2089 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2089 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Freescale GPMI NAND Flash Driver
 | |
|  *
 | |
|  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
 | |
|  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 | |
|  */
 | |
| #include <linux/clk.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_device.h>
 | |
| #include "gpmi-nand.h"
 | |
| #include "bch-regs.h"
 | |
| 
 | |
| /* Resource names for the GPMI NAND driver. */
 | |
| #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
 | |
| #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
 | |
| #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
 | |
| 
 | |
| /* add our owner bbt descriptor */
 | |
| static uint8_t scan_ff_pattern[] = { 0xff };
 | |
| static struct nand_bbt_descr gpmi_bbt_descr = {
 | |
| 	.options	= 0,
 | |
| 	.offs		= 0,
 | |
| 	.len		= 1,
 | |
| 	.pattern	= scan_ff_pattern
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * We may change the layout if we can get the ECC info from the datasheet,
 | |
|  * else we will use all the (page + OOB).
 | |
|  */
 | |
| static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
 | |
| 			      struct mtd_oob_region *oobregion)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 
 | |
| 	if (section)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	oobregion->offset = 0;
 | |
| 	oobregion->length = geo->page_size - mtd->writesize;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
 | |
| 			       struct mtd_oob_region *oobregion)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 
 | |
| 	if (section)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	/* The available oob size we have. */
 | |
| 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
 | |
| 		oobregion->offset = geo->page_size - mtd->writesize;
 | |
| 		oobregion->length = mtd->oobsize - oobregion->offset;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const char * const gpmi_clks_for_mx2x[] = {
 | |
| 	"gpmi_io",
 | |
| };
 | |
| 
 | |
| static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
 | |
| 	.ecc = gpmi_ooblayout_ecc,
 | |
| 	.free = gpmi_ooblayout_free,
 | |
| };
 | |
| 
 | |
| static const struct gpmi_devdata gpmi_devdata_imx23 = {
 | |
| 	.type = IS_MX23,
 | |
| 	.bch_max_ecc_strength = 20,
 | |
| 	.max_chain_delay = 16000,
 | |
| 	.clks = gpmi_clks_for_mx2x,
 | |
| 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
 | |
| };
 | |
| 
 | |
| static const struct gpmi_devdata gpmi_devdata_imx28 = {
 | |
| 	.type = IS_MX28,
 | |
| 	.bch_max_ecc_strength = 20,
 | |
| 	.max_chain_delay = 16000,
 | |
| 	.clks = gpmi_clks_for_mx2x,
 | |
| 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
 | |
| };
 | |
| 
 | |
| static const char * const gpmi_clks_for_mx6[] = {
 | |
| 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
 | |
| };
 | |
| 
 | |
| static const struct gpmi_devdata gpmi_devdata_imx6q = {
 | |
| 	.type = IS_MX6Q,
 | |
| 	.bch_max_ecc_strength = 40,
 | |
| 	.max_chain_delay = 12000,
 | |
| 	.clks = gpmi_clks_for_mx6,
 | |
| 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
 | |
| };
 | |
| 
 | |
| static const struct gpmi_devdata gpmi_devdata_imx6sx = {
 | |
| 	.type = IS_MX6SX,
 | |
| 	.bch_max_ecc_strength = 62,
 | |
| 	.max_chain_delay = 12000,
 | |
| 	.clks = gpmi_clks_for_mx6,
 | |
| 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
 | |
| };
 | |
| 
 | |
| static const char * const gpmi_clks_for_mx7d[] = {
 | |
| 	"gpmi_io", "gpmi_bch_apb",
 | |
| };
 | |
| 
 | |
| static const struct gpmi_devdata gpmi_devdata_imx7d = {
 | |
| 	.type = IS_MX7D,
 | |
| 	.bch_max_ecc_strength = 62,
 | |
| 	.max_chain_delay = 12000,
 | |
| 	.clks = gpmi_clks_for_mx7d,
 | |
| 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
 | |
| };
 | |
| 
 | |
| static irqreturn_t bch_irq(int irq, void *cookie)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = cookie;
 | |
| 
 | |
| 	gpmi_clear_bch(this);
 | |
| 	complete(&this->bch_done);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Calculate the ECC strength by hand:
 | |
|  *	E : The ECC strength.
 | |
|  *	G : the length of Galois Field.
 | |
|  *	N : The chunk count of per page.
 | |
|  *	O : the oobsize of the NAND chip.
 | |
|  *	M : the metasize of per page.
 | |
|  *
 | |
|  *	The formula is :
 | |
|  *		E * G * N
 | |
|  *	      ------------ <= (O - M)
 | |
|  *                  8
 | |
|  *
 | |
|  *      So, we get E by:
 | |
|  *                    (O - M) * 8
 | |
|  *              E <= -------------
 | |
|  *                       G * N
 | |
|  */
 | |
| static inline int get_ecc_strength(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
 | |
| 	int ecc_strength;
 | |
| 
 | |
| 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
 | |
| 			/ (geo->gf_len * geo->ecc_chunk_count);
 | |
| 
 | |
| 	/* We need the minor even number. */
 | |
| 	return round_down(ecc_strength, 2);
 | |
| }
 | |
| 
 | |
| static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 
 | |
| 	/* Do the sanity check. */
 | |
| 	if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
 | |
| 		/* The mx23/mx28 only support the GF13. */
 | |
| 		if (geo->gf_len == 14)
 | |
| 			return false;
 | |
| 	}
 | |
| 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we can get the ECC information from the nand chip, we do not
 | |
|  * need to calculate them ourselves.
 | |
|  *
 | |
|  * We may have available oob space in this case.
 | |
|  */
 | |
| static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
 | |
| 				    unsigned int ecc_strength,
 | |
| 				    unsigned int ecc_step)
 | |
| {
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 	struct nand_chip *chip = &this->nand;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	unsigned int block_mark_bit_offset;
 | |
| 
 | |
| 	switch (ecc_step) {
 | |
| 	case SZ_512:
 | |
| 		geo->gf_len = 13;
 | |
| 		break;
 | |
| 	case SZ_1K:
 | |
| 		geo->gf_len = 14;
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(this->dev,
 | |
| 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
 | |
| 			chip->ecc_strength_ds, chip->ecc_step_ds);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	geo->ecc_chunk_size = ecc_step;
 | |
| 	geo->ecc_strength = round_up(ecc_strength, 2);
 | |
| 	if (!gpmi_check_ecc(this))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Keep the C >= O */
 | |
| 	if (geo->ecc_chunk_size < mtd->oobsize) {
 | |
| 		dev_err(this->dev,
 | |
| 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
 | |
| 			ecc_step, mtd->oobsize);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* The default value, see comment in the legacy_set_geometry(). */
 | |
| 	geo->metadata_size = 10;
 | |
| 
 | |
| 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
 | |
| 	 *
 | |
| 	 *    |                          P                            |
 | |
| 	 *    |<----------------------------------------------------->|
 | |
| 	 *    |                                                       |
 | |
| 	 *    |                                        (Block Mark)   |
 | |
| 	 *    |                      P'                      |      | |     |
 | |
| 	 *    |<-------------------------------------------->|  D   | |  O' |
 | |
| 	 *    |                                              |<---->| |<--->|
 | |
| 	 *    V                                              V      V V     V
 | |
| 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
 | |
| 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
 | |
| 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
 | |
| 	 *                                                   ^              ^
 | |
| 	 *                                                   |      O       |
 | |
| 	 *                                                   |<------------>|
 | |
| 	 *                                                   |              |
 | |
| 	 *
 | |
| 	 *	P : the page size for BCH module.
 | |
| 	 *	E : The ECC strength.
 | |
| 	 *	G : the length of Galois Field.
 | |
| 	 *	N : The chunk count of per page.
 | |
| 	 *	M : the metasize of per page.
 | |
| 	 *	C : the ecc chunk size, aka the "data" above.
 | |
| 	 *	P': the nand chip's page size.
 | |
| 	 *	O : the nand chip's oob size.
 | |
| 	 *	O': the free oob.
 | |
| 	 *
 | |
| 	 *	The formula for P is :
 | |
| 	 *
 | |
| 	 *	            E * G * N
 | |
| 	 *	       P = ------------ + P' + M
 | |
| 	 *                      8
 | |
| 	 *
 | |
| 	 * The position of block mark moves forward in the ECC-based view
 | |
| 	 * of page, and the delta is:
 | |
| 	 *
 | |
| 	 *                   E * G * (N - 1)
 | |
| 	 *             D = (---------------- + M)
 | |
| 	 *                          8
 | |
| 	 *
 | |
| 	 * Please see the comment in legacy_set_geometry().
 | |
| 	 * With the condition C >= O , we still can get same result.
