685 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			685 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
 | |
|  *
 | |
|  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <asm/neon.h>
 | |
| #include <asm/simd.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include <crypto/aes.h>
 | |
| #include <crypto/algapi.h>
 | |
| #include <crypto/b128ops.h>
 | |
| #include <crypto/gf128mul.h>
 | |
| #include <crypto/internal/aead.h>
 | |
| #include <crypto/internal/hash.h>
 | |
| #include <crypto/internal/skcipher.h>
 | |
| #include <crypto/scatterwalk.h>
 | |
| #include <linux/cpufeature.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
 | |
| MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_ALIAS_CRYPTO("ghash");
 | |
| 
 | |
| #define GHASH_BLOCK_SIZE	16
 | |
| #define GHASH_DIGEST_SIZE	16
 | |
| #define GCM_IV_SIZE		12
 | |
| 
 | |
| struct ghash_key {
 | |
| 	u64			h[2];
 | |
| 	u64			h2[2];
 | |
| 	u64			h3[2];
 | |
| 	u64			h4[2];
 | |
| 
 | |
| 	be128			k;
 | |
| };
 | |
| 
 | |
| struct ghash_desc_ctx {
 | |
| 	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
 | |
| 	u8 buf[GHASH_BLOCK_SIZE];
 | |
| 	u32 count;
 | |
| };
 | |
| 
 | |
| struct gcm_aes_ctx {
 | |
| 	struct crypto_aes_ctx	aes_key;
 | |
| 	struct ghash_key	ghash_key;
 | |
| };
 | |
| 
 | |
| asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
 | |
| 				       struct ghash_key const *k,
 | |
| 				       const char *head);
 | |
| 
 | |
| asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
 | |
| 				      struct ghash_key const *k,
 | |
| 				      const char *head);
 | |
| 
 | |
| static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src,
 | |
| 				  struct ghash_key const *k,
 | |
| 				  const char *head);
 | |
| 
 | |
| asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
 | |
| 				  const u8 src[], struct ghash_key const *k,
 | |
| 				  u8 ctr[], u32 const rk[], int rounds,
 | |
| 				  u8 ks[]);
 | |
| 
 | |
| asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
 | |
| 				  const u8 src[], struct ghash_key const *k,
 | |
| 				  u8 ctr[], u32 const rk[], int rounds);
 | |
| 
 | |
| asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
 | |
| 					u32 const rk[], int rounds);
 | |
| 
 | |
| asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
 | |
| 
 | |
| static int ghash_init(struct shash_desc *desc)
 | |
| {
 | |
| 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
 | |
| 
 | |
| 	*ctx = (struct ghash_desc_ctx){};
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ghash_do_update(int blocks, u64 dg[], const char *src,
 | |
| 			    struct ghash_key *key, const char *head)
 | |
| {
 | |
| 	if (likely(may_use_simd())) {
 | |
| 		kernel_neon_begin();
 | |
| 		pmull_ghash_update(blocks, dg, src, key, head);
 | |
| 		kernel_neon_end();
 | |
| 	} else {
 | |
| 		be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
 | |
| 
 | |
| 		do {
 | |
| 			const u8 *in = src;
 | |
| 
 | |
| 			if (head) {
 | |
| 				in = head;
 | |
| 				blocks++;
 | |
| 				head = NULL;
 | |
| 			} else {
 | |
| 				src += GHASH_BLOCK_SIZE;
 | |
| 			}
 | |
| 
 | |
| 			crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
 | |
| 			gf128mul_lle(&dst, &key->k);
 | |
| 		} while (--blocks);
 | |
| 
 | |
| 		dg[0] = be64_to_cpu(dst.b);
 | |
| 		dg[1] = be64_to_cpu(dst.a);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* avoid hogging the CPU for too long */
