nt9856x/code/driver/source/net/rtl8189es/hal/rtl8188e/rtl8188e_phycfg.c
2023-03-28 15:07:53 +08:00

2244 lines
66 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8188E_PHYCFG_C_
#include <drv_types.h>
#include <rtl8188e_hal.h>
/*---------------------------Define Local Constant---------------------------*/
/* Channel switch:The size of command tables for switch channel*/
#define MAX_PRECMD_CNT 16
#define MAX_RFDEPENDCMD_CNT 16
#define MAX_POSTCMD_CNT 16
#define MAX_DOZE_WAITING_TIMES_9x 64
/*---------------------------Define Local Constant---------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define local variable------------------------------*/
/*--------------------Define export function prototype-----------------------*/
// Please refer to header file
/*--------------------Define export function prototype-----------------------*/
/*----------------------------Function Body----------------------------------*/
//
// 1. BB register R/W API
//
#if(SIC_ENABLE == 1)
static BOOLEAN
sic_IsSICReady(
IN PADAPTER Adapter
)
{
BOOLEAN bRet=_FALSE;
u32 retryCnt=0;
u8 sic_cmd=0xff;
while(1)
{
if(retryCnt++ >= SIC_MAX_POLL_CNT)
{
//RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady() return FALSE\n"));
return _FALSE;
}
//if(RT_SDIO_CANNOT_IO(Adapter))
// return _FALSE;
sic_cmd = rtw_read8(Adapter, SIC_CMD_REG);
//sic_cmd = PlatformEFIORead1Byte(Adapter, SIC_CMD_REG);
#if(SIC_HW_SUPPORT == 1)
sic_cmd &= 0xf0; // [7:4]
#endif
//RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady(), readback 0x%x=0x%x\n", SIC_CMD_REG, sic_cmd));
if(sic_cmd == SIC_CMD_READY)
return _TRUE;
else
{
rtw_msleep_os(1);
//delay_ms(1);
}
}
return bRet;
}
/*
u32
sic_CalculateBitShift(
u32 BitMask
)
{
u32 i;
for(i=0; i<=31; i++)
{
if ( ((BitMask>>i) & 0x1 ) == 1)
break;
}
return (i);
}
*/
static u32
sic_Read4Byte(
PVOID Adapter,
u32 offset
)
{
u32 u4ret=0xffffffff;
#if RTL8188E_SUPPORT == 1
u8 retry = 0;
#endif
//RTPRINT(FPHY, PHY_SICR, ("[SIC], sic_Read4Byte(): read offset(%#x)\n", offset));
if(sic_IsSICReady(Adapter))
{
#if(SIC_HW_SUPPORT == 1)
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD);
//RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREREAD));
#endif
rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff));
//PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u1Byte)(offset&0xff));
//RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG, (u1Byte)(offset&0xff)));
rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8));
//PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8));
//RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8)));
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_READ);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_READ);
//RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_READ));
#if RTL8188E_SUPPORT == 1
retry = 4;
while(retry--){
rtw_udelay_os(50);
//PlatformStallExecution(50);
}
#else
rtw_udelay_os(200);
//PlatformStallExecution(200);
#endif
if(sic_IsSICReady(Adapter))
{
u4ret = rtw_read32(Adapter, SIC_DATA_REG);
//u4ret = PlatformEFIORead4Byte(Adapter, SIC_DATA_REG);
//RTPRINT(FPHY, PHY_SICR, ("read 0x%x = 0x%x\n", SIC_DATA_REG, u4ret));
//DbgPrint("<===Read 0x%x = 0x%x\n", offset, u4ret);
}
}
return u4ret;
}
static VOID
sic_Write4Byte(
PVOID Adapter,
u32 offset,
u32 data
)
{
#if RTL8188E_SUPPORT == 1
u8 retry = 6;
#endif
//DbgPrint("=>Write 0x%x = 0x%x\n", offset, data);
//RTPRINT(FPHY, PHY_SICW, ("[SIC], sic_Write4Byte(): write offset(%#x)=0x%x\n", offset, data));
if(sic_IsSICReady(Adapter))
{
#if(SIC_HW_SUPPORT == 1)
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE);
//RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREWRITE));
#endif
rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset&0xff));
//PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u1Byte)(offset&0xff));
//RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", SIC_ADDR_REG, (u1Byte)(offset&0xff)));
rtw_write8(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8));
//PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u1Byte)((offset&0xff00)>>8));
//RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", (SIC_ADDR_REG+1), (u1Byte)((offset&0xff00)>>8)));
rtw_write32(Adapter, SIC_DATA_REG, (u32)data);
//PlatformEFIOWrite4Byte(Adapter, SIC_DATA_REG, (u4Byte)data);
//RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_DATA_REG, data));
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_WRITE);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_WRITE);
//RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_WRITE));
#if RTL8188E_SUPPORT == 1
while(retry--){
rtw_udelay_os(50);
//PlatformStallExecution(50);
}
#else
rtw_udelay_os(150);
//PlatformStallExecution(150);
#endif
}
}
//============================================================
// extern function
//============================================================
static VOID
SIC_SetBBReg(
IN PADAPTER Adapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 OriginalValue, BitShift;
u16 BBWaitCounter = 0;
//RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() start\n"));
/*
while(PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE)
{
BBWaitCounter ++;
delay_ms(10); // 1 ms
if((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter))
{// Wait too long, return FALSE to avoid to be stuck here.
RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), Fail to set BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter));
return;
}
}
*/
//
// Critical section start
//
//RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), mask=0x%x, addr[0x%x]=0x%x\n", BitMask, RegAddr, Data));
if(BitMask!= bMaskDWord){//if not "double word" write
OriginalValue = sic_Read4Byte(Adapter, RegAddr);
//BitShift = sic_CalculateBitShift(BitMask);
BitShift = PHY_CalculateBitShift(BitMask);
Data = (((OriginalValue) & (~BitMask)) | (Data << BitShift));
}
sic_Write4Byte(Adapter, RegAddr, Data);
//PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE);
//RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() end\n"));
}
static u32
SIC_QueryBBReg(
IN PADAPTER Adapter,
IN u32 RegAddr,
IN u32 BitMask
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() start\n"));
/*
while(PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE)
{
BBWaitCounter ++;
delay_ms(10); // 10 ms
if((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter))
{// Wait too long, return FALSE to avoid to be stuck here.
RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_QueryBBReg(), Fail to query BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter));
return ReturnValue;
}
}
*/
OriginalValue = sic_Read4Byte(Adapter, RegAddr);
//BitShift = sic_CalculateBitShift(BitMask);
BitShift = PHY_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg(), 0x%x=0x%x\n", RegAddr, OriginalValue));
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() end\n"));
//PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE);
return (ReturnValue);
}
VOID
SIC_Init(
IN PADAPTER Adapter
)
{
// Here we need to write 0x1b8~0x1bf = 0 after fw is downloaded
// because for 8723E at beginning 0x1b8=0x1e, that will cause
// sic always not be ready
#if(SIC_HW_SUPPORT == 1)
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n",
// SIC_INIT_REG, SIC_INIT_VAL));
rtw_write8(Adapter, SIC_INIT_REG, SIC_INIT_VAL);
//PlatformEFIOWrite1Byte(Adapter, SIC_INIT_REG, SIC_INIT_VAL);
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n",
// SIC_CMD_REG, SIC_CMD_INIT));
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_INIT);
//PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_INIT);
#else
//RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x1b8~0x1bf = 0x0\n"));
rtw_write32(Adapter, SIC_CMD_REG, 0);
//PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG, 0);
rtw_write32(Adapter, SIC_CMD_REG+4, 0);
//PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG+4, 0);
#endif
}
static BOOLEAN
SIC_LedOff(
IN PADAPTER Adapter
)
{
// When SIC is enabled, led pin will be used as debug pin,
// so don't execute led function when SIC is enabled.
return _TRUE;
}
#endif
/**
* Function: PHY_QueryBBReg
*
* OverView: Read "sepcific bits" from BB register
*
* Input:
* PADAPTER Adapter,
* u4Byte RegAddr, //The target address to be readback
* u4Byte BitMask //The target bit position in the target address
* //to be readback
* Output: None
* Return: u4Byte Data //The readback register value
* Note: This function is equal to "GetRegSetting" in PHY programming guide
*/
u32
PHY_QueryBBReg8188E(
IN PADAPTER Adapter,
IN u32 RegAddr,
IN u32 BitMask
)
{
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
#if(SIC_ENABLE == 1)
return SIC_QueryBBReg(Adapter, RegAddr, BitMask);
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_QueryBBReg(): RegAddr(%#lx), BitMask(%#lx)\n", RegAddr, BitMask));
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
//RTPRINT(FPHY, PHY_BBR, ("BBR MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, OriginalValue));
//RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_QueryBBReg(): RegAddr(%#lx), BitMask(%#lx), OriginalValue(%#lx)\n", RegAddr, BitMask, OriginalValue));
return (ReturnValue);
}
/**
* Function: PHY_SetBBReg
*
* OverView: Write "Specific bits" to BB register (page 8~)
*
* Input:
* PADAPTER Adapter,
* u4Byte RegAddr, //The target address to be modified
* u4Byte BitMask //The target bit position in the target address
* //to be modified
* u4Byte Data //The new register value in the target bit position
* //of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRegSetting" in PHY programming guide
*/
VOID
PHY_SetBBReg8188E(
IN PADAPTER Adapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//u16 BBWaitCounter = 0;
u32 OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
#if(SIC_ENABLE == 1)
SIC_SetBBReg(Adapter, RegAddr, BitMask, Data);
return;
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_SetBBReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx)\n", RegAddr, BitMask, Data));
if(BitMask!= bMaskDWord){//if not "double word" write
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
Data = ((OriginalValue & (~BitMask)) | ((Data << BitShift) & BitMask));
}
rtw_write32(Adapter, RegAddr, Data);
//RTPRINT(FPHY, PHY_BBW, ("BBW MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, Data));
//RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_SetBBReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx)\n", RegAddr, BitMask, Data));
}
//
// 2. RF register R/W API
//
/**
* Function: phy_RFSerialRead
*
* OverView: Read regster from RF chips
*
* Input:
* PADAPTER Adapter,
* u8 eRFPath, //Radio path of A/B/C/D
* u4Byte Offset, //The target address to be read
*
* Output: None
* Return: u4Byte reback value
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*/
static u32
phy_RFSerialRead(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 Offset
)
{
u32 retValue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
u32 tmplong,tmplong2;
u8 RfPiEnable=0;
#if 0
if(pHalData->RFChipID == RF_8225 && Offset > 0x24) //36 valid regs
return retValue;
if(pHalData->RFChipID == RF_8256 && Offset > 0x2D) //45 valid regs
return retValue;
#endif
//
// Make sure RF register offset is correct
//
Offset &= 0xff;
//
// Switch page for 8256 RF IC
//
NewOffset = Offset;
// 2009/06/17 MH We can not execute IO for power save or other accident mode.
