1009 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1009 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * TLB Management (flush/create/diagnostics) for ARC700
 | |
|  *
 | |
|  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * vineetg: Aug 2011
 | |
|  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
 | |
|  *
 | |
|  * vineetg: May 2011
 | |
|  *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
 | |
|  *   some of the LMBench tests improved amazingly
 | |
|  *      = page-fault thrice as fast (75 usec to 28 usec)
 | |
|  *      = mmap twice as fast (9.6 msec to 4.6 msec),
 | |
|  *      = fork (5.3 msec to 3.7 msec)
 | |
|  *
 | |
|  * vineetg: April 2011 :
 | |
|  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
 | |
|  *      helps avoid a shift when preparing PD0 from PTE
 | |
|  *
 | |
|  * vineetg: April 2011 : Preparing for MMU V3
 | |
|  *  -MMU v2/v3 BCRs decoded differently
 | |
|  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
 | |
|  *  -tlb_entry_erase( ) can be void
 | |
|  *  -local_flush_tlb_range( ):
 | |
|  *      = need not "ceil" @end
 | |
|  *      = walks MMU only if range spans < 32 entries, as opposed to 256
 | |
|  *
 | |
|  * Vineetg: Sept 10th 2008
 | |
|  *  -Changes related to MMU v2 (Rel 4.8)
 | |
|  *
 | |
|  * Vineetg: Aug 29th 2008
 | |
|  *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
 | |
|  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
 | |
|  *    it fails. Thus need to load it with ANY valid value before invoking
 | |
|  *    TLBIVUTLB cmd
 | |
|  *
 | |
|  * Vineetg: Aug 21th 2008:
 | |
|  *  -Reduced the duration of IRQ lockouts in TLB Flush routines
 | |
|  *  -Multiple copies of TLB erase code seperated into a "single" function
 | |
|  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
 | |
|  *       in interrupt-safe region.
 | |
|  *
 | |
|  * Vineetg: April 23rd Bug #93131
 | |
|  *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
 | |
|  *              flush is more than the size of TLB itself.
 | |
|  *
 | |
|  * Rahul Trivedi : Codito Technologies 2004
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/mm_types.h>
 | |
| 
 | |
| #include <asm/arcregs.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/mmu.h>
 | |
| 
 | |
| /*			Need for ARC MMU v2
 | |
|  *
 | |
|  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
 | |
|  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
 | |
|  * map into same set, there would be contention for the 2 ways causing severe
 | |
|  * Thrashing.
 | |
|  *
 | |
|  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
 | |
|  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
 | |
|  * Given this, the thrasing problem should never happen because once the 3
 | |
|  * J-TLB entries are created (even though 3rd will knock out one of the prev
 | |
|  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
 | |
|  *
 | |
|  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
 | |
|  * This is a simple design for keeping them in sync. So what do we do?
 | |
|  * The solution which James came up was pretty neat. It utilised the assoc
 | |
|  * of uTLBs by not invalidating always but only when absolutely necessary.
 | |
|  *
 | |
|  * - Existing TLB commands work as before
 | |
|  * - New command (TLBWriteNI) for TLB write without clearing uTLBs
 | |
|  * - New command (TLBIVUTLB) to invalidate uTLBs.
 | |
|  *
 | |
|  * The uTLBs need only be invalidated when pages are being removed from the
 | |
|  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
 | |
|  * as a result of a miss, the removed entry is still allowed to exist in the
 | |
|  * uTLBs as it is still valid and present in the OS page table. This allows the
 | |
|  * full associativity of the uTLBs to hide the limited associativity of the main
 | |
|  * TLB.
 | |
|  *
 | |
|  * During a miss handler, the new "TLBWriteNI" command is used to load
 | |
|  * entries without clearing the uTLBs.
