868 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			868 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * kaslr.c
 | |
|  *
 | |
|  * This contains the routines needed to generate a reasonable level of
 | |
|  * entropy to choose a randomized kernel base address offset in support
 | |
|  * of Kernel Address Space Layout Randomization (KASLR). Additionally
 | |
|  * handles walking the physical memory maps (and tracking memory regions
 | |
|  * to avoid) in order to select a physical memory location that can
 | |
|  * contain the entire properly aligned running kernel image.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * isspace() in linux/ctype.h is expected by next_args() to filter
 | |
|  * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
 | |
|  * since isdigit() is implemented in both of them. Hence disable it
 | |
|  * here.
 | |
|  */
 | |
| #define BOOT_CTYPE_H
 | |
| 
 | |
| /*
 | |
|  * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
 | |
|  * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
 | |
|  * which is meaningless and will cause compiling error in some cases.
 | |
|  */
 | |
| #define __DISABLE_EXPORTS
 | |
| 
 | |
| #include "misc.h"
 | |
| #include "error.h"
 | |
| #include "../string.h"
 | |
| 
 | |
| #include <generated/compile.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/uts.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/efi.h>
 | |
| #include <generated/utsrelease.h>
 | |
| #include <asm/efi.h>
 | |
| 
 | |
| /* Macros used by the included decompressor code below. */
 | |
| #define STATIC
 | |
| #include <linux/decompress/mm.h>
 | |
| 
 | |
| #ifdef CONFIG_X86_5LEVEL
 | |
| unsigned int __pgtable_l5_enabled;
 | |
| unsigned int pgdir_shift __ro_after_init = 39;
 | |
| unsigned int ptrs_per_p4d __ro_after_init = 1;
 | |
| #endif
 | |
| 
 | |
| extern unsigned long get_cmd_line_ptr(void);
 | |
| 
 | |
| /* Used by PAGE_KERN* macros: */
 | |
| pteval_t __default_kernel_pte_mask __read_mostly = ~0;
 | |
| 
 | |
| /* Simplified build-specific string for starting entropy. */
 | |
| static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
 | |
| 		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
 | |
| 
 | |
| static unsigned long rotate_xor(unsigned long hash, const void *area,
 | |
| 				size_t size)
 | |
| {
 | |
| 	size_t i;
 | |
| 	unsigned long *ptr = (unsigned long *)area;
 | |
| 
 | |
| 	for (i = 0; i < size / sizeof(hash); i++) {
 | |
| 		/* Rotate by odd number of bits and XOR. */
 | |
| 		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
 | |
| 		hash ^= ptr[i];
 | |
| 	}
 | |
| 
 | |
| 	return hash;
 | |
| }
 | |
| 
 | |
| /* Attempt to create a simple but unpredictable starting entropy. */
 | |
| static unsigned long get_boot_seed(void)
 | |
| {
 | |
| 	unsigned long hash = 0;
 | |
| 
 | |
| 	hash = rotate_xor(hash, build_str, sizeof(build_str));
 | |
| 	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
 | |
| 
 | |
| 	return hash;
 | |
| }
 | |
| 
 | |
| #define KASLR_COMPRESSED_BOOT
 | |
| #include "../../lib/kaslr.c"
 | |
| 
 | |
| struct mem_vector {
 | |
| 	unsigned long long start;
 | |
| 	unsigned long long size;
 | |
| };
 | |
| 
 | |
| /* Only supporting at most 4 unusable memmap regions with kaslr */
 | |
| #define MAX_MEMMAP_REGIONS	4
 | |
| 
 | |
| static bool memmap_too_large;
 | |
| 
 | |
| 
 | |
| /* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
 | |
| static unsigned long long mem_limit = ULLONG_MAX;
 | |
| 
 | |
| 
 | |
| enum mem_avoid_index {
