982 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			982 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Freescale Enhanced Local Bus Controller NAND driver
 | |
|  *
 | |
|  * Copyright © 2006-2007, 2010 Freescale Semiconductor
 | |
|  *
 | |
|  * Authors: Nick Spence <nick.spence@freescale.com>,
 | |
|  *          Scott Wood <scottwood@freescale.com>
 | |
|  *          Jack Lan <jack.lan@freescale.com>
 | |
|  *          Roy Zang <tie-fei.zang@freescale.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| 
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/rawnand.h>
 | |
| #include <linux/mtd/nand_ecc.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/fsl_lbc.h>
 | |
| 
 | |
| #define MAX_BANKS 8
 | |
| #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
 | |
| #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
 | |
| 
 | |
| /* mtd information per set */
 | |
| 
 | |
| struct fsl_elbc_mtd {
 | |
| 	struct nand_chip chip;
 | |
| 	struct fsl_lbc_ctrl *ctrl;
 | |
| 
 | |
| 	struct device *dev;
 | |
| 	int bank;               /* Chip select bank number           */
 | |
| 	u8 __iomem *vbase;      /* Chip select base virtual address  */
 | |
| 	int page_size;          /* NAND page size (0=512, 1=2048)    */
 | |
| 	unsigned int fmr;       /* FCM Flash Mode Register value     */
 | |
| };
 | |
| 
 | |
| /* Freescale eLBC FCM controller information */
 | |
| 
 | |
| struct fsl_elbc_fcm_ctrl {
 | |
| 	struct nand_controller controller;
 | |
| 	struct fsl_elbc_mtd *chips[MAX_BANKS];
 | |
| 
 | |
| 	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
 | |
| 	unsigned int page;       /* Last page written to / read from      */
 | |
| 	unsigned int read_bytes; /* Number of bytes read during command   */
 | |
| 	unsigned int column;     /* Saved column from SEQIN               */
 | |
| 	unsigned int index;      /* Pointer to next byte to 'read'        */
 | |
| 	unsigned int status;     /* status read from LTESR after last op  */
 | |
| 	unsigned int mdr;        /* UPM/FCM Data Register value           */
 | |
| 	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
 | |
| 	unsigned int oob;        /* Non zero if operating on OOB data     */
 | |
| 	unsigned int counter;	 /* counter for the initializations	  */
 | |
| 	unsigned int max_bitflips;  /* Saved during READ0 cmd		  */
 | |
| };
 | |
| 
 | |
| /* These map to the positions used by the FCM hardware ECC generator */
 | |
| 
 | |
| static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
 | |
| 				  struct mtd_oob_region *oobregion)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 
 | |
| 	if (section >= chip->ecc.steps)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	oobregion->offset = (16 * section) + 6;
 | |
| 	if (priv->fmr & FMR_ECCM)
 | |
| 		oobregion->offset += 2;
 | |
| 
 | |
| 	oobregion->length = chip->ecc.bytes;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
 | |
| 				   struct mtd_oob_region *oobregion)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 
 | |
| 	if (section > chip->ecc.steps)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	if (!section) {
 | |
| 		oobregion->offset = 0;
 | |
| 		if (mtd->writesize > 512)
 | |
| 			oobregion->offset++;
 | |
| 		oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
 | |
| 	} else {
 | |
| 		oobregion->offset = (16 * section) -
 | |
| 				    ((priv->fmr & FMR_ECCM) ? 5 : 7);
 | |
| 		if (section < chip->ecc.steps)
 | |
| 			oobregion->length = 13;
 | |
| 		else
 | |
| 			oobregion->length = mtd->oobsize - oobregion->offset;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
 | |
| 	.ecc = fsl_elbc_ooblayout_ecc,
 | |
| 	.free = fsl_elbc_ooblayout_free,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 | |
|  * interfere with ECC positions, that's why we implement our own descriptors.