//if(RT_CANNOT_IO(Adapter))
//{
// RTPRINT(FPHY, PHY_RFR, ("phy_RFSerialRead return all one\n"));
// return 0xFFFFFFFF;
//}
// For 92S LSSI Read RFLSSIRead
// For RF A/B write 0x824/82c(does not work in the future)
// We must use 0x824 for RF A and B to execute read trigger
tmplong = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord);
if(eRFPath == RF_PATH_A)
tmplong2 = tmplong;
else
tmplong2 = PHY_QueryBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; //T65 RF
PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong&(~bLSSIReadEdge));
rtw_udelay_os(10);// PlatformStallExecution(10);
PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord, tmplong2);
rtw_udelay_os(100);//PlatformStallExecution(100);
//PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong|bLSSIReadEdge);
rtw_udelay_os(10);//PlatformStallExecution(10);
if(eRFPath == RF_PATH_A)
RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1, BIT8);
else if(eRFPath == RF_PATH_B)
RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1, BIT8);
if(RfPiEnable)
{ // Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF
retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi, bLSSIReadBackData);
//DBG_8192C("Readback from RF-PI : 0x%x\n", retValue);
}
else
{ //Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF
retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack, bLSSIReadBackData);
//DBG_8192C("Readback from RF-SI : 0x%x\n", retValue);
}
//DBG_8192C("RFR-%d Addr[0x%x]=0x%x\n", eRFPath, pPhyReg->rfLSSIReadBack, retValue);
return retValue;
}
/**
* Function: phy_RFSerialWrite
*
* OverView: Write data to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
* u8 eRFPath, //Radio path of A/B/C/D
* u4Byte Offset, //The target address to be read
* u4Byte Data //The new register Data in the target bit position
* //of the target to be read
*
* Output: None
* Return: None
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*
* Note: For RF8256 only
* The total count of RTL8256(Zebra4) register is around 36 bit it only employs
* 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10])
* to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration
* programming guide" for more details.
* Thus, we define a sub-finction for RTL8526 register address conversion
* ===========================================================
* Register Mode RegCTL[1] RegCTL[0] Note
* (Reg00[12]) (Reg00[10])
* ===========================================================
* Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf)
* ------------------------------------------------------------------
*
* 2008/09/02 MH Add 92S RF definition
*
*
*
*/
static VOID
phy_RFSerialWrite(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 Offset,
IN u32 Data
)
{
u32 DataAndAddr = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
#if 0
//<Roger_TODO> We should check valid regs for RF_6052 case.
if(pHalData->RFChipID == RF_8225 && Offset > 0x24) //36 valid regs
return;
if(pHalData->RFChipID == RF_8256 && Offset > 0x2D) //45 valid regs
return;
#endif
// 2009/06/17 MH We can not execute IO for power save or other accident mode.
//if(RT_CANNOT_IO(Adapter))
//{
// RTPRINT(FPHY, PHY_RFW, ("phy_RFSerialWrite stop\n"));
// return;
//}
Offset &= 0xff;
//
// Shadow Update
//
//PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data);
//
// Switch page for 8256 RF IC
//
NewOffset = Offset;
//
// Put write addr in [5:0] and write data in [31:16]
//
//DataAndAddr = (Data<<16) | (NewOffset&0x3f);
DataAndAddr = ((NewOffset<<20) | (Data&0x000fffff)) & 0x0fffffff; // T65 RF
//
// Write Operation
//
PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
//RTPRINT(FPHY, PHY_RFW, ("RFW-%d Addr[0x%lx]=0x%lx\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr));
}
/**
* Function: PHY_QueryRFReg
*
* OverView: Query "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
* u8 eRFPath, //Radio path of A/B/C/D
* u4Byte RegAddr, //The target address to be read
* u4Byte BitMask //The target bit position in the target address
* //to be read
*
* Output: None
* Return: u4Byte Readback value
* Note: This function is equal to "GetRFRegSetting" in PHY programming guide
*/
u32
PHY_QueryRFReg8188E(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 RegAddr,
IN u32 BitMask
)
{
u32 Original_Value, Readback_Value, BitShift;
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//u8 RFWaitCounter = 0;
//_irqL irqL;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_QueryRFReg(): RegAddr(%#lx), eRFPath(%#x), BitMask(%#lx)\n", RegAddr, eRFPath,BitMask));
#ifdef CONFIG_USB_HCI
//PlatformAcquireMutex(&pHalData->mxRFOperate);
#else
//_enter_critical(&pHalData->rf_lock, &irqL);
#endif
Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
#ifdef CONFIG_USB_HCI
//PlatformReleaseMutex(&pHalData->mxRFOperate);
#else
//_exit_critical(&pHalData->rf_lock, &irqL);
#endif
//RTPRINT(FPHY, PHY_RFR, ("RFR-%d MASK=0x%lx Addr[0x%lx]=0x%lx\n", eRFPath, BitMask, RegAddr, Original_Value));//BitMask(%#lx),BitMask,
//RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_QueryRFReg(): RegAddr(%#lx), eRFPath(%#x), Original_Value(%#lx)\n",
// RegAddr, eRFPath, Original_Value));
return (Readback_Value);
}
/**
* Function: PHY_SetRFReg
*
* OverView: Write "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
