700 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			700 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2017 Free Electrons
 | |
|  * Copyright (C) 2017 NextThing Co
 | |
|  *
 | |
|  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/mtd/rawnand.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #define NAND_HYNIX_CMD_SET_PARAMS	0x36
 | |
| #define NAND_HYNIX_CMD_APPLY_PARAMS	0x16
 | |
| 
 | |
| #define NAND_HYNIX_1XNM_RR_REPEAT	8
 | |
| 
 | |
| /**
 | |
|  * struct hynix_read_retry - read-retry data
 | |
|  * @nregs: number of register to set when applying a new read-retry mode
 | |
|  * @regs: register offsets (NAND chip dependent)
 | |
|  * @values: array of values to set in registers. The array size is equal to
 | |
|  *	    (nregs * nmodes)
 | |
|  */
 | |
| struct hynix_read_retry {
 | |
| 	int nregs;
 | |
| 	const u8 *regs;
 | |
| 	u8 values[0];
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct hynix_nand - private Hynix NAND struct
 | |
|  * @nand_technology: manufacturing process expressed in picometer
 | |
|  * @read_retry: read-retry information
 | |
|  */
 | |
| struct hynix_nand {
 | |
| 	const struct hynix_read_retry *read_retry;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
 | |
|  *				 area
 | |
|  * @nregs: number of hynix private registers to set before reading the reading
 | |
|  *	   the OTP area
 | |
|  * @regs: registers that should be configured
 | |
|  * @values: values that should be set in regs
 | |
|  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
 | |
|  *	  chip
 | |
|  * @size: size of the read-retry OTP section
 | |
|  */
 | |
| struct hynix_read_retry_otp {
 | |
| 	int nregs;
 | |
| 	const u8 *regs;
 | |
| 	const u8 *values;
 | |
| 	int page;
 | |
| 	int size;
 | |
| };
 | |
| 
 | |
| static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
 | |
| {
 | |
| 	u8 jedecid[5] = { };
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
 | |
| 	if (ret)
 | |
| 		return false;
 | |
| 
 | |
| 	return !strncmp("JEDEC", jedecid, sizeof(jedecid));
 | |
| }
 | |
| 
 | |
| static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 
 | |
| 	if (chip->exec_op) {
 | |
| 		struct nand_op_instr instrs[] = {
 | |
| 			NAND_OP_CMD(cmd, 0),
 | |
| 		};
 | |
| 		struct nand_operation op = NAND_OPERATION(instrs);
 | |
| 
 | |
| 		return nand_exec_op(chip, &op);
 | |
| 	}
 | |
| 
 | |
| 	chip->cmdfunc(mtd, cmd, -1, -1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	u16 column = ((u16)addr << 8) | addr;
 | |
| 
 | |
| 	if (chip->exec_op) {
 | |
| 		struct nand_op_instr instrs[] = {
 | |
| 			NAND_OP_ADDR(1, &addr, 0),
 | |
| 			NAND_OP_8BIT_DATA_OUT(1, &val, 0),
 | |
| 		};
 | |
| 		struct nand_operation op = NAND_OPERATION(instrs);
 | |
| 
 | |
| 		return nand_exec_op(chip, &op);
 | |
| 	}
 | |
| 
 | |
| 	chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
 | |
| 	chip->write_byte(mtd, val);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
 | |
| 	const u8 *values;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	values = hynix->read_retry->values +
 | |
| 		 (retry_mode * hynix->read_retry->nregs);
 | |
| 
 | |
| 	/* Enter 'Set Hynix Parameters' mode */
 | |
| 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure the NAND in the requested read-retry mode.
 | |
| 	 * This is done by setting pre-defined values in internal NAND
 | |
| 	 * registers.
 | |
| 	 *
 | |
| 	 * The set of registers is NAND specific, and the values are either
 | |
| 	 * predefined or extracted from an OTP area on the NAND (values are
 | |
| 	 * probably tweaked at production in this case).