 | |
|  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 | |
|  */
 | |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 | |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 | |
| 
 | |
| static struct nand_bbt_descr bbt_main_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 | |
| 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 | |
| 	.offs =	11,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 15,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = bbt_pattern,
 | |
| };
 | |
| 
 | |
| static struct nand_bbt_descr bbt_mirror_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 | |
| 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 | |
| 	.offs =	11,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 15,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = mirror_pattern,
 | |
| };
 | |
| 
 | |
| /*=================================*/
 | |
| 
 | |
| /*
 | |
|  * Set up the FCM hardware block and page address fields, and the fcm
 | |
|  * structure addr field to point to the correct FCM buffer in memory
 | |
|  */
 | |
| static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 | |
| 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 | |
| 	int buf_num;
 | |
| 
 | |
| 	elbc_fcm_ctrl->page = page_addr;
 | |
| 
 | |
| 	if (priv->page_size) {
 | |
| 		/*
 | |
| 		 * large page size chip : FPAR[PI] save the lowest 6 bits,
 | |
| 		 *                        FBAR[BLK] save the other bits.
 | |
| 		 */
 | |
| 		out_be32(&lbc->fbar, page_addr >> 6);
 | |
| 		out_be32(&lbc->fpar,
 | |
| 		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
 | |
| 		         (oob ? FPAR_LP_MS : 0) | column);
 | |
| 		buf_num = (page_addr & 1) << 2;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * small page size chip : FPAR[PI] save the lowest 5 bits,
 | |
| 		 *                        FBAR[BLK] save the other bits.
 | |
| 		 */
 | |
| 		out_be32(&lbc->fbar, page_addr >> 5);
 | |
| 		out_be32(&lbc->fpar,
 | |
| 		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
 | |
| 		         (oob ? FPAR_SP_MS : 0) | column);
 | |
| 		buf_num = page_addr & 7;
 | |
| 	}
 | |
| 
 | |
| 	elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
 | |
| 	elbc_fcm_ctrl->index = column;
 | |
| 
 | |
| 	/* for OOB data point to the second half of the buffer */
 | |
| 	if (oob)
 | |
| 		elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
 | |
| 
 | |
| 	dev_vdbg(priv->dev, "set_addr: bank=%d, "
 | |
| 			    "elbc_fcm_ctrl->addr=0x%p (0x%p), "
 | |
| 	                    "index %x, pes %d ps %d\n",
 | |
| 		 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
 | |
| 		 elbc_fcm_ctrl->index,
 | |
| 	         chip->phys_erase_shift, chip->page_shift);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * execute FCM command and wait for it to complete
 | |
|  */
 | |
| static int fsl_elbc_run_command(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 | |
| 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 | |
| 
 | |
| 	/* Setup the FMR[OP] to execute without write protection */
 | |
| 	out_be32(&lbc->fmr, priv->fmr | 3);
 | |
| 	if (elbc_fcm_ctrl->use_mdr)
 | |
| 		out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
 | |
| 
 | |
| 	dev_vdbg(priv->dev,
 | |
| 	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
 | |
| 	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
 | |
| 	dev_vdbg(priv->dev,
 | |
| 	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
 | |
| 	         "fbcr=%08x bank=%d\n",
 | |
| 	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
 | |
| 	         in_be32(&lbc->fbcr), priv->bank);
 | |
| 
 | |
| 	ctrl->irq_status = 0;
 | |
| 	/* execute special operation */
 | |
| 	out_be32(&lbc->lsor, priv->bank);
 | |
| 
 | |
| 	/* wait for FCM complete flag or timeout */
 | |
| 	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
 | |
| 	                   FCM_TIMEOUT_MSECS * HZ/1000);
 | |
| 	elbc_fcm_ctrl->status = ctrl->irq_status;
 | |
| 	/* store mdr value in case it was needed */
 | |
| 	if (elbc_fcm_ctrl->use_mdr)
 | |
| 		elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
 | |
| 
 | |
| 	elbc_fcm_ctrl->use_mdr = 0;
 | |
| 
 | |
| 	if (elbc_fcm_ctrl->status != LTESR_CC) {
 | |
| 		dev_info(priv->dev,
 | |
| 		         "command failed: fir %x fcr %x status %x mdr %x\n",
 | |
| 		         in_be32(&lbc->fir), in_be32(&lbc->fcr),
 | |
| 			 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (chip->ecc.mode != NAND_ECC_HW)
 | |
| 		return 0;
 | |
| 
 | |
| 	elbc_fcm_ctrl->max_bitflips = 0;
 | |
| 
 | |
| 	if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
 | |
| 		uint32_t lteccr = in_be32(&lbc->lteccr);
 | |
| 		/*
 | |
| 		 * if command was a full page read and the ELBC
 | |
| 		 * has the LTECCR register, then bits 12-15 (ppc order) of
 | |
| 		 * LTECCR indicates which 512 byte sub-pages had fixed errors.