 | |
| 	MEM_AVOID_ZO_RANGE = 0,
 | |
| 	MEM_AVOID_INITRD,
 | |
| 	MEM_AVOID_CMDLINE,
 | |
| 	MEM_AVOID_BOOTPARAMS,
 | |
| 	MEM_AVOID_MEMMAP_BEGIN,
 | |
| 	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
 | |
| 	MEM_AVOID_MAX,
 | |
| };
 | |
| 
 | |
| static struct mem_vector mem_avoid[MEM_AVOID_MAX];
 | |
| 
 | |
| static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
 | |
| {
 | |
| 	/* Item one is entirely before item two. */
 | |
| 	if (one->start + one->size <= two->start)
 | |
| 		return false;
 | |
| 	/* Item one is entirely after item two. */
 | |
| 	if (one->start >= two->start + two->size)
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| char *skip_spaces(const char *str)
 | |
| {
 | |
| 	while (isspace(*str))
 | |
| 		++str;
 | |
| 	return (char *)str;
 | |
| }
 | |
| #include "../../../../lib/ctype.c"
 | |
| #include "../../../../lib/cmdline.c"
 | |
| 
 | |
| static int
 | |
| parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
 | |
| {
 | |
| 	char *oldp;
 | |
| 
 | |
| 	if (!p)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* We don't care about this option here */
 | |
| 	if (!strncmp(p, "exactmap", 8))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	oldp = p;
 | |
| 	*size = memparse(p, &p);
 | |
| 	if (p == oldp)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (*p) {
 | |
| 	case '#':
 | |
| 	case '$':
 | |
| 	case '!':
 | |
| 		*start = memparse(p + 1, &p);
 | |
| 		return 0;
 | |
| 	case '@':
 | |
| 		/* memmap=nn@ss specifies usable region, should be skipped */
 | |
| 		*size = 0;
 | |
| 		/* Fall through */
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * If w/o offset, only size specified, memmap=nn[KMG] has the
 | |
| 		 * same behaviour as mem=nn[KMG]. It limits the max address
 | |
| 		 * system can use. Region above the limit should be avoided.
 | |
| 		 */
 | |
| 		*start = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void mem_avoid_memmap(char *str)
 | |
| {
 | |
| 	static int i;
 | |
| 
 | |
| 	if (i >= MAX_MEMMAP_REGIONS)
 | |
| 		return;
 | |
| 
 | |
| 	while (str && (i < MAX_MEMMAP_REGIONS)) {
 | |
| 		int rc;
 | |
| 		unsigned long long start, size;
 | |
| 		char *k = strchr(str, ',');
 | |
| 
 | |
| 		if (k)
 | |
| 			*k++ = 0;
 | |
| 
 | |
| 		rc = parse_memmap(str, &start, &size);
 | |
| 		if (rc < 0)
 | |
| 			break;
 | |
| 		str = k;
 | |
| 
 | |
| 		if (start == 0) {
 | |
| 			/* Store the specified memory limit if size > 0 */
 | |
| 			if (size > 0)
 | |
| 				mem_limit = size;
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
 | |
| 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	/* More than 4 memmaps, fail kaslr */
 | |
| 	if ((i >= MAX_MEMMAP_REGIONS) && str)
 | |
| 		memmap_too_large = true;
 | |
| }
 | |
| 
 | |
| /* Store the number of 1GB huge pages which users specified: */
 | |
| static unsigned long max_gb_huge_pages;
 | |
| 
 | |
| static void parse_gb_huge_pages(char *param, char *val)
 | |
| {
 | |
| 	static bool gbpage_sz;
 | |
| 	char *p;
 | |
| 
 | |
| 	if (!strcmp(param, "hugepagesz")) {
 | |
| 		p = val;
 | |
| 		if (memparse(p, &p) != PUD_SIZE) {
 | |
| 			gbpage_sz = false;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (gbpage_sz)
 | |
| 			warn("Repeatedly set hugeTLB page size of 1G!\n");
 | |
| 		gbpage_sz = true;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!strcmp(param, "hugepages") && gbpage_sz) {
 | |
| 		p = val;
 | |
| 		max_gb_huge_pages = simple_strtoull(p, &p, 0);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int handle_mem_options(void)
