3253 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3253 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) ST-Ericsson AB 2012
 | |
|  *
 | |
|  * Main and Back-up battery management driver.
 | |
|  *
 | |
|  * Note: Backup battery management is required in case of Li-Ion battery and not
 | |
|  * for capacitive battery. HREF boards have capacitive battery and hence backup
 | |
|  * battery management is not used and the supported code is available in this
 | |
|  * driver.
 | |
|  *
 | |
|  * License Terms: GNU General Public License v2
 | |
|  * Author:
 | |
|  *	Johan Palsson <johan.palsson@stericsson.com>
 | |
|  *	Karl Komierowski <karl.komierowski@stericsson.com>
 | |
|  *	Arun R Murthy <arun.murthy@stericsson.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/power_supply.h>
 | |
| #include <linux/kobject.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/time64.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/mfd/core.h>
 | |
| #include <linux/mfd/abx500.h>
 | |
| #include <linux/mfd/abx500/ab8500.h>
 | |
| #include <linux/mfd/abx500/ab8500-bm.h>
 | |
| #include <linux/mfd/abx500/ab8500-gpadc.h>
 | |
| #include <linux/kernel.h>
 | |
| 
 | |
| #define MILLI_TO_MICRO			1000
 | |
| #define FG_LSB_IN_MA			1627
 | |
| #define QLSB_NANO_AMP_HOURS_X10		1071
 | |
| #define INS_CURR_TIMEOUT		(3 * HZ)
 | |
| 
 | |
| #define SEC_TO_SAMPLE(S)		(S * 4)
 | |
| 
 | |
| #define NBR_AVG_SAMPLES			20
 | |
| 
 | |
| #define LOW_BAT_CHECK_INTERVAL		(HZ / 16) /* 62.5 ms */
 | |
| 
 | |
| #define VALID_CAPACITY_SEC		(45 * 60) /* 45 minutes */
 | |
| #define BATT_OK_MIN			2360 /* mV */
 | |
| #define BATT_OK_INCREMENT		50 /* mV */
 | |
| #define BATT_OK_MAX_NR_INCREMENTS	0xE
 | |
| 
 | |
| /* FG constants */
 | |
| #define BATT_OVV			0x01
 | |
| 
 | |
| #define interpolate(x, x1, y1, x2, y2) \
 | |
| 	((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
 | |
| 
 | |
| /**
 | |
|  * struct ab8500_fg_interrupts - ab8500 fg interupts
 | |
|  * @name:	name of the interrupt
 | |
|  * @isr		function pointer to the isr
 | |
|  */
 | |
| struct ab8500_fg_interrupts {
 | |
| 	char *name;
 | |
| 	irqreturn_t (*isr)(int irq, void *data);
 | |
| };
 | |
| 
 | |
| enum ab8500_fg_discharge_state {
 | |
| 	AB8500_FG_DISCHARGE_INIT,
 | |
| 	AB8500_FG_DISCHARGE_INITMEASURING,
 | |
| 	AB8500_FG_DISCHARGE_INIT_RECOVERY,
 | |
| 	AB8500_FG_DISCHARGE_RECOVERY,
 | |
| 	AB8500_FG_DISCHARGE_READOUT_INIT,
 | |
| 	AB8500_FG_DISCHARGE_READOUT,
 | |
| 	AB8500_FG_DISCHARGE_WAKEUP,
 | |
| };
 | |
| 
 | |
| static char *discharge_state[] = {
 | |
| 	"DISCHARGE_INIT",
 | |
| 	"DISCHARGE_INITMEASURING",
 | |
| 	"DISCHARGE_INIT_RECOVERY",
 | |
| 	"DISCHARGE_RECOVERY",
 | |
| 	"DISCHARGE_READOUT_INIT",
 | |
| 	"DISCHARGE_READOUT",
 | |
| 	"DISCHARGE_WAKEUP",
 | |
| };
 | |
| 
 | |
| enum ab8500_fg_charge_state {
 | |
| 	AB8500_FG_CHARGE_INIT,
 | |
| 	AB8500_FG_CHARGE_READOUT,
 | |
| };
 | |
| 
 | |
| static char *charge_state[] = {
 | |
| 	"CHARGE_INIT",
 | |
| 	"CHARGE_READOUT",
 | |
| };
 | |
| 
 | |
| enum ab8500_fg_calibration_state {
 | |
| 	AB8500_FG_CALIB_INIT,
 | |
| 	AB8500_FG_CALIB_WAIT,
 | |
| 	AB8500_FG_CALIB_END,
 | |
| };
 | |
| 
 | |
| struct ab8500_fg_avg_cap {
 | |
| 	int avg;
 | |
| 	int samples[NBR_AVG_SAMPLES];
 | |
| 	time64_t time_stamps[NBR_AVG_SAMPLES];
 | |
| 	int pos;
 | |
| 	int nbr_samples;
 | |
| 	int sum;
 | |
| };
 | |
| 
 | |
| struct ab8500_fg_cap_scaling {
 | |
| 	bool enable;
 | |
| 	int cap_to_scale[2];
 | |
| 	int disable_cap_level;
 | |
| 	int scaled_cap;
 | |
| };
 | |
| 
 | |
| struct ab8500_fg_battery_capacity {
 | |
| 	int max_mah_design;
 | |
| 	int max_mah;
 | |
| 	int mah;
 | |
| 	int permille;
 | |
| 	int level;
 | |
| 	int prev_mah;
 | |
| 	int prev_percent;
 | |
| 	int prev_level;
 | |
| 	int user_mah;
 | |
| 	struct ab8500_fg_cap_scaling cap_scale;
 | |
| };
 | |
| 
 | |
| struct ab8500_fg_flags {
 | |
| 	bool fg_enabled;
 | |
| 	bool conv_done;
 | |
| 	bool charging;
 | |
| 	bool fully_charged;
 | |
| 	bool force_full;
 | |
| 	bool low_bat_delay;
 | |
| 	bool low_bat;
 | |
| 	bool bat_ovv;
 | |
| 	bool batt_unknown;
 | |
| 	bool calibrate;
 | |
| 	bool user_cap;
 | |
| 	bool batt_id_received;
 | |
| };
 | |
| 
 | |
| struct inst_curr_result_list {
 | |
| 	struct list_head list;
 | |
| 	int *result;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct ab8500_fg - ab8500 FG device information
 | |
|  * @dev:		Pointer to the structure device
 | |
|  * @node:		a list of AB8500 FGs, hence prepared for reentrance
 | |
|  * @irq			holds the CCEOC interrupt number
 | |
|  * @vbat:		Battery voltage in mV
 | |
|  * @vbat_nom:		Nominal battery voltage in mV
 | |
|  * @inst_curr:		Instantenous battery current in mA
 | |
|  * @avg_curr:		Average battery current in mA
 | |
|  * @bat_temp		battery temperature
 | |
|  * @fg_samples:		Number of samples used in the FG accumulation
 | |
|  * @accu_charge:	Accumulated charge from the last conversion
 | |
|  * @recovery_cnt:	Counter for recovery mode
 | |
|  * @high_curr_cnt:	Counter for high current mode
 | |
|  * @init_cnt:		Counter for init mode
 | |
|  * @low_bat_cnt		Counter for number of consecutive low battery measures
 | |
|  * @nbr_cceoc_irq_cnt	Counter for number of CCEOC irqs received since enabled
 | |
|  * @recovery_needed:	Indicate if recovery is needed
 | |
|  * @high_curr_mode:	Indicate if we're in high current mode
 | |
|  * @init_capacity:	Indicate if initial capacity measuring should be done
 | |
|  * @turn_off_fg:	True if fg was off before current measurement
 | |
|  * @calib_state		State during offset calibration
 | |
|  * @discharge_state:	Current discharge state
 | |
|  * @charge_state:	Current charge state
 | |
|  * @ab8500_fg_started	Completion struct used for the instant current start
 | |
|  * @ab8500_fg_complete	Completion struct used for the instant current reading
 | |
|  * @flags:		Structure for information about events triggered
 | |
|  * @bat_cap:		Structure for battery capacity specific parameters
 | |
|  * @avg_cap:		Average capacity filter
 | |
|  * @parent:		Pointer to the struct ab8500
 | |
|  * @gpadc:		Pointer to the struct gpadc
 | |
|  * @bm:           	Platform specific battery management information
 | |
|  * @fg_psy:		Structure that holds the FG specific battery properties
 | |
|  * @fg_wq:		Work queue for running the FG algorithm
 | |
|  * @fg_periodic_work:	Work to run the FG algorithm periodically
 | |
|  * @fg_low_bat_work:	Work to check low bat condition
 | |
|  * @fg_reinit_work	Work used to reset and reinitialise the FG algorithm
 | |
|  * @fg_work:		Work to run the FG algorithm instantly
 | |
|  * @fg_acc_cur_work:	Work to read the FG accumulator
 | |
|  * @fg_check_hw_failure_work:	Work for checking HW state
 | |
|  * @cc_lock:		Mutex for locking the CC
 | |
|  * @fg_kobject:		Structure of type kobject
 | |
|  */
 | |
| struct ab8500_fg {
 | |
| 	struct device *dev;
 | |
| 	struct list_head node;
 | |
| 	int irq;
 | |
| 	int vbat;
 | |
| 	int vbat_nom;
 | |
| 	int inst_curr;
 | |
| 	int avg_curr;
 | |
| 	int bat_temp;
 | |
| 	int fg_samples;
 | |
| 	int accu_charge;
 | |
| 	int recovery_cnt;
 | |
| 	int high_curr_cnt;
 | |
| 	int init_cnt;
 | |
| 	int low_bat_cnt;
 | |
| 	int nbr_cceoc_irq_cnt;
 | |
| 	bool recovery_needed;
 | |
| 	bool high_curr_mode;
 | |
| 	bool init_capacity;
 | |
| 	bool turn_off_fg;
 | |
| 	enum ab8500_fg_calibration_state calib_state;
 | |
| 	enum ab8500_fg_discharge_state discharge_state;
 | |
| 	enum ab8500_fg_charge_state charge_state;
 | |
| 	struct completion ab8500_fg_started;
 | |
| 	struct completion ab8500_fg_complete;
 | |
| 	struct ab8500_fg_flags flags;
 | |
| 	struct ab8500_fg_battery_capacity bat_cap;
 | |
| 	struct ab8500_fg_avg_cap avg_cap;
 | |
| 	struct ab8500 *parent;
 | |
| 	struct ab8500_gpadc *gpadc;
 | |
| 	struct abx500_bm_data *bm;
 | |
| 	struct power_supply *fg_psy;
 | |
| 	struct workqueue_struct *fg_wq;
 | |
| 	struct delayed_work fg_periodic_work;
 | |
| 	struct delayed_work fg_low_bat_work;
 | |
| 	struct delayed_work fg_reinit_work;
 | |
| 	struct work_struct fg_work;
 | |
| 	struct work_struct fg_acc_cur_work;
 | |
| 	struct delayed_work fg_check_hw_failure_work;
 | |
| 	struct mutex cc_lock;
 | |
| 	struct kobject fg_kobject;
 | |
| };
 | |
| static LIST_HEAD(ab8500_fg_list);
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
 | |
|  * (i.e. the first fuel gauge in the instance list)
 | |
|  */
 | |
| struct ab8500_fg *ab8500_fg_get(void)
 | |
| {
 | |
| 	return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
 | |
| 					node);
 | |
| }
 | |
| 
 | |
| /* Main battery properties */
 | |
| static enum power_supply_property ab8500_fg_props[] = {
 | |
| 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
 | |
| 	POWER_SUPPLY_PROP_CURRENT_NOW,
 | |
| 	POWER_SUPPLY_PROP_CURRENT_AVG,
 | |
| 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
 | |
| 	POWER_SUPPLY_PROP_ENERGY_FULL,
 | |
| 	POWER_SUPPLY_PROP_ENERGY_NOW,
 | |
| 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
 | |
| 	POWER_SUPPLY_PROP_CHARGE_FULL,
 | |
| 	POWER_SUPPLY_PROP_CHARGE_NOW,
 | |
| 	POWER_SUPPLY_PROP_CAPACITY,
 | |
| 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This array maps the raw hex value to lowbat voltage used by the AB8500
 | |
|  * Values taken from the UM0836
 | |
|  */
 | |
| static int ab8500_fg_lowbat_voltage_map[] = {
 | |
| 	2300 ,
 | |
| 	2325 ,
 | |
| 	2350 ,
 | |
| 	2375 ,
 | |
| 	2400 ,
 | |
| 	2425 ,
 | |
| 	2450 ,
 | |
| 	2475 ,
 | |
| 	2500 ,
 | |
| 	2525 ,
 | |
| 	2550 ,
 | |
| 	2575 ,
 | |
| 	2600 ,
 | |
| 	2625 ,
 | |
| 	2650 ,
 | |
| 	2675 ,
 | |
| 	2700 ,
 | |
| 	2725 ,
 | |
| 	2750 ,
 | |
| 	2775 ,
 | |
| 	2800 ,
 | |
| 	2825 ,
 | |
| 	2850 ,
 | |
| 	2875 ,
 | |
| 	2900 ,
 | |
| 	2925 ,
 | |
| 	2950 ,
 | |
| 	2975 ,
 | |
| 	3000 ,
 | |
| 	3025 ,
 | |
| 	3050 ,
 | |
| 	3075 ,
 | |
| 	3100 ,
 | |
| 	3125 ,
 | |
| 	3150 ,
 | |
| 	3175 ,
 | |
| 	3200 ,
 | |
| 	3225 ,
 | |
| 	3250 ,
 | |
| 	3275 ,
 | |
| 	3300 ,
 | |
| 	3325 ,
 | |
| 	3350 ,
 | |
| 	3375 ,
 | |
| 	3400 ,
 | |
| 	3425 ,
 | |
| 	3450 ,
 | |
| 	3475 ,
 | |
| 	3500 ,
 | |
| 	3525 ,
 | |
| 	3550 ,
 | |
| 	3575 ,
 | |
| 	3600 ,
 | |
| 	3625 ,
 | |
| 	3650 ,
 | |
| 	3675 ,
 | |
| 	3700 ,
 | |
| 	3725 ,
 | |
| 	3750 ,
 | |
| 	3775 ,
 | |
| 	3800 ,
 | |
| 	3825 ,
 | |
| 	3850 ,
 | |
| 	3850 ,
 | |
| };
 | |
| 
 | |
| static u8 ab8500_volt_to_regval(int voltage)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (voltage < ab8500_fg_lowbat_voltage_map[0])
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
 | |
| 		if (voltage < ab8500_fg_lowbat_voltage_map[i])
 | |
| 			return (u8) i - 1;
 | |
| 	}
 | |
| 
 | |
| 	/* If not captured above, return index of last element */
 | |
| 	return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_is_low_curr() - Low or high current mode
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @curr:	the current to base or our decision on
 | |
|  *
 | |
|  * Low current mode if the current consumption is below a certain threshold
 | |
|  */
 | |
| static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
 | |
| {
 | |
| 	/*
 | |
| 	 * We want to know if we're in low current mode
 | |
| 	 */
 | |
| 	if (curr > -di->bm->fg_params->high_curr_threshold)
 | |
| 		return true;
 | |
| 	else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_add_cap_sample() - Add capacity to average filter
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @sample:	the capacity in mAh to add to the filter
 | |
|  *
 | |
|  * A capacity is added to the filter and a new mean capacity is calculated and
 | |
|  * returned
 | |
|  */
 | |
| static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
 | |
| {
 | |
| 	time64_t now = ktime_get_boottime_seconds();
 | |
| 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 | |
| 
 | |
| 	do {
 | |
| 		avg->sum += sample - avg->samples[avg->pos];
 | |
| 		avg->samples[avg->pos] = sample;
 | |
| 		avg->time_stamps[avg->pos] = now;
 | |
| 		avg->pos++;
 | |
| 
 | |
| 		if (avg->pos == NBR_AVG_SAMPLES)
 | |
| 			avg->pos = 0;
 | |
| 
 | |
| 		if (avg->nbr_samples < NBR_AVG_SAMPLES)
 | |
| 			avg->nbr_samples++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check the time stamp for each sample. If too old,
 | |
| 		 * replace with latest sample
 | |
| 		 */
 | |
| 	} while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
 | |
| 
 | |
| 	avg->avg = avg->sum / avg->nbr_samples;
 | |
| 
 | |
| 	return avg->avg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_clear_cap_samples() - Clear average filter
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * The capacity filter is is reset to zero.
