938 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			938 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Freescale GPMI NAND Flash Driver
 | |
|  *
 | |
|  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
 | |
|  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 | |
|  */
 | |
| #include <linux/delay.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include "gpmi-nand.h"
 | |
| #include "gpmi-regs.h"
 | |
| #include "bch-regs.h"
 | |
| 
 | |
| /* Converts time to clock cycles */
 | |
| #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
 | |
| 
 | |
| #define MXS_SET_ADDR		0x4
 | |
| #define MXS_CLR_ADDR		0x8
 | |
| /*
 | |
|  * Clear the bit and poll it cleared.  This is usually called with
 | |
|  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
 | |
|  * (bit 30).
 | |
|  */
 | |
| static int clear_poll_bit(void __iomem *addr, u32 mask)
 | |
| {
 | |
| 	int timeout = 0x400;
 | |
| 
 | |
| 	/* clear the bit */
 | |
| 	writel(mask, addr + MXS_CLR_ADDR);
 | |
| 
 | |
| 	/*
 | |
| 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
 | |
| 	 * recommends to wait 1us.
 | |
| 	 */
 | |
| 	udelay(1);
 | |
| 
 | |
| 	/* poll the bit becoming clear */
 | |
| 	while ((readl(addr) & mask) && --timeout)
 | |
| 		/* nothing */;
 | |
| 
 | |
| 	return !timeout;
 | |
| }
 | |
| 
 | |
| #define MODULE_CLKGATE		(1 << 30)
 | |
| #define MODULE_SFTRST		(1 << 31)
 | |
| /*
 | |
|  * The current mxs_reset_block() will do two things:
 | |
|  *  [1] enable the module.
 | |
|  *  [2] reset the module.
 | |
|  *
 | |
|  * In most of the cases, it's ok.
 | |
|  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
 | |
|  * If you try to soft reset the BCH block, it becomes unusable until
 | |
|  * the next hard reset. This case occurs in the NAND boot mode. When the board
 | |
|  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
 | |
|  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
 | |
|  * You will see a DMA timeout in this case. The bug has been fixed
 | |
|  * in the following chips, such as MX28.
 | |
|  *
 | |
|  * To avoid this bug, just add a new parameter `just_enable` for
 | |
|  * the mxs_reset_block(), and rewrite it here.
 | |
|  */
 | |
| static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
 | |
| {
 | |
| 	int ret;
 | |
| 	int timeout = 0x400;
 | |
| 
 | |
| 	/* clear and poll SFTRST */
 | |
| 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
 | |
| 	if (unlikely(ret))
 | |
| 		goto error;
 | |
| 
 | |
| 	/* clear CLKGATE */
 | |
| 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
 | |
| 
 | |
| 	if (!just_enable) {
 | |
| 		/* set SFTRST to reset the block */
 | |
| 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
 | |
| 		udelay(1);
 | |
| 
 | |
| 		/* poll CLKGATE becoming set */
 | |
| 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
 | |
| 			/* nothing */;
 | |
| 		if (unlikely(!timeout))
 | |
| 			goto error;
 | |
| 	}
 | |
| 
 | |
| 	/* clear and poll SFTRST */
 | |
| 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
 | |
| 	if (unlikely(ret))
 | |
| 		goto error;
 | |
| 
 | |
| 	/* clear and poll CLKGATE */
 | |
| 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
 | |
| 	if (unlikely(ret))
 | |
| 		goto error;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
 | |
| {
 | |
| 	struct clk *clk;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < GPMI_CLK_MAX; i++) {
 | |
| 		clk = this->resources.clock[i];
 | |
| 		if (!clk)
 | |
| 			break;
 | |
| 
 | |
| 		if (v) {
 | |
| 			ret = clk_prepare_enable(clk);
 | |
| 			if (ret)
 | |
| 				goto err_clk;
 | |
| 		} else {
 | |
| 			clk_disable_unprepare(clk);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| err_clk:
 | |
| 	for (; i > 0; i--)
 | |
| 		clk_disable_unprepare(this->resources.clock[i - 1]);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int gpmi_enable_clk(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	return __gpmi_enable_clk(this, true);
 | |
| }
 | |
| 
 | |
| int gpmi_disable_clk(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	return __gpmi_enable_clk(this, false);
 | |
| }
 | |
| 
 | |
| int gpmi_init(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct resources *r = &this->resources;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = gpmi_enable_clk(this);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	ret = gpmi_reset_block(r->gpmi_regs, false);
 | |
| 	if (ret)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset BCH here, too. We got failures otherwise :(
 | |
| 	 * See later BCH reset for explanation of MX23 and MX28 handling
 | |
| 	 */
 | |
| 	ret = gpmi_reset_block(r->bch_regs,
 | |
| 			       GPMI_IS_MX23(this) || GPMI_IS_MX28(this));
 | |
| 	if (ret)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	/* Choose NAND mode. */
 | |
| 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
 | |
| 
 | |
| 	/* Set the IRQ polarity. */
 | |
| 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
 | |
| 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
 | |
| 
 | |
| 	/* Disable Write-Protection. */
 | |
| 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
 | |
| 
 | |
| 	/* Select BCH ECC. */
 | |
| 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
 | |
| 
 | |
| 	/*
 | |
| 	 * Decouple the chip select from dma channel. We use dma0 for all
 | |
| 	 * the chips.