 | |
| {
 | |
| 	char *args = (char *)get_cmd_line_ptr();
 | |
| 	size_t len = strlen((char *)args);
 | |
| 	char *tmp_cmdline;
 | |
| 	char *param, *val;
 | |
| 	u64 mem_size;
 | |
| 
 | |
| 	if (!strstr(args, "memmap=") && !strstr(args, "mem=") &&
 | |
| 		!strstr(args, "hugepages"))
 | |
| 		return 0;
 | |
| 
 | |
| 	tmp_cmdline = malloc(len + 1);
 | |
| 	if (!tmp_cmdline)
 | |
| 		error("Failed to allocate space for tmp_cmdline");
 | |
| 
 | |
| 	memcpy(tmp_cmdline, args, len);
 | |
| 	tmp_cmdline[len] = 0;
 | |
| 	args = tmp_cmdline;
 | |
| 
 | |
| 	/* Chew leading spaces */
 | |
| 	args = skip_spaces(args);
 | |
| 
 | |
| 	while (*args) {
 | |
| 		args = next_arg(args, ¶m, &val);
 | |
| 		/* Stop at -- */
 | |
| 		if (!val && strcmp(param, "--") == 0) {
 | |
| 			warn("Only '--' specified in cmdline");
 | |
| 			free(tmp_cmdline);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		if (!strcmp(param, "memmap")) {
 | |
| 			mem_avoid_memmap(val);
 | |
| 		} else if (strstr(param, "hugepages")) {
 | |
| 			parse_gb_huge_pages(param, val);
 | |
| 		} else if (!strcmp(param, "mem")) {
 | |
| 			char *p = val;
 | |
| 
 | |
| 			if (!strcmp(p, "nopentium"))
 | |
| 				continue;
 | |
| 			mem_size = memparse(p, &p);
 | |
| 			if (mem_size == 0) {
 | |
| 				free(tmp_cmdline);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			mem_limit = mem_size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free(tmp_cmdline);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 | |
|  * The mem_avoid array is used to store the ranges that need to be avoided
 | |
|  * when KASLR searches for an appropriate random address. We must avoid any
 | |
|  * regions that are unsafe to overlap with during decompression, and other
 | |
|  * things like the initrd, cmdline and boot_params. This comment seeks to
 | |
|  * explain mem_avoid as clearly as possible since incorrect mem_avoid
 | |
|  * memory ranges lead to really hard to debug boot failures.
 | |
|  *
 | |
|  * The initrd, cmdline, and boot_params are trivial to identify for
 | |
|  * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
 | |
|  * MEM_AVOID_BOOTPARAMS respectively below.
 | |
|  *
 | |
|  * What is not obvious how to avoid is the range of memory that is used
 | |
|  * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 | |
|  * the compressed kernel (ZO) and its run space, which is used to extract
 | |
|  * the uncompressed kernel (VO) and relocs.
 | |
|  *
 | |
|  * ZO's full run size sits against the end of the decompression buffer, so
 | |
|  * we can calculate where text, data, bss, etc of ZO are positioned more
 | |
|  * easily.
 | |
|  *
 | |
|  * For additional background, the decompression calculations can be found
 | |
|  * in header.S, and the memory diagram is based on the one found in misc.c.
 | |
|  *
 | |
|  * The following conditions are already enforced by the image layouts and
 | |
|  * associated code:
 | |
|  *  - input + input_size >= output + output_size
 | |
|  *  - kernel_total_size <= init_size
 | |
|  *  - kernel_total_size <= output_size (see Note below)
 | |
|  *  - output + init_size >= output + output_size
 | |
|  *
 | |
|  * (Note that kernel_total_size and output_size have no fundamental
 | |
|  * relationship, but output_size is passed to choose_random_location
 | |
|  * as a maximum of the two. The diagram is showing a case where
 | |
|  * kernel_total_size is larger than output_size, but this case is
 | |
|  * handled by bumping output_size.)