 | |
|  */
 | |
| static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
 | |
| {
 | |
| 	int i;
 | |
| 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 | |
| 
 | |
| 	avg->pos = 0;
 | |
| 	avg->nbr_samples = 0;
 | |
| 	avg->sum = 0;
 | |
| 	avg->avg = 0;
 | |
| 
 | |
| 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 | |
| 		avg->samples[i] = 0;
 | |
| 		avg->time_stamps[i] = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_fill_cap_sample() - Fill average filter
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @sample:	the capacity in mAh to fill the filter with
 | |
|  *
 | |
|  * The capacity filter is filled with a capacity in mAh
 | |
|  */
 | |
| static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
 | |
| {
 | |
| 	int i;
 | |
| 	time64_t now;
 | |
| 	struct ab8500_fg_avg_cap *avg = &di->avg_cap;
 | |
| 
 | |
| 	now = ktime_get_boottime_seconds();
 | |
| 
 | |
| 	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
 | |
| 		avg->samples[i] = sample;
 | |
| 		avg->time_stamps[i] = now;
 | |
| 	}
 | |
| 
 | |
| 	avg->pos = 0;
 | |
| 	avg->nbr_samples = NBR_AVG_SAMPLES;
 | |
| 	avg->sum = sample * NBR_AVG_SAMPLES;
 | |
| 	avg->avg = sample;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_coulomb_counter() - enable coulomb counter
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @enable:	enable/disable
 | |
|  *
 | |
|  * Enable/Disable coulomb counter.
 | |
|  * On failure returns negative value.
 | |
|  */
 | |
| static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	mutex_lock(&di->cc_lock);
 | |
| 	if (enable) {
 | |
| 		/* To be able to reprogram the number of samples, we have to
 | |
| 		 * first stop the CC and then enable it again */
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8500_RTC_CC_CONF_REG, 0x00);
 | |
| 		if (ret)
 | |
| 			goto cc_err;
 | |
| 
 | |
| 		/* Program the samples */
 | |
| 		ret = abx500_set_register_interruptible(di->dev,
 | |
| 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 | |
| 			di->fg_samples);
 | |
| 		if (ret)
 | |
| 			goto cc_err;
 | |
| 
 | |
| 		/* Start the CC */
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8500_RTC_CC_CONF_REG,
 | |
| 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 | |
| 		if (ret)
 | |
| 			goto cc_err;
 | |
| 
 | |
| 		di->flags.fg_enabled = true;
 | |
| 	} else {
 | |
| 		/* Clear any pending read requests */
 | |
| 		ret = abx500_mask_and_set_register_interruptible(di->dev,
 | |
| 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 | |
| 			(RESET_ACCU | READ_REQ), 0);
 | |
| 		if (ret)
 | |
| 			goto cc_err;
 | |
| 
 | |
| 		ret = abx500_set_register_interruptible(di->dev,
 | |
| 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
 | |
| 		if (ret)
 | |
| 			goto cc_err;
 | |
| 
 | |
| 		/* Stop the CC */
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8500_RTC_CC_CONF_REG, 0);
 | |
| 		if (ret)
 | |
| 			goto cc_err;
 | |
| 
 | |
| 		di->flags.fg_enabled = false;
 | |
| 
 | |
| 	}
 | |
| 	dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
 | |
| 		enable, di->fg_samples);
 | |
| 
 | |
| 	mutex_unlock(&di->cc_lock);
 | |
| 
 | |
| 	return ret;
 | |
| cc_err:
 | |
| 	dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
 | |
| 	mutex_unlock(&di->cc_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_inst_curr_start() - start battery instantaneous current
 | |
|  * @di:         pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns 0 or error code
 | |
|  * Note: This is part "one" and has to be called before
 | |
|  * ab8500_fg_inst_curr_finalize()
 | |
|  */
 | |
| int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
 | |
| {
 | |
| 	u8 reg_val;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&di->cc_lock);
 | |
| 
 | |
| 	di->nbr_cceoc_irq_cnt = 0;
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 		AB8500_RTC_CC_CONF_REG, ®_val);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (!(reg_val & CC_PWR_UP_ENA)) {
 | |
| 		dev_dbg(di->dev, "%s Enable FG\n", __func__);
 | |
| 		di->turn_off_fg = true;
 | |
| 
 | |
| 		/* Program the samples */
 | |
| 		ret = abx500_set_register_interruptible(di->dev,
 | |
| 			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
 | |
| 			SEC_TO_SAMPLE(10));
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 
 | |
| 		/* Start the CC */
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8500_RTC_CC_CONF_REG,
 | |
| 			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 	} else {
 | |
| 		di->turn_off_fg = false;
 | |
| 	}
 | |
| 
 | |
| 	/* Return and WFI */
 | |
| 	reinit_completion(&di->ab8500_fg_started);
 | |
| 	reinit_completion(&di->ab8500_fg_complete);
 | |
| 	enable_irq(di->irq);
 | |
| 
 | |
| 	/* Note: cc_lock is still locked */
 | |
| 	return 0;
 | |
| fail:
 | |
| 	mutex_unlock(&di->cc_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_inst_curr_started() - check if fg conversion has started
 | |
|  * @di:         pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns 1 if conversion started, 0 if still waiting
 | |
|  */
 | |
| int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
 | |
| {
 | |
| 	return completion_done(&di->ab8500_fg_started);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_inst_curr_done() - check if fg conversion is done
 | |
|  * @di:         pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns 1 if conversion done, 0 if still waiting
 | |
|  */
 | |
| int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
 | |
| {
 | |
| 	return completion_done(&di->ab8500_fg_complete);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
 | |
|  * @di:         pointer to the ab8500_fg structure
 | |
|  * @res:	battery instantenous current(on success)
 | |
|  *
 | |
|  * Returns 0 or an error code
 | |
|  * Note: This is part "two" and has to be called at earliest 250 ms
 | |
|  * after ab8500_fg_inst_curr_start()
 | |
|  */
 | |
| int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
 | |
| {
 | |
| 	u8 low, high;
 | |
| 	int val;
 | |
| 	int ret;
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	if (!completion_done(&di->ab8500_fg_complete)) {
 | |
| 		timeout = wait_for_completion_timeout(
 | |
| 			&di->ab8500_fg_complete,
 | |
| 			INS_CURR_TIMEOUT);
 | |
| 		dev_dbg(di->dev, "Finalize time: %d ms\n",
 | |
| 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
 | |
| 		if (!timeout) {
 | |
| 			ret = -ETIME;
 | |
| 			disable_irq(di->irq);
 | |
| 			di->nbr_cceoc_irq_cnt = 0;
 | |
| 			dev_err(di->dev, "completion timed out [%d]\n",
 | |
| 				__LINE__);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	disable_irq(di->irq);
 | |
| 	di->nbr_cceoc_irq_cnt = 0;
 | |
| 
 | |
| 	ret = abx500_mask_and_set_register_interruptible(di->dev,
 | |
| 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 | |
| 			READ_REQ, READ_REQ);
 | |
| 
 | |
| 	/* 100uS between read request and read is needed */
 | |
| 	usleep_range(100, 100);
 | |
| 
 | |
| 	/* Read CC Sample conversion value Low and high */
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 | |
| 		AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 | |
| 		AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/*
 | |
| 	 * negative value for Discharging
 | |
| 	 * convert 2's compliment into decimal
 | |
| 	 */
 | |
| 	if (high & 0x10)
 | |
| 		val = (low | (high << 8) | 0xFFFFE000);
 | |
| 	else
 | |
| 		val = (low | (high << 8));
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert to unit value in mA
 | |
| 	 * Full scale input voltage is
 | |
| 	 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
 | |
| 	 * Given a 250ms conversion cycle time the LSB corresponds
 | |
| 	 * to 107.1 nAh. Convert to current by dividing by the conversion
 | |
| 	 * time in hours (250ms = 1 / (3600 * 4)h)
 | |
| 	 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 | |
| 	 */
 | |
| 	val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
 | |
| 		(1000 * di->bm->fg_res);
 | |
| 
 | |
| 	if (di->turn_off_fg) {
 | |
| 		dev_dbg(di->dev, "%s Disable FG\n", __func__);
 | |
| 
 | |
| 		/* Clear any pending read requests */
 | |
| 		ret = abx500_set_register_interruptible(di->dev,
 | |
| 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 
 | |
| 		/* Stop the CC */
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8500_RTC_CC_CONF_REG, 0);
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 	mutex_unlock(&di->cc_lock);
 | |
| 	(*res) = val;
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	mutex_unlock(&di->cc_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
 | |
|  * @di:         pointer to the ab8500_fg structure
 | |
|  * @res:	battery instantenous current(on success)
 | |
|  *
 | |
|  * Returns 0 else error code
 | |
|  */
 | |
| int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long timeout;
 | |
| 	int res = 0;
 | |
| 
 | |
| 	ret = ab8500_fg_inst_curr_start(di);
 | |
| 	if (ret) {
 | |
| 		dev_err(di->dev, "Failed to initialize fg_inst\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for CC to actually start */
 | |
| 	if (!completion_done(&di->ab8500_fg_started)) {
 | |
| 		timeout = wait_for_completion_timeout(
 | |
| 			&di->ab8500_fg_started,
 | |
| 			INS_CURR_TIMEOUT);
 | |
| 		dev_dbg(di->dev, "Start time: %d ms\n",
 | |
| 			jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
 | |
| 		if (!timeout) {
 | |
| 			ret = -ETIME;
 | |
| 			dev_err(di->dev, "completion timed out [%d]\n",
 | |
| 				__LINE__);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = ab8500_fg_inst_curr_finalize(di, &res);
 | |
| 	if (ret) {
 | |
| 		dev_err(di->dev, "Failed to finalize fg_inst\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(di->dev, "%s instant current: %d", __func__, res);
 | |
| 	return res;
 | |
| fail:
 | |
| 	disable_irq(di->irq);
 | |
| 	mutex_unlock(&di->cc_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_acc_cur_work() - average battery current
 | |
|  * @work:	pointer to the work_struct structure
 | |
|  *
 | |
|  * Updated the average battery current obtained from the
 | |
|  * coulomb counter.
