196 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| /*
 | |
|  *
 | |
|  * Optimized version of the standard strlen() function
 | |
|  *
 | |
|  *
 | |
|  * Inputs:
 | |
|  *	in0	address of string
 | |
|  *
 | |
|  * Outputs:
 | |
|  *	ret0	the number of characters in the string (0 if empty string)
 | |
|  *	does not count the \0
 | |
|  *
 | |
|  * Copyright (C) 1999, 2001 Hewlett-Packard Co
 | |
|  *	Stephane Eranian <eranian@hpl.hp.com>
 | |
|  *
 | |
|  * 09/24/99 S.Eranian add speculation recovery code
 | |
|  */
 | |
| 
 | |
| #include <asm/asmmacro.h>
 | |
| #include <asm/export.h>
 | |
| 
 | |
| //
 | |
| //
 | |
| // This is an enhanced version of the basic strlen. it includes a combination
 | |
| // of compute zero index (czx), parallel comparisons, speculative loads and
 | |
| // loop unroll using rotating registers.
 | |
| //
 | |
| // General Ideas about the algorithm:
 | |
| //	  The goal is to look at the string in chunks of 8 bytes.
 | |
| //	  so we need to do a few extra checks at the beginning because the
 | |
| //	  string may not be 8-byte aligned. In this case we load the 8byte
 | |
| //	  quantity which includes the start of the string and mask the unused
 | |
| //	  bytes with 0xff to avoid confusing czx.
 | |
| //	  We use speculative loads and software pipelining to hide memory
 | |
| //	  latency and do read ahead safely. This way we defer any exception.
 | |
| //
 | |
| //	  Because we don't want the kernel to be relying on particular
 | |
| //	  settings of the DCR register, we provide recovery code in case
 | |
| //	  speculation fails. The recovery code is going to "redo" the work using
 | |
| //	  only normal loads. If we still get a fault then we generate a
 | |
| //	  kernel panic. Otherwise we return the strlen as usual.
 | |
| //
 | |
| //	  The fact that speculation may fail can be caused, for instance, by
 | |
| //	  the DCR.dm bit being set. In this case TLB misses are deferred, i.e.,
 | |
| //	  a NaT bit will be set if the translation is not present. The normal
 | |
| //	  load, on the other hand, will cause the translation to be inserted
 | |
| //	  if the mapping exists.
 | |
| //
 | |
| //	  It should be noted that we execute recovery code only when we need
 | |
| //	  to use the data that has been speculatively loaded: we don't execute
 | |
| //	  recovery code on pure read ahead data.
 | |
| //
 | |
| // Remarks:
 | |
| //	- the cmp r0,r0 is used as a fast way to initialize a predicate
 | |
| //	  register to 1. This is required to make sure that we get the parallel
 | |
| //	  compare correct.
 | |
| //
 | |
| //	- we don't use the epilogue counter to exit the loop but we need to set
 | |
| //	  it to zero beforehand.
 | |
| //
 | |
| //	- after the loop we must test for Nat values because neither the
 | |
| //	  czx nor cmp instruction raise a NaT consumption fault. We must be
 | |
| //	  careful not to look too far for a Nat for which we don't care.
 | |
| //	  For instance we don't need to look at a NaT in val2 if the zero byte
 | |
| //	  was in val1.
 | |
| //
 | |
| //	- Clearly performance tuning is required.
 | |
| //
 | |
| //
 | |
| //
 | |
| #define saved_pfs	r11
 | |
| #define	tmp		r10
 | |
| #define base		r16
 | |
| #define orig		r17
 | |
| #define saved_pr	r18
 | |
| #define src		r19
 | |
| #define mask		r20
 | |
| #define val		r21
 | |
| #define val1		r22
 | |
| #define val2		r23
 | |
| 
 | |
| GLOBAL_ENTRY(strlen)
 | |
| 	.prologue
 | |
| 	.save ar.pfs, saved_pfs
 | |
| 	alloc saved_pfs=ar.pfs,11,0,0,8 // rotating must be multiple of 8
 | |
| 
 | |
| 	.rotr v[2], w[2]	// declares our 4 aliases
 | |
| 
 | |
| 	extr.u tmp=in0,0,3	// tmp=least significant 3 bits
 | |
| 	mov orig=in0		// keep trackof initial byte address
 | |
| 	dep src=0,in0,0,3	// src=8byte-aligned in0 address
 | |
| 	.save pr, saved_pr
 | |
| 	mov saved_pr=pr		// preserve predicates (rotation)
 | |
| 	;;
 | |
| 
 | |