 | |
| 		 * bits 28-31 are uncorrectable errors, marked elsewhere.
 | |
| 		 * for small page nand only 1 bit is used.
 | |
| 		 * if the ELBC doesn't have the lteccr register it reads 0
 | |
| 		 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
 | |
| 		 * count the number of sub-pages with bitflips and update
 | |
| 		 * ecc_stats.corrected accordingly.
 | |
| 		 */
 | |
| 		if (lteccr & 0x000F000F)
 | |
| 			out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
 | |
| 		if (lteccr & 0x000F0000) {
 | |
| 			mtd->ecc_stats.corrected++;
 | |
| 			elbc_fcm_ctrl->max_bitflips = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
 | |
| {
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 | |
| 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 | |
| 
 | |
| 	if (priv->page_size) {
 | |
| 		out_be32(&lbc->fir,
 | |
| 		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 | |
| 		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 | |
| 		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 | |
| 		         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
 | |
| 		         (FIR_OP_RBW << FIR_OP4_SHIFT));
 | |
| 
 | |
| 		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
 | |
| 		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
 | |
| 	} else {
 | |
| 		out_be32(&lbc->fir,
 | |
| 		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 | |
| 		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 | |
| 		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 | |
| 		         (FIR_OP_RBW << FIR_OP3_SHIFT));
 | |
| 
 | |
| 		if (oob)
 | |
| 			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
 | |
| 		else
 | |
| 			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* cmdfunc send commands to the FCM */
 | |
| static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 | |
|                              int column, int page_addr)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 | |
| 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 | |
| 
 | |
| 	elbc_fcm_ctrl->use_mdr = 0;
 | |
| 
 | |
| 	/* clear the read buffer */
 | |
| 	elbc_fcm_ctrl->read_bytes = 0;
 | |
| 	if (command != NAND_CMD_PAGEPROG)
 | |
| 		elbc_fcm_ctrl->index = 0;
 | |
| 
 | |
| 	switch (command) {
 | |
| 	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
 | |
| 	case NAND_CMD_READ1:
 | |
| 		column += 256;
 | |
| 
 | |
| 	/* fall-through */
 | |
| 	case NAND_CMD_READ0:
 | |
| 		dev_dbg(priv->dev,
 | |
| 		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
 | |
| 		        " 0x%x, column: 0x%x.\n", page_addr, column);
 | |
| 
 | |
| 
 | |
| 		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
 | |
| 		set_addr(mtd, 0, page_addr, 0);
 | |
| 
 | |
| 		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 | |
| 		elbc_fcm_ctrl->index += column;
 | |
| 
 | |
| 		fsl_elbc_do_read(chip, 0);
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 
 | |
| 	/* READOOB reads only the OOB because no ECC is performed. */
 | |
| 	case NAND_CMD_READOOB:
 | |
| 		dev_vdbg(priv->dev,
 | |
| 		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
 | |
| 			 " 0x%x, column: 0x%x.\n", page_addr, column);
 | |
| 
 | |
| 		out_be32(&lbc->fbcr, mtd->oobsize - column);
 | |
| 		set_addr(mtd, column, page_addr, 1);
 | |
| 
 | |
| 		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 | |
| 
 | |
| 		fsl_elbc_do_read(chip, 1);
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 
 | |
| 	case NAND_CMD_READID:
 | |
| 	case NAND_CMD_PARAM:
 | |
| 		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
 | |
| 
 | |
| 		out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 | |
| 		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
 | |
| 		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
 | |
| 		out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
 | |
| 		/*
 | |
| 		 * although currently it's 8 bytes for READID, we always read
 | |
| 		 * the maximum 256 bytes(for PARAM)
 | |
| 		 */
 | |
| 		out_be32(&lbc->fbcr, 256);
 | |