 | |
|  */
 | |
| static void ab8500_fg_acc_cur_work(struct work_struct *work)
 | |
| {
 | |
| 	int val;
 | |
| 	int ret;
 | |
| 	u8 low, med, high;
 | |
| 
 | |
| 	struct ab8500_fg *di = container_of(work,
 | |
| 		struct ab8500_fg, fg_acc_cur_work);
 | |
| 
 | |
| 	mutex_lock(&di->cc_lock);
 | |
| 	ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 | |
| 		AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
 | |
| 	if (ret)
 | |
| 		goto exit;
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 | |
| 		AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
 | |
| 	if (ret < 0)
 | |
| 		goto exit;
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 | |
| 		AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
 | |
| 	if (ret < 0)
 | |
| 		goto exit;
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
 | |
| 		AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
 | |
| 	if (ret < 0)
 | |
| 		goto exit;
 | |
| 
 | |
| 	/* Check for sign bit in case of negative value, 2's compliment */
 | |
| 	if (high & 0x10)
 | |
| 		val = (low | (med << 8) | (high << 16) | 0xFFE00000);
 | |
| 	else
 | |
| 		val = (low | (med << 8) | (high << 16));
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert to uAh
 | |
| 	 * Given a 250ms conversion cycle time the LSB corresponds
 | |
| 	 * to 112.9 nAh.
 | |
| 	 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
 | |
| 	 */
 | |
| 	di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
 | |
| 		(100 * di->bm->fg_res);
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert to unit value in mA
 | |
| 	 * by dividing by the conversion
 | |
| 	 * time in hours (= samples / (3600 * 4)h)
 | |
| 	 * and multiply with 1000
 | |
| 	 */
 | |
| 	di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
 | |
| 		(1000 * di->bm->fg_res * (di->fg_samples / 4));
 | |
| 
 | |
| 	di->flags.conv_done = true;
 | |
| 
 | |
| 	mutex_unlock(&di->cc_lock);
 | |
| 
 | |
| 	queue_work(di->fg_wq, &di->fg_work);
 | |
| 
 | |
| 	dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
 | |
| 				di->bm->fg_res, di->fg_samples, val, di->accu_charge);
 | |
| 	return;
 | |
| exit:
 | |
| 	dev_err(di->dev,
 | |
| 		"Failed to read or write gas gauge registers\n");
 | |
| 	mutex_unlock(&di->cc_lock);
 | |
| 	queue_work(di->fg_wq, &di->fg_work);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_bat_voltage() - get battery voltage
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns battery voltage(on success) else error code
 | |
|  */
 | |
| static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
 | |
| {
 | |
| 	int vbat;
 | |
| 	static int prev;
 | |
| 
 | |
| 	vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
 | |
| 	if (vbat < 0) {
 | |
| 		dev_err(di->dev,
 | |
| 			"%s gpadc conversion failed, using previous value\n",
 | |
| 			__func__);
 | |
| 		return prev;
 | |
| 	}
 | |
| 
 | |
| 	prev = vbat;
 | |
| 	return vbat;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_volt_to_capacity() - Voltage based capacity
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @voltage:	The voltage to convert to a capacity
 | |
|  *
 | |
|  * Returns battery capacity in per mille based on voltage
 | |
|  */
 | |
| static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
 | |
| {
 | |
| 	int i, tbl_size;
 | |
| 	const struct abx500_v_to_cap *tbl;
 | |
| 	int cap = 0;
 | |
| 
 | |
| 	tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
 | |
| 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
 | |
| 
 | |
| 	for (i = 0; i < tbl_size; ++i) {
 | |
| 		if (voltage > tbl[i].voltage)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if ((i > 0) && (i < tbl_size)) {
 | |
| 		cap = interpolate(voltage,
 | |
| 			tbl[i].voltage,
 | |
| 			tbl[i].capacity * 10,
 | |
| 			tbl[i-1].voltage,
 | |
| 			tbl[i-1].capacity * 10);
 | |
| 	} else if (i == 0) {
 | |
| 		cap = 1000;
 | |
| 	} else {
 | |
| 		cap = 0;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
 | |
| 		__func__, voltage, cap);
 | |
| 
 | |
| 	return cap;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns battery capacity based on battery voltage that is not compensated
 | |
|  * for the voltage drop due to the load
 | |
|  */
 | |
| static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
 | |
| {
 | |
| 	di->vbat = ab8500_fg_bat_voltage(di);
 | |
| 	return ab8500_fg_volt_to_capacity(di, di->vbat);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns battery inner resistance added with the fuel gauge resistor value
 | |
|  * to get the total resistance in the whole link from gnd to bat+ node.
 | |
|  */
 | |
| static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
 | |
| {
 | |
| 	int i, tbl_size;
 | |
| 	const struct batres_vs_temp *tbl;
 | |
| 	int resist = 0;
 | |
| 
 | |
| 	tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
 | |
| 	tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
 | |
| 
 | |
| 	for (i = 0; i < tbl_size; ++i) {
 | |
| 		if (di->bat_temp / 10 > tbl[i].temp)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if ((i > 0) && (i < tbl_size)) {
 | |
| 		resist = interpolate(di->bat_temp / 10,
 | |
| 			tbl[i].temp,
 | |
| 			tbl[i].resist,
 | |
| 			tbl[i-1].temp,
 | |
| 			tbl[i-1].resist);
 | |
| 	} else if (i == 0) {
 | |
| 		resist = tbl[0].resist;
 | |
| 	} else {
 | |
| 		resist = tbl[tbl_size - 1].resist;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
 | |
| 	    " fg resistance %d, total: %d (mOhm)\n",
 | |
| 		__func__, di->bat_temp, resist, di->bm->fg_res / 10,
 | |
| 		(di->bm->fg_res / 10) + resist);
 | |
| 
 | |
| 	/* fg_res variable is in 0.1mOhm */
 | |
| 	resist += di->bm->fg_res / 10;
 | |
| 
 | |
| 	return resist;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns battery capacity based on battery voltage that is load compensated
 | |
|  * for the voltage drop
 | |
|  */
 | |
| static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
 | |
| {
 | |
| 	int vbat_comp, res;
 | |
| 	int i = 0;
 | |
| 	int vbat = 0;
 | |
| 
 | |
| 	ab8500_fg_inst_curr_start(di);
 | |
| 
 | |
| 	do {
 | |
| 		vbat += ab8500_fg_bat_voltage(di);
 | |
| 		i++;
 | |
| 		usleep_range(5000, 6000);
 | |
| 	} while (!ab8500_fg_inst_curr_done(di));
 | |
| 
 | |
| 	ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
 | |
| 
 | |
| 	di->vbat = vbat / i;
 | |
| 	res = ab8500_fg_battery_resistance(di);
 | |
| 
 | |
| 	/* Use Ohms law to get the load compensated voltage */
 | |
| 	vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
 | |
| 
 | |
| 	dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
 | |
| 		"R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
 | |
| 		__func__, di->vbat, vbat_comp, res, di->inst_curr, i);
 | |
| 
 | |
| 	return ab8500_fg_volt_to_capacity(di, vbat_comp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @cap_mah:	capacity in mAh
 | |
|  *
 | |
|  * Converts capacity in mAh to capacity in permille
 | |
|  */
 | |
| static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
 | |
| {
 | |
| 	return (cap_mah * 1000) / di->bat_cap.max_mah_design;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @cap_pm:	capacity in permille
 | |
|  *
 | |
|  * Converts capacity in permille to capacity in mAh
 | |
|  */
 | |
| static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
 | |
| {
 | |
| 	return cap_pm * di->bat_cap.max_mah_design / 1000;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @cap_mah:	capacity in mAh
 | |
|  *
 | |
|  * Converts capacity in mAh to capacity in uWh
 | |
|  */
 | |
| static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
 | |
| {
 | |
| 	u64 div_res;
 | |
| 	u32 div_rem;
 | |
| 
 | |
| 	div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
 | |
| 	div_rem = do_div(div_res, 1000);
 | |
| 
 | |
| 	/* Make sure to round upwards if necessary */
 | |
| 	if (div_rem >= 1000 / 2)
 | |
| 		div_res++;
 | |
| 
 | |
| 	return (int) div_res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Return the capacity in mAh based on previous calculated capcity and the FG
 | |
|  * accumulator register value. The filter is filled with this capacity
 | |
|  */
 | |
| static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
 | |
| {
 | |
| 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
 | |
| 		__func__,
 | |
| 		di->bat_cap.mah,
 | |
| 		di->accu_charge);
 | |
| 
 | |
| 	/* Capacity should not be less than 0 */
 | |
| 	if (di->bat_cap.mah + di->accu_charge > 0)
 | |
| 		di->bat_cap.mah += di->accu_charge;
 | |
| 	else
 | |
| 		di->bat_cap.mah = 0;
 | |
| 	/*
 | |
| 	 * We force capacity to 100% once when the algorithm
 | |
| 	 * reports that it's full.
 | |
| 	 */
 | |
| 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
 | |
| 		di->flags.force_full) {
 | |
| 		di->bat_cap.mah = di->bat_cap.max_mah_design;
 | |
| 	}
 | |
| 
 | |
| 	ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
 | |
| 	di->bat_cap.permille =
 | |
| 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
 | |
| 
 | |
| 	/* We need to update battery voltage and inst current when charging */
 | |
| 	di->vbat = ab8500_fg_bat_voltage(di);
 | |
| 	di->inst_curr = ab8500_fg_inst_curr_blocking(di);
 | |
| 
 | |
| 	return di->bat_cap.mah;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @comp:	if voltage should be load compensated before capacity calc
 | |
|  *
 | |
|  * Return the capacity in mAh based on the battery voltage. The voltage can
 | |
|  * either be load compensated or not. This value is added to the filter and a
 | |
|  * new mean value is calculated and returned.
 | |
|  */
 | |
| static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
 | |
| {
 | |
| 	int permille, mah;
 | |
| 
 | |
| 	if (comp)
 | |
| 		permille = ab8500_fg_load_comp_volt_to_capacity(di);
 | |
| 	else
 | |
| 		permille = ab8500_fg_uncomp_volt_to_capacity(di);
 | |
| 
 | |
| 	mah = ab8500_fg_convert_permille_to_mah(di, permille);
 | |
| 
 | |
| 	di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
 | |
| 	di->bat_cap.permille =
 | |
| 		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
 | |
| 
 | |
| 	return di->bat_cap.mah;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Return the capacity in mAh based on previous calculated capcity and the FG
 | |
|  * accumulator register value. This value is added to the filter and a
 | |
|  * new mean value is calculated and returned.
 | |
|  */
 | |
| static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
 | |
| {
 | |
| 	int permille_volt, permille;
 | |
| 
 | |
| 	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
 | |
| 		__func__,
 | |
| 		di->bat_cap.mah,
 | |
| 		di->accu_charge);
 | |
| 
 | |
| 	/* Capacity should not be less than 0 */
 | |
| 	if (di->bat_cap.mah + di->accu_charge > 0)
 | |
| 		di->bat_cap.mah += di->accu_charge;
 | |
| 	else
 | |
| 		di->bat_cap.mah = 0;
 | |
| 
 | |
| 	if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
 | |
| 		di->bat_cap.mah = di->bat_cap.max_mah_design;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check against voltage based capacity. It can not be lower
 | |
| 	 * than what the uncompensated voltage says
 | |
| 	 */
 | |
| 	permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
 | |
| 	permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
 | |
| 
 | |
| 	if (permille < permille_volt) {
 | |
| 		di->bat_cap.permille = permille_volt;
 | |
| 		di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
 | |
| 			di->bat_cap.permille);
 | |
| 
 | |
| 		dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
 | |
| 			__func__,
 | |
| 			permille,
 | |
| 			permille_volt);
 | |
| 
 | |
| 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
 | |
| 	} else {
 | |
| 		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
 | |
| 		di->bat_cap.permille =
 | |
| 			ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
 | |
| 	}
 | |
| 
 | |
| 	return di->bat_cap.mah;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_capacity_level() - Get the battery capacity level
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Get the battery capacity level based on the capacity in percent
 | |
|  */
 | |
| static int ab8500_fg_capacity_level(struct ab8500_fg *di)
 | |
| {
 | |
| 	int ret, percent;
 | |
| 
 | |
| 	percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
 | |
| 
 | |
| 	if (percent <= di->bm->cap_levels->critical ||
 | |
| 		di->flags.low_bat)
 | |
| 		ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
 | |
| 	else if (percent <= di->bm->cap_levels->low)
 | |
| 		ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
 | |
| 	else if (percent <= di->bm->cap_levels->normal)
 | |
| 		ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
 | |
| 	else if (percent <= di->bm->cap_levels->high)
 | |
| 		ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
 | |
| 	else
 | |
| 		ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Calculates the capacity to be shown to upper layers. Scales the capacity
 | |
|  * to have 100% as a reference from the actual capacity upon removal of charger
 | |
|  * when charging is in maintenance mode.