 | |
| 	 * So the bit position of the physical block mark within the ECC-based
 | |
| 	 * view of the page is :
 | |
| 	 *             (P' - D) * 8
 | |
| 	 */
 | |
| 	geo->page_size = mtd->writesize + geo->metadata_size +
 | |
| 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
 | |
| 
 | |
| 	geo->payload_size = mtd->writesize;
 | |
| 
 | |
| 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
 | |
| 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
 | |
| 				+ ALIGN(geo->ecc_chunk_count, 4);
 | |
| 
 | |
| 	if (!this->swap_block_mark)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* For bit swap. */
 | |
| 	block_mark_bit_offset = mtd->writesize * 8 -
 | |
| 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
 | |
| 				+ geo->metadata_size * 8);
 | |
| 
 | |
| 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
 | |
| 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int legacy_set_geometry(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
 | |
| 	unsigned int metadata_size;
 | |
| 	unsigned int status_size;
 | |
| 	unsigned int block_mark_bit_offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * The size of the metadata can be changed, though we set it to 10
 | |
| 	 * bytes now. But it can't be too large, because we have to save
 | |
| 	 * enough space for BCH.
 | |
| 	 */
 | |
| 	geo->metadata_size = 10;
 | |
| 
 | |
| 	/* The default for the length of Galois Field. */
 | |
| 	geo->gf_len = 13;
 | |
| 
 | |
| 	/* The default for chunk size. */
 | |
| 	geo->ecc_chunk_size = 512;
 | |
| 	while (geo->ecc_chunk_size < mtd->oobsize) {
 | |
| 		geo->ecc_chunk_size *= 2; /* keep C >= O */
 | |
| 		geo->gf_len = 14;
 | |
| 	}
 | |
| 
 | |
| 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
 | |
| 
 | |
| 	/* We use the same ECC strength for all chunks. */
 | |
| 	geo->ecc_strength = get_ecc_strength(this);
 | |
| 	if (!gpmi_check_ecc(this)) {
 | |
| 		dev_err(this->dev,
 | |
| 			"ecc strength: %d cannot be supported by the controller (%d)\n"
 | |
| 			"try to use minimum ecc strength that NAND chip required\n",
 | |
| 			geo->ecc_strength,
 | |
| 			this->devdata->bch_max_ecc_strength);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	geo->page_size = mtd->writesize + geo->metadata_size +
 | |
| 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
 | |
| 	geo->payload_size = mtd->writesize;
 | |
| 
 | |
| 	/*
 | |
| 	 * The auxiliary buffer contains the metadata and the ECC status. The
 | |
| 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
 | |
| 	 * contains one byte for every ECC chunk, and is also padded to the
 | |
| 	 * nearest 32-bit boundary.
 | |
| 	 */
 | |
| 	metadata_size = ALIGN(geo->metadata_size, 4);
 | |
| 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
 | |
| 
 | |
| 	geo->auxiliary_size = metadata_size + status_size;
 | |
| 	geo->auxiliary_status_offset = metadata_size;
 | |
| 
 | |
| 	if (!this->swap_block_mark)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to compute the byte and bit offsets of
 | |
| 	 * the physical block mark within the ECC-based view of the page.
 | |
| 	 *
 | |
| 	 * NAND chip with 2K page shows below:
 | |
| 	 *                                             (Block Mark)
 | |
| 	 *                                                   |      |
 | |
| 	 *                                                   |  D   |
 | |
| 	 *                                                   |<---->|
 | |
| 	 *                                                   V      V
 | |
| 	 *    +---+----------+-+----------+-+----------+-+----------+-+
 | |
| 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
 | |
| 	 *    +---+----------+-+----------+-+----------+-+----------+-+
 | |
| 	 *
 | |
| 	 * The position of block mark moves forward in the ECC-based view
 | |
| 	 * of page, and the delta is:
 | |
| 	 *
 | |
| 	 *                   E * G * (N - 1)
 | |
| 	 *             D = (---------------- + M)
 | |
| 	 *                          8
 | |
| 	 *
 | |
| 	 * With the formula to compute the ECC strength, and the condition
 | |
| 	 *       : C >= O         (C is the ecc chunk size)
 | |
| 	 *
 | |
| 	 * It's easy to deduce to the following result:
 | |
| 	 *
 | |
| 	 *         E * G       (O - M)      C - M         C - M
 | |
| 	 *      ----------- <= ------- <=  --------  <  ---------
 | |
| 	 *           8            N           N          (N - 1)
 | |
| 	 *
 | |
| 	 *  So, we get:
 | |
| 	 *
 | |
| 	 *                   E * G * (N - 1)
 | |
| 	 *             D = (---------------- + M) < C
 | |
| 	 *                          8
 | |
| 	 *
 | |
| 	 *  The above inequality means the position of block mark
 | |
| 	 *  within the ECC-based view of the page is still in the data chunk,
 | |
| 	 *  and it's NOT in the ECC bits of the chunk.
 | |
| 	 *
 | |
| 	 *  Use the following to compute the bit position of the
 | |
| 	 *  physical block mark within the ECC-based view of the page:
 | |
| 	 *          (page_size - D) * 8
 | |
| 	 *
 | |
| 	 *  --Huang Shijie
 | |
| 	 */
 | |
| 	block_mark_bit_offset = mtd->writesize * 8 -
 | |
| 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
 | |
| 				+ geo->metadata_size * 8);
 | |
| 
 | |
| 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
 | |
| 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int common_nfc_set_geometry(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct nand_chip *chip = &this->nand;
 | |
| 
 | |
| 	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
 | |
| 		return set_geometry_by_ecc_info(this, chip->ecc.strength,
 | |
| 						chip->ecc.size);
 | |
| 
 | |
| 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
 | |
| 				|| legacy_set_geometry(this)) {
 | |
| 		if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		return set_geometry_by_ecc_info(this, chip->ecc_strength_ds,
 | |
| 						chip->ecc_step_ds);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	/* We use the DMA channel 0 to access all the nand chips. */
 | |
| 	return this->dma_chans[0];
 | |
| }
 | |
| 
 | |
| /* Can we use the upper's buffer directly for DMA? */
 | |
| bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len,
 | |
| 		      enum dma_data_direction dr)
 | |
| {
 | |
| 	struct scatterlist *sgl = &this->data_sgl;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* first try to map the upper buffer directly */
 | |
| 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
 | |
| 		sg_init_one(sgl, buf, len);
 | |
| 		ret = dma_map_sg(this->dev, sgl, 1, dr);
 | |
| 		if (ret == 0)
 | |
| 			goto map_fail;
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| map_fail:
 | |
| 	/* We have to use our own DMA buffer. */
 | |
| 	sg_init_one(sgl, this->data_buffer_dma, len);
 | |
| 
 | |
| 	if (dr == DMA_TO_DEVICE)
 | |
| 		memcpy(this->data_buffer_dma, buf, len);
 | |
| 
 | |
| 	dma_map_sg(this->dev, sgl, 1, dr);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* This will be called after the DMA operation is finished. */
 | |
| static void dma_irq_callback(void *param)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = param;
 | |
| 	struct completion *dma_c = &this->dma_done;
 | |
| 
 | |
| 	complete(dma_c);
 | |
| }
 | |
| 
 | |
| int start_dma_without_bch_irq(struct gpmi_nand_data *this,
 | |
| 				struct dma_async_tx_descriptor *desc)
 | |
| {
 | |
| 	struct completion *dma_c = &this->dma_done;
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	init_completion(dma_c);
 | |
| 
 | |
| 	desc->callback		= dma_irq_callback;
 | |
| 	desc->callback_param	= this;
 | |
| 	dmaengine_submit(desc);
 | |
| 	dma_async_issue_pending(get_dma_chan(this));
 | |
| 
 | |
| 	/* Wait for the interrupt from the DMA block. */
 | |
| 	timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
 | |
| 	if (!timeout) {
 | |
| 		dev_err(this->dev, "DMA timeout, last DMA\n");
 | |
| 		gpmi_dump_info(this);
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is used in BCH reading or BCH writing pages.
 | |
|  * It will wait for the BCH interrupt as long as ONE second.
 | |
|  * Actually, we must wait for two interrupts :
 | |
|  *	[1] firstly the DMA interrupt and
 | |
|  *	[2] secondly the BCH interrupt.
