
 | |
| 		case 0x2e:      /* CS */              break;
 | |
| 		case 0x3e:      /* DS */              break;
 | |
| 		case 0x26:      /* ES */              break;
 | |
| 		case 0x36:      /* SS */              break;
 | |
| 		case 0x65:      /* GS */              break;
 | |
| 		case 0x64:      /* FS */              break;
 | |
| 		case 0xf2:      /* repnz */       break;
 | |
| 		case 0xf3:      /* rep */             break;
 | |
| 		default: pref_done = 1;
 | |
| 		}
 | |
| 	} while (!pref_done);
 | |
| 
 | |
| 	switch (opcode) {
 | |
| 
 | |
| 	/* pushf */
 | |
| 	case 0x9c:
 | |
| 		if (data32) {
 | |
| 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
 | |
| 			SP(regs) -= 4;
 | |
| 		} else {
 | |
| 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
 | |
| 			SP(regs) -= 2;
 | |
| 		}
 | |
| 		IP(regs) = ip;
 | |
| 		goto vm86_fault_return;
 | |
| 
 | |
| 	/* popf */
 | |
| 	case 0x9d:
 | |
| 		{
 | |
| 		unsigned long newflags;
 | |
| 		if (data32) {
 | |
| 			newflags = popl(ssp, sp, simulate_sigsegv);
 | |
| 			SP(regs) += 4;
 | |
| 		} else {
 | |
| 			newflags = popw(ssp, sp, simulate_sigsegv);
 | |
| 			SP(regs) += 2;
 | |
| 		}
 | |
| 		IP(regs) = ip;
 | |
| 		CHECK_IF_IN_TRAP;
 | |
| 		if (data32)
 | |
| 			set_vflags_long(newflags, regs);
 | |
| 		else
 | |
| 			set_vflags_short(newflags, regs);
 | |
| 
 | |
| 		goto check_vip;
 | |
| 		}
 | |
| 
 | |
| 	/* int xx */
 | |
| 	case 0xcd: {
 | |
| 		int intno = popb(csp, ip, simulate_sigsegv);
 | |
| 		IP(regs) = ip;
 | |
| 		if (vmpi->vm86dbg_active) {
 | |
| 			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
 | |
| 				save_v86_state(regs, VM86_INTx + (intno << 8));
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 		do_int(regs, intno, ssp, sp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* iret */
 | |
| 	case 0xcf:
 | |
| 		{
 | |
| 		unsigned long newip;
 | |
| 		unsigned long newcs;
 | |
| 		unsigned long newflags;
 | |
| 		if (data32) {
 | |
| 			newip = popl(ssp, sp, simulate_sigsegv);
 | |
| 			newcs = popl(ssp, sp, simulate_sigsegv);
 | |
| 			newflags = popl(ssp, sp, simulate_sigsegv);
 | |
| 			SP(regs) += 12;
 | |
| 		} else {
 | |
| 			newip = popw(ssp, sp, simulate_sigsegv);
 | |
| 			newcs = popw(ssp, sp, simulate_sigsegv);
 | |
| 			newflags = popw(ssp, sp, simulate_sigsegv);
 | |
| 			SP(regs) += 6;
 | |
| 		}
 | |
| 		IP(regs) = newip;
 | |
| 		regs->pt.cs = newcs;
 | |
| 		CHECK_IF_IN_TRAP;
 | |
| 		if (data32) {
 | |
| 			set_vflags_long(newflags, regs);
 | |
| 		} else {
 | |
| 			set_vflags_short(newflags, regs);
 | |
| 		}
 | |
| 		goto check_vip;
 | |
| 		}
 | |
| 
 | |
| 	/* cli */
 | |
| 	case 0xfa:
 | |
| 		IP(regs) = ip;
 | |
| 		clear_IF(regs);
 | |
| 		goto vm86_fault_return;
 | |
| 
 | |
| 	/* sti */
 | |
| 	/*
 | |
| 	 * Damn. This is incorrect: the 'sti' instruction should actually
 | |
| 	 * enable interrupts after the /next/ instruction. Not good.
 | |
| 	 *
 | |
| 	 * Probably needs some horsing around with the TF flag. Aiee..
 | |
| 	 */
 | |
| 	case 0xfb:
 | |
| 		IP(regs) = ip;
 | |
| 		set_IF(regs);
 | |
| 		goto check_vip;
 | |
| 
 | |
| 	default:
 | |
| 		save_v86_state(regs, VM86_UNKNOWN);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| check_vip:
 | |
| 	if ((VEFLAGS & (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) ==
 | |
| 	    (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) {
 | |
| 		save_v86_state(regs, VM86_STI);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| vm86_fault_return:
 | |
| 	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
 | |
| 		save_v86_state(regs, VM86_PICRETURN);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (orig_flags & X86_EFLAGS_TF)
 | |
| 		handle_vm86_trap(regs, 0, X86_TRAP_DB);
 | |
| 	return;
 | |
| 
 | |
| simulate_sigsegv:
 | |
| 	/* FIXME: After a long discussion with Stas we finally
 | |
| 	 *        agreed, that this is wrong. Here we should
 | |
| 	 *        really send a SIGSEGV to the user program.