 | |
| 	 */
 | |
| 	for (i = 0; i < hynix->read_retry->nregs; i++) {
 | |
| 		ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
 | |
| 					      values[i]);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Apply the new settings. */
 | |
| 	return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hynix_get_majority - get the value that is occurring the most in a given
 | |
|  *			set of values
 | |
|  * @in: the array of values to test
 | |
|  * @repeat: the size of the in array
 | |
|  * @out: pointer used to store the output value
 | |
|  *
 | |
|  * This function implements the 'majority check' logic that is supposed to
 | |
|  * overcome the unreliability of MLC NANDs when reading the OTP area storing
 | |
|  * the read-retry parameters.
 | |
|  *
 | |
|  * It's based on a pretty simple assumption: if we repeat the same value
 | |
|  * several times and then take the one that is occurring the most, we should
 | |
|  * find the correct value.
 | |
|  * Let's hope this dummy algorithm prevents us from losing the read-retry
 | |
|  * parameters.
 | |
|  */
 | |
| static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
 | |
| {
 | |
| 	int i, j, half = repeat / 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only test the first half of the in array because we must ensure
 | |
| 	 * that the value is at least occurring repeat / 2 times.
 | |
| 	 *
 | |
| 	 * This loop is suboptimal since we may count the occurrences of the
 | |
| 	 * same value several time, but we are doing that on small sets, which
 | |
| 	 * makes it acceptable.
 | |
| 	 */
 | |
| 	for (i = 0; i < half; i++) {
 | |
| 		int cnt = 0;
 | |
| 		u8 val = in[i];
 | |
| 
 | |
| 		/* Count all values that are matching the one at index i. */
 | |
| 		for (j = i + 1; j < repeat; j++) {
 | |
| 			if (in[j] == val)
 | |
| 				cnt++;
 | |
| 		}
 | |
| 
 | |
| 		/* We found a value occurring more than repeat / 2. */
 | |
| 		if (cnt > half) {
 | |
| 			*out = val;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static int hynix_read_rr_otp(struct nand_chip *chip,
 | |
| 			     const struct hynix_read_retry_otp *info,
 | |
| 			     void *buf)
 | |
| {
 | |
| 	int i, ret;
 | |
| 
 | |
| 	ret = nand_reset_op(chip);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < info->nregs; i++) {
 | |
| 		ret = hynix_nand_reg_write_op(chip, info->regs[i],
 | |
| 					      info->values[i]);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Sequence to enter OTP mode? */
 | |
| 	ret = hynix_nand_cmd_op(chip, 0x17);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = hynix_nand_cmd_op(chip, 0x4);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = hynix_nand_cmd_op(chip, 0x19);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Now read the page */
 | |
| 	ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Put everything back to normal */
 | |
| 	ret = nand_reset_op(chip);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = hynix_nand_reg_write_op(chip, 0x38, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return nand_read_page_op(chip, 0, 0, NULL, 0);
 | |
| }
 | |
| 
 | |
| #define NAND_HYNIX_1XNM_RR_COUNT_OFFS				0
 | |
| #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS			8
 | |
| #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)		\
 | |
| 	(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
 | |
| 
 | |
| static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
 | |
| 				   int mode, int reg, bool inv, u8 *val)
 | |
| {
 | |
| 	u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
 | |
| 	int val_offs = (mode * nregs) + reg;
 | |
| 	int set_size = nmodes * nregs;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
 | |
| 		int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
 | |
| 
 | |
| 		tmp[i] = buf[val_offs + set_offs];
 | |
| 	}
 | |
| 
 | |
| 	ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (inv)
 | |
| 		*val = ~*val;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u8 hynix_1xnm_mlc_read_retry_regs[] = {
 | |
| 	0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
 | |
| };
 | |
| 
 | |
| static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
 | |
| 				  const struct hynix_read_retry_otp *info)
 | |
| {
 | |
| 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
 | |
| 	struct hynix_read_retry *rr = NULL;
 | |
| 	int ret, i, j;
 | |
| 	u8 nregs, nmodes;
 | |
| 	u8 *buf;
 | |
| 
 | |