 | |
| 	 */
 | |
| 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
 | |
| 
 | |
| 	gpmi_disable_clk(this);
 | |
| 	return 0;
 | |
| err_out:
 | |
| 	gpmi_disable_clk(this);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* This function is very useful. It is called only when the bug occur. */
 | |
| void gpmi_dump_info(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct resources *r = &this->resources;
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 	u32 reg;
 | |
| 	int i;
 | |
| 
 | |
| 	dev_err(this->dev, "Show GPMI registers :\n");
 | |
| 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
 | |
| 		reg = readl(r->gpmi_regs + i * 0x10);
 | |
| 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
 | |
| 	}
 | |
| 
 | |
| 	/* start to print out the BCH info */
 | |
| 	dev_err(this->dev, "Show BCH registers :\n");
 | |
| 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
 | |
| 		reg = readl(r->bch_regs + i * 0x10);
 | |
| 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
 | |
| 	}
 | |
| 	dev_err(this->dev, "BCH Geometry :\n"
 | |
| 		"GF length              : %u\n"
 | |
| 		"ECC Strength           : %u\n"
 | |
| 		"Page Size in Bytes     : %u\n"
 | |
| 		"Metadata Size in Bytes : %u\n"
 | |
| 		"ECC Chunk Size in Bytes: %u\n"
 | |
| 		"ECC Chunk Count        : %u\n"
 | |
| 		"Payload Size in Bytes  : %u\n"
 | |
| 		"Auxiliary Size in Bytes: %u\n"
 | |
| 		"Auxiliary Status Offset: %u\n"
 | |
| 		"Block Mark Byte Offset : %u\n"
 | |
| 		"Block Mark Bit Offset  : %u\n",
 | |
| 		geo->gf_len,
 | |
| 		geo->ecc_strength,
 | |
| 		geo->page_size,
 | |
| 		geo->metadata_size,
 | |
| 		geo->ecc_chunk_size,
 | |
| 		geo->ecc_chunk_count,
 | |
| 		geo->payload_size,
 | |
| 		geo->auxiliary_size,
 | |
| 		geo->auxiliary_status_offset,
 | |
| 		geo->block_mark_byte_offset,
 | |
| 		geo->block_mark_bit_offset);
 | |
| }
 | |
| 
 | |
| /* Configures the geometry for BCH.  */
 | |
| int bch_set_geometry(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct resources *r = &this->resources;
 | |
| 	struct bch_geometry *bch_geo = &this->bch_geometry;
 | |
| 	unsigned int block_count;
 | |
| 	unsigned int block_size;
 | |
| 	unsigned int metadata_size;
 | |
| 	unsigned int ecc_strength;
 | |
| 	unsigned int page_size;
 | |
| 	unsigned int gf_len;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = common_nfc_set_geometry(this);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	block_count   = bch_geo->ecc_chunk_count - 1;
 | |
| 	block_size    = bch_geo->ecc_chunk_size;
 | |
| 	metadata_size = bch_geo->metadata_size;
 | |
| 	ecc_strength  = bch_geo->ecc_strength >> 1;
 | |
| 	page_size     = bch_geo->page_size;
 | |
| 	gf_len        = bch_geo->gf_len;
 | |
| 
 | |
| 	ret = gpmi_enable_clk(this);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
 | |
| 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
 | |
| 	* and MX28.