 | |
| 	 *        But how do we create the correct context? We
 | |
| 	 *        are inside a general protection fault handler
 | |
| 	 *        and has just returned from a page fault handler.
 | |
| 	 *        The correct context for the signal handler
 | |
| 	 *        should be a mixture of the two, but how do we
 | |
| 	 *        get the information? [KD]
 | |
| 	 */
 | |
| 	save_v86_state(regs, VM86_UNKNOWN);
 | |
| }
 | |
| 
 | |
| /* ---------------- vm86 special IRQ passing stuff ----------------- */
 | |
| 
 | |
| #define VM86_IRQNAME		"vm86irq"
 | |
| 
 | |
| static struct vm86_irqs {
 | |
| 	struct task_struct *tsk;
 | |
| 	int sig;
 | |
| } vm86_irqs[16];
 | |
| 
 | |
| static DEFINE_SPINLOCK(irqbits_lock);
 | |
| static int irqbits;
 | |
| 
 | |
| #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
 | |
| 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
 | |
| 	| (1 << SIGUNUSED))
 | |
| 
 | |
| static irqreturn_t irq_handler(int intno, void *dev_id)
 | |
| {
 | |
| 	int irq_bit;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&irqbits_lock, flags);
 | |
| 	irq_bit = 1 << intno;
 | |
| 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
 | |
| 		goto out;
 | |
| 	irqbits |= irq_bit;
 | |
| 	if (vm86_irqs[intno].sig)
 | |
| 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
 | |
| 	/*
 | |
| 	 * IRQ will be re-enabled when user asks for the irq (whether
 | |
| 	 * polling or as a result of the signal)
 | |
| 	 */
 | |
| 	disable_irq_nosync(intno);
 | |
| 	spin_unlock_irqrestore(&irqbits_lock, flags);
 | |
| 	return IRQ_HANDLED;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&irqbits_lock, flags);
 | |
| 	return IRQ_NONE;
 | |
| }
 | |
| 
 | |
| static inline void free_vm86_irq(int irqnumber)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	free_irq(irqnumber, NULL);
 | |
| 	vm86_irqs[irqnumber].tsk = NULL;
 | |
| 
 | |
| 	spin_lock_irqsave(&irqbits_lock, flags);
 | |
| 	irqbits &= ~(1 << irqnumber);
 | |
| 	spin_unlock_irqrestore(&irqbits_lock, flags);
 | |
| }
 | |
| 
 | |
| void release_vm86_irqs(struct task_struct *task)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
 | |
| 	    if (vm86_irqs[i].tsk == task)
 | |
| 		free_vm86_irq(i);
 | |
| }
 | |
| 
 | |
| static inline int get_and_reset_irq(int irqnumber)
 | |
| {
 | |
| 	int bit;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (invalid_vm86_irq(irqnumber)) return 0;
 | |
| 	if (vm86_irqs[irqnumber].tsk != current) return 0;
 | |
| 	spin_lock_irqsave(&irqbits_lock, flags);
 | |
| 	bit = irqbits & (1 << irqnumber);
 | |
| 	irqbits &= ~bit;
 | |
| 	if (bit) {
 | |
| 		enable_irq(irqnumber);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&irqbits_lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int do_vm86_irq_handling(int subfunction, int irqnumber)
 | |
| {
 | |
| 	int ret;
 | |
| 	switch (subfunction) {
 | |
| 		case VM86_GET_AND_RESET_IRQ: {
 | |
| 			return get_and_reset_irq(irqnumber);
 | |
| 		}
 | |
| 		case VM86_GET_IRQ_BITS: {
 | |
| 			return irqbits;
 | |
| 		}
 | |
| 		case VM86_REQUEST_IRQ: {
 | |
| 			int sig = irqnumber >> 8;
 | |
| 			int irq = irqnumber & 255;
 | |
| 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
 | |
| 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
 | |
| 			if (invalid_vm86_irq(irq)) return -EPERM;
 | |
| 			if (vm86_irqs[irq].tsk) return -EPERM;
 | |
| 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
 | |
| 			if (ret) return ret;
 | |
| 			vm86_irqs[irq].sig = sig;
 | |
| 			vm86_irqs[irq].tsk = current;
 | |
| 			return irq;
 | |
| 		}
 | |
| 		case  VM86_FREE_IRQ: {
 | |
| 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
 | |
| 			if (!vm86_irqs[irqnumber].tsk) return 0;
 | |
| 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
 | |
| 			free_vm86_irq(irqnumber);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | 
