1042 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1042 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * NXP LPC32XX NAND SLC driver
 | |
|  *
 | |
|  * Authors:
 | |
|  *    Kevin Wells <kevin.wells@nxp.com>
 | |
|  *    Roland Stigge <stigge@antcom.de>
 | |
|  *
 | |
|  * Copyright © 2011 NXP Semiconductors
 | |
|  * Copyright © 2012 Roland Stigge
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/rawnand.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/mtd/nand_ecc.h>
 | |
| #include <linux/gpio.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_gpio.h>
 | |
| #include <linux/mtd/lpc32xx_slc.h>
 | |
| 
 | |
| #define LPC32XX_MODNAME		"lpc32xx-nand"
 | |
| 
 | |
| /**********************************************************************
 | |
| * SLC NAND controller register offsets
 | |
| **********************************************************************/
 | |
| 
 | |
| #define SLC_DATA(x)		(x + 0x000)
 | |
| #define SLC_ADDR(x)		(x + 0x004)
 | |
| #define SLC_CMD(x)		(x + 0x008)
 | |
| #define SLC_STOP(x)		(x + 0x00C)
 | |
| #define SLC_CTRL(x)		(x + 0x010)
 | |
| #define SLC_CFG(x)		(x + 0x014)
 | |
| #define SLC_STAT(x)		(x + 0x018)
 | |
| #define SLC_INT_STAT(x)		(x + 0x01C)
 | |
| #define SLC_IEN(x)		(x + 0x020)
 | |
| #define SLC_ISR(x)		(x + 0x024)
 | |
| #define SLC_ICR(x)		(x + 0x028)
 | |
| #define SLC_TAC(x)		(x + 0x02C)
 | |
| #define SLC_TC(x)		(x + 0x030)
 | |
| #define SLC_ECC(x)		(x + 0x034)
 | |
| #define SLC_DMA_DATA(x)		(x + 0x038)
 | |
| 
 | |
| /**********************************************************************
 | |
| * slc_ctrl register definitions
 | |
| **********************************************************************/
 | |
| #define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
 | |
| #define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
 | |
| #define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */
 | |
| 
 | |
| /**********************************************************************
 | |
| * slc_cfg register definitions
 | |
| **********************************************************************/
 | |
| #define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
 | |
| #define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
 | |
| #define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
 | |
| #define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
 | |
| #define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
 | |
| #define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */
 | |
| 
 | |
| /**********************************************************************
 | |
| * slc_stat register definitions
 | |
| **********************************************************************/
 | |
| #define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
 | |
| #define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
 | |
| #define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */
 | |
| 
 | |
| /**********************************************************************
 | |
| * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
 | |
| **********************************************************************/
 | |
| #define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
 | |
| #define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */
 | |
| 
 | |
| /**********************************************************************
 | |
| * slc_tac register definitions
 | |
| **********************************************************************/
 | |
| /* Computation of clock cycles on basis of controller and device clock rates */
 | |
| #define SLCTAC_CLOCKS(c, n, s)	(min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
 | |
| 
 | |
| /* Clock setting for RDY write sample wait time in 2*n clocks */
 | |
| #define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
 | |
| /* Write pulse width in clock cycles, 1 to 16 clocks */
 | |
| #define SLCTAC_WWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 24))
 | |
| /* Write hold time of control and data signals, 1 to 16 clocks */
 | |
| #define SLCTAC_WHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 20))
 | |
| /* Write setup time of control and data signals, 1 to 16 clocks */
 | |
| #define SLCTAC_WSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 16))
 | |
| /* Clock setting for RDY read sample wait time in 2*n clocks */
 | |
| #define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
 | |
| /* Read pulse width in clock cycles, 1 to 16 clocks */
 | |
| #define SLCTAC_RWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 8))
 | |
| /* Read hold time of control and data signals, 1 to 16 clocks */
 | |
| #define SLCTAC_RHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 4))
 | |
| /* Read setup time of control and data signals, 1 to 16 clocks */
 | |
| #define SLCTAC_RSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 0))
 | |
| 
 | |
| /**********************************************************************
 | |
| * slc_ecc register definitions
 | |
| **********************************************************************/
 | |
| /* ECC line party fetch macro */
 | |
| #define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
 | |
| #define SLCECC_TO_COLPAR(n)	((n) & 0x3F)
 | |
| 
 | |
| /*
 | |
|  * DMA requires storage space for the DMA local buffer and the hardware ECC
 | |
|  * storage area. The DMA local buffer is only used if DMA mapping fails
 | |
|  * during runtime.
