216 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ----------------------------------------------------------------------- *
 | |
|  *
 | |
|  *   Copyright 2014 Intel Corporation; author: H. Peter Anvin
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or modify it
 | |
|  *   under the terms and conditions of the GNU General Public License,
 | |
|  *   version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  *   This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  *   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  *   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  *
 | |
|  * ----------------------------------------------------------------------- */
 | |
| 
 | |
| /*
 | |
|  * The IRET instruction, when returning to a 16-bit segment, only
 | |
|  * restores the bottom 16 bits of the user space stack pointer.  This
 | |
|  * causes some 16-bit software to break, but it also leaks kernel state
 | |
|  * to user space.
 | |
|  *
 | |
|  * This works around this by creating percpu "ministacks", each of which
 | |
|  * is mapped 2^16 times 64K apart.  When we detect that the return SS is
 | |
|  * on the LDT, we copy the IRET frame to the ministack and use the
 | |
|  * relevant alias to return to userspace.  The ministacks are mapped
 | |
|  * readonly, so if the IRET fault we promote #GP to #DF which is an IST
 | |
|  * vector and thus has its own stack; we then do the fixup in the #DF
 | |
|  * handler.
 | |
|  *
 | |
|  * This file sets up the ministacks and the related page tables.  The
 | |
|  * actual ministack invocation is in entry_64.S.
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/init_task.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/random.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/espfix.h>
 | |
| 
 | |
| /*
 | |
|  * Note: we only need 6*8 = 48 bytes for the espfix stack, but round
 | |
|  * it up to a cache line to avoid unnecessary sharing.
 | |
|  */
 | |
| #define ESPFIX_STACK_SIZE	(8*8UL)
 | |
| #define ESPFIX_STACKS_PER_PAGE	(PAGE_SIZE/ESPFIX_STACK_SIZE)
 | |
| 
 | |
| /* There is address space for how many espfix pages? */
 | |
| #define ESPFIX_PAGE_SPACE	(1UL << (P4D_SHIFT-PAGE_SHIFT-16))
 | |
| 
 | |
| #define ESPFIX_MAX_CPUS		(ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE)
 | |
| #if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS
 | |
| # error "Need more virtual address space for the ESPFIX hack"
 | |
| #endif
 | |
| 
 | |
| #define PGALLOC_GFP (GFP_KERNEL | __GFP_ZERO)
 | |
| 
 | |
| /* This contains the *bottom* address of the espfix stack */
 | |
| DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack);
 | |
| DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr);
 | |
| 
 | |
| /* Initialization mutex - should this be a spinlock? */
 | |
| static DEFINE_MUTEX(espfix_init_mutex);
 | |
| 
 | |
| /* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */
 | |
| #define ESPFIX_MAX_PAGES  DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE)
 | |
| static void *espfix_pages[ESPFIX_MAX_PAGES];
 | |
| 
 | |
| static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD]
 | |
| 	__aligned(PAGE_SIZE);
 | |
| 
 | |
| static unsigned int page_random, slot_random;
 | |
| 
 | |
| /*
 | |
|  * This returns the bottom address of the espfix stack for a specific CPU.
 | |
|  * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case
 | |
|  * we have to account for some amount of padding at the end of each page.
 | |
|  */
 | |
| static inline unsigned long espfix_base_addr(unsigned int cpu)
 | |
| {
 | |
| 	unsigned long page, slot;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random;
 | |
| 	slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE;
 | |
| 	addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE);
 | |
| 	addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16);
 | |
| 	addr += ESPFIX_BASE_ADDR;
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| #define PTE_STRIDE        (65536/PAGE_SIZE)
 | |
| #define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE)
 | |
| #define ESPFIX_PMD_CLONES PTRS_PER_PMD
 | |
| #define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES))
 | |
| 
 | |
| #define PGTABLE_PROT	  ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX)
 | |
| 
 | |
| static void init_espfix_random(void)
 | |
| {
 | |
| 	unsigned long rand;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is run before the entropy pools are initialized,
 | |
| 	 * but this is hopefully better than nothing.