| 		elbc_fcm_ctrl->read_bytes = 256;
 | |
| 		elbc_fcm_ctrl->use_mdr = 1;
 | |
| 		elbc_fcm_ctrl->mdr = column;
 | |
| 		set_addr(mtd, 0, 0, 0);
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 
 | |
| 	/* ERASE1 stores the block and page address */
 | |
| 	case NAND_CMD_ERASE1:
 | |
| 		dev_vdbg(priv->dev,
 | |
| 		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
 | |
| 		         "page_addr: 0x%x.\n", page_addr);
 | |
| 		set_addr(mtd, 0, page_addr, 0);
 | |
| 		return;
 | |
| 
 | |
| 	/* ERASE2 uses the block and page address from ERASE1 */
 | |
| 	case NAND_CMD_ERASE2:
 | |
| 		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
 | |
| 
 | |
| 		out_be32(&lbc->fir,
 | |
| 		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 | |
| 		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
 | |
| 		         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
 | |
| 		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
 | |
| 		         (FIR_OP_RS  << FIR_OP4_SHIFT));
 | |
| 
 | |
| 		out_be32(&lbc->fcr,
 | |
| 		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
 | |
| 		         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
 | |
| 		         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
 | |
| 
 | |
| 		out_be32(&lbc->fbcr, 0);
 | |
| 		elbc_fcm_ctrl->read_bytes = 0;
 | |
| 		elbc_fcm_ctrl->use_mdr = 1;
 | |
| 
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 
 | |
| 	/* SEQIN sets up the addr buffer and all registers except the length */
 | |
| 	case NAND_CMD_SEQIN: {
 | |
| 		__be32 fcr;
 | |
| 		dev_vdbg(priv->dev,
 | |
| 			 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
 | |
| 		         "page_addr: 0x%x, column: 0x%x.\n",
 | |
| 		         page_addr, column);
 | |
| 
 | |
| 		elbc_fcm_ctrl->column = column;
 | |
| 		elbc_fcm_ctrl->use_mdr = 1;
 | |
| 
 | |
| 		if (column >= mtd->writesize) {
 | |
| 			/* OOB area */
 | |
| 			column -= mtd->writesize;
 | |
| 			elbc_fcm_ctrl->oob = 1;
 | |
| 		} else {
 | |
| 			WARN_ON(column != 0);
 | |
| 			elbc_fcm_ctrl->oob = 0;
 | |
| 		}
 | |
| 
 | |
| 		fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
 | |
| 		      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
 | |
| 		      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
 | |
| 
 | |
| 		if (priv->page_size) {
 | |
| 			out_be32(&lbc->fir,
 | |
| 			         (FIR_OP_CM2 << FIR_OP0_SHIFT) |
 | |
| 			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 | |
| 			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 | |
| 			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
 | |
| 			         (FIR_OP_CM3 << FIR_OP4_SHIFT) |
 | |
| 			         (FIR_OP_CW1 << FIR_OP5_SHIFT) |
 | |
| 			         (FIR_OP_RS  << FIR_OP6_SHIFT));
 | |
| 		} else {
 | |
| 			out_be32(&lbc->fir,
 | |
| 			         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 | |
| 			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
 | |
| 			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
 | |
| 			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
 | |
| 			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
 | |
| 			         (FIR_OP_CM3 << FIR_OP5_SHIFT) |
 | |
| 			         (FIR_OP_CW1 << FIR_OP6_SHIFT) |
 | |
| 			         (FIR_OP_RS  << FIR_OP7_SHIFT));
 | |
| 
 | |
| 			if (elbc_fcm_ctrl->oob)
 | |
| 				/* OOB area --> READOOB */
 | |
| 				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
 | |
| 			else
 | |
| 				/* First 256 bytes --> READ0 */
 | |
| 				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
 | |
| 		}
 | |
| 
 | |
| 		out_be32(&lbc->fcr, fcr);
 | |
| 		set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 | |
| 	case NAND_CMD_PAGEPROG: {
 | |
| 		dev_vdbg(priv->dev,
 | |
| 		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
 | |
| 			 "writing %d bytes.\n", elbc_fcm_ctrl->index);
 | |
| 
 | |
| 		/* if the write did not start at 0 or is not a full page
 | |
| 		 * then set the exact length, otherwise use a full page
 | |
| 		 * write so the HW generates the ECC.