 | |
|  */
 | |
| #define LPC32XX_DMA_DATA_SIZE		4096
 | |
| #define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)
 | |
| 
 | |
| /* Number of bytes used for ECC stored in NAND per 256 bytes */
 | |
| #define LPC32XX_SLC_DEV_ECC_BYTES	3
 | |
| 
 | |
| /*
 | |
|  * If the NAND base clock frequency can't be fetched, this frequency will be
 | |
|  * used instead as the base. This rate is used to setup the timing registers
 | |
|  * used for NAND accesses.
 | |
|  */
 | |
| #define LPC32XX_DEF_BUS_RATE		133250000
 | |
| 
 | |
| /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
 | |
| #define LPC32XX_DMA_TIMEOUT		100
 | |
| 
 | |
| /*
 | |
|  * NAND ECC Layout for small page NAND devices
 | |
|  * Note: For large and huge page devices, the default layouts are used
 | |
|  */
 | |
| static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
 | |
| 				 struct mtd_oob_region *oobregion)
 | |
| {
 | |
| 	if (section)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	oobregion->length = 6;
 | |
| 	oobregion->offset = 10;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
 | |
| 				  struct mtd_oob_region *oobregion)
 | |
| {
 | |
| 	if (section > 1)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	if (!section) {
 | |
| 		oobregion->offset = 0;
 | |
| 		oobregion->length = 4;
 | |
| 	} else {
 | |
| 		oobregion->offset = 6;
 | |
| 		oobregion->length = 4;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
 | |
| 	.ecc = lpc32xx_ooblayout_ecc,
 | |
| 	.free = lpc32xx_ooblayout_free,
 | |
| };
 | |
| 
 | |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 | |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 | |
| 
 | |
| /*
 | |
|  * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 | |
|  * Note: Large page devices used the default layout
 | |
|  */
 | |
| static struct nand_bbt_descr bbt_smallpage_main_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 | |
| 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 | |
| 	.offs =	0,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 6,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = bbt_pattern
 | |
| };
 | |
| 
 | |
| static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 | |
| 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 | |
| 	.offs =	0,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 6,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = mirror_pattern
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * NAND platform configuration structure
 | |
|  */
 | |
| struct lpc32xx_nand_cfg_slc {
 | |
| 	uint32_t wdr_clks;
 | |
| 	uint32_t wwidth;
 | |
| 	uint32_t whold;
 | |
| 	uint32_t wsetup;
 | |
| 	uint32_t rdr_clks;
 | |
| 	uint32_t rwidth;
 | |
| 	uint32_t rhold;
 | |
| 	uint32_t rsetup;
 | |
| 	int wp_gpio;
 | |
| 	struct mtd_partition *parts;
 | |
| 	unsigned num_parts;
 | |
| };
 | |
| 
 | |
| struct lpc32xx_nand_host {
 | |
| 	struct nand_chip	nand_chip;
 | |
| 	struct lpc32xx_slc_platform_data *pdata;
 | |
| 	struct clk		*clk;
 | |
| 	void __iomem		*io_base;
 | |
| 	struct lpc32xx_nand_cfg_slc *ncfg;
 | |
| 
 | |
| 	struct completion	comp;
 | |
| 	struct dma_chan		*dma_chan;
 | |
| 	uint32_t		dma_buf_len;
 | |
| 	struct dma_slave_config	dma_slave_config;
 | |
| 	struct scatterlist	sgl;
 | |
| 
 | |
| 	/*
 | |
| 	 * DMA and CPU addresses of ECC work area and data buffer
 | |
| 	 */
 | |
| 	uint32_t		*ecc_buf;
 | |
| 	uint8_t			*data_buf;
 | |