* u8 eRFPath, //Radio path of A/B/C/D
* u4Byte RegAddr, //The target address to be modified
* u4Byte BitMask //The target bit position in the target address
* //to be modified
* u4Byte Data //The new register Data in the target bit position
* //of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRFRegSetting" in PHY programming guide
*/
VOID
PHY_SetRFReg8188E(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//u1Byte RFWaitCounter = 0;
u32 Original_Value, BitShift;
//_irqL irqL;
#if (DISABLE_BB_RF == 1)
return;
#endif
//RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_SetRFReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n",
// RegAddr, BitMask, Data, eRFPath));
//RTPRINT(FINIT, INIT_RF, ("PHY_SetRFReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n",
// RegAddr, BitMask, Data, eRFPath));
#ifdef CONFIG_USB_HCI
//PlatformAcquireMutex(&pHalData->mxRFOperate);
#else
//_enter_critical(&pHalData->rf_lock, &irqL);
#endif
// RF data is 12 bits only
if (BitMask != bRFRegOffsetMask)
{
Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
Data = ((Original_Value & (~BitMask)) | (Data<< BitShift));
}
phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data);
#ifdef CONFIG_USB_HCI
//PlatformReleaseMutex(&pHalData->mxRFOperate);
#else
//_exit_critical(&pHalData->rf_lock, &irqL);
#endif
//PHY_QueryRFReg(Adapter,eRFPath,RegAddr,BitMask);
//RT_TRACE(COMP_RF, DBG_TRACE, ("<---PHY_SetRFReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n",
// RegAddr, BitMask, Data, eRFPath));
}
//
// 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt.
//
/*-----------------------------------------------------------------------------
* Function: PHY_MACConfig8192C
*
* Overview: Condig MAC by header file or parameter file.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 08/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
s32 PHY_MACConfig8188E(PADAPTER Adapter)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
s8 *pszMACRegFile;
s8 sz8188EMACRegFile[] = RTL8188E_PHY_MACREG;
u16 val=0;
pszMACRegFile = sz8188EMACRegFile;
//
// Config MAC
//
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
rtStatus = phy_ConfigMACWithParaFile(Adapter, pszMACRegFile);
if (rtStatus == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if(HAL_STATUS_FAILURE == ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv))
rtStatus = _FAIL;
else
rtStatus = _SUCCESS;
#endif//CONFIG_EMBEDDED_FWIMG
}
// 2010.07.13 AMPDU aggregation number B
val |= MAX_AGGR_NUM;
val = val << 8;
val |= MAX_AGGR_NUM;
rtw_write16(Adapter, REG_MAX_AGGR_NUM, val);
//rtw_write8(Adapter, REG_MAX_AGGR_NUM, 0x0B);
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: phy_InitBBRFRegisterDefinition
*
* OverView: Initialize Register definition offset for Radio Path A/B/C/D
*
* Input:
* PADAPTER Adapter,
*
* Output: None
* Return: None
* Note: The initialization value is constant and it should never be changes
-----------------------------------------------------------------------------*/
static VOID
phy_InitBBRFRegisterDefinition(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
// RF Interface Sowrtware Control
pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 LSBs if read 32-bit from 0x870
pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872)
pHalData->PHYRegDef[RF_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 LSBs if read 32-bit from 0x874
pHalData->PHYRegDef[RF_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876)
// RF Interface Output (and Enable)
pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x860
pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x864
// RF Interface (Output and) Enable
pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862)
pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866)
//Addr of LSSI. Wirte RF register by driver
pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; //LSSI Parameter
pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
// Tranceiver A~D HSSI Parameter-2
pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; //wire control parameter2
pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; //wire control parameter2
// Tranceiver LSSI Readback SI mode
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;
// Tranceiver LSSI Readback PI mode
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
//pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBackPi = rFPGA0_XC_LSSIReadBack;
//pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBackPi = rFPGA0_XD_LSSIReadBack;
}
VOID
storePwrIndexDiffRateOffset(
IN PADAPTER Adapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(RegAddr == rTxAGC_A_Rate18_06)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][0]-TxAGC_A_Rate18_06 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0]);
}
if(RegAddr == rTxAGC_A_Rate54_24)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][1]-TxAGC_A_Rate54_24 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1]);
}
if(RegAddr == rTxAGC_A_CCK1_Mcs32)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][6]-TxAGC_A_CCK1_Mcs32 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6]);
}
if(RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == bMaskH3Bytes)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][7]-TxAGC_B_CCK11_A_CCK2_11 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7]);