 | |
|  */
 | |
| int start_dma_with_bch_irq(struct gpmi_nand_data *this,
 | |
| 			struct dma_async_tx_descriptor *desc)
 | |
| {
 | |
| 	struct completion *bch_c = &this->bch_done;
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	/* Prepare to receive an interrupt from the BCH block. */
 | |
| 	init_completion(bch_c);
 | |
| 
 | |
| 	/* start the DMA */
 | |
| 	start_dma_without_bch_irq(this, desc);
 | |
| 
 | |
| 	/* Wait for the interrupt from the BCH block. */
 | |
| 	timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
 | |
| 	if (!timeout) {
 | |
| 		dev_err(this->dev, "BCH timeout\n");
 | |
| 		gpmi_dump_info(this);
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acquire_register_block(struct gpmi_nand_data *this,
 | |
| 				  const char *res_name)
 | |
| {
 | |
| 	struct platform_device *pdev = this->pdev;
 | |
| 	struct resources *res = &this->resources;
 | |
| 	struct resource *r;
 | |
| 	void __iomem *p;
 | |
| 
 | |
| 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
 | |
| 	p = devm_ioremap_resource(&pdev->dev, r);
 | |
| 	if (IS_ERR(p))
 | |
| 		return PTR_ERR(p);
 | |
| 
 | |
| 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
 | |
| 		res->gpmi_regs = p;
 | |
| 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
 | |
| 		res->bch_regs = p;
 | |
| 	else
 | |
| 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
 | |
| {
 | |
| 	struct platform_device *pdev = this->pdev;
 | |
| 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
 | |
| 	struct resource *r;
 | |
| 	int err;
 | |
| 
 | |
| 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
 | |
| 	if (!r) {
 | |
| 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
 | |
| 	if (err)
 | |
| 		dev_err(this->dev, "error requesting BCH IRQ\n");
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void release_dma_channels(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	for (i = 0; i < DMA_CHANS; i++)
 | |
| 		if (this->dma_chans[i]) {
 | |
| 			dma_release_channel(this->dma_chans[i]);
 | |
| 			this->dma_chans[i] = NULL;
 | |
| 		}
 | |
| }
 | |
| 
 | |
| static int acquire_dma_channels(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct platform_device *pdev = this->pdev;
 | |
| 	struct dma_chan *dma_chan;
 | |
| 
 | |
| 	/* request dma channel */
 | |
| 	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
 | |
| 	if (!dma_chan) {
 | |
| 		dev_err(this->dev, "Failed to request DMA channel.\n");
 | |
| 		goto acquire_err;
 | |
| 	}
 | |
| 
 | |
| 	this->dma_chans[0] = dma_chan;
 | |
| 	return 0;
 | |
| 
 | |
| acquire_err:
 | |
| 	release_dma_channels(this);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int gpmi_get_clks(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct resources *r = &this->resources;
 | |
| 	struct clk *clk;
 | |
| 	int err, i;
 | |
| 
 | |
| 	for (i = 0; i < this->devdata->clks_count; i++) {
 | |
| 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
 | |
| 		if (IS_ERR(clk)) {
 | |
| 			err = PTR_ERR(clk);
 | |
| 			goto err_clock;
 | |
| 		}
 | |
| 
 | |
| 		r->clock[i] = clk;
 | |
| 	}
 | |
| 
 | |
| 	if (GPMI_IS_MX6(this))
 | |
| 		/*
 | |
| 		 * Set the default value for the gpmi clock.
 | |
| 		 *
 | |
| 		 * If you want to use the ONFI nand which is in the
 | |
| 		 * Synchronous Mode, you should change the clock as you need.
 | |
| 		 */
 | |
| 		clk_set_rate(r->clock[0], 22000000);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_clock:
 | |
| 	dev_dbg(this->dev, "failed in finding the clocks.\n");
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int acquire_resources(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
 | |
| 	if (ret)
 | |
| 		goto exit_regs;
 | |
| 
 | |
| 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
 | |
| 	if (ret)
 | |
| 		goto exit_regs;
 | |
| 
 | |
| 	ret = acquire_bch_irq(this, bch_irq);
 | |
| 	if (ret)
 | |
| 		goto exit_regs;
 | |
| 
 | |
| 	ret = acquire_dma_channels(this);
 | |
| 	if (ret)
 | |
| 		goto exit_regs;
 | |
| 
 | |
| 	ret = gpmi_get_clks(this);
 | |
| 	if (ret)
 | |
| 		goto exit_clock;
 | |
| 	return 0;
 | |
| 
 | |
| exit_clock:
 | |
| 	release_dma_channels(this);
 | |
| exit_regs:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void release_resources(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	release_dma_channels(this);
 | |
| }
 | |
| 
 | |
| static int send_page_prepare(struct gpmi_nand_data *this,
 | |
| 			const void *source, unsigned length,
 | |
| 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 | |
| 			const void **use_virt, dma_addr_t *use_phys)
 | |
| {
 | |
| 	struct device *dev = this->dev;
 | |
| 
 | |
| 	if (virt_addr_valid(source)) {
 | |
| 		dma_addr_t source_phys;
 | |
| 
 | |
| 		source_phys = dma_map_single(dev, (void *)source, length,
 | |
| 						DMA_TO_DEVICE);
 | |
| 		if (dma_mapping_error(dev, source_phys)) {
 | |
| 			if (alt_size < length) {
 | |
| 				dev_err(dev, "Alternate buffer is too small\n");
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			goto map_failed;
 | |
| 		}
 | |
| 		*use_virt = source;
 | |
| 		*use_phys = source_phys;
 | |
| 		return 0;
 | |
| 	}
 | |
| map_failed:
 | |
| 	/*
 | |
| 	 * Copy the content of the source buffer into the alternate
 | |
| 	 * buffer and set up the return values accordingly.
 | |
| 	 */
 | |
| 	memcpy(alt_virt, source, length);
 | |
| 
 | |
| 	*use_virt = alt_virt;
 | |
| 	*use_phys = alt_phys;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void send_page_end(struct gpmi_nand_data *this,
 | |
| 			const void *source, unsigned length,
 | |
| 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 | |
| 			const void *used_virt, dma_addr_t used_phys)
 | |
| {
 | |
| 	struct device *dev = this->dev;
 | |
| 	if (used_virt == source)
 | |
| 		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
 | |
| }
 | |
| 
 | |
| static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct device *dev = this->dev;
 | |
| 
 | |
| 	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
 | |
| 		dma_free_coherent(dev, this->page_buffer_size,
 | |
| 					this->page_buffer_virt,
 | |
| 					this->page_buffer_phys);
 | |
| 	kfree(this->cmd_buffer);
 | |
| 	kfree(this->data_buffer_dma);
 | |
| 	kfree(this->raw_buffer);
 | |
| 
 | |
| 	this->cmd_buffer	= NULL;
 | |
| 	this->data_buffer_dma	= NULL;
 | |
| 	this->raw_buffer	= NULL;
 | |
| 	this->page_buffer_virt	= NULL;
 | |
| 	this->page_buffer_size	=  0;
 | |
| }
 | |
| 
 | |
| /* Allocate the DMA buffers */
 | |
| static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 	struct device *dev = this->dev;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
 | |
| 
 | |
| 	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
 | |
| 	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
 | |
| 	if (this->cmd_buffer == NULL)
 | |
| 		goto error_alloc;
 | |
| 
 | |
| 	/*
 | |
| 	 * [2] Allocate a read/write data buffer.
 | |
| 	 *     The gpmi_alloc_dma_buffer can be called twice.
 | |
| 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
 | |
| 	 *     is called before the NAND identification; and we allocate a
 | |
| 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
 | |
| 	 *     is called after.
 | |
| 	 */
 | |
| 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
 | |
| 					GFP_DMA | GFP_KERNEL);
 | |
| 	if (this->data_buffer_dma == NULL)
 | |
| 		goto error_alloc;
 | |
| 
 | |
| 	/*
 | |
| 	 * [3] Allocate the page buffer.
 | |
| 	 *
 | |
| 	 * Both the payload buffer and the auxiliary buffer must appear on
 | |
| 	 * 32-bit boundaries. We presume the size of the payload buffer is a
 | |
| 	 * power of two and is much larger than four, which guarantees the
 | |
| 	 * auxiliary buffer will appear on a 32-bit boundary.
 | |
| 	 */
 | |
| 	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
 | |
| 	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
 | |
| 					&this->page_buffer_phys, GFP_DMA);
 | |
| 	if (!this->page_buffer_virt)
 | |
| 		goto error_alloc;
 | |
| 
 | |
| 	this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
 | |
| 	if (!this->raw_buffer)
 | |
| 		goto error_alloc;
 | |
| 
 | |
| 	/* Slice up the page buffer. */
 | |
| 	this->payload_virt = this->page_buffer_virt;
 | |
| 	this->payload_phys = this->page_buffer_phys;
 | |
| 	this->auxiliary_virt = this->payload_virt + geo->payload_size;
 | |
| 	this->auxiliary_phys = this->payload_phys + geo->payload_size;
 | |
| 	return 0;
 | |
| 
 | |
| error_alloc:
 | |
| 	gpmi_free_dma_buffer(this);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Every operation begins with a command byte and a series of zero or
 | |
| 	 * more address bytes. These are distinguished by either the Address
 | |
| 	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
 | |
| 	 * asserted. When MTD is ready to execute the command, it will deassert
 | |
| 	 * both latch enables.
 | |
| 	 *
 | |
| 	 * Rather than run a separate DMA operation for every single byte, we
 | |
| 	 * queue them up and run a single DMA operation for the entire series
 | |
| 	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
 | |
| 	 */
 | |
| 	if ((ctrl & (NAND_ALE | NAND_CLE))) {
 | |
| 		if (data != NAND_CMD_NONE)
 | |
| 			this->cmd_buffer[this->command_length++] = data;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!this->command_length)
 | |
| 		return;
 | |
| 
 | |
| 	ret = gpmi_send_command(this);
 | |
| 	if (ret)
 | |
| 		dev_err(this->dev, "Chip: %u, Error %d\n",
 | |
| 			this->current_chip, ret);
 | |
| 
 | |
| 	this->command_length = 0;
 | |
| }
 | |
| 
 | |
| static int gpmi_dev_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 
 | |
| 	return gpmi_is_ready(this, this->current_chip);
 | |
| }
 | |
| 
 | |
| static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * For power consumption matters, disable/enable the clock each time a
 | |
| 	 * die is selected/unselected.
