317 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *
 | |
|  *  Pentium III FXSR, SSE support
 | |
|  *	Gareth Hughes <gareth@valinux.com>, May 2000
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the architecture-dependent parts of process handling..
 | |
|  */
 | |
| 
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/elfcore.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/mc146818rtc.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/syscalls.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/ldt.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/fpu/internal.h>
 | |
| #include <asm/desc.h>
 | |
| #ifdef CONFIG_MATH_EMULATION
 | |
| #include <asm/math_emu.h>
 | |
| #endif
 | |
| 
 | |
| #include <linux/err.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/syscalls.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/switch_to.h>
 | |
| #include <asm/vm86.h>
 | |
| #include <asm/intel_rdt_sched.h>
 | |
| #include <asm/proto.h>
 | |
| 
 | |
| #include "process.h"
 | |
| 
 | |
| void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
 | |
| {
 | |
| 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
 | |
| 	unsigned long d0, d1, d2, d3, d6, d7;
 | |
| 	unsigned long sp;
 | |
| 	unsigned short ss, gs;
 | |
| 
 | |
| 	if (user_mode(regs)) {
 | |
| 		sp = regs->sp;
 | |
| 		ss = regs->ss;
 | |
| 		gs = get_user_gs(regs);
 | |
| 	} else {
 | |
| 		sp = kernel_stack_pointer(regs);
 | |
| 		savesegment(ss, ss);
 | |
| 		savesegment(gs, gs);
 | |
| 	}
 | |
| 
 | |
| 	show_ip(regs, KERN_DEFAULT);
 | |
| 
 | |
| 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
 | |
| 		regs->ax, regs->bx, regs->cx, regs->dx);
 | |
| 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
 | |
| 		regs->si, regs->di, regs->bp, sp);
 | |
| 	printk(KERN_DEFAULT "DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
 | |
| 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss, regs->flags);
 | |
| 
 | |
| 	if (mode != SHOW_REGS_ALL)
 | |
| 		return;
 | |
| 
 | |
| 	cr0 = read_cr0();
 | |
| 	cr2 = read_cr2();
 | |
| 	cr3 = __read_cr3();
 | |
| 	cr4 = __read_cr4();
 | |
| 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 | |
| 			cr0, cr2, cr3, cr4);
 | |
| 
 | |
| 	get_debugreg(d0, 0);
 | |
| 	get_debugreg(d1, 1);
 | |
| 	get_debugreg(d2, 2);
 | |
| 	get_debugreg(d3, 3);
 | |
| 	get_debugreg(d6, 6);
 | |
| 	get_debugreg(d7, 7);
 | |
| 
 | |
| 	/* Only print out debug registers if they are in their non-default state. */
 | |
| 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 | |
| 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
 | |
| 		return;
 | |
| 
 | |
| 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
 | |
| 			d0, d1, d2, d3);
 | |
| 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
 | |
| 			d6, d7);
 | |
| }
 | |
| 
 | |
| void release_thread(struct task_struct *dead_task)
 | |
| {
 | |
| 	BUG_ON(dead_task->mm);
 | |
| 	release_vm86_irqs(dead_task);
 | |
| }
 | |
| 
 | |
| int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
 | |
| 	unsigned long arg, struct task_struct *p, unsigned long tls)
 | |
| {
 | |
| 	struct pt_regs *childregs = task_pt_regs(p);
 | |
| 	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
 | |
| 	struct inactive_task_frame *frame = &fork_frame->frame;
 | |
| 	struct task_struct *tsk;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * For a new task use the RESET flags value since there is no before.
 | |
| 	 * All the status flags are zero; DF and all the system flags must also
 | |
| 	 * be 0, specifically IF must be 0 because we context switch to the new
 | |
| 	 * task with interrupts disabled.
 | |
| 	 */
 | |
| 	frame->flags = X86_EFLAGS_FIXED;
 | |
| 	frame->bp = 0;
 | |
| 	frame->ret_addr = (unsigned long) ret_from_fork;
 | |
| 	p->thread.sp = (unsigned long) fork_frame;
 | |
| 	p->thread.sp0 = (unsigned long) (childregs+1);
 | |
| 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 | |
| 
 | |
| 	if (unlikely(p->flags & PF_KTHREAD)) {
 | |
| 		/* kernel thread */
 | |
| 		memset(childregs, 0, sizeof(struct pt_regs));
 | |
| 		frame->bx = sp;		/* function */
 | |
| 		frame->di = arg;
 | |
| 		p->thread.io_bitmap_ptr = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	frame->bx = 0;
 | |
| 	*childregs = *current_pt_regs();
 | |
| 	childregs->ax = 0;
 | |
| 	if (sp)
 | |
| 		childregs->sp = sp;
 | |
| 
 | |
| 	task_user_gs(p) = get_user_gs(current_pt_regs());
 | |
| 
 | |
| 	p->thread.io_bitmap_ptr = NULL;
 | |
| 	tsk = current;
 | |
| 	err = -ENOMEM;
 | |
| 
 | |
| 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
 | |
| 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
 | |
| 						IO_BITMAP_BYTES, GFP_KERNEL);
 | |
| 		if (!p->thread.io_bitmap_ptr) {
 | |
| 			p->thread.io_bitmap_max = 0;
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set a new TLS for the child thread?