 | |
|  */
 | |
| static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
 | |
| {
 | |
| 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
 | |
| 	int capacity = di->bat_cap.prev_percent;
 | |
| 
 | |
| 	if (!cs->enable)
 | |
| 		return capacity;
 | |
| 
 | |
| 	/*
 | |
| 	 * As long as we are in fully charge mode scale the capacity
 | |
| 	 * to show 100%.
 | |
| 	 */
 | |
| 	if (di->flags.fully_charged) {
 | |
| 		cs->cap_to_scale[0] = 100;
 | |
| 		cs->cap_to_scale[1] =
 | |
| 			max(capacity, di->bm->fg_params->maint_thres);
 | |
| 		dev_dbg(di->dev, "Scale cap with %d/%d\n",
 | |
| 			 cs->cap_to_scale[0], cs->cap_to_scale[1]);
 | |
| 	}
 | |
| 
 | |
| 	/* Calculates the scaled capacity. */
 | |
| 	if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
 | |
| 					&& (cs->cap_to_scale[1] > 0))
 | |
| 		capacity = min(100,
 | |
| 				 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
 | |
| 						 cs->cap_to_scale[0],
 | |
| 						 cs->cap_to_scale[1]));
 | |
| 
 | |
| 	if (di->flags.charging) {
 | |
| 		if (capacity < cs->disable_cap_level) {
 | |
| 			cs->disable_cap_level = capacity;
 | |
| 			dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
 | |
| 				cs->disable_cap_level);
 | |
| 		} else if (!di->flags.fully_charged) {
 | |
| 			if (di->bat_cap.prev_percent >=
 | |
| 			    cs->disable_cap_level) {
 | |
| 				dev_dbg(di->dev, "Disabling scaled capacity\n");
 | |
| 				cs->enable = false;
 | |
| 				capacity = di->bat_cap.prev_percent;
 | |
| 			} else {
 | |
| 				dev_dbg(di->dev,
 | |
| 					"Waiting in cap to level %d%%\n",
 | |
| 					cs->disable_cap_level);
 | |
| 				capacity = cs->disable_cap_level;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return capacity;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_update_cap_scalers() - Capacity scaling
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * To be called when state change from charge<->discharge to update
 | |
|  * the capacity scalers.
 | |
|  */
 | |
| static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
 | |
| {
 | |
| 	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
 | |
| 
 | |
| 	if (!cs->enable)
 | |
| 		return;
 | |
| 	if (di->flags.charging) {
 | |
| 		di->bat_cap.cap_scale.disable_cap_level =
 | |
| 			di->bat_cap.cap_scale.scaled_cap;
 | |
| 		dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
 | |
| 				di->bat_cap.cap_scale.disable_cap_level);
 | |
| 	} else {
 | |
| 		if (cs->scaled_cap != 100) {
 | |
| 			cs->cap_to_scale[0] = cs->scaled_cap;
 | |
| 			cs->cap_to_scale[1] = di->bat_cap.prev_percent;
 | |
| 		} else {
 | |
| 			cs->cap_to_scale[0] = 100;
 | |
| 			cs->cap_to_scale[1] =
 | |
| 				max(di->bat_cap.prev_percent,
 | |
| 				    di->bm->fg_params->maint_thres);
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
 | |
| 				cs->cap_to_scale[0], cs->cap_to_scale[1]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  * @init:	capacity is allowed to go up in init mode
 | |
|  *
 | |
|  * Check if capacity or capacity limit has changed and notify the system
 | |
|  * about it using the power_supply framework
 | |
|  */
 | |
| static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
 | |
| {
 | |
| 	bool changed = false;
 | |
| 	int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
 | |
| 
 | |
| 	di->bat_cap.level = ab8500_fg_capacity_level(di);
 | |
| 
 | |
| 	if (di->bat_cap.level != di->bat_cap.prev_level) {
 | |
| 		/*
 | |
| 		 * We do not allow reported capacity level to go up
 | |
| 		 * unless we're charging or if we're in init
 | |
| 		 */
 | |
| 		if (!(!di->flags.charging && di->bat_cap.level >
 | |
| 			di->bat_cap.prev_level) || init) {
 | |
| 			dev_dbg(di->dev, "level changed from %d to %d\n",
 | |
| 				di->bat_cap.prev_level,
 | |
| 				di->bat_cap.level);
 | |
| 			di->bat_cap.prev_level = di->bat_cap.level;
 | |
| 			changed = true;
 | |
| 		} else {
 | |
| 			dev_dbg(di->dev, "level not allowed to go up "
 | |
| 				"since no charger is connected: %d to %d\n",
 | |
| 				di->bat_cap.prev_level,
 | |
| 				di->bat_cap.level);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
 | |
| 	 * shutdown
 | |
| 	 */
 | |
| 	if (di->flags.low_bat) {
 | |
| 		dev_dbg(di->dev, "Battery low, set capacity to 0\n");
 | |
| 		di->bat_cap.prev_percent = 0;
 | |
| 		di->bat_cap.permille = 0;
 | |
| 		percent = 0;
 | |
| 		di->bat_cap.prev_mah = 0;
 | |
| 		di->bat_cap.mah = 0;
 | |
| 		changed = true;
 | |
| 	} else if (di->flags.fully_charged) {
 | |
| 		/*
 | |
| 		 * We report 100% if algorithm reported fully charged
 | |
| 		 * and show 100% during maintenance charging (scaling).
 | |
| 		 */
 | |
| 		if (di->flags.force_full) {
 | |
| 			di->bat_cap.prev_percent = percent;
 | |
| 			di->bat_cap.prev_mah = di->bat_cap.mah;
 | |
| 
 | |
| 			changed = true;
 | |
| 
 | |
| 			if (!di->bat_cap.cap_scale.enable &&
 | |
| 						di->bm->capacity_scaling) {
 | |
| 				di->bat_cap.cap_scale.enable = true;
 | |
| 				di->bat_cap.cap_scale.cap_to_scale[0] = 100;
 | |
| 				di->bat_cap.cap_scale.cap_to_scale[1] =
 | |
| 						di->bat_cap.prev_percent;
 | |
| 				di->bat_cap.cap_scale.disable_cap_level = 100;
 | |
| 			}
 | |
| 		} else if (di->bat_cap.prev_percent != percent) {
 | |
| 			dev_dbg(di->dev,
 | |
| 				"battery reported full "
 | |
| 				"but capacity dropping: %d\n",
 | |
| 				percent);
 | |
| 			di->bat_cap.prev_percent = percent;
 | |
| 			di->bat_cap.prev_mah = di->bat_cap.mah;
 | |
| 
 | |
| 			changed = true;
 | |
| 		}
 | |
| 	} else if (di->bat_cap.prev_percent != percent) {
 | |
| 		if (percent == 0) {
 | |
| 			/*
 | |
| 			 * We will not report 0% unless we've got
 | |
| 			 * the LOW_BAT IRQ, no matter what the FG
 | |
| 			 * algorithm says.
 | |
| 			 */
 | |
| 			di->bat_cap.prev_percent = 1;
 | |
| 			percent = 1;
 | |
| 
 | |
| 			changed = true;
 | |
| 		} else if (!(!di->flags.charging &&
 | |
| 			percent > di->bat_cap.prev_percent) || init) {
 | |
| 			/*
 | |
| 			 * We do not allow reported capacity to go up
 | |
| 			 * unless we're charging or if we're in init
 | |
| 			 */
 | |
| 			dev_dbg(di->dev,
 | |
| 				"capacity changed from %d to %d (%d)\n",
 | |
| 				di->bat_cap.prev_percent,
 | |
| 				percent,
 | |
| 				di->bat_cap.permille);
 | |
| 			di->bat_cap.prev_percent = percent;
 | |
| 			di->bat_cap.prev_mah = di->bat_cap.mah;
 | |
| 
 | |
| 			changed = true;
 | |
| 		} else {
 | |
| 			dev_dbg(di->dev, "capacity not allowed to go up since "
 | |
| 				"no charger is connected: %d to %d (%d)\n",
 | |
| 				di->bat_cap.prev_percent,
 | |
| 				percent,
 | |
| 				di->bat_cap.permille);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (changed) {
 | |
| 		if (di->bm->capacity_scaling) {
 | |
| 			di->bat_cap.cap_scale.scaled_cap =
 | |
| 				ab8500_fg_calculate_scaled_capacity(di);
 | |
| 
 | |
| 			dev_info(di->dev, "capacity=%d (%d)\n",
 | |
| 				di->bat_cap.prev_percent,
 | |
| 				di->bat_cap.cap_scale.scaled_cap);
 | |
| 		}
 | |
| 		power_supply_changed(di->fg_psy);
 | |
| 		if (di->flags.fully_charged && di->flags.force_full) {
 | |
| 			dev_dbg(di->dev, "Battery full, notifying.\n");
 | |
| 			di->flags.force_full = false;
 | |
| 			sysfs_notify(&di->fg_kobject, NULL, "charge_full");
 | |
| 		}
 | |
| 		sysfs_notify(&di->fg_kobject, NULL, "charge_now");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
 | |
| 	enum ab8500_fg_charge_state new_state)
 | |
| {
 | |
| 	dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
 | |
| 		di->charge_state,
 | |
| 		charge_state[di->charge_state],
 | |
| 		new_state,
 | |
| 		charge_state[new_state]);
 | |
| 
 | |
| 	di->charge_state = new_state;
 | |
| }
 | |
| 
 | |
| static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
 | |
| 	enum ab8500_fg_discharge_state new_state)
 | |
| {
 | |
| 	dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
 | |
| 		di->discharge_state,
 | |
| 		discharge_state[di->discharge_state],
 | |
| 		new_state,
 | |
| 		discharge_state[new_state]);
 | |
| 
 | |
| 	di->discharge_state = new_state;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Battery capacity calculation state machine for when we're charging
 | |
|  */
 | |
| static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we change to discharge mode
 | |
| 	 * we should start with recovery
 | |
| 	 */
 | |
| 	if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
 | |
| 		ab8500_fg_discharge_state_to(di,
 | |
| 			AB8500_FG_DISCHARGE_INIT_RECOVERY);
 | |
| 
 | |
| 	switch (di->charge_state) {
 | |
| 	case AB8500_FG_CHARGE_INIT:
 | |
| 		di->fg_samples = SEC_TO_SAMPLE(
 | |
| 			di->bm->fg_params->accu_charging);
 | |
| 
 | |
| 		ab8500_fg_coulomb_counter(di, true);
 | |
| 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case AB8500_FG_CHARGE_READOUT:
 | |
| 		/*
 | |
| 		 * Read the FG and calculate the new capacity
 | |
| 		 */
 | |
| 		mutex_lock(&di->cc_lock);
 | |
| 		if (!di->flags.conv_done && !di->flags.force_full) {
 | |
| 			/* Wasn't the CC IRQ that got us here */
 | |
| 			mutex_unlock(&di->cc_lock);
 | |
| 			dev_dbg(di->dev, "%s CC conv not done\n",
 | |
| 				__func__);
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 		di->flags.conv_done = false;
 | |
| 		mutex_unlock(&di->cc_lock);
 | |
| 
 | |
| 		ab8500_fg_calc_cap_charging(di);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Check capacity limits */
 | |
| 	ab8500_fg_check_capacity_limits(di, false);
 | |
| }
 | |
| 
 | |
| static void force_capacity(struct ab8500_fg *di)
 | |
| {
 | |
| 	int cap;
 | |
| 
 | |
| 	ab8500_fg_clear_cap_samples(di);
 | |
| 	cap = di->bat_cap.user_mah;
 | |
| 	if (cap > di->bat_cap.max_mah_design) {
 | |
| 		dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
 | |
| 			" %d\n", cap, di->bat_cap.max_mah_design);
 | |
| 		cap = di->bat_cap.max_mah_design;
 | |
| 	}
 | |
| 	ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
 | |
| 	di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
 | |
| 	di->bat_cap.mah = cap;
 | |
| 	ab8500_fg_check_capacity_limits(di, true);
 | |
| }
 | |
| 
 | |
| static bool check_sysfs_capacity(struct ab8500_fg *di)
 | |
| {
 | |
| 	int cap, lower, upper;
 | |
| 	int cap_permille;
 | |
| 
 | |
| 	cap = di->bat_cap.user_mah;
 | |
| 
 | |
| 	cap_permille = ab8500_fg_convert_mah_to_permille(di,
 | |
| 		di->bat_cap.user_mah);
 | |
| 
 | |
| 	lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
 | |
| 	upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
 | |
| 
 | |
| 	if (lower < 0)
 | |
| 		lower = 0;
 | |
| 	/* 1000 is permille, -> 100 percent */
 | |
| 	if (upper > 1000)
 | |
| 		upper = 1000;
 | |
| 
 | |
| 	dev_dbg(di->dev, "Capacity limits:"
 | |
| 		" (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
 | |
| 		lower, cap_permille, upper, cap, di->bat_cap.mah);
 | |
| 
 | |
| 	/* If within limits, use the saved capacity and exit estimation...*/
 | |
| 	if (cap_permille > lower && cap_permille < upper) {
 | |
| 		dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
 | |
| 		force_capacity(di);
 | |
| 		return true;
 | |
| 	}
 | |
| 	dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Battery capacity calculation state machine for when we're discharging
 | |
|  */
 | |
| static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
 | |
| {
 | |
| 	int sleep_time;
 | |
| 
 | |
| 	/* If we change to charge mode we should start with init */
 | |
| 	if (di->charge_state != AB8500_FG_CHARGE_INIT)
 | |
| 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
 | |
| 
 | |
| 	switch (di->discharge_state) {
 | |
| 	case AB8500_FG_DISCHARGE_INIT:
 | |
| 		/* We use the FG IRQ to work on */
 | |
| 		di->init_cnt = 0;
 | |
| 		di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
 | |
| 		ab8500_fg_coulomb_counter(di, true);
 | |
| 		ab8500_fg_discharge_state_to(di,
 | |
| 			AB8500_FG_DISCHARGE_INITMEASURING);
 | |
| 
 | |
| 		/* Intentional fallthrough */
 | |
| 	case AB8500_FG_DISCHARGE_INITMEASURING:
 | |
| 		/*
 | |
| 		 * Discard a number of samples during startup.