 | |
|  *
 | |
|  * When the OS page table is updated, TLB entries that may be associated with a
 | |
|  * removed page are removed (flushed) from the TLB using TLBWrite. In this
 | |
|  * circumstance, the uTLBs must also be cleared. This is done by using the
 | |
|  * existing TLBWrite command. An explicit IVUTLB is also required for those
 | |
|  * corner cases when TLBWrite was not executed at all because the corresp
 | |
|  * J-TLB entry got evicted/replaced.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* A copy of the ASID from the PID reg is kept in asid_cache */
 | |
| DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
 | |
| 
 | |
| static int __read_mostly pae_exists;
 | |
| 
 | |
| /*
 | |
|  * Utility Routine to erase a J-TLB entry
 | |
|  * Caller needs to setup Index Reg (manually or via getIndex)
 | |
|  */
 | |
| static inline void __tlb_entry_erase(void)
 | |
| {
 | |
| 	write_aux_reg(ARC_REG_TLBPD1, 0);
 | |
| 
 | |
| 	if (is_pae40_enabled())
 | |
| 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
 | |
| 
 | |
| 	write_aux_reg(ARC_REG_TLBPD0, 0);
 | |
| 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 | |
| }
 | |
| 
 | |
| #if (CONFIG_ARC_MMU_VER < 4)
 | |
| 
 | |
| static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
 | |
| {
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
 | |
| 
 | |
| 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
 | |
| 	idx = read_aux_reg(ARC_REG_TLBINDEX);
 | |
| 
 | |
| 	return idx;
 | |
| }
 | |
| 
 | |
| static void tlb_entry_erase(unsigned int vaddr_n_asid)
 | |
| {
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	/* Locate the TLB entry for this vaddr + ASID */
 | |
| 	idx = tlb_entry_lkup(vaddr_n_asid);
 | |
| 
 | |
| 	/* No error means entry found, zero it out */
 | |
| 	if (likely(!(idx & TLB_LKUP_ERR))) {
 | |
| 		__tlb_entry_erase();
 | |
| 	} else {
 | |
| 		/* Duplicate entry error */
 | |
| 		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
 | |
| 					   vaddr_n_asid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
|  * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
 | |
|  *
 | |
|  * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
 | |
|  *
 | |
|  * utlb_invalidate ( )
 | |
|  *  -For v2 MMU calls Flush uTLB Cmd
 | |
|  *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
 | |
|  *      This is because in v1 TLBWrite itself invalidate uTLBs
 | |
|  ***************************************************************************/
 | |
| 
 | |
| static void utlb_invalidate(void)
 | |
| {
 | |
| #if (CONFIG_ARC_MMU_VER >= 2)
 | |
| 
 | |
| #if (CONFIG_ARC_MMU_VER == 2)
 | |
| 	/* MMU v2 introduced the uTLB Flush command.
 | |
| 	 * There was however an obscure hardware bug, where uTLB flush would
 | |
| 	 * fail when a prior probe for J-TLB (both totally unrelated) would
 | |
| 	 * return lkup err - because the entry didn't exist in MMU.
 | |
| 	 * The Workround was to set Index reg with some valid value, prior to
 | |
| 	 * flush. This was fixed in MMU v3 hence not needed any more
 | |
| 	 */
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	/* make sure INDEX Reg is valid */
 | |
| 	idx = read_aux_reg(ARC_REG_TLBINDEX);
 | |
| 
 | |
| 	/* If not write some dummy val */
 | |
| 	if (unlikely(idx & TLB_LKUP_ERR))
 | |
| 		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
 | |
| #endif
 | |
| 
 | |
| 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 | |
| {
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	/*
 | |
| 	 * First verify if entry for this vaddr+ASID already exists
 | |
| 	 * This also sets up PD0 (vaddr, ASID..) for final commit
 | |
| 	 */
 | |
| 	idx = tlb_entry_lkup(pd0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If Not already present get a free slot from MMU.