}
if(RegAddr == rTxAGC_A_Mcs03_Mcs00)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][2]-TxAGC_A_Mcs03_Mcs00 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2]);
}
if(RegAddr == rTxAGC_A_Mcs07_Mcs04)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][3]-TxAGC_A_Mcs07_Mcs04 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3]);
}
if(RegAddr == rTxAGC_A_Mcs11_Mcs08)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][4]-TxAGC_A_Mcs11_Mcs08 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4]);
}
if(RegAddr == rTxAGC_A_Mcs15_Mcs12)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][5]-TxAGC_A_Mcs15_Mcs12 = 0x%x\n", pHalData->pwrGroupCnt,pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5]);
if(pHalData->rf_type== RF_1T1R)
{
//printk("pwrGroupCnt = %d\n", pHalData->pwrGroupCnt);
pHalData->pwrGroupCnt++;
}
}
if(RegAddr == rTxAGC_B_Rate18_06)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][8]-TxAGC_B_Rate18_06 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8]);
}
if(RegAddr == rTxAGC_B_Rate54_24)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][9]-TxAGC_B_Rate54_24 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9]);
}
if(RegAddr == rTxAGC_B_CCK1_55_Mcs32)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][14]-TxAGC_B_CCK1_55_Mcs32 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14]);
}
if(RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0x000000ff)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][15]-TxAGC_B_CCK11_A_CCK2_11 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15]);
}
if(RegAddr == rTxAGC_B_Mcs03_Mcs00)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][10]-TxAGC_B_Mcs03_Mcs00 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10]);
}
if(RegAddr == rTxAGC_B_Mcs07_Mcs04)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][11]-TxAGC_B_Mcs07_Mcs04 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11]);
}
if(RegAddr == rTxAGC_B_Mcs11_Mcs08)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][12]-TxAGC_B_Mcs11_Mcs08 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12]);
}
if(RegAddr == rTxAGC_B_Mcs15_Mcs12)
{
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13] = Data;
//printk("MCSTxPowerLevelOriginalOffset[%d][13]-TxAGC_B_Mcs15_Mcs12 = 0x%x\n", pHalData->pwrGroupCnt,
// pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13]);
if(pHalData->rf_type != RF_1T1R)
{
//printk("pwrGroupCnt = %d\n", pHalData->pwrGroupCnt);
pHalData->pwrGroupCnt++;
}
}
}
static VOID
phy_BB8192C_Config_1T(
IN PADAPTER Adapter
)
{
#if 0
//for path - A
PHY_SetBBReg(Adapter, rFPGA0_TxInfo, 0x3, 0x1);
PHY_SetBBReg(Adapter, rFPGA1_TxInfo, 0x0303, 0x0101);
PHY_SetBBReg(Adapter, 0xe74, 0x0c000000, 0x1);
PHY_SetBBReg(Adapter, 0xe78, 0x0c000000, 0x1);
PHY_SetBBReg(Adapter, 0xe7c, 0x0c000000, 0x1);
PHY_SetBBReg(Adapter, 0xe80, 0x0c000000, 0x1);
PHY_SetBBReg(Adapter, 0xe88, 0x0c000000, 0x1);
#endif
//for path - B
PHY_SetBBReg(Adapter, rFPGA0_TxInfo, 0x3, 0x2);
PHY_SetBBReg(Adapter, rFPGA1_TxInfo, 0x300033, 0x200022);
// 20100519 Joseph: Add for 1T2R config. Suggested by Kevin, Jenyu and Yunan.
PHY_SetBBReg(Adapter, rCCK0_AFESetting, bMaskByte3, 0x45);
PHY_SetBBReg(Adapter, rOFDM0_TRxPathEnable, bMaskByte0, 0x23);
PHY_SetBBReg(Adapter, rOFDM0_AGCParameter1, 0x30, 0x1); // B path first AGC
PHY_SetBBReg(Adapter, 0xe74, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe78, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe7c, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe80, 0x0c000000, 0x2);
PHY_SetBBReg(Adapter, 0xe88, 0x0c000000, 0x2);
}
// Joseph test: new initialize order!!
// Test only!! This part need to be re-organized.
// Now it is just for 8256.
static int
phy_BB8190_Config_HardCode(
IN PADAPTER Adapter
)
{
//RT_ASSERT(FALSE, ("This function is not implement yet!! \n"));
return _SUCCESS;
}
static int
phy_BB8188E_Config_ParaFile(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
u8 sz8188EBBRegFile[] = RTL8188E_PHY_REG;
u8 sz8188EAGCTableFile[] = RTL8188E_AGC_TAB;
u8 sz8188EBBRegPgFile[] = RTL8188E_PHY_REG_PG;
u8 sz8188EBBRegMpFile[] = RTL8188E_PHY_REG_MP;
u8 sz8188EBBRegLimitFile[] = RTL8188E_TXPWR_LMT;
u8 *pszBBRegFile = NULL, *pszAGCTableFile = NULL, *pszBBRegPgFile = NULL, *pszBBRegMpFile=NULL,
*pszRFTxPwrLmtFile = NULL;
//RT_TRACE(COMP_INIT, DBG_TRACE, ("==>phy_BB8192S_Config_ParaFile\n"));
pszBBRegFile = sz8188EBBRegFile ;
pszAGCTableFile = sz8188EAGCTableFile;
pszBBRegPgFile = sz8188EBBRegPgFile;
pszBBRegMpFile = sz8188EBBRegMpFile;
pszRFTxPwrLmtFile = sz8188EBBRegLimitFile;
PHY_InitTxPowerLimit( Adapter );
if ( Adapter->registrypriv.RegEnableTxPowerLimit == 1 ||
( Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory == 1 ) )
{
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (PHY_ConfigRFWithPowerLimitTableParaFile( Adapter, pszRFTxPwrLmtFile )== _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != ODM_ConfigRFWithHeaderFile(&pHalData->odmpriv, CONFIG_RF_TXPWR_LMT, (ODM_RF_RADIO_PATH_E)0))
rtStatus = _FAIL;
#endif
}
if(rtStatus != _SUCCESS){
DBG_871X("phy_BB8188E_Config_ParaFile():Read Tx power limit fail!!\n");
goto phy_BB8190_Config_ParaFile_Fail;
}
}
//
// 1. Read PHY_REG.TXT BB INIT!!