| 	dma_addr_t		io_base_dma;
 | |
| };
 | |
| 
 | |
| static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
 | |
| {
 | |
| 	uint32_t clkrate, tmp;
 | |
| 
 | |
| 	/* Reset SLC controller */
 | |
| 	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
 | |
| 	udelay(1000);
 | |
| 
 | |
| 	/* Basic setup */
 | |
| 	writel(0, SLC_CFG(host->io_base));
 | |
| 	writel(0, SLC_IEN(host->io_base));
 | |
| 	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
 | |
| 		SLC_ICR(host->io_base));
 | |
| 
 | |
| 	/* Get base clock for SLC block */
 | |
| 	clkrate = clk_get_rate(host->clk);
 | |
| 	if (clkrate == 0)
 | |
| 		clkrate = LPC32XX_DEF_BUS_RATE;
 | |
| 
 | |
| 	/* Compute clock setup values */
 | |
| 	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
 | |
| 		SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
 | |
| 		SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
 | |
| 		SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
 | |
| 		SLCTAC_RDR(host->ncfg->rdr_clks) |
 | |
| 		SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
 | |
| 		SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
 | |
| 		SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
 | |
| 	writel(tmp, SLC_TAC(host->io_base));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hardware specific access to control lines
 | |
|  */
 | |
| static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
 | |
| 	unsigned int ctrl)
 | |
| {
 | |
| 	uint32_t tmp;
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 
 | |
| 	/* Does CE state need to be changed? */
 | |
| 	tmp = readl(SLC_CFG(host->io_base));
 | |
| 	if (ctrl & NAND_NCE)
 | |
| 		tmp |= SLCCFG_CE_LOW;
 | |
| 	else
 | |
| 		tmp &= ~SLCCFG_CE_LOW;
 | |
| 	writel(tmp, SLC_CFG(host->io_base));
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE) {
 | |
| 		if (ctrl & NAND_CLE)
 | |
| 			writel(cmd, SLC_CMD(host->io_base));
 | |
| 		else
 | |
| 			writel(cmd, SLC_ADDR(host->io_base));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the Device Ready pin
 | |
|  */
 | |
| static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	int rdy = 0;
 | |
| 
 | |
| 	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
 | |
| 		rdy = 1;
 | |
| 
 | |
| 	return rdy;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable NAND write protect
 | |
|  */
 | |
| static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
 | |
| {
 | |
| 	if (gpio_is_valid(host->ncfg->wp_gpio))
 | |
| 		gpio_set_value(host->ncfg->wp_gpio, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Disable NAND write protect
 | |
|  */
 | |
| static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
 | |
| {
 | |
| 	if (gpio_is_valid(host->ncfg->wp_gpio))
 | |
| 		gpio_set_value(host->ncfg->wp_gpio, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepares SLC for transfers with H/W ECC enabled
 | |
|  */
 | |
| static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	/* Hardware ECC is enabled automatically in hardware as needed */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculates the ECC for the data
 | |
|  */
 | |
| static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
 | |
| 				      const unsigned char *buf,
 | |
| 				      unsigned char *code)
 | |
| {
 | |
| 	/*
 | |
| 	 * ECC is calculated automatically in hardware during syndrome read
 | |
| 	 * and write operations, so it doesn't need to be calculated here.