 | |
|  *
 | |
|  * The above conditions can be illustrated by a diagram:
 | |
|  *
 | |
|  * 0   output            input            input+input_size    output+init_size
 | |
|  * |     |                 |                             |             |
 | |
|  * |     |                 |                             |             |
 | |
|  * |-----|--------|--------|--------------|-----------|--|-------------|
 | |
|  *                |                       |           |
 | |
|  *                |                       |           |
 | |
|  * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
 | |
|  *
 | |
|  * [output, output+init_size) is the entire memory range used for
 | |
|  * extracting the compressed image.
 | |
|  *
 | |
|  * [output, output+kernel_total_size) is the range needed for the
 | |
|  * uncompressed kernel (VO) and its run size (bss, brk, etc).
 | |
|  *
 | |
|  * [output, output+output_size) is VO plus relocs (i.e. the entire
 | |
|  * uncompressed payload contained by ZO). This is the area of the buffer
 | |
|  * written to during decompression.
 | |
|  *
 | |
|  * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 | |
|  * range of the copied ZO and decompression code. (i.e. the range
 | |
|  * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
 | |
|  *
 | |
|  * [input, input+input_size) is the original copied compressed image (ZO)
 | |
|  * (i.e. it does not include its run size). This range must be avoided
 | |
|  * because it contains the data used for decompression.
 | |
|  *
 | |
|  * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 | |
|  * range includes ZO's heap and stack, and must be avoided since it
 | |
|  * performs the decompression.
 | |
|  *
 | |
|  * Since the above two ranges need to be avoided and they are adjacent,
 | |
|  * they can be merged, resulting in: [input, output+init_size) which
 | |
|  * becomes the MEM_AVOID_ZO_RANGE below.
 | |
|  */
 | |
| static void mem_avoid_init(unsigned long input, unsigned long input_size,
 | |
| 			   unsigned long output)
 | |
| {
 | |
| 	unsigned long init_size = boot_params->hdr.init_size;
 | |
| 	u64 initrd_start, initrd_size;
 | |
| 	u64 cmd_line, cmd_line_size;
 | |
| 	char *ptr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid the region that is unsafe to overlap during
 | |
| 	 * decompression.
 | |
| 	 */
 | |
| 	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
 | |
| 	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
 | |
| 	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
 | |
| 			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
 | |
| 
 | |
| 	/* Avoid initrd. */
 | |
| 	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
 | |
| 	initrd_start |= boot_params->hdr.ramdisk_image;
 | |
| 	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
 | |
| 	initrd_size |= boot_params->hdr.ramdisk_size;
 | |
| 	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
 | |
| 	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
 | |
| 	/* No need to set mapping for initrd, it will be handled in VO. */
 | |
| 
 | |
| 	/* Avoid kernel command line. */
 | |
| 	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
 | |
| 	cmd_line |= boot_params->hdr.cmd_line_ptr;
 | |
| 	/* Calculate size of cmd_line. */
 | |
| 	ptr = (char *)(unsigned long)cmd_line;
 | |
| 	for (cmd_line_size = 0; ptr[cmd_line_size++];)
 | |
| 		;
 | |
| 	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
 | |
| 	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
 | |
| 	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
 | |
| 			 mem_avoid[MEM_AVOID_CMDLINE].size);
 | |
| 
 | |
| 	/* Avoid boot parameters. */
 | |
| 	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
 | |
| 	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
 | |
| 	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
 | |
| 			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
 | |
| 
 | |
| 	/* We don't need to set a mapping for setup_data. */
 | |
| 
 | |
| 	/* Mark the memmap regions we need to avoid */
 | |
| 	handle_mem_options();
 | |
| 
 | |
| #ifdef CONFIG_X86_VERBOSE_BOOTUP
 | |
| 	/* Make sure video RAM can be used. */
 | |
| 	add_identity_map(0, PMD_SIZE);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Does this memory vector overlap a known avoided area? If so, record the
 | |
|  * overlap region with the lowest address.