| 	buf = kmalloc(info->size, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = hynix_read_rr_otp(chip, info, buf);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
 | |
| 				 &nmodes);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
 | |
| 				 NAND_HYNIX_1XNM_RR_REPEAT,
 | |
| 				 &nregs);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
 | |
| 	if (!rr) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nmodes; i++) {
 | |
| 		for (j = 0; j < nregs; j++) {
 | |
| 			u8 *val = rr->values + (i * nregs);
 | |
| 
 | |
| 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
 | |
| 						      false, val);
 | |
| 			if (!ret)
 | |
| 				continue;
 | |
| 
 | |
| 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
 | |
| 						      true, val);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rr->nregs = nregs;
 | |
| 	rr->regs = hynix_1xnm_mlc_read_retry_regs;
 | |
| 	hynix->read_retry = rr;
 | |
| 	chip->setup_read_retry = hynix_nand_setup_read_retry;
 | |
| 	chip->read_retries = nmodes;
 | |
| 
 | |
| out:
 | |
| 	kfree(buf);
 | |
| 
 | |
| 	if (ret)
 | |
| 		kfree(rr);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
 | |
| static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
 | |
| 
 | |
| static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
 | |
| 	{
 | |
| 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
 | |
| 		.regs = hynix_mlc_1xnm_rr_otp_regs,
 | |
| 		.values = hynix_mlc_1xnm_rr_otp_values,
 | |
| 		.page = 0x21f,
 | |
| 		.size = 784
 | |
| 	},
 | |
| 	{
 | |
| 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
 | |
| 		.regs = hynix_mlc_1xnm_rr_otp_regs,
 | |
| 		.values = hynix_mlc_1xnm_rr_otp_values,
 | |
| 		.page = 0x200,
 | |
| 		.size = 528,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int hynix_nand_rr_init(struct nand_chip *chip)
 | |
| {
 | |
| 	int i, ret = 0;
 | |
| 	bool valid_jedecid;
 | |
| 
 | |
| 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only support read-retry for 1xnm NANDs, and those NANDs all
 | |
| 	 * expose a valid JEDEC ID.
 | |
| 	 */
 | |
| 	if (valid_jedecid) {
 | |
| 		u8 nand_tech = chip->id.data[5] >> 4;
 | |
| 
 | |
| 		/* 1xnm technology */
 | |
| 		if (nand_tech == 4) {
 | |
| 			for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
 | |
| 			     i++) {
 | |
| 				/*
 | |
| 				 * FIXME: Hynix recommend to copy the
 | |
| 				 * read-retry OTP area into a normal page.
 | |
| 				 */
 | |
| 				ret = hynix_mlc_1xnm_rr_init(chip,
 | |
| 						hynix_mlc_1xnm_rr_otps);
 | |
| 				if (!ret)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		pr_warn("failed to initialize read-retry infrastructure");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hynix_nand_extract_oobsize(struct nand_chip *chip,
 | |
| 				       bool valid_jedecid)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	u8 oobsize;
 | |
| 
 | |
| 	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
 | |
| 		  ((chip->id.data[3] >> 4) & 0x4);
 | |
| 
 | |
| 	if (valid_jedecid) {
 | |
| 		switch (oobsize) {
 | |
| 		case 0:
 | |
| 			mtd->oobsize = 2048;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			mtd->oobsize = 1664;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			mtd->oobsize = 1024;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			mtd->oobsize = 640;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/*
 | |
| 			 * We should never reach this case, but if that
 | |
| 			 * happens, this probably means Hynix decided to use
 | |
| 			 * a different extended ID format, and we should find
 | |
| 			 * a way to support it.
 | |
| 			 */
 | |
| 			WARN(1, "Invalid OOB size");
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (oobsize) {
 | |
| 		case 0:
 | |
| 			mtd->oobsize = 128;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			mtd->oobsize = 224;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			mtd->oobsize = 448;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			mtd->oobsize = 64;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			mtd->oobsize = 32;
 | |
| 			break;
 | |
| 		case 5:
 | |
| 			mtd->oobsize = 16;
 | |
| 			break;
 | |
| 		case 6:
 | |
| 			mtd->oobsize = 640;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/*
 | |
| 			 * We should never reach this case, but if that
 | |
| 			 * happens, this probably means Hynix decided to use
 | |
| 			 * a different extended ID format, and we should find
 | |
| 			 * a way to support it.