 | |
| 	 */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a single byte from NAND device
 | |
|  */
 | |
| static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 
 | |
| 	return (uint8_t)readl(SLC_DATA(host->io_base));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simple device read without ECC
 | |
|  */
 | |
| static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 
 | |
| 	/* Direct device read with no ECC */
 | |
| 	while (len-- > 0)
 | |
| 		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simple device write without ECC
 | |
|  */
 | |
| static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 
 | |
| 	/* Direct device write with no ECC */
 | |
| 	while (len-- > 0)
 | |
| 		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the OOB data from the device without ECC using FIFO method
 | |
|  */
 | |
| static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
 | |
| 					  struct nand_chip *chip, int page)
 | |
| {
 | |
| 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write the OOB data to the device without ECC using FIFO method
 | |
|  */
 | |
| static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
 | |
| 	struct nand_chip *chip, int page)
 | |
| {
 | |
| 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
 | |
| 				 mtd->oobsize);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 | |
|  */
 | |
| static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < (count * 3); i += 3) {
 | |
| 		uint32_t ce = ecc[i / 3];
 | |
| 		ce = ~(ce << 2) & 0xFFFFFF;
 | |
| 		spare[i + 2] = (uint8_t)(ce & 0xFF);
 | |
| 		ce >>= 8;
 | |
| 		spare[i + 1] = (uint8_t)(ce & 0xFF);
 | |
| 		ce >>= 8;
 | |
| 		spare[i] = (uint8_t)(ce & 0xFF);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void lpc32xx_dma_complete_func(void *completion)
 | |
| {
 | |
| 	complete(completion);
 | |
| }
 | |
| 
 | |
| static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
 | |
| 			    void *mem, int len, enum dma_transfer_direction dir)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct dma_async_tx_descriptor *desc;
 | |
| 	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 | |
| 	int res;
 | |
| 
 | |
| 	host->dma_slave_config.direction = dir;
 | |
| 	host->dma_slave_config.src_addr = dma;
 | |
| 	host->dma_slave_config.dst_addr = dma;
 | |
| 	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 | |
| 	host->dma_slave_config.src_maxburst = 4;
 | |
| 	host->dma_slave_config.dst_maxburst = 4;
 | |
| 	/* DMA controller does flow control: */
 | |
| 	host->dma_slave_config.device_fc = false;
 | |
| 	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
 | |
| 		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	sg_init_one(&host->sgl, mem, len);
 | |
| 
 | |
| 	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
 | |
| 			 DMA_BIDIRECTIONAL);
 | |
| 	if (res != 1) {
 | |
| 		dev_err(mtd->dev.parent, "Failed to map sg list\n");
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
 | |
| 				       flags);
 | |
| 	if (!desc) {
 | |
| 		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
 | |
| 		goto out1;
 | |
| 	}
 | |
| 
 | |
| 	init_completion(&host->comp);
 | |
| 	desc->callback = lpc32xx_dma_complete_func;
 | |
| 	desc->callback_param = &host->comp;
 | |
| 
 | |
| 	dmaengine_submit(desc);
 | |
| 	dma_async_issue_pending(host->dma_chan);
 | |
| 
 | |
| 	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
 | |
| 
 | |
| 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 | |
| 		     DMA_BIDIRECTIONAL);
 | |
| 
 | |
| 	return 0;
 | |
| out1:
 | |
| 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 | |
| 		     DMA_BIDIRECTIONAL);
 | |
| 	return -ENXIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DMA read/write transfers with ECC support
 | |
|  */
 | |
| static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
 | |
| 			int read)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	int i, status = 0;
 | |
| 	unsigned long timeout;
 | |
| 	int res;
 | |
| 	enum dma_transfer_direction dir =
 | |
| 		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
 | |
| 	uint8_t *dma_buf;
 | |
| 	bool dma_mapped;
 | |
| 
 | |
| 	if ((void *)buf <= high_memory) {
 | |
| 		dma_buf = buf;
 | |
| 		dma_mapped = true;
 | |
| 	} else {
 | |
| 		dma_buf = host->data_buf;
 | |
| 		dma_mapped = false;
 | |
| 		if (!read)
 | |
| 			memcpy(host->data_buf, buf, mtd->writesize);
 | |
| 	}
 | |
| 
 | |
| 	if (read) {
 | |
| 		writel(readl(SLC_CFG(host->io_base)) |