 | |
| 	 */
 | |
| 	if (this->current_chip < 0 && chipnr >= 0) {
 | |
| 		ret = gpmi_enable_clk(this);
 | |
| 		if (ret)
 | |
| 			dev_err(this->dev, "Failed to enable the clock\n");
 | |
| 	} else if (this->current_chip >= 0 && chipnr < 0) {
 | |
| 		ret = gpmi_disable_clk(this);
 | |
| 		if (ret)
 | |
| 			dev_err(this->dev, "Failed to disable the clock\n");
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This driver currently supports only one NAND chip. Plus, dies share
 | |
| 	 * the same configuration. So once timings have been applied on the
 | |
| 	 * controller side, they will not change anymore. When the time will
 | |
| 	 * come, the check on must_apply_timings will have to be dropped.
 | |
| 	 */
 | |
| 	if (chipnr >= 0 && this->hw.must_apply_timings) {
 | |
| 		this->hw.must_apply_timings = false;
 | |
| 		gpmi_nfc_apply_timings(this);
 | |
| 	}
 | |
| 
 | |
| 	this->current_chip = chipnr;
 | |
| }
 | |
| 
 | |
| static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 
 | |
| 	dev_dbg(this->dev, "len is %d\n", len);
 | |
| 
 | |
| 	gpmi_read_data(this, buf, len);
 | |
| }
 | |
| 
 | |
| static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 
 | |
| 	dev_dbg(this->dev, "len is %d\n", len);
 | |
| 
 | |
| 	gpmi_send_data(this, buf, len);
 | |
| }
 | |
| 
 | |
| static uint8_t gpmi_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	uint8_t *buf = this->data_buffer_dma;
 | |
| 
 | |
| 	gpmi_read_buf(mtd, buf, 1);
 | |
| 	return buf[0];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handles block mark swapping.
 | |
|  * It can be called in swapping the block mark, or swapping it back,
 | |
|  * because the the operations are the same.
 | |
|  */
 | |
| static void block_mark_swapping(struct gpmi_nand_data *this,
 | |
| 				void *payload, void *auxiliary)
 | |
| {
 | |
| 	struct bch_geometry *nfc_geo = &this->bch_geometry;
 | |
| 	unsigned char *p;
 | |
| 	unsigned char *a;
 | |
| 	unsigned int  bit;
 | |
| 	unsigned char mask;
 | |
| 	unsigned char from_data;
 | |
| 	unsigned char from_oob;
 | |
| 
 | |
| 	if (!this->swap_block_mark)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If control arrives here, we're swapping. Make some convenience
 | |
| 	 * variables.
 | |
| 	 */
 | |
| 	bit = nfc_geo->block_mark_bit_offset;
 | |
| 	p   = payload + nfc_geo->block_mark_byte_offset;
 | |
| 	a   = auxiliary;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the byte from the data area that overlays the block mark. Since
 | |
| 	 * the ECC engine applies its own view to the bits in the page, the
 | |
| 	 * physical block mark won't (in general) appear on a byte boundary in
 | |
| 	 * the data.
 | |
| 	 */
 | |
| 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
 | |
| 
 | |
| 	/* Get the byte from the OOB. */
 | |
| 	from_oob = a[0];
 | |
| 
 | |
| 	/* Swap them. */
 | |
| 	a[0] = from_data;
 | |
| 
 | |
| 	mask = (0x1 << bit) - 1;
 | |
| 	p[0] = (p[0] & mask) | (from_oob << bit);
 | |
| 
 | |
| 	mask = ~0 << bit;
 | |
| 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
 | |
| }
 | |
| 
 | |
| static int gpmi_ecc_read_page_data(struct nand_chip *chip,
 | |
| 				   uint8_t *buf, int oob_required,
 | |
| 				   int page)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	struct bch_geometry *nfc_geo = &this->bch_geometry;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	dma_addr_t    payload_phys;
 | |
| 	unsigned int  i;
 | |
| 	unsigned char *status;
 | |
| 	unsigned int  max_bitflips = 0;
 | |
| 	int           ret;
 | |
| 	bool          direct = false;
 | |
| 
 | |
| 	dev_dbg(this->dev, "page number is : %d\n", page);
 | |
| 
 | |
| 	payload_phys = this->payload_phys;
 | |
| 
 | |
| 	if (virt_addr_valid(buf)) {
 | |
| 		dma_addr_t dest_phys;
 | |
| 
 | |
| 		dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size,
 | |
| 					   DMA_FROM_DEVICE);
 | |
| 		if (!dma_mapping_error(this->dev, dest_phys)) {
 | |
| 			payload_phys = dest_phys;
 | |
| 			direct = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* go! */
 | |
| 	ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys);
 | |
| 
 | |
| 	if (direct)
 | |
| 		dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size,
 | |
| 				 DMA_FROM_DEVICE);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Loop over status bytes, accumulating ECC status. */
 | |
| 	status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset;
 | |
| 
 | |
| 	if (!direct)
 | |
| 		memcpy(buf, this->payload_virt, nfc_geo->payload_size);
 | |
| 
 | |
| 	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
 | |
| 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
 | |
| 			continue;
 | |
| 
 | |
| 		if (*status == STATUS_UNCORRECTABLE) {
 | |
| 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
 | |
| 			u8 *eccbuf = this->raw_buffer;
 | |
| 			int offset, bitoffset;
 | |
| 			int eccbytes;
 | |
| 			int flips;
 | |
| 
 | |
| 			/* Read ECC bytes into our internal raw_buffer */
 | |
| 			offset = nfc_geo->metadata_size * 8;
 | |
| 			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
 | |
| 			offset -= eccbits;
 | |
| 			bitoffset = offset % 8;
 | |
| 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
 | |
| 			offset /= 8;
 | |
| 			eccbytes -= offset;
 | |
| 			nand_change_read_column_op(chip, offset, eccbuf,
 | |
| 						   eccbytes, false);
 | |
| 
 | |
| 			/*
 | |
| 			 * ECC data are not byte aligned and we may have
 | |
| 			 * in-band data in the first and last byte of
 | |
| 			 * eccbuf. Set non-eccbits to one so that
 | |
| 			 * nand_check_erased_ecc_chunk() does not count them
 | |
| 			 * as bitflips.
 | |
| 			 */
 | |
| 			if (bitoffset)
 | |
| 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
 | |
| 
 | |
| 			bitoffset = (bitoffset + eccbits) % 8;
 | |
| 			if (bitoffset)
 | |
| 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
 | |
| 
 | |
| 			/*
 | |
| 			 * The ECC hardware has an uncorrectable ECC status
 | |
| 			 * code in case we have bitflips in an erased page. As
 | |
| 			 * nothing was written into this subpage the ECC is
 | |
| 			 * obviously wrong and we can not trust it. We assume
 | |
| 			 * at this point that we are reading an erased page and
 | |
| 			 * try to correct the bitflips in buffer up to
 | |
| 			 * ecc_strength bitflips. If this is a page with random
 | |
| 			 * data, we exceed this number of bitflips and have a
 | |
| 			 * ECC failure. Otherwise we use the corrected buffer.
 | |
| 			 */
 | |
| 			if (i == 0) {
 | |
| 				/* The first block includes metadata */
 | |
| 				flips = nand_check_erased_ecc_chunk(
 | |
| 						buf + i * nfc_geo->ecc_chunk_size,
 | |
| 						nfc_geo->ecc_chunk_size,
 | |
| 						eccbuf, eccbytes,
 | |
| 						this->auxiliary_virt,
 | |
| 						nfc_geo->metadata_size,
 | |
| 						nfc_geo->ecc_strength);
 | |
| 			} else {
 | |
| 				flips = nand_check_erased_ecc_chunk(
 | |
| 						buf + i * nfc_geo->ecc_chunk_size,
 | |
| 						nfc_geo->ecc_chunk_size,
 | |
| 						eccbuf, eccbytes,
 | |
| 						NULL, 0,
 | |
| 						nfc_geo->ecc_strength);
 | |
| 			}
 | |
| 
 | |
| 			if (flips > 0) {
 | |
| 				max_bitflips = max_t(unsigned int, max_bitflips,
 | |
| 						     flips);
 | |
| 				mtd->ecc_stats.corrected += flips;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		mtd->ecc_stats.corrected += *status;
 | |
| 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
 | |
| 	}
 | |
| 
 | |
| 	/* handle the block mark swapping */
 | |
| 	block_mark_swapping(this, buf, this->auxiliary_virt);
 | |
| 
 | |
| 	if (oob_required) {
 | |
| 		/*
 | |
| 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
 | |
| 		 * for details about our policy for delivering the OOB.
 | |
| 		 *
 | |
| 		 * We fill the caller's buffer with set bits, and then copy the
 | |
| 		 * block mark to th caller's buffer. Note that, if block mark
 | |
| 		 * swapping was necessary, it has already been done, so we can
 | |
| 		 * rely on the first byte of the auxiliary buffer to contain
 | |
| 		 * the block mark.