 | |
| 	*/
 | |
| 	ret = gpmi_reset_block(r->bch_regs,
 | |
| 			       GPMI_IS_MX23(this) || GPMI_IS_MX28(this));
 | |
| 	if (ret)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	/* Configure layout 0. */
 | |
| 	writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
 | |
| 			| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
 | |
| 			| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
 | |
| 			| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
 | |
| 			| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
 | |
| 			r->bch_regs + HW_BCH_FLASH0LAYOUT0);
 | |
| 
 | |
| 	writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
 | |
| 			| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
 | |
| 			| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
 | |
| 			| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
 | |
| 			r->bch_regs + HW_BCH_FLASH0LAYOUT1);
 | |
| 
 | |
| 	/* Set *all* chip selects to use layout 0. */
 | |
| 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
 | |
| 
 | |
| 	/* Enable interrupts. */
 | |
| 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
 | |
| 				r->bch_regs + HW_BCH_CTRL_SET);
 | |
| 
 | |
| 	gpmi_disable_clk(this);
 | |
| 	return 0;
 | |
| err_out:
 | |
| 	gpmi_disable_clk(this);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * <1> Firstly, we should know what's the GPMI-clock means.
 | |
|  *     The GPMI-clock is the internal clock in the gpmi nand controller.
 | |
|  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
 | |
|  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
 | |
|  *
 | |
|  * <2> Secondly, we should know what's the frequency on the nand chip pins.
 | |
|  *     The frequency on the nand chip pins is derived from the GPMI-clock.
 | |
|  *     We can get it from the following equation:
 | |
|  *
 | |
|  *         F = G / (DS + DH)
 | |
|  *
 | |
|  *         F  : the frequency on the nand chip pins.
 | |
|  *         G  : the GPMI clock, such as 100MHz.
 | |
|  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
 | |
|  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
 | |
|  *
 | |
|  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
 | |
|  *     the nand EDO(extended Data Out) timing could be applied.
 | |
|  *     The GPMI implements a feedback read strobe to sample the read data.
 | |
|  *     The feedback read strobe can be delayed to support the nand EDO timing
 | |
|  *     where the read strobe may deasserts before the read data is valid, and
 | |
|  *     read data is valid for some time after read strobe.
 | |
|  *
 | |
|  *     The following figure illustrates some aspects of a NAND Flash read:
 | |
|  *
 | |
|  *                   |<---tREA---->|
 | |
|  *                   |             |
 | |
|  *                   |         |   |
 | |
|  *                   |<--tRP-->|   |
 | |
|  *                   |         |   |
 | |
|  *                  __          ___|__________________________________
 | |
|  *     RDN            \________/   |
 | |
|  *                                 |
 | |
|  *                                 /---------\
 | |
|  *     Read Data    --------------<           >---------
 | |
|  *                                 \---------/
 | |
|  *                                |     |
 | |
|  *                                |<-D->|
 | |
|  *     FeedbackRDN  ________             ____________
 | |
|  *                          \___________/
 | |
|  *
 | |
|  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
 | |
|  *
 | |
|  *
 | |
|  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
 | |
|  *
 | |
|  *  4.1) From the aspect of the nand chip pins:
 | |
|  *        Delay = (tREA + C - tRP)               {1}
 | |
|  *
 | |
|  *        tREA : the maximum read access time.
 | |
|  *        C    : a constant to adjust the delay. default is 4000ps.
 | |
|  *        tRP  : the read pulse width, which is exactly:
 | |
|  *                   tRP = (GPMI-clock-period) * DATA_SETUP
 | |
|  *
 | |
|  *  4.2) From the aspect of the GPMI nand controller:
 | |
|  *         Delay = RDN_DELAY * 0.125 * RP        {2}
 | |
|  *
 | |
|  *         RP   : the DLL reference period.