 | |
| 	 * Otherwise, Probe would have located the entry and set INDEX Reg
 | |
| 	 * with existing location. This will cause Write CMD to over-write
 | |
| 	 * existing entry with new PD0 and PD1
 | |
| 	 */
 | |
| 	if (likely(idx & TLB_LKUP_ERR))
 | |
| 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
 | |
| 
 | |
| 	/* setup the other half of TLB entry (pfn, rwx..) */
 | |
| 	write_aux_reg(ARC_REG_TLBPD1, pd1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Commit the Entry to MMU
 | |
| 	 * It doesn't sound safe to use the TLBWriteNI cmd here
 | |
| 	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
 | |
| 	 */
 | |
| 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_ARC_MMU_VER >= 4) */
 | |
| 
 | |
| static void utlb_invalidate(void)
 | |
| {
 | |
| 	/* No need since uTLB is always in sync with JTLB */
 | |
| }
 | |
| 
 | |
| static void tlb_entry_erase(unsigned int vaddr_n_asid)
 | |
| {
 | |
| 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
 | |
| 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
 | |
| }
 | |
| 
 | |
| static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 | |
| {
 | |
| 	write_aux_reg(ARC_REG_TLBPD0, pd0);
 | |
| 	write_aux_reg(ARC_REG_TLBPD1, pd1);
 | |
| 
 | |
| 	if (is_pae40_enabled())
 | |
| 		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
 | |
| 
 | |
| 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Un-conditionally (without lookup) erase the entire MMU contents
 | |
|  */
 | |
| 
 | |
| noinline void local_flush_tlb_all(void)
 | |
| {
 | |
| 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int entry;
 | |
| 	int num_tlb = mmu->sets * mmu->ways;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/* Load PD0 and PD1 with template for a Blank Entry */
 | |
| 	write_aux_reg(ARC_REG_TLBPD1, 0);
 | |
| 
 | |
| 	if (is_pae40_enabled())
 | |
| 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
 | |
| 
 | |
| 	write_aux_reg(ARC_REG_TLBPD0, 0);
 | |
| 
 | |
| 	for (entry = 0; entry < num_tlb; entry++) {
 | |
| 		/* write this entry to the TLB */
 | |
| 		write_aux_reg(ARC_REG_TLBINDEX, entry);
 | |
| 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 | |
| 		const int stlb_idx = 0x800;
 | |
| 
 | |
| 		/* Blank sTLB entry */
 | |
| 		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
 | |
| 
 | |
| 		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
 | |
| 			write_aux_reg(ARC_REG_TLBINDEX, entry);
 | |
| 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	utlb_invalidate();
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush the entrie MM for userland. The fastest way is to move to Next ASID
 | |
|  */
 | |
| noinline void local_flush_tlb_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	/*
 | |
| 	 * Small optimisation courtesy IA64
 | |
| 	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
 | |
| 	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
 | |
| 	 * all other cases are NOPs, hence this check.
 | |
| 	 */
 | |
| 	if (atomic_read(&mm->mm_users) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * - Move to a new ASID, but only if the mm is still wired in
 | |
| 	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
 | |
| 	 *    causing h/w - s/w ASID to get out of sync)
 | |
| 	 * - Also get_new_mmu_context() new implementation allocates a new
 | |
| 	 *   ASID only if it is not allocated already - so unallocate first
 | |
| 	 */
 | |
| 	destroy_context(mm);
 | |
| 	if (current->mm == mm)
 | |
| 		get_new_mmu_context(mm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush a Range of TLB entries for userland.
 | |
|  * @start is inclusive, while @end is exclusive
 | |
|  * Difference between this and Kernel Range Flush is
 | |
|  *  -Here the fastest way (if range is too large) is to move to next ASID
 | |
|  *      without doing any explicit Shootdown
 | |
|  *  -In case of kernel Flush, entry has to be shot down explictly
 | |
|  */
 | |
| void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 | |
| 			   unsigned long end)
 | |
| {
 | |
| 	const unsigned int cpu = smp_processor_id();
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* If range @start to @end is more than 32 TLB entries deep,
 | |
| 	 * its better to move to a new ASID rather than searching for
 | |
| 	 * individual entries and then shooting them down
 | |
| 	 *
 | |
| 	 * The calc above is rough, doesn't account for unaligned parts,
 | |
| 	 * since this is heuristics based anyways
 | |
| 	 */
 | |
| 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 | |
| 		local_flush_tlb_mm(vma->vm_mm);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * @start moved to page start: this alone suffices for checking
 | |
| 	 * loop end condition below, w/o need for aligning @end to end
 | |
| 	 * e.g. 2000 to 4001 will anyhow loop twice
 | |
| 	 */
 | |
| 	start &= PAGE_MASK;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 | |
| 		while (start < end) {
 | |
| 			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
 | |
| 			start += PAGE_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	utlb_invalidate();
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
 | |
|  *  @start, @end interpreted as kvaddr
 | |
|  * Interestingly, shared TLB entries can also be flushed using just
 | |
|  * @start,@end alone (interpreted as user vaddr), although technically SASID
 | |
|  * is also needed. However our smart TLbProbe lookup takes care of that.