 | |
| 		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 | |
| 		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
 | |
| 	} else {
 | |
| 		writel((readl(SLC_CFG(host->io_base)) |
 | |
| 			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
 | |
| 		       ~SLCCFG_DMA_DIR,
 | |
| 			SLC_CFG(host->io_base));
 | |
| 	}
 | |
| 
 | |
| 	/* Clear initial ECC */
 | |
| 	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
 | |
| 
 | |
| 	/* Transfer size is data area only */
 | |
| 	writel(mtd->writesize, SLC_TC(host->io_base));
 | |
| 
 | |
| 	/* Start transfer in the NAND controller */
 | |
| 	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
 | |
| 	       SLC_CTRL(host->io_base));
 | |
| 
 | |
| 	for (i = 0; i < chip->ecc.steps; i++) {
 | |
| 		/* Data */
 | |
| 		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
 | |
| 				       dma_buf + i * chip->ecc.size,
 | |
| 				       mtd->writesize / chip->ecc.steps, dir);
 | |
| 		if (res)
 | |
| 			return res;
 | |
| 
 | |
| 		/* Always _read_ ECC */
 | |
| 		if (i == chip->ecc.steps - 1)
 | |
| 			break;
 | |
| 		if (!read) /* ECC availability delayed on write */
 | |
| 			udelay(10);
 | |
| 		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
 | |
| 				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
 | |
| 		if (res)
 | |
| 			return res;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * According to NXP, the DMA can be finished here, but the NAND
 | |
| 	 * controller may still have buffered data. After porting to using the
 | |
| 	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
 | |
| 	 * appears to be always true, according to tests. Keeping the check for
 | |
| 	 * safety reasons for now.
 | |
| 	 */
 | |
| 	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
 | |
| 		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
 | |
| 		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
 | |
| 		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
 | |
| 		       time_before(jiffies, timeout))
 | |
| 			cpu_relax();
 | |
| 		if (!time_before(jiffies, timeout)) {
 | |
| 			dev_err(mtd->dev.parent, "FIFO held data too long\n");
 | |
| 			status = -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Read last calculated ECC value */
 | |
| 	if (!read)
 | |
| 		udelay(10);
 | |
| 	host->ecc_buf[chip->ecc.steps - 1] =
 | |
| 		readl(SLC_ECC(host->io_base));
 | |
| 
 | |
| 	/* Flush DMA */
 | |
| 	dmaengine_terminate_all(host->dma_chan);
 | |
| 
 | |
| 	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
 | |
| 	    readl(SLC_TC(host->io_base))) {
 | |
| 		/* Something is left in the FIFO, something is wrong */
 | |
| 		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
 | |
| 		status = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Stop DMA & HW ECC */
 | |
| 	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
 | |
| 	       SLC_CTRL(host->io_base));
 | |
| 	writel(readl(SLC_CFG(host->io_base)) &
 | |
| 	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 | |
| 		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
 | |
| 
 | |
| 	if (!dma_mapped && read)
 | |
| 		memcpy(buf, host->data_buf, mtd->writesize);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the data and OOB data from the device, use ECC correction with the
 | |
|  * data, disable ECC for the OOB data
 | |
|  */
 | |
| static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
 | |
| 					   struct nand_chip *chip, uint8_t *buf,
 | |
| 					   int oob_required, int page)
 | |
| {
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct mtd_oob_region oobregion = { };
 | |
| 	int stat, i, status, error;
 | |
| 	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
 | |
| 
 | |
| 	/* Issue read command */
 | |
| 	nand_read_page_op(chip, page, 0, NULL, 0);
 | |
| 
 | |
| 	/* Read data and oob, calculate ECC */
 | |
| 	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
 | |
| 
 | |
| 	/* Get OOB data */
 | |
| 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	/* Convert to stored ECC format */
 | |
| 	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
 | |
| 
 | |
| 	/* Pointer to ECC data retrieved from NAND spare area */
 | |
| 	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	oobecc = chip->oob_poi + oobregion.offset;
 | |
| 
 | |
| 	for (i = 0; i < chip->ecc.steps; i++) {
 | |
| 		stat = chip->ecc.correct(mtd, buf, oobecc,
 | |
| 					 &tmpecc[i * chip->ecc.bytes]);
 | |
| 		if (stat < 0)