 | |
|  *            if (GPMI-clock-period > DLL_THRETHOLD)
 | |
|  *                   RP = GPMI-clock-period / 2;
 | |
|  *            else
 | |
|  *                   RP = GPMI-clock-period;
 | |
|  *
 | |
|  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
 | |
|  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
 | |
|  *            is 16000ps, but in mx6q, we use 12000ps.
 | |
|  *
 | |
|  *  4.3) since {1} equals {2}, we get:
 | |
|  *
 | |
|  *                     (tREA + 4000 - tRP) * 8
 | |
|  *         RDN_DELAY = -----------------------     {3}
 | |
|  *                           RP
 | |
|  */
 | |
| static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
 | |
| 				     const struct nand_sdr_timings *sdr)
 | |
| {
 | |
| 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
 | |
| 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
 | |
| 	unsigned int period_ps, reference_period_ps;
 | |
| 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
 | |
| 	unsigned int tRP_ps;
 | |
| 	bool use_half_period;
 | |
| 	int sample_delay_ps, sample_delay_factor;
 | |
| 	u16 busy_timeout_cycles;
 | |
| 	u8 wrn_dly_sel;
 | |
| 
 | |
| 	if (sdr->tRC_min >= 30000) {
 | |
| 		/* ONFI non-EDO modes [0-3] */
 | |
| 		hw->clk_rate = 22000000;
 | |
| 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
 | |
| 	} else if (sdr->tRC_min >= 25000) {
 | |
| 		/* ONFI EDO mode 4 */
 | |
| 		hw->clk_rate = 80000000;
 | |
| 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
 | |
| 	} else {
 | |
| 		/* ONFI EDO mode 5 */
 | |
| 		hw->clk_rate = 100000000;
 | |
| 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
 | |
| 	}
 | |
| 
 | |
| 	/* SDR core timings are given in picoseconds */
 | |
| 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
 | |
| 
 | |
| 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
 | |
| 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
 | |
| 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
 | |
| 	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
 | |
| 
 | |
| 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
 | |
| 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
 | |
| 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
 | |
| 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
 | |
| 
 | |
| 	/*
 | |
| 	 * Derive NFC ideal delay from {3}:
 | |
| 	 *
 | |
| 	 *                     (tREA + 4000 - tRP) * 8
 | |
| 	 *         RDN_DELAY = -----------------------
 | |
| 	 *                                RP
 | |
| 	 */
 | |
| 	if (period_ps > dll_threshold_ps) {
 | |
| 		use_half_period = true;
 | |
| 		reference_period_ps = period_ps / 2;
 | |
| 	} else {
 | |
| 		use_half_period = false;
 | |
| 		reference_period_ps = period_ps;
 | |
| 	}
 | |
| 
 | |
| 	tRP_ps = data_setup_cycles * period_ps;
 | |
| 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
 | |
| 	if (sample_delay_ps > 0)
 | |
| 		sample_delay_factor = sample_delay_ps / reference_period_ps;
 | |
| 	else
 | |
| 		sample_delay_factor = 0;
 | |
| 
 | |
| 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
 | |
| 	if (sample_delay_factor)
 | |
| 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
 | |
| 			      BM_GPMI_CTRL1_DLL_ENABLE |
 | |
| 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
 | |
| }
 | |
| 
 | |
| void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
 | |
| 	struct resources *r = &this->resources;
 | |
| 	void __iomem *gpmi_regs = r->gpmi_regs;
 | |
| 	unsigned int dll_wait_time_us;
 | |
| 
 | |
| 	clk_set_rate(r->clock[0], hw->clk_rate);
 | |
| 
 | |
| 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
 | |
| 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear several CTRL1 fields, DLL must be disabled when setting
 | |
| 	 * RDN_DELAY or HALF_PERIOD.