 | |
| 	 */
 | |
| 	if (clone_flags & CLONE_SETTLS)
 | |
| 		err = do_set_thread_area(p, -1,
 | |
| 			(struct user_desc __user *)tls, 0);
 | |
| 
 | |
| 	if (err && p->thread.io_bitmap_ptr) {
 | |
| 		kfree(p->thread.io_bitmap_ptr);
 | |
| 		p->thread.io_bitmap_max = 0;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void
 | |
| start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 | |
| {
 | |
| 	set_user_gs(regs, 0);
 | |
| 	regs->fs		= 0;
 | |
| 	regs->ds		= __USER_DS;
 | |
| 	regs->es		= __USER_DS;
 | |
| 	regs->ss		= __USER_DS;
 | |
| 	regs->cs		= __USER_CS;
 | |
| 	regs->ip		= new_ip;
 | |
| 	regs->sp		= new_sp;
 | |
| 	regs->flags		= X86_EFLAGS_IF;
 | |
| 	force_iret();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(start_thread);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	switch_to(x,y) should switch tasks from x to y.
 | |
|  *
 | |
|  * We fsave/fwait so that an exception goes off at the right time
 | |
|  * (as a call from the fsave or fwait in effect) rather than to
 | |
|  * the wrong process. Lazy FP saving no longer makes any sense
 | |
|  * with modern CPU's, and this simplifies a lot of things (SMP
 | |
|  * and UP become the same).
 | |
|  *
 | |
|  * NOTE! We used to use the x86 hardware context switching. The
 | |
|  * reason for not using it any more becomes apparent when you
 | |
|  * try to recover gracefully from saved state that is no longer
 | |
|  * valid (stale segment register values in particular). With the
 | |
|  * hardware task-switch, there is no way to fix up bad state in
 | |
|  * a reasonable manner.
 | |
|  *
 | |
|  * The fact that Intel documents the hardware task-switching to
 | |
|  * be slow is a fairly red herring - this code is not noticeably
 | |
|  * faster. However, there _is_ some room for improvement here,
 | |
|  * so the performance issues may eventually be a valid point.
 | |
|  * More important, however, is the fact that this allows us much
 | |
|  * more flexibility.
 | |
|  *
 | |
|  * The return value (in %ax) will be the "prev" task after
 | |
|  * the task-switch, and shows up in ret_from_fork in entry.S,
 | |
|  * for example.
 | |
|  */
 | |
| __visible __notrace_funcgraph struct task_struct *
 | |
| __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 | |
| {
 | |
| 	struct thread_struct *prev = &prev_p->thread,
 | |
| 			     *next = &next_p->thread;
 | |
| 	struct fpu *prev_fpu = &prev->fpu;
 | |
| 	struct fpu *next_fpu = &next->fpu;
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
 | |
| 
 | |
| 	switch_fpu_prepare(prev_fpu, cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Save away %gs. No need to save %fs, as it was saved on the
 | |
| 	 * stack on entry.  No need to save %es and %ds, as those are
 | |
| 	 * always kernel segments while inside the kernel.  Doing this
 | |
| 	 * before setting the new TLS descriptors avoids the situation
 | |
| 	 * where we temporarily have non-reloadable segments in %fs
 | |
| 	 * and %gs.  This could be an issue if the NMI handler ever
 | |
| 	 * used %fs or %gs (it does not today), or if the kernel is
 | |
| 	 * running inside of a hypervisor layer.
 | |
| 	 */
 | |
| 	lazy_save_gs(prev->gs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Load the per-thread Thread-Local Storage descriptor.
 | |
| 	 */
 | |
| 	load_TLS(next, cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore IOPL if needed.  In normal use, the flags restore
 | |
| 	 * in the switch assembly will handle this.  But if the kernel
 | |
| 	 * is running virtualized at a non-zero CPL, the popf will
 | |
| 	 * not restore flags, so it must be done in a separate step.
 | |
| 	 */
 | |
| 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
 | |
| 		set_iopl_mask(next->iopl);
 | |
| 
 | |
| 	switch_to_extra(prev_p, next_p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Leave lazy mode, flushing any hypercalls made here.
 | |
| 	 * This must be done before restoring TLS segments so
 | |
| 	 * the GDT and LDT are properly updated, and must be
 | |
| 	 * done before fpu__restore(), so the TS bit is up
 | |
| 	 * to date.
 | |
| 	 */
 | |
| 	arch_end_context_switch(next_p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reload esp0 and cpu_current_top_of_stack.  This changes
 | |
| 	 * current_thread_info().  Refresh the SYSENTER configuration in
 | |
| 	 * case prev or next is vm86.
 | |
| 	 */
 | |
| 	update_task_stack(next_p);
 | |
| 	refresh_sysenter_cs(next);
 | |
| 	this_cpu_write(cpu_current_top_of_stack,
 | |
| 		       (unsigned long)task_stack_page(next_p) +
 | |
| 		       THREAD_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore %gs if needed (which is common)
 | |
| 	 */
 | |
| 	if (prev->gs | next->gs)
 | |
| 		lazy_load_gs(next->gs);
 | |
| 
 | |
| 	switch_fpu_finish(next_fpu, cpu);
 | |
| 
 | |
| 	this_cpu_write(current_task, next_p);
 | |
| 
 | |
| 	/* Load the Intel cache allocation PQR MSR. */
 | |
| 	intel_rdt_sched_in();
 | |
| 
 | |
| 	return prev_p;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
 | |
| {
 | |
| 	return do_arch_prctl_common(current, option, arg2);
 | |
| }
 | 