 | |
| #define MAX_BLOCKS	(SZ_64K / GHASH_BLOCK_SIZE)
 | |
| 
 | |
| static int ghash_update(struct shash_desc *desc, const u8 *src,
 | |
| 			unsigned int len)
 | |
| {
 | |
| 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
 | |
| 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
 | |
| 
 | |
| 	ctx->count += len;
 | |
| 
 | |
| 	if ((partial + len) >= GHASH_BLOCK_SIZE) {
 | |
| 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
 | |
| 		int blocks;
 | |
| 
 | |
| 		if (partial) {
 | |
| 			int p = GHASH_BLOCK_SIZE - partial;
 | |
| 
 | |
| 			memcpy(ctx->buf + partial, src, p);
 | |
| 			src += p;
 | |
| 			len -= p;
 | |
| 		}
 | |
| 
 | |
| 		blocks = len / GHASH_BLOCK_SIZE;
 | |
| 		len %= GHASH_BLOCK_SIZE;
 | |
| 
 | |
| 		do {
 | |
| 			int chunk = min(blocks, MAX_BLOCKS);
 | |
| 
 | |
| 			ghash_do_update(chunk, ctx->digest, src, key,
 | |
| 					partial ? ctx->buf : NULL);
 | |
| 
 | |
| 			blocks -= chunk;
 | |
| 			src += chunk * GHASH_BLOCK_SIZE;
 | |
| 			partial = 0;
 | |
| 		} while (unlikely(blocks > 0));
 | |
| 	}
 | |
| 	if (len)
 | |
| 		memcpy(ctx->buf + partial, src, len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ghash_final(struct shash_desc *desc, u8 *dst)
 | |
| {
 | |
| 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
 | |
| 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
 | |
| 
 | |
| 	if (partial) {
 | |
| 		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
 | |
| 
 | |
| 		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
 | |
| 
 | |
| 		ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
 | |
| 	}
 | |
| 	put_unaligned_be64(ctx->digest[1], dst);
 | |
| 	put_unaligned_be64(ctx->digest[0], dst + 8);
 | |
| 
 | |
| 	*ctx = (struct ghash_desc_ctx){};
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ghash_reflect(u64 h[], const be128 *k)
 | |
| {
 | |
| 	u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
 | |
| 
 | |
| 	h[0] = (be64_to_cpu(k->b) << 1) | carry;
 | |
| 	h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
 | |
| 
 | |
| 	if (carry)
 | |
| 		h[1] ^= 0xc200000000000000UL;
 | |
| }
 | |
| 
 | |
| static int __ghash_setkey(struct ghash_key *key,
 | |
| 			  const u8 *inkey, unsigned int keylen)
 | |
| {
 | |
| 	be128 h;
 | |
| 
 | |
| 	/* needed for the fallback */
 | |
| 	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
 | |
| 
 | |
| 	ghash_reflect(key->h, &key->k);
 | |
| 
 | |
| 	h = key->k;
 | |
| 	gf128mul_lle(&h, &key->k);
 | |
| 	ghash_reflect(key->h2, &h);
 | |
| 
 | |
| 	gf128mul_lle(&h, &key->k);
 | |
| 	ghash_reflect(key->h3, &h);
 | |
| 
 | |
| 	gf128mul_lle(&h, &key->k);
 | |
| 	ghash_reflect(key->h4, &h);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ghash_setkey(struct crypto_shash *tfm,
 | |
| 			const u8 *inkey, unsigned int keylen)
 | |
| {
 | |
| 	struct ghash_key *key = crypto_shash_ctx(tfm);
 | |
| 
 | |
| 	if (keylen != GHASH_BLOCK_SIZE) {
 | |
| 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return __ghash_setkey(key, inkey, keylen);
 | |
| }
 | |
| 
 | |
| static struct shash_alg ghash_alg = {
 | |
| 	.base.cra_name		= "ghash",
 | |
| 	.base.cra_driver_name	= "ghash-ce",
 | |
| 	.base.cra_priority	= 200,
 | |
| 	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
 | |
| 	.base.cra_ctxsize	= sizeof(struct ghash_key),
 | |
| 	.base.cra_module	= THIS_MODULE,
 | |
| 
 | |
| 	.digestsize		= GHASH_DIGEST_SIZE,
 | |