 | |
|  */
 | |
| static bool mem_avoid_overlap(struct mem_vector *img,
 | |
| 			      struct mem_vector *overlap)
 | |
| {
 | |
| 	int i;
 | |
| 	struct setup_data *ptr;
 | |
| 	unsigned long earliest = img->start + img->size;
 | |
| 	bool is_overlapping = false;
 | |
| 
 | |
| 	for (i = 0; i < MEM_AVOID_MAX; i++) {
 | |
| 		if (mem_overlaps(img, &mem_avoid[i]) &&
 | |
| 		    mem_avoid[i].start < earliest) {
 | |
| 			*overlap = mem_avoid[i];
 | |
| 			earliest = overlap->start;
 | |
| 			is_overlapping = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Avoid all entries in the setup_data linked list. */
 | |
| 	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
 | |
| 	while (ptr) {
 | |
| 		struct mem_vector avoid;
 | |
| 
 | |
| 		avoid.start = (unsigned long)ptr;
 | |
| 		avoid.size = sizeof(*ptr) + ptr->len;
 | |
| 
 | |
| 		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
 | |
| 			*overlap = avoid;
 | |
| 			earliest = overlap->start;
 | |
| 			is_overlapping = true;
 | |
| 		}
 | |
| 
 | |
| 		ptr = (struct setup_data *)(unsigned long)ptr->next;
 | |
| 	}
 | |
| 
 | |
| 	return is_overlapping;
 | |
| }
 | |
| 
 | |
| struct slot_area {
 | |
| 	unsigned long addr;
 | |
| 	int num;
 | |
| };
 | |
| 
 | |
| #define MAX_SLOT_AREA 100
 | |
| 
 | |
| static struct slot_area slot_areas[MAX_SLOT_AREA];
 | |
| 
 | |
| static unsigned long slot_max;
 | |
| 
 | |
| static unsigned long slot_area_index;
 | |
| 
 | |
| static void store_slot_info(struct mem_vector *region, unsigned long image_size)
 | |
| {
 | |
| 	struct slot_area slot_area;
 | |
| 
 | |
| 	if (slot_area_index == MAX_SLOT_AREA)
 | |
| 		return;
 | |
| 
 | |
| 	slot_area.addr = region->start;
 | |
| 	slot_area.num = (region->size - image_size) /
 | |
| 			CONFIG_PHYSICAL_ALIGN + 1;
 | |
| 
 | |
| 	if (slot_area.num > 0) {
 | |
| 		slot_areas[slot_area_index++] = slot_area;
 | |
| 		slot_max += slot_area.num;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Skip as many 1GB huge pages as possible in the passed region
 | |
|  * according to the number which users specified:
 | |
|  */
 | |
| static void
 | |
| process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
 | |
| {
 | |
| 	unsigned long addr, size = 0;
 | |
| 	struct mem_vector tmp;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (!max_gb_huge_pages) {
 | |
| 		store_slot_info(region, image_size);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	addr = ALIGN(region->start, PUD_SIZE);
 | |
| 	/* Did we raise the address above the passed in memory entry? */
 | |
| 	if (addr < region->start + region->size)
 | |
| 		size = region->size - (addr - region->start);
 | |
| 
 | |
| 	/* Check how many 1GB huge pages can be filtered out: */
 | |
| 	while (size > PUD_SIZE && max_gb_huge_pages) {
 | |
| 		size -= PUD_SIZE;
 | |
| 		max_gb_huge_pages--;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	/* No good 1GB huge pages found: */
 | |
| 	if (!i) {
 | |
| 		store_slot_info(region, image_size);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip those 'i'*1GB good huge pages, and continue checking and
 | |
| 	 * processing the remaining head or tail part of the passed region
 | |
| 	 * if available.