//
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, pszBBRegFile, CONFIG_BB_PHY_REG) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if(HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
rtStatus = _FAIL;
#endif
}
if(rtStatus != _SUCCESS){
//RT_TRACE(COMP_INIT, DBG_SERIOUS, ("phy_BB8192S_Config_ParaFile():Write BB Reg Fail!!"));
goto phy_BB8190_Config_ParaFile_Fail;
}
#if (MP_DRIVER == 1)
//
// 1.1 Read PHY_REG_MP.TXT BB INIT!!
//
if (Adapter->registrypriv.mp_mode == 1) {
//3 Read PHY_REG.TXT BB INIT!!
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithMpParaFile(Adapter, pszBBRegMpFile) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_MP))
rtStatus = _FAIL;
#endif
}
if(rtStatus != _SUCCESS){
DBG_871X("phy_BB8188E_Config_ParaFile():Write BB Reg MP Fail!!");
goto phy_BB8190_Config_ParaFile_Fail;
}
}
#endif // #if (MP_DRIVER == 1)
//
// 2. If EEPROM or EFUSE autoload OK, We must config by PHY_REG_PG.txt
//
PHY_InitTxPowerByRate( Adapter );
if ( ( Adapter->registrypriv.RegEnableTxPowerByRate == 1 ||
( Adapter->registrypriv.RegEnableTxPowerByRate == 2 && pHalData->EEPROMRegulatory != 2 ) ) )
{
pHalData->pwrGroupCnt = 0;
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithPgParaFile(Adapter, pszBBRegPgFile) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if(HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_PG))
rtStatus = _FAIL;
#endif
}
if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE )
PHY_TxPowerByRateConfiguration(Adapter);
if ( Adapter->registrypriv.RegEnableTxPowerLimit == 1 ||
( Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory == 1 ) )
PHY_ConvertTxPowerLimitToPowerIndex( Adapter );
if(rtStatus != _SUCCESS){
DBG_871X("%s(): CONFIG_BB_PHY_REG_PG Fail!!\n",__FUNCTION__ );
goto phy_BB8190_Config_ParaFile_Fail;
}
}
//
// 3. BB AGC table Initialization
//
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, pszAGCTableFile, CONFIG_BB_AGC_TAB) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if(HAL_STATUS_FAILURE ==ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_AGC_TAB))
rtStatus = _FAIL;
#endif
}
if(rtStatus != _SUCCESS){
//RT_TRACE(COMP_FPGA, DBG_SERIOUS, ("phy_BB8192S_Config_ParaFile():AGC Table Fail\n"));
goto phy_BB8190_Config_ParaFile_Fail;
}
phy_BB8190_Config_ParaFile_Fail:
return rtStatus;
}
int
PHY_BBConfig8188E(
IN PADAPTER Adapter
)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 RegVal;
u8 TmpU1B=0;
u8 value8,CrystalCap;
phy_InitBBRFRegisterDefinition(Adapter);
// Enable BB and RF
RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN);
rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal|BIT13|BIT0|BIT1));
// 20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF.
//rtw_write8(Adapter, REG_AFE_PLL_CTRL, 0x83);
//rtw_write8(Adapter, REG_AFE_PLL_CTRL+1, 0xdb);
rtw_write8(Adapter, REG_RF_CTRL, RF_EN|RF_RSTB|RF_SDMRSTB);
#ifdef CONFIG_USB_HCI
rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB);
#else
rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_PPLL|FEN_PCIEA|FEN_DIO_PCIE|FEN_BB_GLB_RSTn|FEN_BBRSTB);
#endif
#if 0
#ifdef CONFIG_USB_HCI
//To Fix MAC loopback mode fail. Suggested by SD4 Johnny. 2010.03.23.
rtw_write8(Adapter, REG_LDOHCI12_CTRL, 0x0f);
rtw_write8(Adapter, 0x15, 0xe9);
#endif
rtw_write8(Adapter, REG_AFE_XTAL_CTRL+1, 0x80);
#endif
#ifdef CONFIG_USB_HCI
//rtw_write8(Adapter, 0x15, 0xe9);
#endif
#ifdef CONFIG_PCI_HCI
// Force use left antenna by default for 88C.