 | |
| 		 */
 | |
| 		if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
 | |
| 		    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
 | |
| 			out_be32(&lbc->fbcr,
 | |
| 				elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
 | |
| 		else
 | |
| 			out_be32(&lbc->fbcr, 0);
 | |
| 
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* CMD_STATUS must read the status byte while CEB is active */
 | |
| 	/* Note - it does not wait for the ready line */
 | |
| 	case NAND_CMD_STATUS:
 | |
| 		out_be32(&lbc->fir,
 | |
| 		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 | |
| 		         (FIR_OP_RBW << FIR_OP1_SHIFT));
 | |
| 		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 | |
| 		out_be32(&lbc->fbcr, 1);
 | |
| 		set_addr(mtd, 0, 0, 0);
 | |
| 		elbc_fcm_ctrl->read_bytes = 1;
 | |
| 
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 
 | |
| 		/* The chip always seems to report that it is
 | |
| 		 * write-protected, even when it is not.
 | |
| 		 */
 | |
| 		setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
 | |
| 		return;
 | |
| 
 | |
| 	/* RESET without waiting for the ready line */
 | |
| 	case NAND_CMD_RESET:
 | |
| 		dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
 | |
| 		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
 | |
| 		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
 | |
| 		fsl_elbc_run_command(mtd);
 | |
| 		return;
 | |
| 
 | |
| 	default:
 | |
| 		dev_err(priv->dev,
 | |
| 		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
 | |
| 		        command);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	/* The hardware does not seem to support multiple
 | |
| 	 * chips per bank.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write buf to the FCM Controller Data Buffer
 | |
|  */
 | |
| static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 | |
| 	unsigned int bufsize = mtd->writesize + mtd->oobsize;
 | |
| 
 | |
| 	if (len <= 0) {
 | |
| 		dev_err(priv->dev, "write_buf of %d bytes", len);
 | |
| 		elbc_fcm_ctrl->status = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
 | |
| 		dev_err(priv->dev,
 | |
| 		        "write_buf beyond end of buffer "
 | |
| 		        "(%d requested, %u available)\n",
 | |
| 			len, bufsize - elbc_fcm_ctrl->index);
 | |
| 		len = bufsize - elbc_fcm_ctrl->index;
 | |
| 	}
 | |
| 
 | |
| 	memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
 | |
| 	/*
 | |
| 	 * This is workaround for the weird elbc hangs during nand write,
 | |
| 	 * Scott Wood says: "...perhaps difference in how long it takes a
 | |
| 	 * write to make it through the localbus compared to a write to IMMR
 | |
| 	 * is causing problems, and sync isn't helping for some reason."
 | |
| 	 * Reading back the last byte helps though.
 | |
| 	 */
 | |
| 	in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
 | |
| 
 | |
| 	elbc_fcm_ctrl->index += len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read a byte from either the FCM hardware buffer if it has any data left
 | |
|  * otherwise issue a command to read a single byte.