 | |
| 			 */
 | |
| 			WARN(1, "Invalid OOB size");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The datasheet of H27UCG8T2BTR mentions that the "Redundant
 | |
| 		 * Area Size" is encoded "per 8KB" (page size). This chip uses
 | |
| 		 * a page size of 16KiB. The datasheet mentions an OOB size of
 | |
| 		 * 1.280 bytes, but the OOB size encoded in the ID bytes (using
 | |
| 		 * the existing logic above) is 640 bytes.
 | |
| 		 * Update the OOB size for this chip by taking the value
 | |
| 		 * determined above and scaling it to the actual page size (so
 | |
| 		 * the actual OOB size for this chip is: 640 * 16k / 8k).
 | |
| 		 */
 | |
| 		if (chip->id.data[1] == 0xde)
 | |
| 			mtd->oobsize *= mtd->writesize / SZ_8K;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
 | |
| 						bool valid_jedecid)
 | |
| {
 | |
| 	u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
 | |
| 
 | |
| 	if (valid_jedecid) {
 | |
| 		/* Reference: H27UCG8T2E datasheet */
 | |
| 		chip->ecc_step_ds = 1024;
 | |
| 
 | |
| 		switch (ecc_level) {
 | |
| 		case 0:
 | |
| 			chip->ecc_step_ds = 0;
 | |
| 			chip->ecc_strength_ds = 0;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			chip->ecc_strength_ds = 4;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			chip->ecc_strength_ds = 24;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			chip->ecc_strength_ds = 32;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			chip->ecc_strength_ds = 40;
 | |
| 			break;
 | |
| 		case 5:
 | |
| 			chip->ecc_strength_ds = 50;
 | |
| 			break;
 | |
| 		case 6:
 | |
| 			chip->ecc_strength_ds = 60;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/*
 | |
| 			 * We should never reach this case, but if that
 | |
| 			 * happens, this probably means Hynix decided to use
 | |
| 			 * a different extended ID format, and we should find
 | |
| 			 * a way to support it.
 | |
| 			 */
 | |
| 			WARN(1, "Invalid ECC requirements");
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The ECC requirements field meaning depends on the
 | |
| 		 * NAND technology.
 | |
| 		 */
 | |
| 		u8 nand_tech = chip->id.data[5] & 0x7;
 | |
| 
 | |
| 		if (nand_tech < 3) {
 | |
| 			/* > 26nm, reference: H27UBG8T2A datasheet */
 | |
| 			if (ecc_level < 5) {
 | |
| 				chip->ecc_step_ds = 512;
 | |
| 				chip->ecc_strength_ds = 1 << ecc_level;
 | |
| 			} else if (ecc_level < 7) {
 | |
| 				if (ecc_level == 5)
 | |
| 					chip->ecc_step_ds = 2048;
 | |
| 				else
 | |
| 					chip->ecc_step_ds = 1024;
 | |
| 				chip->ecc_strength_ds = 24;
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * We should never reach this case, but if that
 | |
| 				 * happens, this probably means Hynix decided
 | |
| 				 * to use a different extended ID format, and
 | |
| 				 * we should find a way to support it.