 | |
|  */
 | |
| void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* exactly same as above, except for TLB entry not taking ASID */
 | |
| 
 | |
| 	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 | |
| 		local_flush_tlb_all();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	start &= PAGE_MASK;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	while (start < end) {
 | |
| 		tlb_entry_erase(start);
 | |
| 		start += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	utlb_invalidate();
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete TLB entry in MMU for a given page (??? address)
 | |
|  * NOTE One TLB entry contains translation for single PAGE
 | |
|  */
 | |
| 
 | |
| void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 | |
| {
 | |
| 	const unsigned int cpu = smp_processor_id();
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Note that it is critical that interrupts are DISABLED between
 | |
| 	 * checking the ASID and using it flush the TLB entry
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 | |
| 		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
 | |
| 		utlb_invalidate();
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| struct tlb_args {
 | |
| 	struct vm_area_struct *ta_vma;
 | |
| 	unsigned long ta_start;
 | |
| 	unsigned long ta_end;
 | |
| };
 | |
| 
 | |
| static inline void ipi_flush_tlb_page(void *arg)
 | |
| {
 | |
| 	struct tlb_args *ta = arg;
 | |
| 
 | |
| 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
 | |
| }
 | |
| 
 | |
| static inline void ipi_flush_tlb_range(void *arg)
 | |
| {
 | |
| 	struct tlb_args *ta = arg;
 | |
| 
 | |
| 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static inline void ipi_flush_pmd_tlb_range(void *arg)
 | |
| {
 | |
| 	struct tlb_args *ta = arg;
 | |
| 
 | |
| 	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void ipi_flush_tlb_kernel_range(void *arg)
 | |
| {
 | |
| 	struct tlb_args *ta = (struct tlb_args *)arg;
 | |
| 
 | |
| 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
 | |
| }
 | |
| 
 | |
| void flush_tlb_all(void)
 | |
| {
 | |
| 	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
 | |
| }
 | |
| 
 | |
| void flush_tlb_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
 | |
| 			 mm, 1);
 | |
| }
 | |
| 
 | |
| void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
 | |
| {
 | |
| 	struct tlb_args ta = {
 | |
| 		.ta_vma = vma,
 | |
| 		.ta_start = uaddr
 | |
| 	};
 | |
| 
 | |
| 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
 | |
| }
 | |
| 
 | |
| void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 | |
| 		     unsigned long end)
 | |
| {
 | |
| 	struct tlb_args ta = {
 | |
| 		.ta_vma = vma,
 | |
| 		.ta_start = start,
 | |
| 		.ta_end = end
 | |
| 	};
 | |
| 
 | |
| 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 | |
| 			 unsigned long end)
 | |
| {
 | |
| 	struct tlb_args ta = {
 | |
| 		.ta_vma = vma,
 | |
| 		.ta_start = start,
 | |
| 		.ta_end = end
 | |
| 	};
 | |
| 
 | |
| 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct tlb_args ta = {
 | |
| 		.ta_start = start,
 | |
| 		.ta_end = end
 | |
| 	};
 | |
| 
 | |
| 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Routine to create a TLB entry
 | |
|  */
 | |
| void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned int asid_or_sasid, rwx;
 | |
| 	unsigned long pd0;
 | |
| 	pte_t pd1;
 | |
| 
 | |
| 	/*
 | |
| 	 * create_tlb() assumes that current->mm == vma->mm, since
 | |
| 	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
 | |
| 	 * -completes the lazy write to SASID reg (again valid for curr tsk)
 | |
| 	 *
 | |
| 	 * Removing the assumption involves
 | |
| 	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
 | |
| 	 * -Fix the TLB paranoid debug code to not trigger false negatives.
 | |
| 	 * -More importantly it makes this handler inconsistent with fast-path
 | |
| 	 *  TLB Refill handler which always deals with "current"
 | |
| 	 *
 | |
| 	 * Lets see the use cases when current->mm != vma->mm and we land here
 | |
| 	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
 | |
| 	 *     Here VM wants to pre-install a TLB entry for user stack while
 | |
| 	 *     current->mm still points to pre-execve mm (hence the condition).