 | |
| 	 */
 | |
| 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
 | |
| 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
 | |
| 
 | |
| 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
 | |
| 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
 | |
| 	if (!dll_wait_time_us)
 | |
| 		dll_wait_time_us = 1;
 | |
| 
 | |
| 	/* Wait for the DLL to settle. */
 | |
| 	udelay(dll_wait_time_us);
 | |
| }
 | |
| 
 | |
| int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
 | |
| 			      const struct nand_data_interface *conf)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 | |
| 	const struct nand_sdr_timings *sdr;
 | |
| 
 | |
| 	/* Retrieve required NAND timings */
 | |
| 	sdr = nand_get_sdr_timings(conf);
 | |
| 	if (IS_ERR(sdr))
 | |
| 		return PTR_ERR(sdr);
 | |
| 
 | |
| 	/* Only MX6 GPMI controller can reach EDO timings */
 | |
| 	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	/* Stop here if this call was just a check */
 | |
| 	if (chipnr < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Do the actual derivation of the controller timings */
 | |
| 	gpmi_nfc_compute_timings(this, sdr);
 | |
| 
 | |
| 	this->hw.must_apply_timings = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Clears a BCH interrupt. */
 | |
| void gpmi_clear_bch(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct resources *r = &this->resources;
 | |
| 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
 | |
| }
 | |
| 
 | |
| /* Returns the Ready/Busy status of the given chip. */
 | |
| int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
 | |
| {
 | |
| 	struct resources *r = &this->resources;
 | |
| 	uint32_t mask = 0;
 | |
| 	uint32_t reg = 0;
 | |
| 
 | |
| 	if (GPMI_IS_MX23(this)) {
 | |
| 		mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
 | |
| 		reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
 | |
| 	} else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
 | |
| 		/*
 | |
| 		 * In the imx6, all the ready/busy pins are bound
 | |
| 		 * together. So we only need to check chip 0.
 | |
| 		 */
 | |
| 		if (GPMI_IS_MX6(this))
 | |
| 			chip = 0;
 | |
| 
 | |
| 		/* MX28 shares the same R/B register as MX6Q. */
 | |
| 		mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
 | |
| 		reg = readl(r->gpmi_regs + HW_GPMI_STAT);
 | |
| 	} else
 | |
| 		dev_err(this->dev, "unknown arch.\n");
 | |
| 	return reg & mask;
 | |
| }
 | |
| 
 | |
| int gpmi_send_command(struct gpmi_nand_data *this)
 | |
| {
 | |
| 	struct dma_chan *channel = get_dma_chan(this);
 | |
| 	struct dma_async_tx_descriptor *desc;
 | |
| 	struct scatterlist *sgl;
 | |
| 	int chip = this->current_chip;
 | |
| 	int ret;
 | |
| 	u32 pio[3];
 | |
| 
 | |
| 	/* [1] send out the PIO words */
 | |
| 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
 | |
| 		| BM_GPMI_CTRL0_WORD_LENGTH
 | |
| 		| BF_GPMI_CTRL0_CS(chip, this)
 | |
| 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
 | |
| 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
 | |
| 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
 | |
| 		| BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
 | |
| 	pio[1] = pio[2] = 0;
 | |
| 	desc = dmaengine_prep_slave_sg(channel,
 | |
| 					(struct scatterlist *)pio,
 | |
| 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* [2] send out the COMMAND + ADDRESS string stored in @buffer */
 | |
| 	sgl = &this->cmd_sgl;
 | |
| 
 | |
| 	sg_init_one(sgl, this->cmd_buffer, this->command_length);
 | |
| 	dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
 | |
| 	desc = dmaengine_prep_slave_sg(channel,
 | |
| 				sgl, 1, DMA_MEM_TO_DEV,
 | |
| 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* [3] submit the DMA */
 | |
| 	ret = start_dma_without_bch_irq(this, desc);
 | |
| 
 | |
| 	dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len)
 | |
| {
 | |
| 	struct dma_async_tx_descriptor *desc;
 | |
| 	struct dma_chan *channel = get_dma_chan(this);
 | |
| 	int chip = this->current_chip;
 | |
| 	int ret;
 | |
| 	uint32_t command_mode;
 | |
| 	uint32_t address;
 | |
| 	u32 pio[2];
 | |
| 
 | |
| 	/* [1] PIO */
 | |
| 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