| 	.init			= ghash_init,
 | |
| 	.update			= ghash_update,
 | |
| 	.final			= ghash_final,
 | |
| 	.setkey			= ghash_setkey,
 | |
| 	.descsize		= sizeof(struct ghash_desc_ctx),
 | |
| };
 | |
| 
 | |
| static int num_rounds(struct crypto_aes_ctx *ctx)
 | |
| {
 | |
| 	/*
 | |
| 	 * # of rounds specified by AES:
 | |
| 	 * 128 bit key		10 rounds
 | |
| 	 * 192 bit key		12 rounds
 | |
| 	 * 256 bit key		14 rounds
 | |
| 	 * => n byte key	=> 6 + (n/4) rounds
 | |
| 	 */
 | |
| 	return 6 + ctx->key_length / 4;
 | |
| }
 | |
| 
 | |
| static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
 | |
| 		      unsigned int keylen)
 | |
| {
 | |
| 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
 | |
| 	u8 key[GHASH_BLOCK_SIZE];
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
 | |
| 	if (ret) {
 | |
| 		tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	__aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
 | |
| 			    num_rounds(&ctx->aes_key));
 | |
| 
 | |
| 	return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
 | |
| }
 | |
| 
 | |
| static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
 | |
| {
 | |
| 	switch (authsize) {
 | |
| 	case 4:
 | |
| 	case 8:
 | |
| 	case 12 ... 16:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
 | |
| 			   int *buf_count, struct gcm_aes_ctx *ctx)
 | |
| {
 | |
| 	if (*buf_count > 0) {
 | |
| 		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
 | |
| 
 | |
| 		memcpy(&buf[*buf_count], src, buf_added);
 | |
| 
 | |
| 		*buf_count += buf_added;
 | |
| 		src += buf_added;
 | |
| 		count -= buf_added;
 | |
| 	}
 | |
| 
 | |
| 	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
 | |
| 		int blocks = count / GHASH_BLOCK_SIZE;
 | |
| 
 | |
| 		ghash_do_update(blocks, dg, src, &ctx->ghash_key,
 | |
| 				*buf_count ? buf : NULL);
 | |
| 
 | |
| 		src += blocks * GHASH_BLOCK_SIZE;
 | |
| 		count %= GHASH_BLOCK_SIZE;
 | |
| 		*buf_count = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (count > 0) {
 | |
| 		memcpy(buf, src, count);
 | |
| 		*buf_count = count;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
 | |
| {
 | |
| 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 | |
| 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
 | |
| 	u8 buf[GHASH_BLOCK_SIZE];
 | |
| 	struct scatter_walk walk;
 | |
| 	u32 len = req->assoclen;
 | |
| 	int buf_count = 0;
 | |
| 
 | |
| 	scatterwalk_start(&walk, req->src);
 | |
| 
 | |
| 	do {
 | |
| 		u32 n = scatterwalk_clamp(&walk, len);
 | |
| 		u8 *p;
 | |
| 
 | |
| 		if (!n) {
 | |
| 			scatterwalk_start(&walk, sg_next(walk.sg));
 | |
| 			n = scatterwalk_clamp(&walk, len);
 | |
| 		}
 | |
| 		p = scatterwalk_map(&walk);
 | |
| 
 | |
| 		gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
 | |
| 		len -= n;
 | |
| 
 | |
| 		scatterwalk_unmap(p);
 | |
| 		scatterwalk_advance(&walk, n);
 | |
| 		scatterwalk_done(&walk, 0, len);
 | |
| 	} while (len);
 | |
| 
 | |
| 	if (buf_count) {
 | |
| 		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
 | |
| 		ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
 | |
| 		      u64 dg[], u8 tag[], int cryptlen)
 | |
| {
 | |
| 	u8 mac[AES_BLOCK_SIZE];
 | |
| 	u128 lengths;
 | |
| 
 | |
| 	lengths.a = cpu_to_be64(req->assoclen * 8);
 | |
| 	lengths.b = cpu_to_be64(cryptlen * 8);
 | |
| 
 | |
| 	ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL);
 | |
| 
 | |
| 	put_unaligned_be64(dg[1], mac);
 | |