 | |
| 		 */
 | |
| 		memset(chip->oob_poi, ~0, mtd->oobsize);
 | |
| 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
 | |
| 	}
 | |
| 
 | |
| 	return max_bitflips;
 | |
| }
 | |
| 
 | |
| static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 			      uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	nand_read_page_op(chip, page, 0, NULL, 0);
 | |
| 
 | |
| 	return gpmi_ecc_read_page_data(chip, buf, oob_required, page);
 | |
| }
 | |
| 
 | |
| /* Fake a virtual small page for the subpage read */
 | |
| static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 			uint32_t offs, uint32_t len, uint8_t *buf, int page)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	void __iomem *bch_regs = this->resources.bch_regs;
 | |
| 	struct bch_geometry old_geo = this->bch_geometry;
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 	int size = chip->ecc.size; /* ECC chunk size */
 | |
| 	int meta, n, page_size;
 | |
| 	u32 r1_old, r2_old, r1_new, r2_new;
 | |
| 	unsigned int max_bitflips;
 | |
| 	int first, last, marker_pos;
 | |
| 	int ecc_parity_size;
 | |
| 	int col = 0;
 | |
| 	int old_swap_block_mark = this->swap_block_mark;
 | |
| 
 | |
| 	/* The size of ECC parity */
 | |
| 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
 | |
| 
 | |
| 	/* Align it with the chunk size */
 | |
| 	first = offs / size;
 | |
| 	last = (offs + len - 1) / size;
 | |
| 
 | |
| 	if (this->swap_block_mark) {
 | |
| 		/*
 | |
| 		 * Find the chunk which contains the Block Marker.
 | |
| 		 * If this chunk is in the range of [first, last],
 | |
| 		 * we have to read out the whole page.
 | |
| 		 * Why? since we had swapped the data at the position of Block
 | |
| 		 * Marker to the metadata which is bound with the chunk 0.
 | |
| 		 */
 | |
| 		marker_pos = geo->block_mark_byte_offset / size;
 | |
| 		if (last >= marker_pos && first <= marker_pos) {
 | |
| 			dev_dbg(this->dev,
 | |
| 				"page:%d, first:%d, last:%d, marker at:%d\n",
 | |
| 				page, first, last, marker_pos);
 | |
| 			return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	meta = geo->metadata_size;
 | |
| 	if (first) {
 | |
| 		col = meta + (size + ecc_parity_size) * first;
 | |
| 		meta = 0;
 | |
| 		buf = buf + first * size;
 | |
| 	}
 | |
| 
 | |
| 	nand_read_page_op(chip, page, col, NULL, 0);
 | |
| 
 | |
| 	/* Save the old environment */
 | |
| 	r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
 | |
| 	r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
 | |
| 
 | |
| 	/* change the BCH registers and bch_geometry{} */
 | |
| 	n = last - first + 1;
 | |
| 	page_size = meta + (size + ecc_parity_size) * n;
 | |
| 
 | |
| 	r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
 | |
| 			BM_BCH_FLASH0LAYOUT0_META_SIZE);
 | |
| 	r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
 | |
| 			| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
 | |
| 	writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
 | |
| 
 | |
| 	r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
 | |
| 	r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
 | |
| 	writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
 | |
| 
 | |
| 	geo->ecc_chunk_count = n;
 | |
| 	geo->payload_size = n * size;
 | |
| 	geo->page_size = page_size;
 | |
| 	geo->auxiliary_status_offset = ALIGN(meta, 4);
 | |
| 
 | |
| 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
 | |
| 		page, offs, len, col, first, n, page_size);
 | |
| 
 | |
| 	/* Read the subpage now */
 | |
| 	this->swap_block_mark = false;
 | |
| 	max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page);
 | |
| 
 | |
| 	/* Restore */
 | |
| 	writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
 | |
| 	writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
 | |
| 	this->bch_geometry = old_geo;
 | |
| 	this->swap_block_mark = old_swap_block_mark;
 | |
| 
 | |
| 	return max_bitflips;
 | |
| }
 | |
| 
 | |
| static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				const uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	struct bch_geometry *nfc_geo = &this->bch_geometry;
 | |
| 	const void *payload_virt;
 | |
| 	dma_addr_t payload_phys;
 | |
| 	const void *auxiliary_virt;
 | |
| 	dma_addr_t auxiliary_phys;
 | |
| 	int        ret;
 | |
| 
 | |
| 	dev_dbg(this->dev, "ecc write page.\n");
 | |
| 
 | |
| 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 | |
| 
 | |
| 	if (this->swap_block_mark) {
 | |
| 		/*
 | |
| 		 * If control arrives here, we're doing block mark swapping.
 | |
| 		 * Since we can't modify the caller's buffers, we must copy them
 | |
| 		 * into our own.
 | |
| 		 */
 | |
| 		memcpy(this->payload_virt, buf, mtd->writesize);
 | |
| 		payload_virt = this->payload_virt;
 | |
| 		payload_phys = this->payload_phys;
 | |
| 
 | |
| 		memcpy(this->auxiliary_virt, chip->oob_poi,
 | |
| 				nfc_geo->auxiliary_size);
 | |
| 		auxiliary_virt = this->auxiliary_virt;
 | |
| 		auxiliary_phys = this->auxiliary_phys;
 | |
| 
 | |
| 		/* Handle block mark swapping. */
 | |
| 		block_mark_swapping(this,
 | |
| 				(void *)payload_virt, (void *)auxiliary_virt);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If control arrives here, we're not doing block mark swapping,
 | |
| 		 * so we can to try and use the caller's buffers.
 | |
| 		 */
 | |
| 		ret = send_page_prepare(this,
 | |
| 				buf, mtd->writesize,
 | |
| 				this->payload_virt, this->payload_phys,
 | |
| 				nfc_geo->payload_size,
 | |
| 				&payload_virt, &payload_phys);
 | |
| 		if (ret) {
 | |
| 			dev_err(this->dev, "Inadequate payload DMA buffer\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		ret = send_page_prepare(this,
 | |
| 				chip->oob_poi, mtd->oobsize,
 | |
| 				this->auxiliary_virt, this->auxiliary_phys,
 | |
| 				nfc_geo->auxiliary_size,
 | |
| 				&auxiliary_virt, &auxiliary_phys);
 | |
| 		if (ret) {
 | |
| 			dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
 | |
| 			goto exit_auxiliary;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Ask the NFC. */
 | |
| 	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
 | |
| 	if (ret)
 | |
| 		dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
 | |
| 
 | |
| 	if (!this->swap_block_mark) {
 | |
| 		send_page_end(this, chip->oob_poi, mtd->oobsize,
 | |
| 				this->auxiliary_virt, this->auxiliary_phys,
 | |
| 				nfc_geo->auxiliary_size,
 | |
| 				auxiliary_virt, auxiliary_phys);
 | |
| exit_auxiliary:
 | |
| 		send_page_end(this, buf, mtd->writesize,
 | |
| 				this->payload_virt, this->payload_phys,
 | |
| 				nfc_geo->payload_size,
 | |
| 				payload_virt, payload_phys);
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return nand_prog_page_end_op(chip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are several places in this driver where we have to handle the OOB and
 | |
|  * block marks. This is the function where things are the most complicated, so
 | |
|  * this is where we try to explain it all. All the other places refer back to
 | |
|  * here.
 | |
|  *
 | |
|  * These are the rules, in order of decreasing importance:
 | |
|  *
 | |
|  * 1) Nothing the caller does can be allowed to imperil the block mark.
 | |
|  *
 | |
|  * 2) In read operations, the first byte of the OOB we return must reflect the
 | |
|  *    true state of the block mark, no matter where that block mark appears in
 | |
|  *    the physical page.
 | |
|  *
 | |
|  * 3) ECC-based read operations return an OOB full of set bits (since we never
 | |
|  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 | |
|  *    return).
 | |
|  *
 | |
|  * 4) "Raw" read operations return a direct view of the physical bytes in the
 | |
|  *    page, using the conventional definition of which bytes are data and which
 | |
|  *    are OOB. This gives the caller a way to see the actual, physical bytes
 | |
|  *    in the page, without the distortions applied by our ECC engine.
 | |
|  *
 | |
|  *
 | |
|  * What we do for this specific read operation depends on two questions:
 | |
|  *
 | |
|  * 1) Are we doing a "raw" read, or an ECC-based read?
 | |
|  *
 | |
|  * 2) Are we using block mark swapping or transcription?