 | |
| 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
 | |
| 
 | |
| 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
 | |
| 		| BM_GPMI_CTRL0_WORD_LENGTH
 | |
| 		| BF_GPMI_CTRL0_CS(chip, this)
 | |
| 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
 | |
| 		| BF_GPMI_CTRL0_ADDRESS(address)
 | |
| 		| BF_GPMI_CTRL0_XFER_COUNT(len);
 | |
| 	pio[1] = 0;
 | |
| 	desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
 | |
| 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* [2] send DMA request */
 | |
| 	prepare_data_dma(this, buf, len, DMA_TO_DEVICE);
 | |
| 	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
 | |
| 					1, DMA_MEM_TO_DEV,
 | |
| 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* [3] submit the DMA */
 | |
| 	ret = start_dma_without_bch_irq(this, desc);
 | |
| 
 | |
| 	dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len)
 | |
| {
 | |
| 	struct dma_async_tx_descriptor *desc;
 | |
| 	struct dma_chan *channel = get_dma_chan(this);
 | |
| 	int chip = this->current_chip;
 | |
| 	int ret;
 | |
| 	u32 pio[2];
 | |
| 	bool direct;
 | |
| 
 | |
| 	/* [1] : send PIO */
 | |
| 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
 | |
| 		| BM_GPMI_CTRL0_WORD_LENGTH
 | |
| 		| BF_GPMI_CTRL0_CS(chip, this)
 | |
| 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
 | |
| 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
 | |
| 		| BF_GPMI_CTRL0_XFER_COUNT(len);
 | |
| 	pio[1] = 0;
 | |
| 	desc = dmaengine_prep_slave_sg(channel,
 | |
| 					(struct scatterlist *)pio,
 | |
| 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* [2] : send DMA request */
 | |
| 	direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE);
 | |
| 	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
 | |
| 					1, DMA_DEV_TO_MEM,
 | |
| 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* [3] : submit the DMA */
 | |
| 
 | |
| 	ret = start_dma_without_bch_irq(this, desc);
 | |
| 
 | |
| 	dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
 | |
| 	if (!direct)
 | |
| 		memcpy(buf, this->data_buffer_dma, len);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int gpmi_send_page(struct gpmi_nand_data *this,
 | |
| 			dma_addr_t payload, dma_addr_t auxiliary)
 | |
| {
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 	uint32_t command_mode;
 | |
| 	uint32_t address;
 | |
| 	uint32_t ecc_command;
 | |
| 	uint32_t buffer_mask;
 | |
| 	struct dma_async_tx_descriptor *desc;
 | |
| 	struct dma_chan *channel = get_dma_chan(this);
 | |
| 	int chip = this->current_chip;
 | |
| 	u32 pio[6];
 | |
| 
 | |
| 	/* A DMA descriptor that does an ECC page read. */
 | |
| 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
 | |
| 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
 | |
| 	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
 | |
| 	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
 | |
| 				BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
 | |
| 
 | |
| 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
 | |
| 		| BM_GPMI_CTRL0_WORD_LENGTH
 | |
| 		| BF_GPMI_CTRL0_CS(chip, this)
 | |
| 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
 | |
| 		| BF_GPMI_CTRL0_ADDRESS(address)
 | |
| 		| BF_GPMI_CTRL0_XFER_COUNT(0);
 | |
| 	pio[1] = 0;
 | |
| 	pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
 | |
| 		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
 | |
| 		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
 | |
| 	pio[3] = geo->page_size;
 | |
| 	pio[4] = payload;
 | |
| 	pio[5] = auxiliary;
 | |
| 
 | |
| 	desc = dmaengine_prep_slave_sg(channel,
 | |
| 					(struct scatterlist *)pio,
 | |
| 					ARRAY_SIZE(pio), DMA_TRANS_NONE,
 | |
| 					DMA_CTRL_ACK);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return start_dma_with_bch_irq(this, desc);
 | |
| }
 | |
| 
 | |
| int gpmi_read_page(struct gpmi_nand_data *this,
 | |
| 				dma_addr_t payload, dma_addr_t auxiliary)
 | |
| {
 | |
| 	struct bch_geometry *geo = &this->bch_geometry;
 | |
| 	uint32_t command_mode;
 | |
| 	uint32_t address;
 | |
| 	uint32_t ecc_command;
 | |
| 	uint32_t buffer_mask;
 | |
| 	struct dma_async_tx_descriptor *desc;