 | |
| 	 *     However the stack vaddr is soon relocated (randomization) and
 | |
| 	 *     move_page_tables() tries to undo that TLB entry.
 | |
| 	 *     Thus not creating TLB entry is not any worse.
 | |
| 	 *
 | |
| 	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
 | |
| 	 *     breakpoint in debugged task. Not creating a TLB now is not
 | |
| 	 *     performance critical.
 | |
| 	 *
 | |
| 	 * Both the cases above are not good enough for code churn.
 | |
| 	 */
 | |
| 	if (current->active_mm != vma->vm_mm)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
 | |
| 
 | |
| 	vaddr &= PAGE_MASK;
 | |
| 
 | |
| 	/* update this PTE credentials */
 | |
| 	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
 | |
| 
 | |
| 	/* Create HW TLB(PD0,PD1) from PTE  */
 | |
| 
 | |
| 	/* ASID for this task */
 | |
| 	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
 | |
| 
 | |
| 	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
 | |
| 
 | |
| 	/*
 | |
| 	 * ARC MMU provides fully orthogonal access bits for K/U mode,
 | |
| 	 * however Linux only saves 1 set to save PTE real-estate
 | |
| 	 * Here we convert 3 PTE bits into 6 MMU bits:
 | |
| 	 * -Kernel only entries have Kr Kw Kx 0 0 0
 | |
| 	 * -User entries have mirrored K and U bits
 | |
| 	 */
 | |
| 	rwx = pte_val(*ptep) & PTE_BITS_RWX;
 | |
| 
 | |
| 	if (pte_val(*ptep) & _PAGE_GLOBAL)
 | |
| 		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
 | |
| 	else
 | |
| 		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
 | |
| 
 | |
| 	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
 | |
| 
 | |
| 	tlb_entry_insert(pd0, pd1);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called at the end of pagefault, for a userspace mapped page
 | |
|  *  -pre-install the corresponding TLB entry into MMU
 | |
|  *  -Finalize the delayed D-cache flush of kernel mapping of page due to
 | |
|  *  	flush_dcache_page(), copy_user_page()
 | |
|  *
 | |
|  * Note that flush (when done) involves both WBACK - so physical page is
 | |
|  * in sync as well as INV - so any non-congruent aliases don't remain
 | |
|  */
 | |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
 | |
| 		      pte_t *ptep)
 | |
| {
 | |
| 	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
 | |
| 	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
 | |
| 	struct page *page = pfn_to_page(pte_pfn(*ptep));
 | |
| 
 | |
| 	create_tlb(vma, vaddr, ptep);
 | |
| 
 | |
| 	if (page == ZERO_PAGE(0)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Exec page : Independent of aliasing/page-color considerations,
 | |
| 	 *	       since icache doesn't snoop dcache on ARC, any dirty
 | |
| 	 *	       K-mapping of a code page needs to be wback+inv so that
 | |
| 	 *	       icache fetch by userspace sees code correctly.
 | |
| 	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
 | |
| 	 *	       so userspace sees the right data.
 | |
| 	 *  (Avoids the flush for Non-exec + congruent mapping case)
 | |
| 	 */
 | |
| 	if ((vma->vm_flags & VM_EXEC) ||
 | |
| 	     addr_not_cache_congruent(paddr, vaddr)) {
 | |
| 
 | |
| 		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
 | |
| 		if (dirty) {
 | |
| 			/* wback + inv dcache lines (K-mapping) */
 | |
| 			__flush_dcache_page(paddr, paddr);
 | |
| 
 | |
| 			/* invalidate any existing icache lines (U-mapping) */
 | |
| 			if (vma->vm_flags & VM_EXEC)
 | |
| 				__inv_icache_page(paddr, vaddr);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 
 | |
| /*
 | |
|  * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
 | |
|  * support.
 | |
|  *
 | |
|  * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
 | |
|  * new bit "SZ" in TLB page descriptor to distinguish between them.
 | |
|  * Super Page size is configurable in hardware (4K to 16M), but fixed once
 | |
|  * RTL builds.