 | |
|  *
 | |
|  * There are four cases, illustrated by the following Karnaugh map:
 | |
|  *
 | |
|  *                    |           Raw           |         ECC-based       |
 | |
|  *       -------------+-------------------------+-------------------------+
 | |
|  *                    | Read the conventional   |                         |
 | |
|  *                    | OOB at the end of the   |                         |
 | |
|  *       Swapping     | page and return it. It  |                         |
 | |
|  *                    | contains exactly what   |                         |
 | |
|  *                    | we want.                | Read the block mark and |
 | |
|  *       -------------+-------------------------+ return it in a buffer   |
 | |
|  *                    | Read the conventional   | full of set bits.       |
 | |
|  *                    | OOB at the end of the   |                         |
 | |
|  *                    | page and also the block |                         |
 | |
|  *       Transcribing | mark in the metadata.   |                         |
 | |
|  *                    | Copy the block mark     |                         |
 | |
|  *                    | into the first byte of  |                         |
 | |
|  *                    | the OOB.                |                         |
 | |
|  *       -------------+-------------------------+-------------------------+
 | |
|  *
 | |
|  * Note that we break rule #4 in the Transcribing/Raw case because we're not
 | |
|  * giving an accurate view of the actual, physical bytes in the page (we're
 | |
|  * overwriting the block mark). That's OK because it's more important to follow
 | |
|  * rule #2.
 | |
|  *
 | |
|  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 | |
|  * easy. When reading a page, for example, the NAND Flash MTD code calls our
 | |
|  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 | |
|  * ECC-based or raw view of the page is implicit in which function it calls
 | |
|  * (there is a similar pair of ECC-based/raw functions for writing).
 | |
|  */
 | |
| static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				int page)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 
 | |
| 	dev_dbg(this->dev, "page number is %d\n", page);
 | |
| 	/* clear the OOB buffer */
 | |
| 	memset(chip->oob_poi, ~0, mtd->oobsize);
 | |
| 
 | |
| 	/* Read out the conventional OOB. */
 | |
| 	nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
 | |
| 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now, we want to make sure the block mark is correct. In the
 | |
| 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
 | |
| 	 * Otherwise, we need to explicitly read it.
 | |
| 	 */
 | |
| 	if (GPMI_IS_MX23(this)) {
 | |
| 		/* Read the block mark into the first byte of the OOB buffer. */
 | |
| 		nand_read_page_op(chip, page, 0, NULL, 0);
 | |
| 		chip->oob_poi[0] = chip->read_byte(mtd);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
 | |
| {
 | |
| 	struct mtd_oob_region of = { };
 | |
| 
 | |
| 	/* Do we have available oob area? */
 | |
| 	mtd_ooblayout_free(mtd, 0, &of);
 | |
| 	if (!of.length)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (!nand_is_slc(chip))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
 | |
| 				 chip->oob_poi + of.offset, of.length);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function reads a NAND page without involving the ECC engine (no HW
 | |
|  * ECC correction).
 | |
|  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
 | |
|  * inline (interleaved with payload DATA), and do not align data chunk on
 | |
|  * byte boundaries.
 | |
|  * We thus need to take care moving the payload data and ECC bits stored in the
 | |
|  * page into the provided buffers, which is why we're using gpmi_copy_bits.
 | |
|  *
 | |
|  * See set_geometry_by_ecc_info inline comments to have a full description
 | |
|  * of the layout used by the GPMI controller.
 | |
|  */
 | |
| static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
 | |
| 				  struct nand_chip *chip, uint8_t *buf,
 | |
| 				  int oob_required, int page)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	struct bch_geometry *nfc_geo = &this->bch_geometry;
 | |
| 	int eccsize = nfc_geo->ecc_chunk_size;
 | |
| 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
 | |
| 	u8 *tmp_buf = this->raw_buffer;
 | |
| 	size_t src_bit_off;
 | |
| 	size_t oob_bit_off;
 | |
| 	size_t oob_byte_off;
 | |
| 	uint8_t *oob = chip->oob_poi;
 | |
| 	int step;
 | |
| 
 | |
| 	nand_read_page_op(chip, page, 0, tmp_buf,
 | |
| 			  mtd->writesize + mtd->oobsize);
 | |
| 
 | |
| 	/*
 | |
| 	 * If required, swap the bad block marker and the data stored in the
 | |
| 	 * metadata section, so that we don't wrongly consider a block as bad.
 | |
| 	 *
 | |
| 	 * See the layout description for a detailed explanation on why this
 | |
| 	 * is needed.
 | |
| 	 */
 | |
| 	if (this->swap_block_mark)
 | |
| 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the metadata section into the oob buffer (this section is
 | |
| 	 * guaranteed to be aligned on a byte boundary).
 | |
| 	 */
 | |
| 	if (oob_required)
 | |
| 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
 | |
| 
 | |
| 	oob_bit_off = nfc_geo->metadata_size * 8;
 | |
| 	src_bit_off = oob_bit_off;
 | |
| 
 | |
| 	/* Extract interleaved payload data and ECC bits */
 | |
| 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
 | |
| 		if (buf)
 | |
| 			gpmi_copy_bits(buf, step * eccsize * 8,
 | |
| 				       tmp_buf, src_bit_off,
 | |
| 				       eccsize * 8);
 | |
| 		src_bit_off += eccsize * 8;
 | |
| 
 | |
| 		/* Align last ECC block to align a byte boundary */
 | |
| 		if (step == nfc_geo->ecc_chunk_count - 1 &&
 | |
| 		    (oob_bit_off + eccbits) % 8)
 | |
| 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
 | |
| 
 | |
| 		if (oob_required)
 | |
| 			gpmi_copy_bits(oob, oob_bit_off,
 | |
| 				       tmp_buf, src_bit_off,
 | |
| 				       eccbits);
 | |
| 
 | |
| 		src_bit_off += eccbits;
 | |
| 		oob_bit_off += eccbits;
 | |
| 	}
 | |
| 
 | |
| 	if (oob_required) {
 | |
| 		oob_byte_off = oob_bit_off / 8;
 | |
| 
 | |
| 		if (oob_byte_off < mtd->oobsize)
 | |
| 			memcpy(oob + oob_byte_off,
 | |
| 			       tmp_buf + mtd->writesize + oob_byte_off,
 | |
| 			       mtd->oobsize - oob_byte_off);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function writes a NAND page without involving the ECC engine (no HW
 | |
|  * ECC generation).
 | |
|  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
 | |
|  * inline (interleaved with payload DATA), and do not align data chunk on
 | |
|  * byte boundaries.
 | |
|  * We thus need to take care moving the OOB area at the right place in the
 | |
|  * final page, which is why we're using gpmi_copy_bits.
 | |
|  *
 | |
|  * See set_geometry_by_ecc_info inline comments to have a full description
 | |
|  * of the layout used by the GPMI controller.
 | |
|  */
 | |
| static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
 | |
| 				   struct nand_chip *chip,
 | |
| 				   const uint8_t *buf,
 | |
| 				   int oob_required, int page)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	struct bch_geometry *nfc_geo = &this->bch_geometry;
 | |
| 	int eccsize = nfc_geo->ecc_chunk_size;
 | |
| 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
 | |
| 	u8 *tmp_buf = this->raw_buffer;
 | |
| 	uint8_t *oob = chip->oob_poi;
 | |
| 	size_t dst_bit_off;
 | |
| 	size_t oob_bit_off;
 | |
| 	size_t oob_byte_off;
 | |
| 	int step;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize all bits to 1 in case we don't have a buffer for the
 | |
| 	 * payload or oob data in order to leave unspecified bits of data
 | |
| 	 * to their initial state.
 | |
| 	 */
 | |
| 	if (!buf || !oob_required)
 | |
| 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
 | |
| 
 | |
| 	/*
 | |
| 	 * First copy the metadata section (stored in oob buffer) at the
 | |
| 	 * beginning of the page, as imposed by the GPMI layout.
 | |
| 	 */
 | |
| 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
 | |
| 	oob_bit_off = nfc_geo->metadata_size * 8;
 | |
| 	dst_bit_off = oob_bit_off;
 | |
| 
 | |
| 	/* Interleave payload data and ECC bits */
 | |
| 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
 | |
| 		if (buf)
 | |
| 			gpmi_copy_bits(tmp_buf, dst_bit_off,
 | |
| 				       buf, step * eccsize * 8, eccsize * 8);
 | |
| 		dst_bit_off += eccsize * 8;
 | |
| 
 | |
| 		/* Align last ECC block to align a byte boundary */
 | |
| 		if (step == nfc_geo->ecc_chunk_count - 1 &&
 | |
| 		    (oob_bit_off + eccbits) % 8)
 | |
| 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
 | |
| 
 | |
| 		if (oob_required)
 | |
| 			gpmi_copy_bits(tmp_buf, dst_bit_off,
 | |
| 				       oob, oob_bit_off, eccbits);
 | |
| 
 | |
| 		dst_bit_off += eccbits;
 | |
| 		oob_bit_off += eccbits;
 | |
| 	}
 | |
| 
 | |
| 	oob_byte_off = oob_bit_off / 8;
 | |
| 
 | |
| 	if (oob_required && oob_byte_off < mtd->oobsize)
 | |
| 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
 | |
| 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
 | |
| 
 | |
| 	/*
 | |
| 	 * If required, swap the bad block marker and the first byte of the
 | |
| 	 * metadata section, so that we don't modify the bad block marker.
 | |
| 	 *
 | |
| 	 * See the layout description for a detailed explanation on why this
 | |
| 	 * is needed.