| 	put_unaligned_be64(dg[0], mac + 8);
 | |
| 
 | |
| 	crypto_xor(tag, mac, AES_BLOCK_SIZE);
 | |
| }
 | |
| 
 | |
| static int gcm_encrypt(struct aead_request *req)
 | |
| {
 | |
| 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 | |
| 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
 | |
| 	struct skcipher_walk walk;
 | |
| 	u8 iv[AES_BLOCK_SIZE];
 | |
| 	u8 ks[2 * AES_BLOCK_SIZE];
 | |
| 	u8 tag[AES_BLOCK_SIZE];
 | |
| 	u64 dg[2] = {};
 | |
| 	int nrounds = num_rounds(&ctx->aes_key);
 | |
| 	int err;
 | |
| 
 | |
| 	if (req->assoclen)
 | |
| 		gcm_calculate_auth_mac(req, dg);
 | |
| 
 | |
| 	memcpy(iv, req->iv, GCM_IV_SIZE);
 | |
| 	put_unaligned_be32(1, iv + GCM_IV_SIZE);
 | |
| 
 | |
| 	err = skcipher_walk_aead_encrypt(&walk, req, false);
 | |
| 
 | |
| 	if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) {
 | |
| 		u32 const *rk = NULL;
 | |
| 
 | |
| 		kernel_neon_begin();
 | |
| 		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
 | |
| 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
 | |
| 		pmull_gcm_encrypt_block(ks, iv, NULL, nrounds);
 | |
| 		put_unaligned_be32(3, iv + GCM_IV_SIZE);
 | |
| 		pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds);
 | |
| 		put_unaligned_be32(4, iv + GCM_IV_SIZE);
 | |
| 
 | |
| 		do {
 | |
| 			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
 | |
| 
 | |
| 			if (rk)
 | |
| 				kernel_neon_begin();
 | |
| 
 | |
| 			pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
 | |
| 					  walk.src.virt.addr, &ctx->ghash_key,
 | |
| 					  iv, rk, nrounds, ks);
 | |
| 			kernel_neon_end();
 | |
| 
 | |
| 			err = skcipher_walk_done(&walk,
 | |
| 					walk.nbytes % (2 * AES_BLOCK_SIZE));
 | |
| 
 | |
| 			rk = ctx->aes_key.key_enc;
 | |
| 		} while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
 | |
| 	} else {
 | |
| 		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
 | |
| 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
 | |
| 
 | |
| 		while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
 | |
| 			const int blocks =
 | |
| 				walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
 | |
| 			u8 *dst = walk.dst.virt.addr;
 | |
| 			u8 *src = walk.src.virt.addr;
 | |
| 			int remaining = blocks;
 | |
| 
 | |
| 			do {
 | |
| 				__aes_arm64_encrypt(ctx->aes_key.key_enc,
 | |
| 						    ks, iv, nrounds);
 | |
| 				crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
 | |
| 				crypto_inc(iv, AES_BLOCK_SIZE);
 | |
| 
 | |
| 				dst += AES_BLOCK_SIZE;
 | |
| 				src += AES_BLOCK_SIZE;
 | |
| 			} while (--remaining > 0);
 | |
| 
 | |
| 			ghash_do_update(blocks, dg,
 | |
| 					walk.dst.virt.addr, &ctx->ghash_key,
 | |
| 					NULL);
 | |
| 
 | |
| 			err = skcipher_walk_done(&walk,
 | |
| 						 walk.nbytes % (2 * AES_BLOCK_SIZE));
 | |
| 		}
 | |
| 		if (walk.nbytes) {
 | |
| 			__aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
 | |
| 					    nrounds);
 | |
| 			if (walk.nbytes > AES_BLOCK_SIZE) {
 | |
| 				crypto_inc(iv, AES_BLOCK_SIZE);
 | |
| 				__aes_arm64_encrypt(ctx->aes_key.key_enc,
 | |
| 					            ks + AES_BLOCK_SIZE, iv,
 | |
| 						    nrounds);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* handle the tail */
 | |
| 	if (walk.nbytes) {
 | |
| 		u8 buf[GHASH_BLOCK_SIZE];
 | |
| 		unsigned int nbytes = walk.nbytes;
 | |
| 		u8 *dst = walk.dst.virt.addr;
 | |
| 		u8 *head = NULL;
 | |
| 
 | |
| 		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