 | |
| 	 */
 | |
| 	if (!arch_get_random_long(&rand)) {
 | |
| 		/* The constant is an arbitrary large prime */
 | |
| 		rand = rdtsc();
 | |
| 		rand *= 0xc345c6b72fd16123UL;
 | |
| 	}
 | |
| 
 | |
| 	slot_random = rand % ESPFIX_STACKS_PER_PAGE;
 | |
| 	page_random = (rand / ESPFIX_STACKS_PER_PAGE)
 | |
| 		& (ESPFIX_PAGE_SPACE - 1);
 | |
| }
 | |
| 
 | |
| void __init init_espfix_bsp(void)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 
 | |
| 	/* Install the espfix pud into the kernel page directory */
 | |
| 	pgd = &init_top_pgt[pgd_index(ESPFIX_BASE_ADDR)];
 | |
| 	p4d = p4d_alloc(&init_mm, pgd, ESPFIX_BASE_ADDR);
 | |
| 	p4d_populate(&init_mm, p4d, espfix_pud_page);
 | |
| 
 | |
| 	/* Randomize the locations */
 | |
| 	init_espfix_random();
 | |
| 
 | |
| 	/* The rest is the same as for any other processor */
 | |
| 	init_espfix_ap(0);
 | |
| }
 | |
| 
 | |
| void init_espfix_ap(int cpu)
 | |
| {
 | |
| 	unsigned int page;
 | |
| 	unsigned long addr;
 | |
| 	pud_t pud, *pud_p;
 | |
| 	pmd_t pmd, *pmd_p;
 | |
| 	pte_t pte, *pte_p;
 | |
| 	int n, node;
 | |
| 	void *stack_page;
 | |
| 	pteval_t ptemask;
 | |
| 
 | |
| 	/* We only have to do this once... */
 | |
| 	if (likely(per_cpu(espfix_stack, cpu)))
 | |
| 		return;		/* Already initialized */
 | |
| 
 | |
| 	addr = espfix_base_addr(cpu);
 | |
| 	page = cpu/ESPFIX_STACKS_PER_PAGE;
 | |
| 
 | |
| 	/* Did another CPU already set this up? */
 | |
| 	stack_page = READ_ONCE(espfix_pages[page]);
 | |
| 	if (likely(stack_page))
 | |
| 		goto done;
 | |
| 
 | |
| 	mutex_lock(&espfix_init_mutex);
 | |
| 
 | |
| 	/* Did we race on the lock? */
 | |
| 	stack_page = READ_ONCE(espfix_pages[page]);
 | |
| 	if (stack_page)
 | |
| 		goto unlock_done;
 | |
| 
 | |
| 	node = cpu_to_node(cpu);
 | |
| 	ptemask = __supported_pte_mask;
 | |
| 
 | |
| 	pud_p = &espfix_pud_page[pud_index(addr)];
 | |
| 	pud = *pud_p;
 | |
| 	if (!pud_present(pud)) {
 | |
| 		struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
 | |
| 
 | |
| 		pmd_p = (pmd_t *)page_address(page);
 | |
| 		pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask));
 | |
| 		paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT);
 | |
| 		for (n = 0; n < ESPFIX_PUD_CLONES; n++)
 | |
| 			set_pud(&pud_p[n], pud);
 | |
| 	}
 | |
| 
 | |
| 	pmd_p = pmd_offset(&pud, addr);
 | |
| 	pmd = *pmd_p;
 | |
| 	if (!pmd_present(pmd)) {
 | |
| 		struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
 | |
| 
 | |
| 		pte_p = (pte_t *)page_address(page);
 | |
| 		pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask));
 | |
| 		paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT);
 | |
| 		for (n = 0; n < ESPFIX_PMD_CLONES; n++)
 | |
| 			set_pmd(&pmd_p[n], pmd);
 | |
| 	}
 | |
| 
 | |
| 	pte_p = pte_offset_kernel(&pmd, addr);
 | |
| 	stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0));
 | |
| 	/*
 | |
| 	 * __PAGE_KERNEL_* includes _PAGE_GLOBAL, which we want since
 | |
| 	 * this is mapped to userspace.
 | |
| 	 */
 | |
| 	pte = __pte(__pa(stack_page) | ((__PAGE_KERNEL_RO | _PAGE_ENC) & ptemask));
 | |
| 	for (n = 0; n < ESPFIX_PTE_CLONES; n++)
 | |
| 		set_pte(&pte_p[n*PTE_STRIDE], pte);
 | |
| 
 | |
| 	/* Job is done for this CPU and any CPU which shares this page */
 | |
| 	WRITE_ONCE(espfix_pages[page], stack_page);
 | |
| 
 | |
| unlock_done:
 | |
| 	mutex_unlock(&espfix_init_mutex);
 | |
| done:
 | |
| 	per_cpu(espfix_stack, cpu) = addr;
 | |
| 	per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page
 | |
| 				      + (addr & ~PAGE_MASK);
 | |
| }
 | 