| 	.body
 | |
| 
 | |
| 	ld8 v[1]=[src],8	// must not speculate: can fail here
 | |
| 	shl tmp=tmp,3		// multiply by 8bits/byte
 | |
| 	mov mask=-1		// our mask
 | |
| 	;;
 | |
| 	ld8.s w[1]=[src],8	// speculatively load next
 | |
| 	cmp.eq p6,p0=r0,r0	// sets p6 to true for cmp.and
 | |
| 	sub tmp=64,tmp		// how many bits to shift our mask on the right
 | |
| 	;;
 | |
| 	shr.u	mask=mask,tmp	// zero enough bits to hold v[1] valuable part
 | |
| 	mov ar.ec=r0		// clear epilogue counter (saved in ar.pfs)
 | |
| 	;;
 | |
| 	add base=-16,src	// keep track of aligned base
 | |
| 	or v[1]=v[1],mask	// now we have a safe initial byte pattern
 | |
| 	;;
 | |
| 1:
 | |
| 	ld8.s v[0]=[src],8	// speculatively load next
 | |
| 	czx1.r val1=v[1]	// search 0 byte from right
 | |
| 	czx1.r val2=w[1]	// search 0 byte from right following 8bytes
 | |
| 	;;
 | |
| 	ld8.s w[0]=[src],8	// speculatively load next to next
 | |
| 	cmp.eq.and p6,p0=8,val1	// p6 = p6 and val1==8
 | |
| 	cmp.eq.and p6,p0=8,val2	// p6 = p6 and mask==8
 | |
| (p6)	br.wtop.dptk 1b		// loop until p6 == 0
 | |
| 	;;
 | |
| 	//
 | |
| 	// We must return try the recovery code iff
 | |
| 	// val1_is_nat || (val1==8 && val2_is_nat)
 | |
| 	//
 | |
| 	// XXX Fixme
 | |
| 	//	- there must be a better way of doing the test
 | |
| 	//
 | |
| 	cmp.eq  p8,p9=8,val1	// p6 = val1 had zero (disambiguate)
 | |
| 	tnat.nz p6,p7=val1	// test NaT on val1
 | |
| (p6)	br.cond.spnt .recover	// jump to recovery if val1 is NaT
 | |
| 	;;
 | |
| 	//
 | |
| 	// if we come here p7 is true, i.e., initialized for // cmp
 | |
| 	//
 | |
| 	cmp.eq.and  p7,p0=8,val1// val1==8?
 | |
| 	tnat.nz.and p7,p0=val2	// test NaT if val2
 | |
| (p7)	br.cond.spnt .recover	// jump to recovery if val2 is NaT
 | |
| 	;;
 | |
| (p8)	mov val1=val2		// the other test got us out of the loop
 | |
| (p8)	adds src=-16,src	// correct position when 3 ahead
 | |
| (p9)	adds src=-24,src	// correct position when 4 ahead
 | |
| 	;;
 | |
| 	sub ret0=src,orig	// distance from base
 | |
| 	sub tmp=8,val1		// which byte in word
 | |
| 	mov pr=saved_pr,0xffffffffffff0000
 | |
| 	;;
 | |
| 	sub ret0=ret0,tmp	// adjust
 | |
| 	mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what
 | |
| 	br.ret.sptk.many rp	// end of normal execution
 | |
| 
 | |
| 	//
 | |
| 	// Outlined recovery code when speculation failed
 | |
| 	//
 | |
| 	// This time we don't use speculation and rely on the normal exception
 | |
| 	// mechanism. that's why the loop is not as good as the previous one
 | |
| 	// because read ahead is not possible
 | |
| 	//
 | |
| 	// IMPORTANT:
 | |
| 	// Please note that in the case of strlen() as opposed to strlen_user()
 | |
| 	// we don't use the exception mechanism, as this function is not
 | |
| 	// supposed to fail. If that happens it means we have a bug and the
 | |
| 	// code will cause of kernel fault.
 | |
| 	//
 | |
| 	// XXX Fixme
 | |
| 	//	- today we restart from the beginning of the string instead
 | |
| 	//	  of trying to continue where we left off.
 | |
| 	//
 | |
| .recover:
 | |
| 	ld8 val=[base],8	// will fail if unrecoverable fault
 | |
| 	;;
 | |
| 	or val=val,mask		// remask first bytes
 | |
| 	cmp.eq p0,p6=r0,r0	// nullify first ld8 in loop
 | |
| 	;;
 | |
| 	//
 | |
| 	// ar.ec is still zero here
 | |
| 	//
 | |
| 2:
 | |
| (p6)	ld8 val=[base],8	// will fail if unrecoverable fault
 | |
| 	;;
 | |
| 	czx1.r val1=val		// search 0 byte from right
 | |
| 	;;
 | |
| 	cmp.eq p6,p0=8,val1	// val1==8 ?
 | |
| (p6)	br.wtop.dptk 2b		// loop until p6 == 0
 | |
| 	;;			// (avoid WAW on p63)
 | |
| 	sub ret0=base,orig	// distance from base
 | |
| 	sub tmp=8,val1
 | |
| 	mov pr=saved_pr,0xffffffffffff0000
 | |
| 	;;
 | |
| 	sub ret0=ret0,tmp	// length=now - back -1
 | |
| 	mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what
 | |
| 	br.ret.sptk.many rp	// end of successful recovery code
 | |
| END(strlen)
 | |
| EXPORT_SYMBOL(strlen)
 | 