 | |
|  *
 | |
|  * The exact THP size a Linx configuration will support is a function of:
 | |
|  *  - MMU page size (typical 8K, RTL fixed)
 | |
|  *  - software page walker address split between PGD:PTE:PFN (typical
 | |
|  *    11:8:13, but can be changed with 1 line)
 | |
|  * So for above default, THP size supported is 8K * (2^8) = 2M
 | |
|  *
 | |
|  * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
 | |
|  * reduces to 1 level (as PTE is folded into PGD and canonically referred
 | |
|  * to as PMD).
 | |
|  * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
 | |
|  */
 | |
| 
 | |
| void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 				 pmd_t *pmd)
 | |
| {
 | |
| 	pte_t pte = __pte(pmd_val(*pmd));
 | |
| 	update_mmu_cache(vma, addr, &pte);
 | |
| }
 | |
| 
 | |
| void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 | |
| 				pgtable_t pgtable)
 | |
| {
 | |
| 	struct list_head *lh = (struct list_head *) pgtable;
 | |
| 
 | |
| 	assert_spin_locked(&mm->page_table_lock);
 | |
| 
 | |
| 	/* FIFO */
 | |
| 	if (!pmd_huge_pte(mm, pmdp))
 | |
| 		INIT_LIST_HEAD(lh);
 | |
| 	else
 | |
| 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
 | |
| 	pmd_huge_pte(mm, pmdp) = pgtable;
 | |
| }
 | |
| 
 | |
| pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 | |
| {
 | |
| 	struct list_head *lh;
 | |
| 	pgtable_t pgtable;
 | |
| 
 | |
| 	assert_spin_locked(&mm->page_table_lock);
 | |
| 
 | |
| 	pgtable = pmd_huge_pte(mm, pmdp);
 | |
| 	lh = (struct list_head *) pgtable;
 | |
| 	if (list_empty(lh))
 | |
| 		pmd_huge_pte(mm, pmdp) = NULL;
 | |
| 	else {
 | |
| 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
 | |
| 		list_del(lh);
 | |
| 	}
 | |
| 
 | |
| 	pte_val(pgtable[0]) = 0;
 | |
| 	pte_val(pgtable[1]) = 0;
 | |
| 
 | |
| 	return pgtable;
 | |
| }
 | |
| 
 | |
| void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 | |
| 			       unsigned long end)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 
 | |
| 	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
 | |
| 		unsigned int asid = hw_pid(vma->vm_mm, cpu);
 | |
| 
 | |
| 		/* No need to loop here: this will always be for 1 Huge Page */
 | |
| 		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Read the Cache Build Confuration Registers, Decode them and save into
 | |
|  * the cpuinfo structure for later use.
 | |
|  * No Validation is done here, simply read/convert the BCRs
 | |
|  */
 | |
| void read_decode_mmu_bcr(void)
 | |
| {
 | |
| 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 | |
| 	unsigned int tmp;
 | |
| 	struct bcr_mmu_1_2 {
 | |
| #ifdef CONFIG_CPU_BIG_ENDIAN
 | |
| 		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
 | |
| #else
 | |
| 		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
 | |
| #endif
 | |
| 	} *mmu2;
 | |
| 
 | |
| 	struct bcr_mmu_3 {
 | |
| #ifdef CONFIG_CPU_BIG_ENDIAN
 | |
| 	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
 | |
| 		     u_itlb:4, u_dtlb:4;
 | |
| #else
 | |
| 	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
 | |
| 		     ways:4, ver:8;
 | |
| #endif
 | |
| 	} *mmu3;
 | |
| 
 | |
| 	struct bcr_mmu_4 {
 | |
| #ifdef CONFIG_CPU_BIG_ENDIAN
 | |
| 	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
 | |
| 		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
 | |
| #else
 | |
| 	/*           DTLB      ITLB      JES        JE         JA      */
 | |
| 	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
 | |
| 		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
 | |
| #endif
 | |
| 	} *mmu4;
 | |
| 
 | |
| 	tmp = read_aux_reg(ARC_REG_MMU_BCR);
 | |
| 	mmu->ver = (tmp >> 24);
 | |
| 
 | |
| 	if (is_isa_arcompact()) {
 | |
| 		if (mmu->ver <= 2) {
 | |
| 			mmu2 = (struct bcr_mmu_1_2 *)&tmp;
 | |
| 			mmu->pg_sz_k = TO_KB(0x2000);
 | |
| 			mmu->sets = 1 << mmu2->sets;
 | |
| 			mmu->ways = 1 << mmu2->ways;
 | |