 | |
| 				 */
 | |
| 				WARN(1, "Invalid ECC requirements");
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* <= 26nm, reference: H27UBG8T2B datasheet */
 | |
| 			if (!ecc_level) {
 | |
| 				chip->ecc_step_ds = 0;
 | |
| 				chip->ecc_strength_ds = 0;
 | |
| 			} else if (ecc_level < 5) {
 | |
| 				chip->ecc_step_ds = 512;
 | |
| 				chip->ecc_strength_ds = 1 << (ecc_level - 1);
 | |
| 			} else {
 | |
| 				chip->ecc_step_ds = 1024;
 | |
| 				chip->ecc_strength_ds = 24 +
 | |
| 							(8 * (ecc_level - 5));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
 | |
| 						       bool valid_jedecid)
 | |
| {
 | |
| 	u8 nand_tech;
 | |
| 
 | |
| 	/* We need scrambling on all TLC NANDs*/
 | |
| 	if (chip->bits_per_cell > 2)
 | |
| 		chip->options |= NAND_NEED_SCRAMBLING;
 | |
| 
 | |
| 	/* And on MLC NANDs with sub-3xnm process */
 | |
| 	if (valid_jedecid) {
 | |
| 		nand_tech = chip->id.data[5] >> 4;
 | |
| 
 | |
| 		/* < 3xnm */
 | |
| 		if (nand_tech > 0)
 | |
| 			chip->options |= NAND_NEED_SCRAMBLING;
 | |
| 	} else {
 | |
| 		nand_tech = chip->id.data[5] & 0x7;
 | |
| 
 | |
| 		/* < 32nm */
 | |
| 		if (nand_tech > 2)
 | |
| 			chip->options |= NAND_NEED_SCRAMBLING;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hynix_nand_decode_id(struct nand_chip *chip)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	bool valid_jedecid;
 | |
| 	u8 tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Exclude all SLC NANDs from this advanced detection scheme.
 | |
| 	 * According to the ranges defined in several datasheets, it might
 | |
| 	 * appear that even SLC NANDs could fall in this extended ID scheme.
 | |
| 	 * If that the case rework the test to let SLC NANDs go through the
 | |
| 	 * detection process.
 | |
| 	 */
 | |
| 	if (chip->id.len < 6 || nand_is_slc(chip)) {
 | |
| 		nand_decode_ext_id(chip);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Extract pagesize */
 | |
| 	mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
 | |
| 
 | |
| 	tmp = (chip->id.data[3] >> 4) & 0x3;
 | |
| 	/*
 | |
| 	 * When bit7 is set that means we start counting at 1MiB, otherwise
 | |
| 	 * we start counting at 128KiB and shift this value the content of
 | |
| 	 * ID[3][4:5].
 | |
| 	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
 | |
| 	 * this case the erasesize is set to 768KiB.
 | |
| 	 */
 | |
| 	if (chip->id.data[3] & 0x80)
 | |
| 		mtd->erasesize = SZ_1M << tmp;
 | |
| 	else if (tmp == 3)
 | |
| 		mtd->erasesize = SZ_512K + SZ_256K;
 | |
| 	else
 | |
| 		mtd->erasesize = SZ_128K << tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
 | |
| 	 * not exposing a valid JEDEC parameter table.
 | |
| 	 * These NANDs use a different NAND ID scheme.
 | |
| 	 */
 | |
| 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
 | |
| 
 | |
| 	hynix_nand_extract_oobsize(chip, valid_jedecid);
 | |
| 	hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
 | |
| 	hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
 | |
| }
 | |
| 
 | |
| static void hynix_nand_cleanup(struct nand_chip *chip)
 | |
| {
 | |
| 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
 | |
| 
 | |
| 	if (!hynix)
 | |
| 		return;
 | |
| 
 | |
| 	kfree(hynix->read_retry);
 | |
| 	kfree(hynix);
 | |
| 	nand_set_manufacturer_data(chip, NULL);
 | |
| }
 | |
| 
 | |
| static int hynix_nand_init(struct nand_chip *chip)
 | |
| {
 | |
| 	struct hynix_nand *hynix;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!nand_is_slc(chip))
 | |
| 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
 | |
| 	else
 | |
| 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
 | |
| 
 | |
| 	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
 | |
| 	if (!hynix)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	nand_set_manufacturer_data(chip, hynix);
 | |
| 
 | |
| 	ret = hynix_nand_rr_init(chip);
 | |
| 	if (ret)
 | |
| 		hynix_nand_cleanup(chip);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
 | |
| 	.detect = hynix_nand_decode_id,
 | |
| 	.init = hynix_nand_init,
 | |
| 	.cleanup = hynix_nand_cleanup,
 | |
| };
 | 