 | |
| 	 */
 | |
| 	if (this->swap_block_mark)
 | |
| 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
 | |
| 
 | |
| 	return nand_prog_page_op(chip, page, 0, tmp_buf,
 | |
| 				 mtd->writesize + mtd->oobsize);
 | |
| }
 | |
| 
 | |
| static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				 int page)
 | |
| {
 | |
| 	return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
 | |
| }
 | |
| 
 | |
| static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				 int page)
 | |
| {
 | |
| 	return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
 | |
| }
 | |
| 
 | |
| static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	int ret = 0;
 | |
| 	uint8_t *block_mark;
 | |
| 	int column, page, chipnr;
 | |
| 
 | |
| 	chipnr = (int)(ofs >> chip->chip_shift);
 | |
| 	chip->select_chip(mtd, chipnr);
 | |
| 
 | |
| 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
 | |
| 
 | |
| 	/* Write the block mark. */
 | |
| 	block_mark = this->data_buffer_dma;
 | |
| 	block_mark[0] = 0; /* bad block marker */
 | |
| 
 | |
| 	/* Shift to get page */
 | |
| 	page = (int)(ofs >> chip->page_shift);
 | |
| 
 | |
| 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
 | |
| 
 | |
| 	chip->select_chip(mtd, -1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int nand_boot_set_geometry(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct boot_rom_geometry *geometry = &this->rom_geometry;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the boot block stride size.
 | |
| 	 *
 | |
| 	 * In principle, we should be reading this from the OTP bits, since
 | |
| 	 * that's where the ROM is going to get it. In fact, we don't have any
 | |
| 	 * way to read the OTP bits, so we go with the default and hope for the
 | |
| 	 * best.
 | |
| 	 */
 | |
| 	geometry->stride_size_in_pages = 64;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the search area stride exponent.
 | |
| 	 *
 | |
| 	 * In principle, we should be reading this from the OTP bits, since
 | |
| 	 * that's where the ROM is going to get it. In fact, we don't have any
 | |
| 	 * way to read the OTP bits, so we go with the default and hope for the
 | |
| 	 * best.
 | |
| 	 */
 | |
| 	geometry->search_area_stride_exponent = 2;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const char  *fingerprint = "STMP";
 | |
| static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
 | |
| 	struct device *dev = this->dev;
 | |
| 	struct nand_chip *chip = &this->nand;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	unsigned int search_area_size_in_strides;
 | |
| 	unsigned int stride;
 | |
| 	unsigned int page;
 | |
| 	uint8_t *buffer = chip->data_buf;
 | |
| 	int saved_chip_number;
 | |
| 	int found_an_ncb_fingerprint = false;
 | |
| 
 | |
| 	/* Compute the number of strides in a search area. */
 | |
| 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
 | |
| 
 | |
| 	saved_chip_number = this->current_chip;
 | |
| 	chip->select_chip(mtd, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop through the first search area, looking for the NCB fingerprint.
 | |
| 	 */
 | |
| 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
 | |
| 
 | |
| 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
 | |
| 		/* Compute the page addresses. */
 | |
| 		page = stride * rom_geo->stride_size_in_pages;
 | |
| 
 | |
| 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
 | |
| 
 | |
| 		/*
 | |
| 		 * Read the NCB fingerprint. The fingerprint is four bytes long
 | |
| 		 * and starts in the 12th byte of the page.
 | |
| 		 */
 | |
| 		nand_read_page_op(chip, page, 12, NULL, 0);
 | |
| 		chip->read_buf(mtd, buffer, strlen(fingerprint));
 | |
| 
 | |
| 		/* Look for the fingerprint. */
 | |
| 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
 | |
| 			found_an_ncb_fingerprint = true;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	chip->select_chip(mtd, saved_chip_number);
 | |
| 
 | |
| 	if (found_an_ncb_fingerprint)
 | |
| 		dev_dbg(dev, "\tFound a fingerprint\n");
 | |
| 	else
 | |
| 		dev_dbg(dev, "\tNo fingerprint found\n");
 | |
| 	return found_an_ncb_fingerprint;
 | |
| }
 | |
| 
 | |
| /* Writes a transcription stamp. */
 | |
| static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct device *dev = this->dev;
 | |
| 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
 | |
| 	struct nand_chip *chip = &this->nand;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	unsigned int block_size_in_pages;
 | |
| 	unsigned int search_area_size_in_strides;
 | |
| 	unsigned int search_area_size_in_pages;
 | |
| 	unsigned int search_area_size_in_blocks;
 | |
| 	unsigned int block;
 | |
| 	unsigned int stride;
 | |
| 	unsigned int page;
 | |
| 	uint8_t      *buffer = chip->data_buf;
 | |
| 	int saved_chip_number;
 | |
| 	int status;
 | |
| 
 | |
| 	/* Compute the search area geometry. */
 | |
| 	block_size_in_pages = mtd->erasesize / mtd->writesize;
 | |
| 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
 | |
| 	search_area_size_in_pages = search_area_size_in_strides *
 | |
| 					rom_geo->stride_size_in_pages;
 | |
| 	search_area_size_in_blocks =
 | |
| 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
 | |
| 				    block_size_in_pages;
 | |
| 
 | |
| 	dev_dbg(dev, "Search Area Geometry :\n");
 | |
| 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
 | |
| 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
 | |
| 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
 | |
| 
 | |
| 	/* Select chip 0. */
 | |
| 	saved_chip_number = this->current_chip;
 | |
| 	chip->select_chip(mtd, 0);
 | |
| 
 | |
| 	/* Loop over blocks in the first search area, erasing them. */
 | |
| 	dev_dbg(dev, "Erasing the search area...\n");
 | |
| 
 | |
| 	for (block = 0; block < search_area_size_in_blocks; block++) {
 | |
| 		/* Erase this block. */
 | |
| 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
 | |
| 		status = nand_erase_op(chip, block);
 | |
| 		if (status)
 | |
| 			dev_err(dev, "[%s] Erase failed.\n", __func__);
 | |
| 	}
 | |
| 
 | |
| 	/* Write the NCB fingerprint into the page buffer. */
 | |
| 	memset(buffer, ~0, mtd->writesize);
 | |
| 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
 | |
| 
 | |
| 	/* Loop through the first search area, writing NCB fingerprints. */
 | |
| 	dev_dbg(dev, "Writing NCB fingerprints...\n");
 | |
| 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
 | |
| 		/* Compute the page addresses. */
 | |
| 		page = stride * rom_geo->stride_size_in_pages;
 | |
| 
 | |
| 		/* Write the first page of the current stride. */
 | |
| 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
 | |
| 
 | |
| 		status = chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
 | |
| 		if (status)
 | |
| 			dev_err(dev, "[%s] Write failed.\n", __func__);
 | |
| 	}
 | |
| 
 | |
| 	/* Deselect chip 0. */
 | |
| 	chip->select_chip(mtd, saved_chip_number);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mx23_boot_init(struct gpmi_nand_data  *this)
 | |
| {
 | |
| 	struct device *dev = this->dev;
 | |
| 	struct nand_chip *chip = &this->nand;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	unsigned int block_count;
 | |
| 	unsigned int block;
 | |
| 	int     chipnr;
 | |
| 	int     page;
 | |
| 	loff_t  byte;
 | |
| 	uint8_t block_mark;
 | |
| 	int     ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If control arrives here, we can't use block mark swapping, which
 | |
| 	 * means we're forced to use transcription. First, scan for the
 | |
| 	 * transcription stamp. If we find it, then we don't have to do
 | |
| 	 * anything -- the block marks are already transcribed.
 | |
| 	 */
 | |
| 	if (mx23_check_transcription_stamp(this))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If control arrives here, we couldn't find a transcription stamp, so
 | |
| 	 * so we presume the block marks are in the conventional location.
 | |
| 	 */
 | |
| 	dev_dbg(dev, "Transcribing bad block marks...\n");
 | |
| 
 | |
| 	/* Compute the number of blocks in the entire medium. */
 | |
| 	block_count = chip->chipsize >> chip->phys_erase_shift;
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop over all the blocks in the medium, transcribing block marks as
 | |
| 	 * we go.
 | |
| 	 */
 | |
| 	for (block = 0; block < block_count; block++) {
 | |
| 		/*
 | |
| 		 * Compute the chip, page and byte addresses for this block's
 | |
| 		 * conventional mark.
 | |
| 		 */
 | |
| 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
 | |
| 		page = block << (chip->phys_erase_shift - chip->page_shift);
 | |
| 		byte = block <<  chip->phys_erase_shift;
 | |
| 
 | |
| 		/* Send the command to read the conventional block mark. */
 | |
| 		chip->select_chip(mtd, chipnr);
 | |
| 		nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
 | |
| 		block_mark = chip->read_byte(mtd);
 | |
| 		chip->select_chip(mtd, -1);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if the block is marked bad. If so, we need to mark it
 | |
| 		 * again, but this time the result will be a mark in the
 | |
| 		 * location where we transcribe block marks.