 | |
| 	 */
 | |
| 
 | |
| 	if (addr >= region->start + image_size) {
 | |
| 		tmp.start = region->start;
 | |
| 		tmp.size = addr - region->start;
 | |
| 		store_slot_info(&tmp, image_size);
 | |
| 	}
 | |
| 
 | |
| 	size  = region->size - (addr - region->start) - i * PUD_SIZE;
 | |
| 	if (size >= image_size) {
 | |
| 		tmp.start = addr + i * PUD_SIZE;
 | |
| 		tmp.size = size;
 | |
| 		store_slot_info(&tmp, image_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long slots_fetch_random(void)
 | |
| {
 | |
| 	unsigned long slot;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Handle case of no slots stored. */
 | |
| 	if (slot_max == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	slot = kaslr_get_random_long("Physical") % slot_max;
 | |
| 
 | |
| 	for (i = 0; i < slot_area_index; i++) {
 | |
| 		if (slot >= slot_areas[i].num) {
 | |
| 			slot -= slot_areas[i].num;
 | |
| 			continue;
 | |
| 		}
 | |
| 		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
 | |
| 	}
 | |
| 
 | |
| 	if (i == slot_area_index)
 | |
| 		debug_putstr("slots_fetch_random() failed!?\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void process_mem_region(struct mem_vector *entry,
 | |
| 			       unsigned long minimum,
 | |
| 			       unsigned long image_size)
 | |
| {
 | |
| 	struct mem_vector region, overlap;
 | |
| 	struct slot_area slot_area;
 | |
| 	unsigned long start_orig, end;
 | |
| 	struct mem_vector cur_entry;
 | |
| 
 | |
| 	/* On 32-bit, ignore entries entirely above our maximum. */
 | |
| 	if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
 | |
| 		return;
 | |
| 
 | |
| 	/* Ignore entries entirely below our minimum. */
 | |
| 	if (entry->start + entry->size < minimum)
 | |
| 		return;
 | |
| 
 | |
| 	/* Ignore entries above memory limit */
 | |
| 	end = min(entry->size + entry->start, mem_limit);
 | |
| 	if (entry->start >= end)
 | |
| 		return;
 | |
| 	cur_entry.start = entry->start;
 | |
| 	cur_entry.size = end - entry->start;
 | |
| 
 | |
| 	region.start = cur_entry.start;
 | |
| 	region.size = cur_entry.size;
 | |
| 
 | |
| 	/* Give up if slot area array is full. */
 | |
| 	while (slot_area_index < MAX_SLOT_AREA) {
 | |
| 		start_orig = region.start;
 | |
| 
 | |
| 		/* Potentially raise address to minimum location. */
 | |
| 		if (region.start < minimum)
 | |
| 			region.start = minimum;
 | |
| 
 | |
| 		/* Potentially raise address to meet alignment needs. */
 | |
| 		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
 | |
| 
 | |
| 		/* Did we raise the address above the passed in memory entry? */
 | |
| 		if (region.start > cur_entry.start + cur_entry.size)
 | |
| 			return;
 | |
| 
 | |
| 		/* Reduce size by any delta from the original address. */
 | |
| 		region.size -= region.start - start_orig;
 | |
| 
 | |
| 		/* On 32-bit, reduce region size to fit within max size. */
 | |
| 		if (IS_ENABLED(CONFIG_X86_32) &&
 | |
| 		    region.start + region.size > KERNEL_IMAGE_SIZE)
 | |
| 			region.size = KERNEL_IMAGE_SIZE - region.start;
 | |
| 
 | |
| 		/* Return if region can't contain decompressed kernel */
 | |
| 		if (region.size < image_size)
 | |
| 			return;
 | |
| 
 | |
| 		/* If nothing overlaps, store the region and return. */
 | |
| 		if (!mem_avoid_overlap(®ion, &overlap)) {
 | |
| 			process_gb_huge_pages(®ion, image_size);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Store beginning of region if holds at least image_size. */
 | |
| 		if (overlap.start > region.start + image_size) {
 | |
| 			struct mem_vector beginning;
 | |
| 
 | |
| 			beginning.start = region.start;
 | |
| 			beginning.size = overlap.start - region.start;
 | |
| 			process_gb_huge_pages(&beginning, image_size);
 | |
| 		}
 | |
| 
 | |
| 		/* Return if overlap extends to or past end of region. */
 | |
| 		if (overlap.start + overlap.size >= region.start + region.size)
 | |
| 			return;
 | |
| 
 | |
| 		/* Clip off the overlapping region and start over. */
 | |
| 		region.size -= overlap.start - region.start + overlap.size;
 | |
| 		region.start = overlap.start + overlap.size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_EFI
 | |
| /*
 | |
|  * Returns true if mirror region found (and must have been processed
 | |
|  * for slots adding)
 | |
|  */
 | |
| static bool
 | |