if(Adapter->ledpriv.LedStrategy != SW_LED_MODE10)
{
RegVal = rtw_read32(Adapter, REG_LEDCFG0);
rtw_write32(Adapter, REG_LEDCFG0, RegVal|BIT23);
}
#endif
//
// Config BB and AGC
//
rtStatus = phy_BB8188E_Config_ParaFile(Adapter);
// write 0x24[16:11] = 0x24[22:17] = CrystalCap
CrystalCap = pHalData->CrystalCap & 0x3F;
PHY_SetBBReg(Adapter, REG_AFE_XTAL_CTRL, 0x7ff800, (CrystalCap | (CrystalCap << 6)));
return rtStatus;
}
int
PHY_RFConfig8188E(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
//
// RF config
//
rtStatus = PHY_RF6052_Config8188E(Adapter);
#if 0
switch(pHalData->rf_chip)
{
case RF_6052:
rtStatus = PHY_RF6052_Config(Adapter);
break;
case RF_8225:
rtStatus = PHY_RF8225_Config(Adapter);
break;
case RF_8256:
rtStatus = PHY_RF8256_Config(Adapter);
break;
case RF_8258:
break;
case RF_PSEUDO_11N:
rtStatus = PHY_RF8225_Config(Adapter);
break;
default: //for MacOs Warning: "RF_TYPE_MIN" not handled in switch
break;
}
#endif
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: PHY_ConfigRFWithParaFile()
*
* Overview: This function read RF parameters from general file format, and do RF 3-wire
*
* Input: PADAPTER Adapter
* ps1Byte pFileName
* u8 eRFPath
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: Delay may be required for RF configuration
*---------------------------------------------------------------------------*/
int
rtl8188e_PHY_ConfigRFWithParaFile(
IN PADAPTER Adapter,
IN u8* pFileName,
IN u8 eRFPath
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
return rtStatus;
}
//****************************************
// The following is for High Power PA
//****************************************
#define HighPowerRadioAArrayLen 22
//This is for High power PA
u32 Rtl8192S_HighPower_RadioA_Array[HighPowerRadioAArrayLen] = {
0x013,0x00029ea4,
0x013,0x00025e74,
0x013,0x00020ea4,
0x013,0x0001ced0,
0x013,0x00019f40,
0x013,0x00014e70,
0x013,0x000106a0,
0x013,0x0000c670,
0x013,0x000082a0,
0x013,0x00004270,
0x013,0x00000240,
};
//****************************************
/*-----------------------------------------------------------------------------
* Function: GetTxPowerLevel8190()
*
* Overview: This function is export to "common" moudule
*
* Input: PADAPTER Adapter
* psByte Power Level
*
* Output: NONE
*
* Return: NONE
*
*---------------------------------------------------------------------------*/
VOID
PHY_GetTxPowerLevel8188E(
IN PADAPTER Adapter,
OUT s32* powerlevel
)
{
#if 0
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
s4Byte TxPwrDbm = 13;
RT_TRACE(COMP_TXAGC, DBG_LOUD, ("PHY_GetTxPowerLevel8188E(): TxPowerLevel: %#x\n", TxPwrDbm));
if ( pMgntInfo->ClientConfigPwrInDbm != UNSPECIFIED_PWR_DBM )
*powerlevel = pMgntInfo->ClientConfigPwrInDbm;
else
*powerlevel = TxPwrDbm;
#endif
}
/*-----------------------------------------------------------------------------
* Function: SetTxPowerLevel8190()
*
* Overview: This function is export to "HalCommon" moudule
* We must consider RF path later!!!!!!!
*
* Input: PADAPTER Adapter
* u1Byte channel
*
* Output: NONE
*
* Return: NONE
* 2008/11/04 MHC We remove EEPROM_93C56.
* We need to move CCX relative code to independet file.
* 2009/01/21 MHC Support new EEPROM format from SD3 requirement.
*
*---------------------------------------------------------------------------*/
VOID
PHY_SetTxPowerLevel8188E(
IN PADAPTER Adapter,
IN u8 Channel
)
{
//DBG_871X("==>PHY_SetTxPowerLevel8188E()\n");
PHY_SetTxPowerLevelByPath(Adapter, Channel, ODM_RF_PATH_A);
//DBG_871X("<==PHY_SetTxPowerLevel8188E()\n");
}
VOID
PHY_SetTxPowerIndex_8188E(
IN PADAPTER Adapter,
IN u32 PowerIndex,
IN u8 RFPath,
IN u8 Rate
)
{
if (RFPath == ODM_RF_PATH_A)
{
switch (Rate)
{
case MGN_1M: PHY_SetBBReg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, PowerIndex); break;
case MGN_2M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte1, PowerIndex); break;
case MGN_5_5M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte2, PowerIndex); break;
case MGN_11M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte3, PowerIndex); break;
case MGN_6M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte0, PowerIndex); break;
case MGN_9M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte1, PowerIndex); break;
case MGN_12M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte2, PowerIndex); break;
case MGN_18M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte3, PowerIndex); break;
case MGN_24M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte0, PowerIndex); break;
case MGN_36M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte1, PowerIndex); break;
case MGN_48M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte2, PowerIndex); break;
case MGN_54M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte3, PowerIndex); break;
case MGN_MCS0: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte0, PowerIndex); break;
case MGN_MCS1: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte1, PowerIndex); break;
case MGN_MCS2: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte2, PowerIndex); break;
case MGN_MCS3: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte3, PowerIndex); break;
case MGN_MCS4: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte0, PowerIndex); break;
case MGN_MCS5: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte1, PowerIndex); break;
case MGN_MCS6: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte2, PowerIndex); break;