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 		else
 | |
| 			mtd->ecc_stats.corrected += stat;
 | |
| 
 | |
| 		buf += chip->ecc.size;
 | |
| 		oobecc += chip->ecc.bytes;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the data and OOB data from the device, no ECC correction with the
 | |
|  * data or OOB data
 | |
|  */
 | |
| static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
 | |
| 					       struct nand_chip *chip,
 | |
| 					       uint8_t *buf, int oob_required,
 | |
| 					       int page)
 | |
| {
 | |
| 	/* Issue read command */
 | |
| 	nand_read_page_op(chip, page, 0, NULL, 0);
 | |
| 
 | |
| 	/* Raw reads can just use the FIFO interface */
 | |
| 	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
 | |
| 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write the data and OOB data to the device, use ECC with the data,
 | |
|  * disable ECC for the OOB data
 | |
|  */
 | |
| static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
 | |
| 					    struct nand_chip *chip,
 | |
| 					    const uint8_t *buf,
 | |
| 					    int oob_required, int page)
 | |
| {
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 	struct mtd_oob_region oobregion = { };
 | |
| 	uint8_t *pb;
 | |
| 	int error;
 | |
| 
 | |
| 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 | |
| 
 | |
| 	/* Write data, calculate ECC on outbound data */
 | |
| 	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * The calculated ECC needs some manual work done to it before
 | |
| 	 * committing it to NAND. Process the calculated ECC and place
 | |
| 	 * the resultant values directly into the OOB buffer. */
 | |
| 	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	pb = chip->oob_poi + oobregion.offset;
 | |
| 	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
 | |
| 
 | |
| 	/* Write ECC data to device */
 | |
| 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	return nand_prog_page_end_op(chip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write the data and OOB data to the device, no ECC correction with the
 | |
|  * data or OOB data
 | |
|  */
 | |
| static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
 | |
| 						struct nand_chip *chip,
 | |
| 						const uint8_t *buf,
 | |
| 						int oob_required, int page)
 | |
| {
 | |
| 	/* Raw writes can just use the FIFO interface */
 | |
| 	nand_prog_page_begin_op(chip, page, 0, buf,
 | |
| 				chip->ecc.size * chip->ecc.steps);
 | |
| 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	return nand_prog_page_end_op(chip);
 | |
| }
 | |
| 
 | |
| static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 | |
| 	dma_cap_mask_t mask;
 | |
| 
 | |
| 	if (!host->pdata || !host->pdata->dma_filter) {
 | |
| 		dev_err(mtd->dev.parent, "no DMA platform data\n");
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	dma_cap_zero(mask);
 | |
| 	dma_cap_set(DMA_SLAVE, mask);
 | |
| 	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
 | |
| 					     "nand-slc");
 | |
| 	if (!host->dma_chan) {
 | |
| 		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
 | |
| {
 | |
| 	struct lpc32xx_nand_cfg_slc *ncfg;
 | |
| 	struct device_node *np = dev->of_node;
 | |
| 
 | |
| 	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
 | |
| 	if (!ncfg)
 | |
| 		return NULL;
 | |
| 
 | |
| 	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
 | |
| 	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
 | |
| 	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
 | |
| 	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
 | |
| 	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
 | |
| 	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
 | |
| 	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
 | |
| 	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
 | |
| 
 | |
| 	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
 | |
| 	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
 | |
| 	    !ncfg->rhold || !ncfg->rsetup) {
 | |
| 		dev_err(dev, "chip parameters not specified correctly\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
 | |
| 
 | |
| 	return ncfg;
 | |
| }
 | |
| 
 | |
| static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 | |
| 
 | |
| 	/* OOB and ECC CPU and DMA work areas */
 | |
| 	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Small page FLASH has a unique OOB layout, but large and huge
 | |
| 	 * page FLASH use the standard layout. Small page FLASH uses a
 | |
| 	 * custom BBT marker layout.