 | |
| 		 * After that, use compensated voltage for a few
 | |
| 		 * samples to get an initial capacity.
 | |
| 		 * Then go to READOUT
 | |
| 		 */
 | |
| 		sleep_time = di->bm->fg_params->init_timer;
 | |
| 
 | |
| 		/* Discard the first [x] seconds */
 | |
| 		if (di->init_cnt > di->bm->fg_params->init_discard_time) {
 | |
| 			ab8500_fg_calc_cap_discharge_voltage(di, true);
 | |
| 
 | |
| 			ab8500_fg_check_capacity_limits(di, true);
 | |
| 		}
 | |
| 
 | |
| 		di->init_cnt += sleep_time;
 | |
| 		if (di->init_cnt > di->bm->fg_params->init_total_time)
 | |
| 			ab8500_fg_discharge_state_to(di,
 | |
| 				AB8500_FG_DISCHARGE_READOUT_INIT);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case AB8500_FG_DISCHARGE_INIT_RECOVERY:
 | |
| 		di->recovery_cnt = 0;
 | |
| 		di->recovery_needed = true;
 | |
| 		ab8500_fg_discharge_state_to(di,
 | |
| 			AB8500_FG_DISCHARGE_RECOVERY);
 | |
| 
 | |
| 		/* Intentional fallthrough */
 | |
| 
 | |
| 	case AB8500_FG_DISCHARGE_RECOVERY:
 | |
| 		sleep_time = di->bm->fg_params->recovery_sleep_timer;
 | |
| 
 | |
| 		/*
 | |
| 		 * We should check the power consumption
 | |
| 		 * If low, go to READOUT (after x min) or
 | |
| 		 * RECOVERY_SLEEP if time left.
 | |
| 		 * If high, go to READOUT
 | |
| 		 */
 | |
| 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
 | |
| 
 | |
| 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
 | |
| 			if (di->recovery_cnt >
 | |
| 				di->bm->fg_params->recovery_total_time) {
 | |
| 				di->fg_samples = SEC_TO_SAMPLE(
 | |
| 					di->bm->fg_params->accu_high_curr);
 | |
| 				ab8500_fg_coulomb_counter(di, true);
 | |
| 				ab8500_fg_discharge_state_to(di,
 | |
| 					AB8500_FG_DISCHARGE_READOUT);
 | |
| 				di->recovery_needed = false;
 | |
| 			} else {
 | |
| 				queue_delayed_work(di->fg_wq,
 | |
| 					&di->fg_periodic_work,
 | |
| 					sleep_time * HZ);
 | |
| 			}
 | |
| 			di->recovery_cnt += sleep_time;
 | |
| 		} else {
 | |
| 			di->fg_samples = SEC_TO_SAMPLE(
 | |
| 				di->bm->fg_params->accu_high_curr);
 | |
| 			ab8500_fg_coulomb_counter(di, true);
 | |
| 			ab8500_fg_discharge_state_to(di,
 | |
| 				AB8500_FG_DISCHARGE_READOUT);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case AB8500_FG_DISCHARGE_READOUT_INIT:
 | |
| 		di->fg_samples = SEC_TO_SAMPLE(
 | |
| 			di->bm->fg_params->accu_high_curr);
 | |
| 		ab8500_fg_coulomb_counter(di, true);
 | |
| 		ab8500_fg_discharge_state_to(di,
 | |
| 				AB8500_FG_DISCHARGE_READOUT);
 | |
| 		break;
 | |
| 
 | |
| 	case AB8500_FG_DISCHARGE_READOUT:
 | |
| 		di->inst_curr = ab8500_fg_inst_curr_blocking(di);
 | |
| 
 | |
| 		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
 | |
| 			/* Detect mode change */
 | |
| 			if (di->high_curr_mode) {
 | |
| 				di->high_curr_mode = false;
 | |
| 				di->high_curr_cnt = 0;
 | |
| 			}
 | |
| 
 | |
| 			if (di->recovery_needed) {
 | |
| 				ab8500_fg_discharge_state_to(di,
 | |
| 					AB8500_FG_DISCHARGE_INIT_RECOVERY);
 | |
| 
 | |
| 				queue_delayed_work(di->fg_wq,
 | |
| 					&di->fg_periodic_work, 0);
 | |
| 
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			ab8500_fg_calc_cap_discharge_voltage(di, true);
 | |
| 		} else {
 | |
| 			mutex_lock(&di->cc_lock);
 | |
| 			if (!di->flags.conv_done) {
 | |
| 				/* Wasn't the CC IRQ that got us here */
 | |
| 				mutex_unlock(&di->cc_lock);
 | |
| 				dev_dbg(di->dev, "%s CC conv not done\n",
 | |
| 					__func__);
 | |
| 
 | |
| 				break;
 | |
| 			}
 | |
| 			di->flags.conv_done = false;
 | |
| 			mutex_unlock(&di->cc_lock);
 | |
| 
 | |
| 			/* Detect mode change */
 | |
| 			if (!di->high_curr_mode) {
 | |
| 				di->high_curr_mode = true;
 | |
| 				di->high_curr_cnt = 0;
 | |
| 			}
 | |
| 
 | |
| 			di->high_curr_cnt +=
 | |
| 				di->bm->fg_params->accu_high_curr;
 | |
| 			if (di->high_curr_cnt >
 | |
| 				di->bm->fg_params->high_curr_time)
 | |
| 				di->recovery_needed = true;
 | |
| 
 | |
| 			ab8500_fg_calc_cap_discharge_fg(di);
 | |
| 		}
 | |
| 
 | |
| 		ab8500_fg_check_capacity_limits(di, false);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case AB8500_FG_DISCHARGE_WAKEUP:
 | |
| 		ab8500_fg_calc_cap_discharge_voltage(di, true);
 | |
| 
 | |
| 		di->fg_samples = SEC_TO_SAMPLE(
 | |
| 			di->bm->fg_params->accu_high_curr);
 | |
| 		ab8500_fg_coulomb_counter(di, true);
 | |
| 		ab8500_fg_discharge_state_to(di,
 | |
| 				AB8500_FG_DISCHARGE_READOUT);
 | |
| 
 | |
| 		ab8500_fg_check_capacity_limits(di, false);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  */
 | |
| static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (di->calib_state) {
 | |
| 	case AB8500_FG_CALIB_INIT:
 | |
| 		dev_dbg(di->dev, "Calibration ongoing...\n");
 | |
| 
 | |
| 		ret = abx500_mask_and_set_register_interruptible(di->dev,
 | |
| 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 | |
| 			CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
 | |
| 		if (ret < 0)
 | |
| 			goto err;
 | |
| 
 | |
| 		ret = abx500_mask_and_set_register_interruptible(di->dev,
 | |
| 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 | |
| 			CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
 | |
| 		if (ret < 0)
 | |
| 			goto err;
 | |
| 		di->calib_state = AB8500_FG_CALIB_WAIT;
 | |
| 		break;
 | |
| 	case AB8500_FG_CALIB_END:
 | |
| 		ret = abx500_mask_and_set_register_interruptible(di->dev,
 | |
| 			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
 | |
| 			CC_MUXOFFSET, CC_MUXOFFSET);
 | |
| 		if (ret < 0)
 | |
| 			goto err;
 | |
| 		di->flags.calibrate = false;
 | |
| 		dev_dbg(di->dev, "Calibration done...\n");
 | |
| 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
 | |
| 		break;
 | |
| 	case AB8500_FG_CALIB_WAIT:
 | |
| 		dev_dbg(di->dev, "Calibration WFI\n");
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return;
 | |
| err:
 | |
| 	/* Something went wrong, don't calibrate then */
 | |
| 	dev_err(di->dev, "failed to calibrate the CC\n");
 | |
| 	di->flags.calibrate = false;
 | |
| 	di->calib_state = AB8500_FG_CALIB_INIT;
 | |
| 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_algorithm() - Entry point for the FG algorithm
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Entry point for the battery capacity calculation state machine
 | |
|  */
 | |
| static void ab8500_fg_algorithm(struct ab8500_fg *di)
 | |
| {
 | |
| 	if (di->flags.calibrate)
 | |
| 		ab8500_fg_algorithm_calibrate(di);
 | |
| 	else {
 | |
| 		if (di->flags.charging)
 | |
| 			ab8500_fg_algorithm_charging(di);
 | |
| 		else
 | |
| 			ab8500_fg_algorithm_discharging(di);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
 | |
| 		"%d %d %d %d %d %d %d\n",
 | |
| 		di->bat_cap.max_mah_design,
 | |
| 		di->bat_cap.max_mah,
 | |
| 		di->bat_cap.mah,
 | |
| 		di->bat_cap.permille,
 | |
| 		di->bat_cap.level,
 | |
| 		di->bat_cap.prev_mah,
 | |
| 		di->bat_cap.prev_percent,
 | |
| 		di->bat_cap.prev_level,
 | |
| 		di->vbat,
 | |
| 		di->inst_curr,
 | |
| 		di->avg_curr,
 | |
| 		di->accu_charge,
 | |
| 		di->flags.charging,
 | |
| 		di->charge_state,
 | |
| 		di->discharge_state,
 | |
| 		di->high_curr_mode,
 | |
| 		di->recovery_needed);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_periodic_work() - Run the FG state machine periodically
 | |
|  * @work:	pointer to the work_struct structure
 | |
|  *
 | |
|  * Work queue function for periodic work
 | |
|  */
 | |
| static void ab8500_fg_periodic_work(struct work_struct *work)
 | |
| {
 | |
| 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
 | |
| 		fg_periodic_work.work);
 | |
| 
 | |
| 	if (di->init_capacity) {
 | |
| 		/* Get an initial capacity calculation */
 | |
| 		ab8500_fg_calc_cap_discharge_voltage(di, true);
 | |
| 		ab8500_fg_check_capacity_limits(di, true);
 | |
| 		di->init_capacity = false;
 | |
| 
 | |
| 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
 | |
| 	} else if (di->flags.user_cap) {
 | |
| 		if (check_sysfs_capacity(di)) {
 | |
| 			ab8500_fg_check_capacity_limits(di, true);
 | |
| 			if (di->flags.charging)
 | |
| 				ab8500_fg_charge_state_to(di,
 | |
| 					AB8500_FG_CHARGE_INIT);
 | |
| 			else
 | |
| 				ab8500_fg_discharge_state_to(di,
 | |
| 					AB8500_FG_DISCHARGE_READOUT_INIT);
 | |
| 		}
 | |
| 		di->flags.user_cap = false;
 | |
| 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
 | |
| 	} else
 | |
| 		ab8500_fg_algorithm(di);
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
 | |
|  * @work:	pointer to the work_struct structure
 | |
|  *
 | |
|  * Work queue function for checking the OVV_BAT condition
 | |
|  */
 | |
| static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 
 | |
| 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
 | |
| 		fg_check_hw_failure_work.work);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have had a battery over-voltage situation,
 | |
| 	 * check ovv-bit to see if it should be reset.