 | |
| 	struct dma_chan *channel = get_dma_chan(this);
 | |
| 	int chip = this->current_chip;
 | |
| 	u32 pio[6];
 | |
| 
 | |
| 	/* [1] Wait for the chip to report ready. */
 | |
| 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
 | |
| 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
 | |
| 
 | |
| 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
 | |
| 		| BM_GPMI_CTRL0_WORD_LENGTH
 | |
| 		| BF_GPMI_CTRL0_CS(chip, this)
 | |
| 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
 | |
| 		| BF_GPMI_CTRL0_ADDRESS(address)
 | |
| 		| BF_GPMI_CTRL0_XFER_COUNT(0);
 | |
| 	pio[1] = 0;
 | |
| 	desc = dmaengine_prep_slave_sg(channel,
 | |
| 				(struct scatterlist *)pio, 2,
 | |
| 				DMA_TRANS_NONE, 0);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* [2] Enable the BCH block and read. */
 | |
| 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
 | |
| 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
 | |
| 	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
 | |
| 	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
 | |
| 			| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
 | |
| 
 | |
| 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
 | |
| 		| BM_GPMI_CTRL0_WORD_LENGTH
 | |
| 		| BF_GPMI_CTRL0_CS(chip, this)
 | |
| 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
 | |
| 		| BF_GPMI_CTRL0_ADDRESS(address)
 | |
| 		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
 | |
| 
 | |
| 	pio[1] = 0;
 | |
| 	pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
 | |
| 		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
 | |
| 		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
 | |
| 	pio[3] = geo->page_size;
 | |
| 	pio[4] = payload;
 | |
| 	pio[5] = auxiliary;
 | |
| 	desc = dmaengine_prep_slave_sg(channel,
 | |
| 					(struct scatterlist *)pio,
 | |
| 					ARRAY_SIZE(pio), DMA_TRANS_NONE,
 | |
| 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* [3] Disable the BCH block */
 | |
| 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
 | |
| 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
 | |
| 
 | |
| 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
 | |
| 		| BM_GPMI_CTRL0_WORD_LENGTH
 | |
| 		| BF_GPMI_CTRL0_CS(chip, this)
 | |
| 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
 | |
| 		| BF_GPMI_CTRL0_ADDRESS(address)
 | |
| 		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
 | |
| 	pio[1] = 0;
 | |
| 	pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
 | |
| 	desc = dmaengine_prep_slave_sg(channel,
 | |
| 				(struct scatterlist *)pio, 3,
 | |
| 				DMA_TRANS_NONE,
 | |
| 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 | |
| 	if (!desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* [4] submit the DMA */
 | |
| 	return start_dma_with_bch_irq(this, desc);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * gpmi_copy_bits - copy bits from one memory region to another
 | |
|  * @dst: destination buffer
 | |
|  * @dst_bit_off: bit offset we're starting to write at
 | |
|  * @src: source buffer
 | |
|  * @src_bit_off: bit offset we're starting to read from
 | |
|  * @nbits: number of bits to copy
 | |
|  *
 | |
|  * This functions copies bits from one memory region to another, and is used by
 | |
|  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
 | |
|  * aligned.
 | |
|  *
 | |
|  * src and dst should not overlap.
 | |
|  *
 | |
|  */
 | |
| void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
 | |
| 		    const u8 *src, size_t src_bit_off,
 | |
| 		    size_t nbits)
 | |
| {
 | |
| 	size_t i;
 | |
| 	size_t nbytes;
 | |
| 	u32 src_buffer = 0;
 | |
| 	size_t bits_in_src_buffer = 0;
 | |
| 
 | |
| 	if (!nbits)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Move src and dst pointers to the closest byte pointer and store bit
 | |
| 	 * offsets within a byte.
 | |
| 	 */
 | |
| 	src += src_bit_off / 8;
 | |
| 	src_bit_off %= 8;
 | |
| 
 | |
| 	dst += dst_bit_off / 8;
 | |
| 	dst_bit_off %= 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the src_buffer value with bits available in the first
 | |
| 	 * byte of data so that we end up with a byte aligned src pointer.