 | |
|  */
 | |
| static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 | |
| 
 | |
| 	/* If there are still bytes in the FCM, then use the next byte. */
 | |
| 	if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
 | |
| 		return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
 | |
| 
 | |
| 	dev_err(priv->dev, "read_byte beyond end of buffer\n");
 | |
| 	return ERR_BYTE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read from the FCM Controller Data Buffer
 | |
|  */
 | |
| static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 | |
| 	int avail;
 | |
| 
 | |
| 	if (len < 0)
 | |
| 		return;
 | |
| 
 | |
| 	avail = min((unsigned int)len,
 | |
| 			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
 | |
| 	memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
 | |
| 	elbc_fcm_ctrl->index += avail;
 | |
| 
 | |
| 	if (len > avail)
 | |
| 		dev_err(priv->dev,
 | |
| 		        "read_buf beyond end of buffer "
 | |
| 		        "(%d requested, %d available)\n",
 | |
| 		        len, avail);
 | |
| }
 | |
| 
 | |
| /* This function is called after Program and Erase Operations to
 | |
|  * check for success or failure.
 | |
|  */
 | |
| static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 | |
| {
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 | |
| 
 | |
| 	if (elbc_fcm_ctrl->status != LTESR_CC)
 | |
| 		return NAND_STATUS_FAIL;
 | |
| 
 | |
| 	/* The chip always seems to report that it is
 | |
| 	 * write-protected, even when it is not.
 | |
| 	 */
 | |
| 	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
 | |
| }
 | |
| 
 | |
| static int fsl_elbc_attach_chip(struct nand_chip *chip)
 | |
| {
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 | |
| 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 | |
| 	unsigned int al;
 | |
| 
 | |
| 	/* calculate FMR Address Length field */
 | |
| 	al = 0;
 | |
| 	if (chip->pagemask & 0xffff0000)
 | |
| 		al++;
 | |
| 	if (chip->pagemask & 0xff000000)
 | |
| 		al++;
 | |
| 
 | |
| 	priv->fmr |= al << FMR_AL_SHIFT;
 | |
| 
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
 | |
| 	        chip->numchips);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
 | |
| 	        chip->chipsize);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
 | |
| 	        chip->pagemask);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
 | |
| 	        chip->chip_delay);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
 | |
| 	        chip->badblockpos);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
 | |
| 	        chip->chip_shift);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
 | |
| 	        chip->page_shift);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
 | |
| 	        chip->phys_erase_shift);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
 | |
| 	        chip->ecc.mode);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
 | |
| 	        chip->ecc.steps);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
 | |
| 	        chip->ecc.bytes);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
 | |
| 	        chip->ecc.total);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
 | |
| 		mtd->ooblayout);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
 | |
| 	        mtd->erasesize);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
 | |
| 	        mtd->writesize);
 | |
| 	dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
 | |
| 	        mtd->oobsize);
 | |
| 
 | |
| 	/* adjust Option Register and ECC to match Flash page size */
 | |
| 	if (mtd->writesize == 512) {
 | |
| 		priv->page_size = 0;
 | |
| 		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 | |
| 	} else if (mtd->writesize == 2048) {
 | |
| 		priv->page_size = 1;
 | |
| 		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 | |
| 	} else {
 | |
| 		dev_err(priv->dev,
 | |
| 		        "fsl_elbc_init: page size %d is not supported\n",
 | |
| 		        mtd->writesize);
 | |
| 		return -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct nand_controller_ops fsl_elbc_controller_ops = {
 | |
| 	.attach_chip = fsl_elbc_attach_chip,
 | |
| };
 | |
| 
 | |
| static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 			      uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 | |
| 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 | |
| 
 | |
| 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 | |
| 	if (oob_required)
 | |
| 		fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
 | |
| 		mtd->ecc_stats.failed++;
 | |
| 
 | |
| 	return elbc_fcm_ctrl->max_bitflips;
 | |
| }
 | |
| 
 | |
| /* ECC will be calculated automatically, and errors will be detected in
 | |
|  * waitfunc.
 | |
|  */
 | |
| static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				const uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 | |
| 	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	return nand_prog_page_end_op(chip);
 | |
| }
 | |
| 
 | |
| /* ECC will be calculated automatically, and errors will be detected in
 | |
|  * waitfunc.