| 			mmu->u_dtlb = mmu2->u_dtlb;
 | |
| 			mmu->u_itlb = mmu2->u_itlb;
 | |
| 		} else {
 | |
| 			mmu3 = (struct bcr_mmu_3 *)&tmp;
 | |
| 			mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
 | |
| 			mmu->sets = 1 << mmu3->sets;
 | |
| 			mmu->ways = 1 << mmu3->ways;
 | |
| 			mmu->u_dtlb = mmu3->u_dtlb;
 | |
| 			mmu->u_itlb = mmu3->u_itlb;
 | |
| 			mmu->sasid = mmu3->sasid;
 | |
| 		}
 | |
| 	} else {
 | |
| 		mmu4 = (struct bcr_mmu_4 *)&tmp;
 | |
| 		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
 | |
| 		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
 | |
| 		mmu->sets = 64 << mmu4->n_entry;
 | |
| 		mmu->ways = mmu4->n_ways * 2;
 | |
| 		mmu->u_dtlb = mmu4->u_dtlb * 4;
 | |
| 		mmu->u_itlb = mmu4->u_itlb * 4;
 | |
| 		mmu->sasid = mmu4->sasid;
 | |
| 		pae_exists = mmu->pae = mmu4->pae;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
 | |
| {
 | |
| 	int n = 0;
 | |
| 	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
 | |
| 	char super_pg[64] = "";
 | |
| 
 | |
| 	if (p_mmu->s_pg_sz_m)
 | |
| 		scnprintf(super_pg, 64, "%dM Super Page %s",
 | |
| 			  p_mmu->s_pg_sz_m,
 | |
| 			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
 | |
| 
 | |
| 	n += scnprintf(buf + n, len - n,
 | |
| 		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
 | |
| 		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
 | |
| 		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
 | |
| 		       p_mmu->u_dtlb, p_mmu->u_itlb,
 | |
| 		       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
 | |
| 
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| int pae40_exist_but_not_enab(void)
 | |
| {
 | |
| 	return pae_exists && !is_pae40_enabled();
 | |
| }
 | |
| 
 | |
| void arc_mmu_init(void)
 | |
| {
 | |
| 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 | |
| 	char str[256];
 | |
| 	int compat = 0;
 | |
| 
 | |
| 	pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't be done in processor.h due to header include depenedencies
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
 | |
| 
 | |
| 	/*
 | |
| 	 * stack top size sanity check,
 | |
| 	 * Can't be done in processor.h due to header include depenedencies
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that MMU features assumed by kernel exist in hardware.
 | |
| 	 * For older ARC700 cpus, it has to be exact match, since the MMU
 | |
| 	 * revisions were not backwards compatible (MMUv3 TLB layout changed
 | |
| 	 * so even if kernel for v2 didn't use any new cmds of v3, it would
 | |
| 	 * still not work.
 | |
| 	 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
 | |
| 	 * (will run older software).
 | |
| 	 */
 | |
| 	if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
 | |
| 		compat = 1;
 | |
| 	else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
 | |
| 		compat = 1;
 | |
| 
 | |
| 	if (!compat) {
 | |
| 		panic("MMU ver %d doesn't match kernel built for %d...\n",
 | |
| 		      mmu->ver, CONFIG_ARC_MMU_VER);
 | |
| 	}
 | |
| 
 | |
| 	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
 | |
| 		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 | |
| 	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
 | |
| 		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
 | |
| 		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
 | |
| 		panic("Hardware doesn't support PAE40\n");
 | |
| 
 | |
| 	/* Enable the MMU */
 | |
| 	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
 | |
| 
 | |
| 	/* In smp we use this reg for interrupt 1 scratch */
 | |
| #ifndef CONFIG_SMP
 | |
| 	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
 | |
| 	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
 | |
| #endif
 | |
| 
 | |
| 	if (pae40_exist_but_not_enab())
 | |
| 		write_aux_reg(ARC_REG_TLBPD1HI, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
 | |
|  * The mapping is Column-first.