 | |
| 	 */
 | |
| 	ret = abx500_get_register_interruptible(di->dev,
 | |
| 		AB8500_CHARGER, AB8500_CH_STAT_REG,
 | |
| 		®_value);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(di->dev, "%s ab8500 read failed\n", __func__);
 | |
| 		return;
 | |
| 	}
 | |
| 	if ((reg_value & BATT_OVV) == BATT_OVV) {
 | |
| 		if (!di->flags.bat_ovv) {
 | |
| 			dev_dbg(di->dev, "Battery OVV\n");
 | |
| 			di->flags.bat_ovv = true;
 | |
| 			power_supply_changed(di->fg_psy);
 | |
| 		}
 | |
| 		/* Not yet recovered from ovv, reschedule this test */
 | |
| 		queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
 | |
| 				   HZ);
 | |
| 		} else {
 | |
| 			dev_dbg(di->dev, "Battery recovered from OVV\n");
 | |
| 			di->flags.bat_ovv = false;
 | |
| 			power_supply_changed(di->fg_psy);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
 | |
|  * @work:	pointer to the work_struct structure
 | |
|  *
 | |
|  * Work queue function for checking the LOW_BAT condition
 | |
|  */
 | |
| static void ab8500_fg_low_bat_work(struct work_struct *work)
 | |
| {
 | |
| 	int vbat;
 | |
| 
 | |
| 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
 | |
| 		fg_low_bat_work.work);
 | |
| 
 | |
| 	vbat = ab8500_fg_bat_voltage(di);
 | |
| 
 | |
| 	/* Check if LOW_BAT still fulfilled */
 | |
| 	if (vbat < di->bm->fg_params->lowbat_threshold) {
 | |
| 		/* Is it time to shut down? */
 | |
| 		if (di->low_bat_cnt < 1) {
 | |
| 			di->flags.low_bat = true;
 | |
| 			dev_warn(di->dev, "Shut down pending...\n");
 | |
| 		} else {
 | |
| 			/*
 | |
| 			* Else we need to re-schedule this check to be able to detect
 | |
| 			* if the voltage increases again during charging or
 | |
| 			* due to decreasing load.
 | |
| 			*/
 | |
| 			di->low_bat_cnt--;
 | |
| 			dev_warn(di->dev, "Battery voltage still LOW\n");
 | |
| 			queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
 | |
| 				round_jiffies(LOW_BAT_CHECK_INTERVAL));
 | |
| 		}
 | |
| 	} else {
 | |
| 		di->flags.low_bat_delay = false;
 | |
| 		di->low_bat_cnt = 10;
 | |
| 		dev_warn(di->dev, "Battery voltage OK again\n");
 | |
| 	}
 | |
| 
 | |
| 	/* This is needed to dispatch LOW_BAT */
 | |
| 	ab8500_fg_check_capacity_limits(di, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
 | |
|  * to the target voltage.
 | |
|  * @di:       pointer to the ab8500_fg structure
 | |
|  * @target:   target voltage
 | |
|  *
 | |
|  * Returns bit pattern closest to the target voltage
 | |
|  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
 | |
|  */
 | |
| 
 | |
| static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
 | |
| {
 | |
| 	if (target > BATT_OK_MIN +
 | |
| 		(BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
 | |
| 		return BATT_OK_MAX_NR_INCREMENTS;
 | |
| 	if (target < BATT_OK_MIN)
 | |
| 		return 0;
 | |
| 	return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_battok_init_hw_register - init battok levels
 | |
|  * @di:       pointer to the ab8500_fg structure
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
 | |
| {
 | |
| 	int selected;
 | |
| 	int sel0;
 | |
| 	int sel1;
 | |
| 	int cbp_sel0;
 | |
| 	int cbp_sel1;
 | |
| 	int ret;
 | |
| 	int new_val;
 | |
| 
 | |
| 	sel0 = di->bm->fg_params->battok_falling_th_sel0;
 | |
| 	sel1 = di->bm->fg_params->battok_raising_th_sel1;
 | |
| 
 | |
| 	cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
 | |
| 	cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
 | |
| 
 | |
| 	selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
 | |
| 
 | |
| 	if (selected != sel0)
 | |
| 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
 | |
| 			sel0, selected, cbp_sel0);
 | |
| 
 | |
| 	selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
 | |
| 
 | |
| 	if (selected != sel1)
 | |
| 		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
 | |
| 			sel1, selected, cbp_sel1);
 | |
| 
 | |
| 	new_val = cbp_sel0 | (cbp_sel1 << 4);
 | |
| 
 | |
| 	dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
 | |
| 	ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
 | |
| 		AB8500_BATT_OK_REG, new_val);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_instant_work() - Run the FG state machine instantly
 | |
|  * @work:	pointer to the work_struct structure
 | |
|  *
 | |
|  * Work queue function for instant work
 | |
|  */
 | |
| static void ab8500_fg_instant_work(struct work_struct *work)
 | |
| {
 | |
| 	struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
 | |
| 
 | |
| 	ab8500_fg_algorithm(di);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
 | |
|  * @irq:       interrupt number
 | |
|  * @_di:       pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns IRQ status(IRQ_HANDLED)
 | |
|  */
 | |
| static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
 | |
| {
 | |
| 	struct ab8500_fg *di = _di;
 | |
| 	if (!di->nbr_cceoc_irq_cnt) {
 | |
| 		di->nbr_cceoc_irq_cnt++;
 | |
| 		complete(&di->ab8500_fg_started);
 | |
| 	} else {
 | |
| 		di->nbr_cceoc_irq_cnt = 0;
 | |
| 		complete(&di->ab8500_fg_complete);
 | |
| 	}
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
 | |
|  * @irq:       interrupt number
 | |
|  * @_di:       pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns IRQ status(IRQ_HANDLED)
 | |
|  */
 | |
| static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
 | |
| {
 | |
| 	struct ab8500_fg *di = _di;
 | |
| 	di->calib_state = AB8500_FG_CALIB_END;
 | |
| 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
 | |
|  * @irq:       interrupt number
 | |
|  * @_di:       pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns IRQ status(IRQ_HANDLED)
 | |
|  */
 | |
| static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
 | |
| {
 | |
| 	struct ab8500_fg *di = _di;
 | |
| 
 | |
| 	queue_work(di->fg_wq, &di->fg_acc_cur_work);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
 | |
|  * @irq:       interrupt number
 | |
|  * @_di:       pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns IRQ status(IRQ_HANDLED)
 | |
|  */
 | |
| static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
 | |
| {
 | |
| 	struct ab8500_fg *di = _di;
 | |
| 
 | |
| 	dev_dbg(di->dev, "Battery OVV\n");
 | |
| 
 | |
| 	/* Schedule a new HW failure check */
 | |
| 	queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
 | |
|  * @irq:       interrupt number
 | |
|  * @_di:       pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Returns IRQ status(IRQ_HANDLED)
 | |
|  */
 | |
| static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
 | |
| {
 | |
| 	struct ab8500_fg *di = _di;
 | |
| 
 | |
| 	/* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
 | |
| 	if (!di->flags.low_bat_delay) {
 | |
| 		dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
 | |
| 		di->flags.low_bat_delay = true;
 | |
| 		/*
 | |
| 		 * Start a timer to check LOW_BAT again after some time
 | |
| 		 * This is done to avoid shutdown on single voltage dips
 | |
| 		 */
 | |
| 		queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
 | |
| 			round_jiffies(LOW_BAT_CHECK_INTERVAL));
 | |
| 	}
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_get_property() - get the fg properties
 | |
|  * @psy:	pointer to the power_supply structure
 | |
|  * @psp:	pointer to the power_supply_property structure
 | |
|  * @val:	pointer to the power_supply_propval union
 | |
|  *
 | |
|  * This function gets called when an application tries to get the
 | |
|  * fg properties by reading the sysfs files.
 | |
|  * voltage_now:		battery voltage
 | |
|  * current_now:		battery instant current
 | |
|  * current_avg:		battery average current
 | |
|  * charge_full_design:	capacity where battery is considered full
 | |
|  * charge_now:		battery capacity in nAh
 | |
|  * capacity:		capacity in percent
 | |
|  * capacity_level:	capacity level
 | |
|  *
 | |
|  * Returns error code in case of failure else 0 on success
 | |
|  */
 | |
| static int ab8500_fg_get_property(struct power_supply *psy,
 | |
| 	enum power_supply_property psp,
 | |
| 	union power_supply_propval *val)
 | |
| {
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	/*
 | |
| 	 * If battery is identified as unknown and charging of unknown
 | |
| 	 * batteries is disabled, we always report 100% capacity and
 | |
| 	 * capacity level UNKNOWN, since we can't calculate
 | |
| 	 * remaining capacity
 | |
| 	 */
 | |
| 
 | |
| 	switch (psp) {
 | |
| 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
 | |
| 		if (di->flags.bat_ovv)
 | |
| 			val->intval = BATT_OVV_VALUE * 1000;
 | |
| 		else
 | |
| 			val->intval = di->vbat * 1000;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CURRENT_NOW:
 | |
| 		val->intval = di->inst_curr * 1000;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CURRENT_AVG:
 | |
| 		val->intval = di->avg_curr * 1000;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
 | |
| 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
 | |
| 				di->bat_cap.max_mah_design);
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_ENERGY_FULL:
 | |
| 		val->intval = ab8500_fg_convert_mah_to_uwh(di,
 | |
| 				di->bat_cap.max_mah);
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_ENERGY_NOW:
 | |
| 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
 | |
| 				di->flags.batt_id_received)
 | |
| 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
 | |
| 					di->bat_cap.max_mah);
 | |
| 		else
 | |
| 			val->intval = ab8500_fg_convert_mah_to_uwh(di,
 | |
| 					di->bat_cap.prev_mah);
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
 | |
| 		val->intval = di->bat_cap.max_mah_design;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_FULL:
 | |
| 		val->intval = di->bat_cap.max_mah;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CHARGE_NOW:
 | |
| 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
 | |
| 				di->flags.batt_id_received)
 | |
| 			val->intval = di->bat_cap.max_mah;
 | |
| 		else
 | |
| 			val->intval = di->bat_cap.prev_mah;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CAPACITY:
 | |
| 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
 | |
| 				di->flags.batt_id_received)
 | |
| 			val->intval = 100;
 | |
| 		else
 | |
| 			val->intval = di->bat_cap.prev_percent;
 | |
| 		break;
 | |
| 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
 | |
| 		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
 | |
| 				di->flags.batt_id_received)
 | |
| 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
 | |
| 		else
 | |
| 			val->intval = di->bat_cap.prev_level;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
 | |
| {
 | |
| 	struct power_supply *psy;
 | |
| 	struct power_supply *ext = dev_get_drvdata(dev);
 | |
| 	const char **supplicants = (const char **)ext->supplied_to;
 | |
| 	struct ab8500_fg *di;
 | |
| 	union power_supply_propval ret;
 | |
| 	int j;
 | |
| 
 | |
| 	psy = (struct power_supply *)data;
 | |
| 	di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	/*
 | |
| 	 * For all psy where the name of your driver
 | |
| 	 * appears in any supplied_to
 | |
| 	 */
 | |
| 	j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
 | |
| 	if (j < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Go through all properties for the psy */
 | |
| 	for (j = 0; j < ext->desc->num_properties; j++) {
 | |
| 		enum power_supply_property prop;
 | |
| 		prop = ext->desc->properties[j];
 | |
| 
 | |
| 		if (power_supply_get_property(ext, prop, &ret))
 | |
| 			continue;
 | |
| 
 | |
| 		switch (prop) {
 | |
| 		case POWER_SUPPLY_PROP_STATUS:
 | |
| 			switch (ext->desc->type) {
 | |
| 			case POWER_SUPPLY_TYPE_BATTERY:
 | |
| 				switch (ret.intval) {
 | |
| 				case POWER_SUPPLY_STATUS_UNKNOWN:
 | |
| 				case POWER_SUPPLY_STATUS_DISCHARGING:
 | |
| 				case POWER_SUPPLY_STATUS_NOT_CHARGING:
 | |
| 					if (!di->flags.charging)
 | |
| 						break;
 | |
| 					di->flags.charging = false;
 | |
| 					di->flags.fully_charged = false;
 | |
| 					if (di->bm->capacity_scaling)
 | |
| 						ab8500_fg_update_cap_scalers(di);
 | |
| 					queue_work(di->fg_wq, &di->fg_work);
 | |
| 					break;
 | |
| 				case POWER_SUPPLY_STATUS_FULL:
 | |
| 					if (di->flags.fully_charged)
 | |
| 						break;
 | |
| 					di->flags.fully_charged = true;
 | |
| 					di->flags.force_full = true;
 | |
| 					/* Save current capacity as maximum */
 | |
| 					di->bat_cap.max_mah = di->bat_cap.mah;
 | |
| 					queue_work(di->fg_wq, &di->fg_work);
 | |
| 					break;
 | |
| 				case POWER_SUPPLY_STATUS_CHARGING:
 | |
| 					if (di->flags.charging &&
 | |
| 						!di->flags.fully_charged)
 | |
| 						break;
 | |
| 					di->flags.charging = true;
 | |
| 					di->flags.fully_charged = false;
 | |
| 					if (di->bm->capacity_scaling)
 | |
| 						ab8500_fg_update_cap_scalers(di);
 | |
| 					queue_work(di->fg_wq, &di->fg_work);
 | |
| 					break;
 | |
| 				};
 | |
| 			default:
 | |
| 				break;
 | |
| 			};
 | |
| 			break;
 | |
| 		case POWER_SUPPLY_PROP_TECHNOLOGY:
 | |
| 			switch (ext->desc->type) {
 | |