| process_efi_entries(unsigned long minimum, unsigned long image_size)
 | |
| {
 | |
| 	struct efi_info *e = &boot_params->efi_info;
 | |
| 	bool efi_mirror_found = false;
 | |
| 	struct mem_vector region;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	unsigned long pmap;
 | |
| 	char *signature;
 | |
| 	u32 nr_desc;
 | |
| 	int i;
 | |
| 
 | |
| 	signature = (char *)&e->efi_loader_signature;
 | |
| 	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
 | |
| 	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
 | |
| 		return false;
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	/* Can't handle data above 4GB at this time */
 | |
| 	if (e->efi_memmap_hi) {
 | |
| 		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
 | |
| 		return false;
 | |
| 	}
 | |
| 	pmap =  e->efi_memmap;
 | |
| #else
 | |
| 	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
 | |
| #endif
 | |
| 
 | |
| 	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
 | |
| 	for (i = 0; i < nr_desc; i++) {
 | |
| 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 | |
| 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 | |
| 			efi_mirror_found = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_desc; i++) {
 | |
| 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 | |
| 
 | |
| 		/*
 | |
| 		 * Here we are more conservative in picking free memory than
 | |
| 		 * the EFI spec allows:
 | |
| 		 *
 | |
| 		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
 | |
| 		 * free memory and thus available to place the kernel image into,
 | |
| 		 * but in practice there's firmware where using that memory leads
 | |
| 		 * to crashes.
 | |
| 		 *
 | |
| 		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
 | |
| 		 */
 | |
| 		if (md->type != EFI_CONVENTIONAL_MEMORY)
 | |
| 			continue;
 | |
| 
 | |
| 		if (efi_mirror_found &&
 | |
| 		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
 | |
| 			continue;
 | |
| 
 | |
| 		region.start = md->phys_addr;
 | |
| 		region.size = md->num_pages << EFI_PAGE_SHIFT;
 | |
| 		process_mem_region(®ion, minimum, image_size);
 | |
| 		if (slot_area_index == MAX_SLOT_AREA) {
 | |
| 			debug_putstr("Aborted EFI scan (slot_areas full)!\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| #else
 | |
| static inline bool
 | |
| process_efi_entries(unsigned long minimum, unsigned long image_size)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void process_e820_entries(unsigned long minimum,
 | |
| 				 unsigned long image_size)
 | |
| {
 | |
| 	int i;
 | |
| 	struct mem_vector region;
 | |
| 	struct boot_e820_entry *entry;
 | |
| 
 | |
| 	/* Verify potential e820 positions, appending to slots list. */
 | |
| 	for (i = 0; i < boot_params->e820_entries; i++) {
 | |
| 		entry = &boot_params->e820_table[i];
 | |
| 		/* Skip non-RAM entries. */
 | |
| 		if (entry->type != E820_TYPE_RAM)
 | |
| 			continue;
 | |
| 		region.start = entry->addr;
 | |
| 		region.size = entry->size;
 | |
| 		process_mem_region(®ion, minimum, image_size);
 | |
| 		if (slot_area_index == MAX_SLOT_AREA) {
 | |
| 			debug_putstr("Aborted e820 scan (slot_areas full)!\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long find_random_phys_addr(unsigned long minimum,
 | |
| 					   unsigned long image_size)
 | |
| {
 | |
| 	/* Check if we had too many memmaps. */
 | |
| 	if (memmap_too_large) {
 | |
| 		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure minimum is aligned. */
 | |
| 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 | |
| 
 | |
| 	if (process_efi_entries(minimum, image_size))
 | |
| 		return slots_fetch_random();
 | |
| 
 | |
| 	process_e820_entries(minimum, image_size);
 | |
| 	return slots_fetch_random();
 | |
| }
 | |
| 
 | |
| static unsigned long find_random_virt_addr(unsigned long minimum,
 | |
| 					   unsigned long image_size)
 | |
| {
 | |
| 	unsigned long slots, random_addr;
 | |
| 
 | |
| 	/* Make sure minimum is aligned. */
 | |
| 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 | |
| 	/* Align image_size for easy slot calculations. */
 | |
| 	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
 | |
| 
 | |
| 	/*
 | |
| 	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
 | |
| 	 * that can hold image_size within the range of minimum to
 | |
| 	 * KERNEL_IMAGE_SIZE?