 | |
| 	 */
 | |
| 	if (mtd->writesize <= 512)
 | |
| 		mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
 | |
| 
 | |
| 	/* These sizes remain the same regardless of page size */
 | |
| 	chip->ecc.size = 256;
 | |
| 	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
 | |
| 	chip->ecc.prepad = 0;
 | |
| 	chip->ecc.postpad = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use a custom BBT marker setup for small page FLASH that
 | |
| 	 * won't interfere with the ECC layout. Large and huge page
 | |
| 	 * FLASH use the standard layout.
 | |
| 	 */
 | |
| 	if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
 | |
| 	    mtd->writesize <= 512) {
 | |
| 		chip->bbt_td = &bbt_smallpage_main_descr;
 | |
| 		chip->bbt_md = &bbt_smallpage_mirror_descr;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
 | |
| 	.attach_chip = lpc32xx_nand_attach_chip,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Probe for NAND controller
 | |
|  */
 | |
| static int lpc32xx_nand_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct lpc32xx_nand_host *host;
 | |
| 	struct mtd_info *mtd;
 | |
| 	struct nand_chip *chip;
 | |
| 	struct resource *rc;
 | |
| 	int res;
 | |
| 
 | |
| 	/* Allocate memory for the device structure (and zero it) */
 | |
| 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 | |
| 	if (!host)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
 | |
| 	if (IS_ERR(host->io_base))
 | |
| 		return PTR_ERR(host->io_base);
 | |
| 
 | |
| 	host->io_base_dma = rc->start;
 | |
| 	if (pdev->dev.of_node)
 | |
| 		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
 | |
| 	if (!host->ncfg) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Missing or bad NAND config from device tree\n");
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
 | |
| 		return -EPROBE_DEFER;
 | |
| 	if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
 | |
| 			host->ncfg->wp_gpio, "NAND WP")) {
 | |
| 		dev_err(&pdev->dev, "GPIO not available\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	lpc32xx_wp_disable(host);
 | |
| 
 | |
| 	host->pdata = dev_get_platdata(&pdev->dev);
 | |
| 
 | |
| 	chip = &host->nand_chip;
 | |
| 	mtd = nand_to_mtd(chip);
 | |
| 	nand_set_controller_data(chip, host);
 | |
| 	nand_set_flash_node(chip, pdev->dev.of_node);
 | |
| 	mtd->owner = THIS_MODULE;
 | |
| 	mtd->dev.parent = &pdev->dev;
 | |
| 
 | |
| 	/* Get NAND clock */
 | |
| 	host->clk = devm_clk_get(&pdev->dev, NULL);
 | |
| 	if (IS_ERR(host->clk)) {
 | |
| 		dev_err(&pdev->dev, "Clock failure\n");
 | |
| 		res = -ENOENT;
 | |
| 		goto enable_wp;
 | |
| 	}
 | |
| 	res = clk_prepare_enable(host->clk);
 | |
| 	if (res)
 | |
| 		goto enable_wp;
 | |
| 
 | |
| 	/* Set NAND IO addresses and command/ready functions */
 | |
| 	chip->IO_ADDR_R = SLC_DATA(host->io_base);
 | |
| 	chip->IO_ADDR_W = SLC_DATA(host->io_base);
 | |
| 	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
 | |
| 	chip->dev_ready = lpc32xx_nand_device_ready;
 | |
| 	chip->chip_delay = 20; /* 20us command delay time */
 | |
| 
 | |
| 	/* Init NAND controller */
 | |
| 	lpc32xx_nand_setup(host);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, host);
 | |
| 
 | |
| 	/* NAND callbacks for LPC32xx SLC hardware */
 | |
| 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
 | |
| 	chip->read_byte = lpc32xx_nand_read_byte;
 | |
| 	chip->read_buf = lpc32xx_nand_read_buf;
 | |
| 	chip->write_buf = lpc32xx_nand_write_buf;
 | |
| 	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
 | |
| 	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
 | |
| 	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
 | |
| 	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
 | |
| 	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
 | |
| 	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