| 			case POWER_SUPPLY_TYPE_BATTERY:
 | |
| 				if (!di->flags.batt_id_received &&
 | |
| 				    di->bm->batt_id != BATTERY_UNKNOWN) {
 | |
| 					const struct abx500_battery_type *b;
 | |
| 
 | |
| 					b = &(di->bm->bat_type[di->bm->batt_id]);
 | |
| 
 | |
| 					di->flags.batt_id_received = true;
 | |
| 
 | |
| 					di->bat_cap.max_mah_design =
 | |
| 						MILLI_TO_MICRO *
 | |
| 						b->charge_full_design;
 | |
| 
 | |
| 					di->bat_cap.max_mah =
 | |
| 						di->bat_cap.max_mah_design;
 | |
| 
 | |
| 					di->vbat_nom = b->nominal_voltage;
 | |
| 				}
 | |
| 
 | |
| 				if (ret.intval)
 | |
| 					di->flags.batt_unknown = false;
 | |
| 				else
 | |
| 					di->flags.batt_unknown = true;
 | |
| 				break;
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		case POWER_SUPPLY_PROP_TEMP:
 | |
| 			switch (ext->desc->type) {
 | |
| 			case POWER_SUPPLY_TYPE_BATTERY:
 | |
| 				if (di->flags.batt_id_received)
 | |
| 					di->bat_temp = ret.intval;
 | |
| 				break;
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_init_hw_registers() - Set up FG related registers
 | |
|  * @di:		pointer to the ab8500_fg structure
 | |
|  *
 | |
|  * Set up battery OVV, low battery voltage registers
 | |
|  */
 | |
| static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Set VBAT OVV threshold */
 | |
| 	ret = abx500_mask_and_set_register_interruptible(di->dev,
 | |
| 		AB8500_CHARGER,
 | |
| 		AB8500_BATT_OVV,
 | |
| 		BATT_OVV_TH_4P75,
 | |
| 		BATT_OVV_TH_4P75);
 | |
| 	if (ret) {
 | |
| 		dev_err(di->dev, "failed to set BATT_OVV\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable VBAT OVV detection */
 | |
| 	ret = abx500_mask_and_set_register_interruptible(di->dev,
 | |
| 		AB8500_CHARGER,
 | |
| 		AB8500_BATT_OVV,
 | |
| 		BATT_OVV_ENA,
 | |
| 		BATT_OVV_ENA);
 | |
| 	if (ret) {
 | |
| 		dev_err(di->dev, "failed to enable BATT_OVV\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Low Battery Voltage */
 | |
| 	ret = abx500_set_register_interruptible(di->dev,
 | |
| 		AB8500_SYS_CTRL2_BLOCK,
 | |
| 		AB8500_LOW_BAT_REG,
 | |
| 		ab8500_volt_to_regval(
 | |
| 			di->bm->fg_params->lowbat_threshold) << 1 |
 | |
| 		LOW_BAT_ENABLE);
 | |
| 	if (ret) {
 | |
| 		dev_err(di->dev, "%s write failed\n", __func__);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Battery OK threshold */
 | |
| 	ret = ab8500_fg_battok_init_hw_register(di);
 | |
| 	if (ret) {
 | |
| 		dev_err(di->dev, "BattOk init write failed.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (is_ab8505(di->parent)) {
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
 | |
| 			goto out;
 | |
| 		};
 | |
| 
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
 | |
| 			goto out;
 | |
| 		};
 | |
| 
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
 | |
| 			goto out;
 | |
| 		};
 | |
| 
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
 | |
| 			goto out;
 | |
| 		};
 | |
| 
 | |
| 		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 			AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
 | |
| 			goto out;
 | |
| 		};
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_external_power_changed() - callback for power supply changes
 | |
|  * @psy:       pointer to the structure power_supply
 | |
|  *
 | |
|  * This function is the entry point of the pointer external_power_changed
 | |
|  * of the structure power_supply.
 | |
|  * This function gets executed when there is a change in any external power
 | |
|  * supply that this driver needs to be notified of.
 | |
|  */
 | |
| static void ab8500_fg_external_power_changed(struct power_supply *psy)
 | |
| {
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	class_for_each_device(power_supply_class, NULL,
 | |
| 		di->fg_psy, ab8500_fg_get_ext_psy_data);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_reinit_work() - work to reset the FG algorithm
 | |
|  * @work:	pointer to the work_struct structure
 | |
|  *
 | |
|  * Used to reset the current battery capacity to be able to
 | |
|  * retrigger a new voltage base capacity calculation. For
 | |
|  * test and verification purpose.
 | |
|  */
 | |
| static void ab8500_fg_reinit_work(struct work_struct *work)
 | |
| {
 | |
| 	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
 | |
| 		fg_reinit_work.work);
 | |
| 
 | |
| 	if (di->flags.calibrate == false) {
 | |
| 		dev_dbg(di->dev, "Resetting FG state machine to init.\n");
 | |
| 		ab8500_fg_clear_cap_samples(di);
 | |
| 		ab8500_fg_calc_cap_discharge_voltage(di, true);
 | |
| 		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
 | |
| 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
 | |
| 		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
 | |
| 
 | |
| 	} else {
 | |
| 		dev_err(di->dev, "Residual offset calibration ongoing "
 | |
| 			"retrying..\n");
 | |
| 		/* Wait one second until next try*/
 | |
| 		queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
 | |
| 			round_jiffies(1));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Exposure to the sysfs interface */
 | |
| 
 | |
| struct ab8500_fg_sysfs_entry {
 | |
| 	struct attribute attr;
 | |
| 	ssize_t (*show)(struct ab8500_fg *, char *);
 | |
| 	ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
 | |
| };
 | |
| 
 | |
| static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", di->bat_cap.max_mah);
 | |
| }
 | |
| 
 | |
| static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
 | |
| 				 size_t count)
 | |
| {
 | |
| 	unsigned long charge_full;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &charge_full);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	di->bat_cap.max_mah = (int) charge_full;
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
 | |
| }
 | |
| 
 | |
| static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
 | |
| 				 size_t count)
 | |
| {
 | |
| 	unsigned long charge_now;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &charge_now);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	di->bat_cap.user_mah = (int) charge_now;
 | |
| 	di->flags.user_cap = true;
 | |
| 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct ab8500_fg_sysfs_entry charge_full_attr =
 | |
| 	__ATTR(charge_full, 0644, charge_full_show, charge_full_store);
 | |
| 
 | |
| static struct ab8500_fg_sysfs_entry charge_now_attr =
 | |
| 	__ATTR(charge_now, 0644, charge_now_show, charge_now_store);
 | |
| 
 | |
| static ssize_t
 | |
| ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ab8500_fg_sysfs_entry *entry;
 | |
| 	struct ab8500_fg *di;
 | |
| 
 | |
| 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
 | |
| 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
 | |
| 
 | |
| 	if (!entry->show)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return entry->show(di, buf);
 | |
| }
 | |
| static ssize_t
 | |
| ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
 | |
| 		size_t count)
 | |
| {
 | |
| 	struct ab8500_fg_sysfs_entry *entry;
 | |
| 	struct ab8500_fg *di;
 | |
| 
 | |
| 	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
 | |
| 	di = container_of(kobj, struct ab8500_fg, fg_kobject);
 | |
| 
 | |
| 	if (!entry->store)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return entry->store(di, buf, count);
 | |
| }
 | |
| 
 | |
| static const struct sysfs_ops ab8500_fg_sysfs_ops = {
 | |
| 	.show = ab8500_fg_show,
 | |
| 	.store = ab8500_fg_store,
 | |
| };
 | |
| 
 | |
| static struct attribute *ab8500_fg_attrs[] = {
 | |
| 	&charge_full_attr.attr,
 | |
| 	&charge_now_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct kobj_type ab8500_fg_ktype = {
 | |
| 	.sysfs_ops = &ab8500_fg_sysfs_ops,
 | |
| 	.default_attrs = ab8500_fg_attrs,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_sysfs_exit() - de-init of sysfs entry
 | |
|  * @di:                pointer to the struct ab8500_chargalg
 | |
|  *
 | |
|  * This function removes the entry in sysfs.
 | |
|  */
 | |
| static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
 | |
| {
 | |
| 	kobject_del(&di->fg_kobject);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ab8500_fg_sysfs_init() - init of sysfs entry
 | |
|  * @di:                pointer to the struct ab8500_chargalg
 | |
|  *
 | |
|  * This function adds an entry in sysfs.
 | |
|  * Returns error code in case of failure else 0(on success)
 | |
|  */
 | |
| static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ret = kobject_init_and_add(&di->fg_kobject,
 | |
| 		&ab8500_fg_ktype,
 | |
| 		NULL, "battery");
 | |
| 	if (ret < 0)
 | |
| 		dev_err(di->dev, "failed to create sysfs entry\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
 | |
| 			     struct device_attribute *attr,
 | |
| 			     char *buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 		AB8505_RTC_PCUT_FLAG_TIME_REG, ®_value);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
 | |
| 				  struct device_attribute *attr,
 | |
| 				  const char *buf, size_t count)
 | |
| {
 | |
| 	int ret;
 | |
| 	long unsigned reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	reg_value = simple_strtoul(buf, NULL, 10);
 | |
| 
 | |
| 	if (reg_value > 0x7F) {
 | |
| 		dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 		AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
 | |
| 
 | |
| fail:
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
 | |
| 			     struct device_attribute *attr,
 | |
| 			     char *buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 		AB8505_RTC_PCUT_MAX_TIME_REG, ®_value);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
 | |
| 				  struct device_attribute *attr,
 | |
| 				  const char *buf, size_t count)
 | |
| {
 | |
| 	int ret;
 | |
| 	int reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	reg_value = simple_strtoul(buf, NULL, 10);
 | |
| 	if (reg_value > 0x7F) {
 | |
| 		dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 		AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
 | |
| 
 | |
| fail:
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_restart_read(struct device *dev,
 | |
| 			     struct device_attribute *attr,
 | |
| 			     char *buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 		AB8505_RTC_PCUT_RESTART_REG, ®_value);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_restart_write(struct device *dev,
 | |
| 					     struct device_attribute *attr,
 | |
| 					     const char *buf, size_t count)
 | |
| {
 | |
| 	int ret;
 | |
| 	int reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	reg_value = simple_strtoul(buf, NULL, 10);
 | |
| 	if (reg_value > 0xF) {
 | |
| 		dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 						AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
 | |
| 
 | |
| fail:
 | |
| 	return count;
 | |
| 
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_timer_read(struct device *dev,
 | |
| 					  struct device_attribute *attr,
 | |
| 					  char *buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 						AB8505_RTC_PCUT_TIME_REG, ®_value);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
 | |
| 						    struct device_attribute *attr,
 | |
| 						    char *buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 						AB8505_RTC_PCUT_RESTART_REG, ®_value);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_read(struct device *dev,
 | |
| 				    struct device_attribute *attr,
 | |
| 				    char *buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 						AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_write(struct device *dev,
 | |
| 				     struct device_attribute *attr,
 | |
| 				     const char *buf, size_t count)
 | |
| {
 | |
| 	int ret;
 | |
| 	int reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	reg_value = simple_strtoul(buf, NULL, 10);
 | |
| 	if (reg_value > 0x1) {
 | |
| 		dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 						AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
 | |
| 
 | |
| fail:
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_flag_read(struct device *dev,
 | |
| 					 struct device_attribute *attr,
 | |
| 					 char *buf)
 | |
| {
 | |
| 
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 						AB8505_RTC_PCUT_CTL_STATUS_REG,  ®_value);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_debounce_read(struct device *dev,
 | |
| 					     struct device_attribute *attr,
 | |
| 					     char *buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 						AB8505_RTC_PCUT_DEBOUNCE_REG,  ®_value);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_debounce_write(struct device *dev,
 | |
| 					      struct device_attribute *attr,
 | |
| 					      const char *buf, size_t count)
 | |
| {
 | |
| 	int ret;
 | |
| 	int reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	reg_value = simple_strtoul(buf, NULL, 10);
 | |
| 	if (reg_value > 0x7) {
 | |
| 		dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
 | |
| 						AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
 | |
| 
 | |
| fail:
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