 | |
|  *		---------------------	-----------
 | |
|  *		|way0|way1|way2|way3|	|way0|way1|
 | |
|  *		---------------------	-----------
 | |
|  * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
 | |
|  * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
 | |
|  *		~		    ~	~	  ~
 | |
|  * [set127]	| 508| 509| 510| 511|	| 254| 255|
 | |
|  *		---------------------	-----------
 | |
|  * For normal operations we don't(must not) care how above works since
 | |
|  * MMU cmd getIndex(vaddr) abstracts that out.
 | |
|  * However for walking WAYS of a SET, we need to know this
 | |
|  */
 | |
| #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
 | |
| 
 | |
| /* Handling of Duplicate PD (TLB entry) in MMU.
 | |
|  * -Could be due to buggy customer tapeouts or obscure kernel bugs
 | |
|  * -MMU complaints not at the time of duplicate PD installation, but at the
 | |
|  *      time of lookup matching multiple ways.
 | |
|  * -Ideally these should never happen - but if they do - workaround by deleting
 | |
|  *      the duplicate one.
 | |
|  * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
 | |
|  */
 | |
| volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
 | |
| 
 | |
| void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
 | |
| 			  struct pt_regs *regs)
 | |
| {
 | |
| 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 | |
| 	unsigned long flags;
 | |
| 	int set, n_ways = mmu->ways;
 | |
| 
 | |
| 	n_ways = min(n_ways, 4);
 | |
| 	BUG_ON(mmu->ways > 4);
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/* loop thru all sets of TLB */
 | |
| 	for (set = 0; set < mmu->sets; set++) {
 | |
| 
 | |
| 		int is_valid, way;
 | |
| 		unsigned int pd0[4];
 | |
| 
 | |
| 		/* read out all the ways of current set */
 | |
| 		for (way = 0, is_valid = 0; way < n_ways; way++) {
 | |
| 			write_aux_reg(ARC_REG_TLBINDEX,
 | |
| 					  SET_WAY_TO_IDX(mmu, set, way));
 | |
| 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
 | |
| 			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
 | |
| 			is_valid |= pd0[way] & _PAGE_PRESENT;
 | |
| 			pd0[way] &= PAGE_MASK;
 | |
| 		}
 | |
| 
 | |
| 		/* If all the WAYS in SET are empty, skip to next SET */
 | |
| 		if (!is_valid)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Scan the set for duplicate ways: needs a nested loop */
 | |
| 		for (way = 0; way < n_ways - 1; way++) {
 | |
| 
 | |
| 			int n;
 | |
| 
 | |
| 			if (!pd0[way])
 | |
| 				continue;
 | |
| 
 | |
| 			for (n = way + 1; n < n_ways; n++) {
 | |
| 				if (pd0[way] != pd0[n])
 | |
| 					continue;
 | |
| 
 | |
| 				if (!dup_pd_silent)
 | |
| 					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
 | |
| 						pd0[way], set, way, n);
 | |
| 
 | |
| 				/*
 | |
| 				 * clear entry @way and not @n.
 | |
| 				 * This is critical to our optimised loop
 | |
| 				 */
 | |
| 				pd0[way] = 0;
 | |
| 				write_aux_reg(ARC_REG_TLBINDEX,
 | |
| 						SET_WAY_TO_IDX(mmu, set, way));
 | |
| 				__tlb_entry_erase();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /***********************************************************************
 | |
|  * Diagnostic Routines
 | |
|  *  -Called from Low Level TLB Hanlders if things don;t look good
 | |
|  **********************************************************************/
 | |
| 
 | |
| #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
 | |
| 
 | |
| /*
 | |
|  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
 | |
|  * don't match
 | |
|  */
 | |
| void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
 | |
| {
 | |
| 	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
 | |
| 	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
 | |
| 
 | |
| 	__asm__ __volatile__("flag 1");
 | |
| }
 | |
| 
 | |
| void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
 | |
| {
 | |
| 	unsigned int mmu_asid;
 | |
| 
 | |
| 	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * At the time of a TLB miss/installation
 | |
| 	 *   - HW version needs to match SW version
 | |
| 	 *   - SW needs to have a valid ASID
 | |
| 	 */
 | |
| 	if (addr < 0x70000000 &&
 | |
| 	    ((mm_asid == MM_CTXT_NO_ASID) ||
 | |
| 	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
 | |
| 		print_asid_mismatch(mm_asid, mmu_asid, 0);
 | |
| }
 | |
| #endif
 | 