 | |
| 	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
 | |
| 	chip->ecc.correct = nand_correct_data;
 | |
| 	chip->ecc.strength = 1;
 | |
| 	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a large enough buffer for a single huge page plus
 | |
| 	 * extra space for the spare area and ECC storage area
 | |
| 	 */
 | |
| 	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
 | |
| 	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
 | |
| 				      GFP_KERNEL);
 | |
| 	if (host->data_buf == NULL) {
 | |
| 		res = -ENOMEM;
 | |
| 		goto unprepare_clk;
 | |
| 	}
 | |
| 
 | |
| 	res = lpc32xx_nand_dma_setup(host);
 | |
| 	if (res) {
 | |
| 		res = -EIO;
 | |
| 		goto unprepare_clk;
 | |
| 	}
 | |
| 
 | |
| 	/* Find NAND device */
 | |
| 	chip->dummy_controller.ops = &lpc32xx_nand_controller_ops;
 | |
| 	res = nand_scan(mtd, 1);
 | |
| 	if (res)
 | |
| 		goto release_dma;
 | |
| 
 | |
| 	mtd->name = "nxp_lpc3220_slc";
 | |
| 	res = mtd_device_register(mtd, host->ncfg->parts,
 | |
| 				  host->ncfg->num_parts);
 | |
| 	if (res)
 | |
| 		goto cleanup_nand;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| cleanup_nand:
 | |
| 	nand_cleanup(chip);
 | |
| release_dma:
 | |
| 	dma_release_channel(host->dma_chan);
 | |
| unprepare_clk:
 | |
| 	clk_disable_unprepare(host->clk);
 | |
| enable_wp:
 | |
| 	lpc32xx_wp_enable(host);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove NAND device.
 | |
|  */
 | |
| static int lpc32xx_nand_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	uint32_t tmp;
 | |
| 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 | |
| 
 | |
| 	nand_release(mtd);
 | |
| 	dma_release_channel(host->dma_chan);
 | |
| 
 | |
| 	/* Force CE high */
 | |
| 	tmp = readl(SLC_CTRL(host->io_base));
 | |
| 	tmp &= ~SLCCFG_CE_LOW;
 | |
| 	writel(tmp, SLC_CTRL(host->io_base));
 | |
| 
 | |
| 	clk_disable_unprepare(host->clk);
 | |
| 	lpc32xx_wp_enable(host);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int lpc32xx_nand_resume(struct platform_device *pdev)
 | |
| {
 | |
| 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Re-enable NAND clock */
 | |
| 	ret = clk_prepare_enable(host->clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Fresh init of NAND controller */
 | |
| 	lpc32xx_nand_setup(host);
 | |
| 
 | |
| 	/* Disable write protect */
 | |
| 	lpc32xx_wp_disable(host);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
 | |
| {
 | |
| 	uint32_t tmp;
 | |
| 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	/* Force CE high */
 | |
| 	tmp = readl(SLC_CTRL(host->io_base));
 | |
| 	tmp &= ~SLCCFG_CE_LOW;
 | |
| 	writel(tmp, SLC_CTRL(host->io_base));
 | |
| 
 | |
| 	/* Enable write protect for safety */
 | |
| 	lpc32xx_wp_enable(host);
 | |
| 
 | |
| 	/* Disable clock */
 | |
| 	clk_disable_unprepare(host->clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define lpc32xx_nand_resume NULL
 | |
| #define lpc32xx_nand_suspend NULL
 | |
| #endif
 | |
| 
 | |
| static const struct of_device_id lpc32xx_nand_match[] = {
 | |
| 	{ .compatible = "nxp,lpc3220-slc" },
 | |
| 	{ /* sentinel */ },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
 | |
| 
 | |
| static struct platform_driver lpc32xx_nand_driver = {
 | |
| 	.probe		= lpc32xx_nand_probe,
 | |
| 	.remove		= lpc32xx_nand_remove,
 | |
| 	.resume		= lpc32xx_nand_resume,
 | |
| 	.suspend	= lpc32xx_nand_suspend,
 | |
| 	.driver		= {
 | |
| 		.name	= LPC32XX_MODNAME,
 | |
| 		.of_match_table = lpc32xx_nand_match,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| module_platform_driver(lpc32xx_nand_driver);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
 | |
| MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
 | |
| MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
 | 