 | |
|  */
 | |
| static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
 | |
| 				uint32_t offset, uint32_t data_len,
 | |
| 				const uint8_t *buf, int oob_required, int page)
 | |
| {
 | |
| 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 | |
| 	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
 | |
| 	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 | |
| 	return nand_prog_page_end_op(chip);
 | |
| }
 | |
| 
 | |
| static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 | |
| {
 | |
| 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 | |
| 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 | |
| 	struct nand_chip *chip = &priv->chip;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(chip);
 | |
| 
 | |
| 	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
 | |
| 
 | |
| 	/* Fill in fsl_elbc_mtd structure */
 | |
| 	mtd->dev.parent = priv->dev;
 | |
| 	nand_set_flash_node(chip, priv->dev->of_node);
 | |
| 
 | |
| 	/* set timeout to maximum */
 | |
| 	priv->fmr = 15 << FMR_CWTO_SHIFT;
 | |
| 	if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
 | |
| 		priv->fmr |= FMR_ECCM;
 | |
| 
 | |
| 	/* fill in nand_chip structure */
 | |
| 	/* set up function call table */
 | |
| 	chip->read_byte = fsl_elbc_read_byte;
 | |
| 	chip->write_buf = fsl_elbc_write_buf;
 | |
| 	chip->read_buf = fsl_elbc_read_buf;
 | |
| 	chip->select_chip = fsl_elbc_select_chip;
 | |
| 	chip->cmdfunc = fsl_elbc_cmdfunc;
 | |
| 	chip->waitfunc = fsl_elbc_wait;
 | |
| 	chip->set_features = nand_get_set_features_notsupp;
 | |
| 	chip->get_features = nand_get_set_features_notsupp;
 | |
| 
 | |
| 	chip->bbt_td = &bbt_main_descr;
 | |
| 	chip->bbt_md = &bbt_mirror_descr;
 | |
| 
 | |
| 	/* set up nand options */
 | |
| 	chip->bbt_options = NAND_BBT_USE_FLASH;
 | |
| 
 | |
| 	chip->controller = &elbc_fcm_ctrl->controller;
 | |
| 	nand_set_controller_data(chip, priv);
 | |
| 
 | |
| 	chip->ecc.read_page = fsl_elbc_read_page;
 | |
| 	chip->ecc.write_page = fsl_elbc_write_page;
 | |
| 	chip->ecc.write_subpage = fsl_elbc_write_subpage;
 | |
| 
 | |
| 	/* If CS Base Register selects full hardware ECC then use it */
 | |
| 	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 | |
| 	    BR_DECC_CHK_GEN) {
 | |
| 		chip->ecc.mode = NAND_ECC_HW;
 | |
| 		mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
 | |
| 		chip->ecc.size = 512;
 | |
| 		chip->ecc.bytes = 3;
 | |
| 		chip->ecc.strength = 1;
 | |
| 	} else {
 | |
| 		/* otherwise fall back to default software ECC */
 | |
| 		chip->ecc.mode = NAND_ECC_SOFT;
 | |
| 		chip->ecc.algo = NAND_ECC_HAMMING;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
 | |
| {
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 | |
| 
 | |
| 	kfree(mtd->name);
 | |
| 
 | |
| 	if (priv->vbase)
 | |
| 		iounmap(priv->vbase);
 | |
| 
 | |
| 	elbc_fcm_ctrl->chips[priv->bank] = NULL;
 | |
| 	kfree(priv);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(fsl_elbc_nand_mutex);
 | |
| 
 | |
| static int fsl_elbc_nand_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct fsl_lbc_regs __iomem *lbc;
 | |
| 	struct fsl_elbc_mtd *priv;
 | |
| 	struct resource res;
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
 | |
| 	static const char *part_probe_types[]
 | |
| 		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
 | |
| 	int ret;
 | |
| 	int bank;
 | |
| 	struct device *dev;
 | |
| 	struct device_node *node = pdev->dev.of_node;
 | |
| 	struct mtd_info *mtd;
 | |
| 
 | |
| 	if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
 | |
| 		return -ENODEV;
 | |
| 	lbc = fsl_lbc_ctrl_dev->regs;
 | |
| 	dev = fsl_lbc_ctrl_dev->dev;
 | |
| 
 | |
| 	/* get, allocate and map the memory resource */
 | |