 | |
| 						  struct device_attribute *attr,
 | |
| 						  char *buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 reg_value;
 | |
| 	struct power_supply *psy = dev_get_drvdata(dev);
 | |
| 	struct ab8500_fg *di = power_supply_get_drvdata(psy);
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
 | |
| 						AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
 | |
| 
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
 | |
| 	__ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
 | |
| 		ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
 | |
| 	__ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
 | |
| 		ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
 | |
| 	__ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
 | |
| 		ab8505_powercut_restart_read, ab8505_powercut_restart_write),
 | |
| 	__ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
 | |
| 	__ATTR(powercut_restart_counter, S_IRUGO,
 | |
| 		ab8505_powercut_restart_counter_read, NULL),
 | |
| 	__ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
 | |
| 		ab8505_powercut_read, ab8505_powercut_write),
 | |
| 	__ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
 | |
| 	__ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
 | |
| 		ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
 | |
| 	__ATTR(powercut_enable_status, S_IRUGO,
 | |
| 		ab8505_powercut_enable_status_read, NULL),
 | |
| };
 | |
| 
 | |
| static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (is_ab8505(di->parent)) {
 | |
| 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
 | |
| 			if (device_create_file(&di->fg_psy->dev,
 | |
| 					       &ab8505_fg_sysfs_psy_attrs[i]))
 | |
| 				goto sysfs_psy_create_attrs_failed_ab8505;
 | |
| 	}
 | |
| 	return 0;
 | |
| sysfs_psy_create_attrs_failed_ab8505:
 | |
| 	dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
 | |
| 	while (i--)
 | |
| 		device_remove_file(&di->fg_psy->dev,
 | |
| 				   &ab8505_fg_sysfs_psy_attrs[i]);
 | |
| 
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (is_ab8505(di->parent)) {
 | |
| 		for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
 | |
| 			(void)device_remove_file(&di->fg_psy->dev,
 | |
| 						 &ab8505_fg_sysfs_psy_attrs[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Exposure to the sysfs interface <<END>> */
 | |
| 
 | |
| #if defined(CONFIG_PM)
 | |
| static int ab8500_fg_resume(struct platform_device *pdev)
 | |
| {
 | |
| 	struct ab8500_fg *di = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Change state if we're not charging. If we're charging we will wake
 | |
| 	 * up on the FG IRQ
 | |
| 	 */
 | |
| 	if (!di->flags.charging) {
 | |
| 		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
 | |
| 		queue_work(di->fg_wq, &di->fg_work);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ab8500_fg_suspend(struct platform_device *pdev,
 | |
| 	pm_message_t state)
 | |
| {
 | |
| 	struct ab8500_fg *di = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	flush_delayed_work(&di->fg_periodic_work);
 | |
| 	flush_work(&di->fg_work);
 | |
| 	flush_work(&di->fg_acc_cur_work);
 | |
| 	flush_delayed_work(&di->fg_reinit_work);
 | |
| 	flush_delayed_work(&di->fg_low_bat_work);
 | |
| 	flush_delayed_work(&di->fg_check_hw_failure_work);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the FG is enabled we will disable it before going to suspend
 | |
| 	 * only if we're not charging
 | |
| 	 */
 | |
| 	if (di->flags.fg_enabled && !di->flags.charging)
 | |
| 		ab8500_fg_coulomb_counter(di, false);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| #define ab8500_fg_suspend      NULL
 | |
| #define ab8500_fg_resume       NULL
 | |
| #endif
 | |
| 
 | |
| static int ab8500_fg_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct ab8500_fg *di = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	list_del(&di->node);
 | |
| 
 | |
| 	/* Disable coulomb counter */
 | |
| 	ret = ab8500_fg_coulomb_counter(di, false);
 | |
| 	if (ret)
 | |
| 		dev_err(di->dev, "failed to disable coulomb counter\n");
 | |
| 
 | |
| 	destroy_workqueue(di->fg_wq);
 | |
| 	ab8500_fg_sysfs_exit(di);
 | |
| 
 | |
| 	flush_scheduled_work();
 | |
| 	ab8500_fg_sysfs_psy_remove_attrs(di);
 | |
| 	power_supply_unregister(di->fg_psy);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* ab8500 fg driver interrupts and their respective isr */
 | |
| static struct ab8500_fg_interrupts ab8500_fg_irq_th[] = {
 | |
| 	{"NCONV_ACCU", ab8500_fg_cc_convend_handler},
 | |
| 	{"BATT_OVV", ab8500_fg_batt_ovv_handler},
 | |
| 	{"LOW_BAT_F", ab8500_fg_lowbatf_handler},
 | |
| 	{"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
 | |
| };
 | |
| 
 | |
| static struct ab8500_fg_interrupts ab8500_fg_irq_bh[] = {
 | |
| 	{"CCEOC", ab8500_fg_cc_data_end_handler},
 | |
| };
 | |
| 
 | |
| static char *supply_interface[] = {
 | |
| 	"ab8500_chargalg",
 | |
| 	"ab8500_usb",
 | |
| };
 | |
| 
 | |
| static const struct power_supply_desc ab8500_fg_desc = {
 | |
| 	.name			= "ab8500_fg",
 | |
| 	.type			= POWER_SUPPLY_TYPE_BATTERY,
 | |
| 	.properties		= ab8500_fg_props,
 | |
| 	.num_properties		= ARRAY_SIZE(ab8500_fg_props),
 | |
| 	.get_property		= ab8500_fg_get_property,
 | |
| 	.external_power_changed	= ab8500_fg_external_power_changed,
 | |
| };
 | |
| 
 | |
| static int ab8500_fg_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device_node *np = pdev->dev.of_node;
 | |
| 	struct abx500_bm_data *plat = pdev->dev.platform_data;
 | |
| 	struct power_supply_config psy_cfg = {};
 | |
| 	struct ab8500_fg *di;
 | |
| 	int i, irq;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
 | |
| 	if (!di) {
 | |
| 		dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (!plat) {
 | |
| 		dev_err(&pdev->dev, "no battery management data supplied\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	di->bm = plat;
 | |
| 
 | |
| 	if (np) {
 | |
| 		ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
 | |
| 		if (ret) {
 | |
| 			dev_err(&pdev->dev, "failed to get battery information\n");
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_init(&di->cc_lock);
 | |
| 
 | |
| 	/* get parent data */
 | |
| 	di->dev = &pdev->dev;
 | |
| 	di->parent = dev_get_drvdata(pdev->dev.parent);
 | |
| 	di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
 | |
| 
 | |
| 	psy_cfg.supplied_to = supply_interface;
 | |
| 	psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
 | |
| 	psy_cfg.drv_data = di;
 | |
| 
 | |
| 	di->bat_cap.max_mah_design = MILLI_TO_MICRO *
 | |
| 		di->bm->bat_type[di->bm->batt_id].charge_full_design;
 | |
| 
 | |
| 	di->bat_cap.max_mah = di->bat_cap.max_mah_design;
 | |
| 
 | |
| 	di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
 | |
| 
 | |
| 	di->init_capacity = true;
 | |
| 
 | |
| 	ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
 | |
| 	ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
 | |
| 
 | |
| 	/* Create a work queue for running the FG algorithm */
 | |
| 	di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
 | |
| 	if (di->fg_wq == NULL) {
 | |
| 		dev_err(di->dev, "failed to create work queue\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Init work for running the fg algorithm instantly */
 | |
| 	INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
 | |
| 
 | |
| 	/* Init work for getting the battery accumulated current */
 | |
| 	INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
 | |
| 
 | |
| 	/* Init work for reinitialising the fg algorithm */
 | |
| 	INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
 | |
| 		ab8500_fg_reinit_work);
 | |
| 
 | |
| 	/* Work delayed Queue to run the state machine */
 | |
| 	INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
 | |
| 		ab8500_fg_periodic_work);
 | |
| 
 | |
| 	/* Work to check low battery condition */
 | |
| 	INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
 | |
| 		ab8500_fg_low_bat_work);
 | |
| 
 | |
| 	/* Init work for HW failure check */
 | |
| 	INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
 | |
| 		ab8500_fg_check_hw_failure_work);
 | |
| 
 | |
| 	/* Reset battery low voltage flag */
 | |
| 	di->flags.low_bat = false;
 | |
| 
 | |
| 	/* Initialize low battery counter */
 | |
| 	di->low_bat_cnt = 10;
 | |
| 
 | |
| 	/* Initialize OVV, and other registers */
 | |
| 	ret = ab8500_fg_init_hw_registers(di);
 | |
| 	if (ret) {
 | |
| 		dev_err(di->dev, "failed to initialize registers\n");
 | |
| 		goto free_inst_curr_wq;
 | |
| 	}
 | |
| 
 | |
| 	/* Consider battery unknown until we're informed otherwise */
 | |
| 	di->flags.batt_unknown = true;
 | |
| 	di->flags.batt_id_received = false;
 | |
| 
 | |
| 	/* Register FG power supply class */
 | |
| 	di->fg_psy = power_supply_register(di->dev, &ab8500_fg_desc, &psy_cfg);
 | |
| 	if (IS_ERR(di->fg_psy)) {
 | |
| 		dev_err(di->dev, "failed to register FG psy\n");
 | |
| 		ret = PTR_ERR(di->fg_psy);
 | |
| 		goto free_inst_curr_wq;
 | |
| 	}
 | |
| 
 | |
| 	di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
 | |
| 	ab8500_fg_coulomb_counter(di, true);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize completion used to notify completion and start
 | |
| 	 * of inst current
 | |
| 	 */
 | |
| 	init_completion(&di->ab8500_fg_started);
 | |
| 	init_completion(&di->ab8500_fg_complete);
 | |
| 
 | |
| 	/* Register primary interrupt handlers */
 | |
| 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
 | |
| 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
 | |
| 		ret = request_irq(irq, ab8500_fg_irq_th[i].isr,
 | |
| 				  IRQF_SHARED | IRQF_NO_SUSPEND,
 | |
| 				  ab8500_fg_irq_th[i].name, di);
 | |
| 
 | |
| 		if (ret != 0) {
 | |
| 			dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
 | |
| 				ab8500_fg_irq_th[i].name, irq, ret);
 | |
| 			goto free_irq;
 | |
| 		}
 | |
| 		dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
 | |
| 			ab8500_fg_irq_th[i].name, irq, ret);
 | |
| 	}
 | |
| 
 | |
| 	/* Register threaded interrupt handler */
 | |
| 	irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
 | |
| 	ret = request_threaded_irq(irq, NULL, ab8500_fg_irq_bh[0].isr,
 | |
| 				IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
 | |
| 			ab8500_fg_irq_bh[0].name, di);
 | |
| 
 | |
| 	if (ret != 0) {
 | |
| 		dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
 | |
| 			ab8500_fg_irq_bh[0].name, irq, ret);
 | |
| 		goto free_irq;
 | |
| 	}
 | |
| 	dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
 | |
| 		ab8500_fg_irq_bh[0].name, irq, ret);
 | |
| 
 | |
| 	di->irq = platform_get_irq_byname(pdev, "CCEOC");
 | |
| 	disable_irq(di->irq);
 | |
| 	di->nbr_cceoc_irq_cnt = 0;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, di);
 | |
| 
 | |
| 	ret = ab8500_fg_sysfs_init(di);
 | |
| 	if (ret) {
 | |
| 		dev_err(di->dev, "failed to create sysfs entry\n");
 | |
| 		goto free_irq;
 | |
| 	}
 | |
| 
 | |
| 	ret = ab8500_fg_sysfs_psy_create_attrs(di);
 | |
| 	if (ret) {
 | |
| 		dev_err(di->dev, "failed to create FG psy\n");
 | |
| 		ab8500_fg_sysfs_exit(di);
 | |
| 		goto free_irq;
 | |
| 	}
 | |
| 
 | |
| 	/* Calibrate the fg first time */
 | |
| 	di->flags.calibrate = true;
 | |
| 	di->calib_state = AB8500_FG_CALIB_INIT;
 | |
| 
 | |
| 	/* Use room temp as default value until we get an update from driver. */
 | |
| 	di->bat_temp = 210;
 | |
| 
 | |
| 	/* Run the FG algorithm */
 | |
| 	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
 | |
| 
 | |
| 	list_add_tail(&di->node, &ab8500_fg_list);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| free_irq:
 | |
| 	power_supply_unregister(di->fg_psy);
 | |
| 
 | |
| 	/* We also have to free all registered irqs */
 | |
| 	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
 | |
| 		irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
 | |
| 		free_irq(irq, di);
 | |
| 	}
 | |
| 	irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
 | |
| 	free_irq(irq, di);
 | |
| free_inst_curr_wq:
 | |
| 	destroy_workqueue(di->fg_wq);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id ab8500_fg_match[] = {
 | |
| 	{ .compatible = "stericsson,ab8500-fg", },
 | |
| 	{ },
 | |
| };
 | |
| 
 | |
| static struct platform_driver ab8500_fg_driver = {
 | |
| 	.probe = ab8500_fg_probe,
 | |
| 	.remove = ab8500_fg_remove,
 | |
| 	.suspend = ab8500_fg_suspend,
 | |
| 	.resume = ab8500_fg_resume,
 | |
| 	.driver = {
 | |
| 		.name = "ab8500-fg",
 | |
| 		.of_match_table = ab8500_fg_match,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init ab8500_fg_init(void)
 | |
| {
 | |
| 	return platform_driver_register(&ab8500_fg_driver);
 | |
| }
 | |
| 
 | |
| static void __exit ab8500_fg_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&ab8500_fg_driver);
 | |
| }
 | |
| 
 | |
| subsys_initcall_sync(ab8500_fg_init);
 | |
| module_exit(ab8500_fg_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
 | |
| MODULE_ALIAS("platform:ab8500-fg");
 | |
| MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
 | 