 | |
| 	 */
 | |
| 	if (src_bit_off) {
 | |
| 		src_buffer = src[0] >> src_bit_off;
 | |
| 		if (nbits >= (8 - src_bit_off)) {
 | |
| 			bits_in_src_buffer += 8 - src_bit_off;
 | |
| 		} else {
 | |
| 			src_buffer &= GENMASK(nbits - 1, 0);
 | |
| 			bits_in_src_buffer += nbits;
 | |
| 		}
 | |
| 		nbits -= bits_in_src_buffer;
 | |
| 		src++;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the number of bytes that can be copied from src to dst. */
 | |
| 	nbytes = nbits / 8;
 | |
| 
 | |
| 	/* Try to align dst to a byte boundary. */
 | |
| 	if (dst_bit_off) {
 | |
| 		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
 | |
| 			src_buffer |= src[0] << bits_in_src_buffer;
 | |
| 			bits_in_src_buffer += 8;
 | |
| 			src++;
 | |
| 			nbytes--;
 | |
| 		}
 | |
| 
 | |
| 		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
 | |
| 			dst[0] &= GENMASK(dst_bit_off - 1, 0);
 | |
| 			dst[0] |= src_buffer << dst_bit_off;
 | |
| 			src_buffer >>= (8 - dst_bit_off);
 | |
| 			bits_in_src_buffer -= (8 - dst_bit_off);
 | |
| 			dst_bit_off = 0;
 | |
| 			dst++;
 | |
| 			if (bits_in_src_buffer > 7) {
 | |
| 				bits_in_src_buffer -= 8;
 | |
| 				dst[0] = src_buffer;
 | |
| 				dst++;
 | |
| 				src_buffer >>= 8;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!bits_in_src_buffer && !dst_bit_off) {
 | |
| 		/*
 | |
| 		 * Both src and dst pointers are byte aligned, thus we can
 | |
| 		 * just use the optimized memcpy function.
 | |
| 		 */
 | |
| 		if (nbytes)
 | |
| 			memcpy(dst, src, nbytes);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * src buffer is not byte aligned, hence we have to copy each
 | |
| 		 * src byte to the src_buffer variable before extracting a byte
 | |
| 		 * to store in dst.
 | |
| 		 */
 | |
| 		for (i = 0; i < nbytes; i++) {
 | |
| 			src_buffer |= src[i] << bits_in_src_buffer;
 | |
| 			dst[i] = src_buffer;
 | |
| 			src_buffer >>= 8;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Update dst and src pointers */
 | |
| 	dst += nbytes;
 | |
| 	src += nbytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * nbits is the number of remaining bits. It should not exceed 8 as
 | |
| 	 * we've already copied as much bytes as possible.
 | |
| 	 */
 | |
| 	nbits %= 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there's no more bits to copy to the destination and src buffer
 | |
| 	 * was already byte aligned, then we're done.
 | |
| 	 */
 | |
| 	if (!nbits && !bits_in_src_buffer)
 | |
| 		return;
 | |
| 
 | |
| 	/* Copy the remaining bits to src_buffer */
 | |
| 	if (nbits)
 | |
| 		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
 | |
| 			      bits_in_src_buffer;
 | |
| 	bits_in_src_buffer += nbits;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case there were not enough bits to get a byte aligned dst buffer
 | |
| 	 * prepare the src_buffer variable to match the dst organization (shift
 | |
| 	 * src_buffer by dst_bit_off and retrieve the least significant bits
 | |
| 	 * from dst).
 | |
| 	 */
 | |
| 	if (dst_bit_off)
 | |
| 		src_buffer = (src_buffer << dst_bit_off) |
 | |
| 			     (*dst & GENMASK(dst_bit_off - 1, 0));
 | |
| 	bits_in_src_buffer += dst_bit_off;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep most significant bits from dst if we end up with an unaligned
 | |
| 	 * number of bits.
 | |
| 	 */
 | |
| 	nbytes = bits_in_src_buffer / 8;
 | |
| 	if (bits_in_src_buffer % 8) {
 | |
| 		src_buffer |= (dst[nbytes] &
 | |
| 			       GENMASK(7, bits_in_src_buffer % 8)) <<
 | |
| 			      (nbytes * 8);
 | |
| 		nbytes++;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the remaining bytes to dst */
 | |
| 	for (i = 0; i < nbytes; i++) {
 | |
| 		dst[i] = src_buffer;
 | |
| 		src_buffer >>= 8;
 | |
| 	}
 | |
| }
 | 