| 	ret = of_address_to_resource(node, 0, &res);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to get resource\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* find which chip select it is connected to */
 | |
| 	for (bank = 0; bank < MAX_BANKS; bank++)
 | |
| 		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
 | |
| 		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
 | |
| 		    (in_be32(&lbc->bank[bank].br) &
 | |
| 		     in_be32(&lbc->bank[bank].or) & BR_BA)
 | |
| 		     == fsl_lbc_addr(res.start))
 | |
| 			break;
 | |
| 
 | |
| 	if (bank >= MAX_BANKS) {
 | |
| 		dev_err(dev, "address did not match any chip selects\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 | |
| 	if (!priv)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&fsl_elbc_nand_mutex);
 | |
| 	if (!fsl_lbc_ctrl_dev->nand) {
 | |
| 		elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
 | |
| 		if (!elbc_fcm_ctrl) {
 | |
| 			mutex_unlock(&fsl_elbc_nand_mutex);
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err;
 | |
| 		}
 | |
| 		elbc_fcm_ctrl->counter++;
 | |
| 
 | |
| 		nand_controller_init(&elbc_fcm_ctrl->controller);
 | |
| 		fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
 | |
| 	} else {
 | |
| 		elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 | |
| 	}
 | |
| 	mutex_unlock(&fsl_elbc_nand_mutex);
 | |
| 
 | |
| 	elbc_fcm_ctrl->chips[bank] = priv;
 | |
| 	priv->bank = bank;
 | |
| 	priv->ctrl = fsl_lbc_ctrl_dev;
 | |
| 	priv->dev = &pdev->dev;
 | |
| 	dev_set_drvdata(priv->dev, priv);
 | |
| 
 | |
| 	priv->vbase = ioremap(res.start, resource_size(&res));
 | |
| 	if (!priv->vbase) {
 | |
| 		dev_err(dev, "failed to map chip region\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	mtd = nand_to_mtd(&priv->chip);
 | |
| 	mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
 | |
| 	if (!nand_to_mtd(&priv->chip)->name) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	ret = fsl_elbc_chip_init(priv);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	priv->chip.controller->ops = &fsl_elbc_controller_ops;
 | |
| 	ret = nand_scan(mtd, 1);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* First look for RedBoot table or partitions on the command
 | |
| 	 * line, these take precedence over device tree information */
 | |
| 	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
 | |
| 	if (ret)
 | |
| 		goto cleanup_nand;
 | |
| 
 | |
| 	pr_info("eLBC NAND device at 0x%llx, bank %d\n",
 | |
| 		(unsigned long long)res.start, priv->bank);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| cleanup_nand:
 | |
| 	nand_cleanup(&priv->chip);
 | |
| err:
 | |
| 	fsl_elbc_chip_remove(priv);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int fsl_elbc_nand_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 | |
| 	struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
 | |
| 	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 | |
| 
 | |
| 	nand_release(mtd);
 | |
| 	fsl_elbc_chip_remove(priv);
 | |
| 
 | |
| 	mutex_lock(&fsl_elbc_nand_mutex);
 | |
| 	elbc_fcm_ctrl->counter--;
 | |
| 	if (!elbc_fcm_ctrl->counter) {
 | |
| 		fsl_lbc_ctrl_dev->nand = NULL;
 | |
| 		kfree(elbc_fcm_ctrl);
 | |
| 	}
 | |
| 	mutex_unlock(&fsl_elbc_nand_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static const struct of_device_id fsl_elbc_nand_match[] = {
 | |
| 	{ .compatible = "fsl,elbc-fcm-nand", },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
 | |
| 
 | |
| static struct platform_driver fsl_elbc_nand_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "fsl,elbc-fcm-nand",
 | |
| 		.of_match_table = fsl_elbc_nand_match,
 | |
| 	},
 | |
| 	.probe = fsl_elbc_nand_probe,
 | |
| 	.remove = fsl_elbc_nand_remove,
 | |
| };
 | |
| 
 | |
| module_platform_driver(fsl_elbc_nand_driver);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Freescale");
 | |
| MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
 | 