 | |
| 		 */
 | |
| 		if (block_mark != 0xff) {
 | |
| 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
 | |
| 			ret = chip->block_markbad(mtd, byte);
 | |
| 			if (ret)
 | |
| 				dev_err(dev,
 | |
| 					"Failed to mark block bad with ret %d\n",
 | |
| 					ret);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Write the stamp that indicates we've transcribed the block marks. */
 | |
| 	mx23_write_transcription_stamp(this);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nand_boot_init(struct gpmi_nand_data  *this)
 | |
| {
 | |
| 	nand_boot_set_geometry(this);
 | |
| 
 | |
| 	/* This is ROM arch-specific initilization before the BBT scanning. */
 | |
| 	if (GPMI_IS_MX23(this))
 | |
| 		return mx23_boot_init(this);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int gpmi_set_geometry(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Free the temporary DMA memory for reading ID. */
 | |
| 	gpmi_free_dma_buffer(this);
 | |
| 
 | |
| 	/* Set up the NFC geometry which is used by BCH. */
 | |
| 	ret = bch_set_geometry(this);
 | |
| 	if (ret) {
 | |
| 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
 | |
| 	return gpmi_alloc_dma_buffer(this);
 | |
| }
 | |
| 
 | |
| static int gpmi_init_last(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct nand_chip *chip = &this->nand;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 | |
| 	struct bch_geometry *bch_geo = &this->bch_geometry;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Set up the medium geometry */
 | |
| 	ret = gpmi_set_geometry(this);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Init the nand_ecc_ctrl{} */
 | |
| 	ecc->read_page	= gpmi_ecc_read_page;
 | |
| 	ecc->write_page	= gpmi_ecc_write_page;
 | |
| 	ecc->read_oob	= gpmi_ecc_read_oob;
 | |
| 	ecc->write_oob	= gpmi_ecc_write_oob;
 | |
| 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
 | |
| 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
 | |
| 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
 | |
| 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
 | |
| 	ecc->mode	= NAND_ECC_HW;
 | |
| 	ecc->size	= bch_geo->ecc_chunk_size;
 | |
| 	ecc->strength	= bch_geo->ecc_strength;
 | |
| 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only enable the subpage read when:
 | |
| 	 *  (1) the chip is imx6, and
 | |
| 	 *  (2) the size of the ECC parity is byte aligned.
 | |
| 	 */
 | |
| 	if (GPMI_IS_MX6(this) &&
 | |
| 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
 | |
| 		ecc->read_subpage = gpmi_ecc_read_subpage;
 | |
| 		chip->options |= NAND_SUBPAGE_READ;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int gpmi_nand_attach_chip(struct nand_chip *chip)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
 | |
| 		chip->bbt_options |= NAND_BBT_NO_OOB;
 | |
| 
 | |
| 		if (of_property_read_bool(this->dev->of_node,
 | |
| 					  "fsl,no-blockmark-swap"))
 | |
| 			this->swap_block_mark = false;
 | |
| 	}
 | |
| 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
 | |
| 		this->swap_block_mark ? "en" : "dis");
 | |
| 
 | |
| 	ret = gpmi_init_last(this);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	chip->options |= NAND_SKIP_BBTSCAN;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct nand_controller_ops gpmi_nand_controller_ops = {
 | |
| 	.attach_chip = gpmi_nand_attach_chip,
 | |
| };
 | |
| 
 | |
| static int gpmi_nand_init(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct nand_chip *chip = &this->nand;
 | |
| 	struct mtd_info  *mtd = nand_to_mtd(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* init current chip */
 | |
| 	this->current_chip	= -1;
 | |
| 
 | |
| 	/* init the MTD data structures */
 | |
| 	mtd->name		= "gpmi-nand";
 | |
| 	mtd->dev.parent		= this->dev;
 | |
| 
 | |
| 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
 | |
| 	nand_set_controller_data(chip, this);
 | |
| 	nand_set_flash_node(chip, this->pdev->dev.of_node);
 | |
| 	chip->select_chip	= gpmi_select_chip;
 | |
| 	chip->setup_data_interface = gpmi_setup_data_interface;
 | |
| 	chip->cmd_ctrl		= gpmi_cmd_ctrl;
 | |
| 	chip->dev_ready		= gpmi_dev_ready;
 | |
| 	chip->read_byte		= gpmi_read_byte;
 | |
| 	chip->read_buf		= gpmi_read_buf;
 | |
| 	chip->write_buf		= gpmi_write_buf;
 | |
| 	chip->badblock_pattern	= &gpmi_bbt_descr;
 | |
| 	chip->block_markbad	= gpmi_block_markbad;
 | |
| 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
 | |
| 
 | |
| 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
 | |
| 	this->swap_block_mark = !GPMI_IS_MX23(this);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a temporary DMA buffer for reading ID in the
 | |
| 	 * nand_scan_ident().
 | |
| 	 */
 | |
| 	this->bch_geometry.payload_size = 1024;
 | |
| 	this->bch_geometry.auxiliary_size = 128;
 | |
| 	ret = gpmi_alloc_dma_buffer(this);
 | |
| 	if (ret)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	chip->dummy_controller.ops = &gpmi_nand_controller_ops;
 | |
| 	ret = nand_scan(mtd, GPMI_IS_MX6(this) ? 2 : 1);
 | |
| 	if (ret)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	ret = nand_boot_init(this);
 | |
| 	if (ret)
 | |
| 		goto err_nand_cleanup;
 | |
| 	ret = nand_create_bbt(chip);
 | |
| 	if (ret)
 | |
| 		goto err_nand_cleanup;
 | |
| 
 | |
| 	ret = mtd_device_register(mtd, NULL, 0);
 | |
| 	if (ret)
 | |
| 		goto err_nand_cleanup;
 | |
| 	return 0;
 | |
| 
 | |
| err_nand_cleanup:
 | |
| 	nand_cleanup(chip);
 | |
| err_out:
 | |
| 	gpmi_free_dma_buffer(this);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id gpmi_nand_id_table[] = {
 | |
| 	{
 | |
| 		.compatible = "fsl,imx23-gpmi-nand",
 | |
| 		.data = &gpmi_devdata_imx23,
 | |
| 	}, {
 | |
| 		.compatible = "fsl,imx28-gpmi-nand",
 | |
| 		.data = &gpmi_devdata_imx28,
 | |
| 	}, {
 | |
| 		.compatible = "fsl,imx6q-gpmi-nand",
 | |
| 		.data = &gpmi_devdata_imx6q,
 | |
| 	}, {
 | |
| 		.compatible = "fsl,imx6sx-gpmi-nand",
 | |
| 		.data = &gpmi_devdata_imx6sx,
 | |
| 	}, {
 | |
| 		.compatible = "fsl,imx7d-gpmi-nand",
 | |
| 		.data = &gpmi_devdata_imx7d,
 | |
| 	}, {}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
 | |
| 
 | |
| static int gpmi_nand_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct gpmi_nand_data *this;
 | |
| 	const struct of_device_id *of_id;
 | |
| 	int ret;
 | |
| 
 | |
| 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
 | |
| 	if (!this)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
 | |
| 	if (of_id) {
 | |
| 		this->devdata = of_id->data;
 | |
| 	} else {
 | |
| 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, this);
 | |
| 	this->pdev  = pdev;
 | |
| 	this->dev   = &pdev->dev;
 | |
| 
 | |
| 	ret = acquire_resources(this);
 | |
| 	if (ret)
 | |
| 		goto exit_acquire_resources;
 | |
| 
 | |
| 	ret = gpmi_init(this);
 | |
| 	if (ret)
 | |
| 		goto exit_nfc_init;
 | |
| 
 | |
| 	ret = gpmi_nand_init(this);
 | |
| 	if (ret)
 | |
| 		goto exit_nfc_init;
 | |
| 
 | |
| 	dev_info(this->dev, "driver registered.\n");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_nfc_init:
 | |
| 	release_resources(this);
 | |
| exit_acquire_resources:
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int gpmi_nand_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	nand_release(nand_to_mtd(&this->nand));
 | |
| 	gpmi_free_dma_buffer(this);
 | |
| 	release_resources(this);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int gpmi_pm_suspend(struct device *dev)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
 | |
| 
 | |
| 	release_dma_channels(this);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int gpmi_pm_resume(struct device *dev)
 | |
| {
 | |
| 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = acquire_dma_channels(this);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* re-init the GPMI registers */
 | |
| 	ret = gpmi_init(this);
 | |
| 	if (ret) {
 | |
| 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* re-init the BCH registers */
 | |
| 	ret = bch_set_geometry(this);
 | |
| 	if (ret) {
 | |
| 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_PM_SLEEP */
 | |
| 
 | |
| static const struct dev_pm_ops gpmi_pm_ops = {
 | |
| 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
 | |
| };
 | |
| 
 | |
| static struct platform_driver gpmi_nand_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "gpmi-nand",
 | |
| 		.pm = &gpmi_pm_ops,
 | |
| 		.of_match_table = gpmi_nand_id_table,
 | |
| 	},
 | |
| 	.probe   = gpmi_nand_probe,
 | |
| 	.remove  = gpmi_nand_remove,
 | |
| };
 | |
| module_platform_driver(gpmi_nand_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Freescale Semiconductor, Inc.");
 | |
| MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
 | |
| MODULE_LICENSE("GPL");
 | 