 | |
| 	 */
 | |
| 	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
 | |
| 		 CONFIG_PHYSICAL_ALIGN + 1;
 | |
| 
 | |
| 	random_addr = kaslr_get_random_long("Virtual") % slots;
 | |
| 
 | |
| 	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since this function examines addresses much more numerically,
 | |
|  * it takes the input and output pointers as 'unsigned long'.
 | |
|  */
 | |
| void choose_random_location(unsigned long input,
 | |
| 			    unsigned long input_size,
 | |
| 			    unsigned long *output,
 | |
| 			    unsigned long output_size,
 | |
| 			    unsigned long *virt_addr)
 | |
| {
 | |
| 	unsigned long random_addr, min_addr;
 | |
| 
 | |
| 	if (cmdline_find_option_bool("nokaslr")) {
 | |
| 		warn("KASLR disabled: 'nokaslr' on cmdline.");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_5LEVEL
 | |
| 	if (__read_cr4() & X86_CR4_LA57) {
 | |
| 		__pgtable_l5_enabled = 1;
 | |
| 		pgdir_shift = 48;
 | |
| 		ptrs_per_p4d = 512;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	boot_params->hdr.loadflags |= KASLR_FLAG;
 | |
| 
 | |
| 	/* Prepare to add new identity pagetables on demand. */
 | |
| 	initialize_identity_maps();
 | |
| 
 | |
| 	/* Record the various known unsafe memory ranges. */
 | |
| 	mem_avoid_init(input, input_size, *output);
 | |
| 
 | |
| 	/*
 | |
| 	 * Low end of the randomization range should be the
 | |
| 	 * smaller of 512M or the initial kernel image
 | |
| 	 * location:
 | |
| 	 */
 | |
| 	min_addr = min(*output, 512UL << 20);
 | |
| 
 | |
| 	/* Walk available memory entries to find a random address. */
 | |
| 	random_addr = find_random_phys_addr(min_addr, output_size);
 | |
| 	if (!random_addr) {
 | |
| 		warn("Physical KASLR disabled: no suitable memory region!");
 | |
| 	} else {
 | |
| 		/* Update the new physical address location. */
 | |
| 		if (*output != random_addr) {
 | |
| 			add_identity_map(random_addr, output_size);
 | |
| 			*output = random_addr;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This loads the identity mapping page table.
 | |
| 		 * This should only be done if a new physical address
 | |
| 		 * is found for the kernel, otherwise we should keep
 | |
| 		 * the old page table to make it be like the "nokaslr"
 | |
| 		 * case.
 | |
| 		 */
 | |
| 		finalize_identity_maps();
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
 | |
| 	if (IS_ENABLED(CONFIG_X86_64))
 | |
| 		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
 | |
| 	*virt_addr = random_addr;
 | |
| }
 | 