 | |
| 			       walk.nbytes);
 | |
| 
 | |
| 		if (walk.nbytes > GHASH_BLOCK_SIZE) {
 | |
| 			head = dst;
 | |
| 			dst += GHASH_BLOCK_SIZE;
 | |
| 			nbytes %= GHASH_BLOCK_SIZE;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(buf, dst, nbytes);
 | |
| 		memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
 | |
| 		ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head);
 | |
| 
 | |
| 		err = skcipher_walk_done(&walk, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	gcm_final(req, ctx, dg, tag, req->cryptlen);
 | |
| 
 | |
| 	/* copy authtag to end of dst */
 | |
| 	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
 | |
| 				 crypto_aead_authsize(aead), 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int gcm_decrypt(struct aead_request *req)
 | |
| {
 | |
| 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
 | |
| 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
 | |
| 	unsigned int authsize = crypto_aead_authsize(aead);
 | |
| 	struct skcipher_walk walk;
 | |
| 	u8 iv[2 * AES_BLOCK_SIZE];
 | |
| 	u8 tag[AES_BLOCK_SIZE];
 | |
| 	u8 buf[2 * GHASH_BLOCK_SIZE];
 | |
| 	u64 dg[2] = {};
 | |
| 	int nrounds = num_rounds(&ctx->aes_key);
 | |
| 	int err;
 | |
| 
 | |
| 	if (req->assoclen)
 | |
| 		gcm_calculate_auth_mac(req, dg);
 | |
| 
 | |
| 	memcpy(iv, req->iv, GCM_IV_SIZE);
 | |
| 	put_unaligned_be32(1, iv + GCM_IV_SIZE);
 | |
| 
 | |
| 	err = skcipher_walk_aead_decrypt(&walk, req, false);
 | |
| 
 | |
| 	if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) {
 | |
| 		u32 const *rk = NULL;
 | |
| 
 | |
| 		kernel_neon_begin();
 | |
| 		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
 | |
| 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
 | |
| 
 | |
| 		do {
 | |
| 			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
 | |
| 			int rem = walk.total - blocks * AES_BLOCK_SIZE;
 | |
| 
 | |
| 			if (rk)
 | |
| 				kernel_neon_begin();
 | |
| 
 | |
| 			pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
 | |
| 					  walk.src.virt.addr, &ctx->ghash_key,
 | |
| 					  iv, rk, nrounds);
 | |
| 
 | |
| 			/* check if this is the final iteration of the loop */
 | |
| 			if (rem < (2 * AES_BLOCK_SIZE)) {
 | |
| 				u8 *iv2 = iv + AES_BLOCK_SIZE;
 | |
| 
 | |
| 				if (rem > AES_BLOCK_SIZE) {
 | |
| 					memcpy(iv2, iv, AES_BLOCK_SIZE);
 | |
| 					crypto_inc(iv2, AES_BLOCK_SIZE);
 | |
| 				}
 | |
| 
 | |
| 				pmull_gcm_encrypt_block(iv, iv, NULL, nrounds);
 | |
| 
 | |
| 				if (rem > AES_BLOCK_SIZE)
 | |
| 					pmull_gcm_encrypt_block(iv2, iv2, NULL,
 | |
| 								nrounds);
 | |
| 			}
 | |
| 
 | |
| 			kernel_neon_end();
 | |
| 
 | |
| 			err = skcipher_walk_done(&walk,
 | |
| 					walk.nbytes % (2 * AES_BLOCK_SIZE));
 | |
| 
 | |
| 			rk = ctx->aes_key.key_enc;
 | |
| 		} while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
 | |
| 	} else {
 | |
| 		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
 | |
| 		put_unaligned_be32(2, iv + GCM_IV_SIZE);
 | |
| 
 | |
| 		while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
 | |
| 			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
 | |
| 			u8 *dst = walk.dst.virt.addr;
 | |
| 			u8 *src = walk.src.virt.addr;
 | |
| 
 | |
| 			ghash_do_update(blocks, dg, walk.src.virt.addr,
 | |
| 					&ctx->ghash_key, NULL);
 | |
| 
 | |
| 			do {
 | |
| 				__aes_arm64_encrypt(ctx->aes_key.key_enc,
 | |
| 						    buf, iv, nrounds);
 | |
| 				crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
 | |
| 				crypto_inc(iv, AES_BLOCK_SIZE);
 | |
| 
 | |
| 				dst += AES_BLOCK_SIZE;
 | |
| 				src += AES_BLOCK_SIZE;
 | |
| 			} while (--blocks > 0);
 | |
| 
 | |
| 			err = skcipher_walk_done(&walk,
 | |
| 						 walk.nbytes % (2 * AES_BLOCK_SIZE));
 | |
| 		}
 | |
| 		if (walk.nbytes) {
 | |
| 			if (walk.nbytes > AES_BLOCK_SIZE) {
 | |
| 				u8 *iv2 = iv + AES_BLOCK_SIZE;
 | |
| 
 | |
| 				memcpy(iv2, iv, AES_BLOCK_SIZE);
 | |
| 				crypto_inc(iv2, AES_BLOCK_SIZE);
 | |
| 
 | |
| 				__aes_arm64_encrypt(ctx->aes_key.key_enc, iv2,
 | |
| 						    iv2, nrounds);
 | |
| 			}
 | |
| 			__aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
 | |
| 					    nrounds);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* handle the tail */
 | |
| 	if (walk.nbytes) {
 | |
| 		const u8 *src = walk.src.virt.addr;
 | |
| 		const u8 *head = NULL;
 | |
| 		unsigned int nbytes = walk.nbytes;
 | |
| 
 | |
| 		if (walk.nbytes > GHASH_BLOCK_SIZE) {
 | |
| 			head = src;
 | |
| 			src += GHASH_BLOCK_SIZE;
 | |
| 			nbytes %= GHASH_BLOCK_SIZE;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(buf, src, nbytes);
 | |
| 		memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
 | |
| 		ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head);
 | |
| 
 | |
| 		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
 | |
| 			       walk.nbytes);
 | |
| 
 | |
| 		err = skcipher_walk_done(&walk, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
 | |
| 
 | |
| 	/* compare calculated auth tag with the stored one */
 | |
| 	scatterwalk_map_and_copy(buf, req->src,
 | |
| 				 req->assoclen + req->cryptlen - authsize,
 | |
| 				 authsize, 0);
 | |
| 
 | |
| 	if (crypto_memneq(tag, buf, authsize))
 | |
| 		return -EBADMSG;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct aead_alg gcm_aes_alg = {
 | |
| 	.ivsize			= GCM_IV_SIZE,
 | |
| 	.chunksize		= 2 * AES_BLOCK_SIZE,
 | |
| 	.maxauthsize		= AES_BLOCK_SIZE,
 | |
| 	.setkey			= gcm_setkey,
 | |
| 	.setauthsize		= gcm_setauthsize,
 | |
| 	.encrypt		= gcm_encrypt,
 | |
| 	.decrypt		= gcm_decrypt,
 | |
| 
 | |
| 	.base.cra_name		= "gcm(aes)",
 | |
| 	.base.cra_driver_name	= "gcm-aes-ce",
 | |
| 	.base.cra_priority	= 300,
 | |
| 	.base.cra_blocksize	= 1,
 | |
| 	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx),
 | |
| 	.base.cra_module	= THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init ghash_ce_mod_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!(elf_hwcap & HWCAP_ASIMD))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (elf_hwcap & HWCAP_PMULL)
 | |
| 		pmull_ghash_update = pmull_ghash_update_p64;
 | |
| 
 | |
| 	else
 | |
| 		pmull_ghash_update = pmull_ghash_update_p8;
 | |
| 
 | |
| 	ret = crypto_register_shash(&ghash_alg);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (elf_hwcap & HWCAP_PMULL) {
 | |
| 		ret = crypto_register_aead(&gcm_aes_alg);
 | |
| 		if (ret)
 | |
| 			crypto_unregister_shash(&ghash_alg);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit ghash_ce_mod_exit(void)
 | |
| {
 | |
| 	crypto_unregister_shash(&ghash_alg);
 | |
| 	crypto_unregister_aead(&gcm_aes_alg);
 | |
| }
 | |
| 
 | |
| static const struct cpu_feature ghash_cpu_feature[] = {
 | |
| 	{ cpu_feature(PMULL) }, { }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
 | |
| 
 | |
| module_init(ghash_ce_mod_init);
 | |
| module_exit(ghash_ce_mod_exit);
 | 