case MGN_MCS7: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte3, PowerIndex); break;
case MGN_MCS8: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte0, PowerIndex); break;
case MGN_MCS9: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte1, PowerIndex); break;
case MGN_MCS10: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte2, PowerIndex); break;
case MGN_MCS11: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte3, PowerIndex); break;
case MGN_MCS12: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte0, PowerIndex); break;
case MGN_MCS13: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte1, PowerIndex); break;
case MGN_MCS14: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte2, PowerIndex); break;
case MGN_MCS15: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte3, PowerIndex); break;
default:
DBG_871X("Invalid Rate!!\n");
break;
}
}
else if (RFPath == ODM_RF_PATH_B)
{
switch (Rate)
{
case MGN_1M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte1, PowerIndex); break;
case MGN_2M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte2, PowerIndex); break;
case MGN_5_5M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte3, PowerIndex); break;
case MGN_11M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, PowerIndex); break;
case MGN_6M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate18_06, bMaskByte0, PowerIndex); break;
case MGN_9M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate18_06, bMaskByte1, PowerIndex); break;
case MGN_12M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate18_06, bMaskByte2, PowerIndex); break;
case MGN_18M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate18_06, bMaskByte3, PowerIndex); break;
case MGN_24M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate54_24, bMaskByte0, PowerIndex); break;
case MGN_36M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate54_24, bMaskByte1, PowerIndex); break;
case MGN_48M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate54_24, bMaskByte2, PowerIndex); break;
case MGN_54M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate54_24, bMaskByte3, PowerIndex); break;
case MGN_MCS0: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte0, PowerIndex); break;
case MGN_MCS1: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte1, PowerIndex); break;
case MGN_MCS2: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte2, PowerIndex); break;
case MGN_MCS3: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte3, PowerIndex); break;
case MGN_MCS4: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte0, PowerIndex); break;
case MGN_MCS5: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte1, PowerIndex); break;
case MGN_MCS6: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte2, PowerIndex); break;
case MGN_MCS7: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte3, PowerIndex); break;
case MGN_MCS8: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte0, PowerIndex); break;
case MGN_MCS9: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte1, PowerIndex); break;
case MGN_MCS10: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte2, PowerIndex); break;
case MGN_MCS11: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte3, PowerIndex); break;
case MGN_MCS12: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte0, PowerIndex); break;
case MGN_MCS13: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte1, PowerIndex); break;
case MGN_MCS14: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte2, PowerIndex); break;
case MGN_MCS15: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte3, PowerIndex); break;
default:
DBG_871X("Invalid Rate!!\n");
break;
}
}
else
{
DBG_871X("Invalid RFPath!!\n");
}
}
u8
phy_GetCurrentTxNum_8188E(
IN PADAPTER pAdapter,
IN u8 Rate
)
{
u8 tmpByte = 0;
u32 tmpDWord = 0;
u8 TxNum = RF_TX_NUM_NONIMPLEMENT;
if ( ( Rate >= MGN_MCS8 && Rate <= MGN_MCS15 ) )
TxNum = RF_2TX;
else
TxNum = RF_1TX;
return TxNum;
}
s8 tx_power_extra_bias(
IN u8 RFPath,
IN u8 Rate,
IN CHANNEL_WIDTH BandWidth,
IN u8 Channel
)
{
s8 bias = 0;
if (Rate == MGN_2M)
bias = -9;
return bias;
}
u8
PHY_GetTxPowerIndex_8188E(
IN PADAPTER pAdapter,
IN u8 RFPath,
IN u8 Rate,
IN CHANNEL_WIDTH BandWidth,
IN u8 Channel
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
u8 base_index = 0;
s8 by_rate_diff = 0, txPower = 0, limit = 0, track_diff = 0, extra_bias = 0;
u8 txNum = phy_GetCurrentTxNum_8188E(pAdapter, Rate);
BOOLEAN bIn24G = _FALSE;
base_index = PHY_GetTxPowerIndexBase(pAdapter,RFPath, Rate, BandWidth, Channel, &bIn24G);
by_rate_diff = PHY_GetTxPowerByRate(pAdapter, BAND_ON_2_4G, RFPath, txNum, Rate);
limit = PHY_GetTxPowerLimit(pAdapter, pAdapter->registrypriv.RegPwrTblSel, (u8)(!bIn24G), pHalData->CurrentChannelBW, RFPath, Rate, pHalData->CurrentChannel);
by_rate_diff = by_rate_diff > limit ? limit : by_rate_diff;
track_diff = PHY_GetTxPowerTrackingOffset(pAdapter, RFPath, Rate);
if (pAdapter->registrypriv.mp_mode != 1)
extra_bias = tx_power_extra_bias(RFPath, Rate, BandWidth, Channel);
txPower = base_index + by_rate_diff + track_diff + extra_bias;
if(txPower > MAX_POWER_INDEX)
txPower = MAX_POWER_INDEX;
if (0)
DBG_871X("RF-%c ch%d TxPwrIdx = %d(0x%X) [%2u %2d %2d %2d]\n"
, ((RFPath==0)?'A':'B'), Channel, txPower, txPower, base_index, by_rate_diff, track_diff, extra_bias);
return (u8)txPower;
}
//
// Description:
// Update transmit power level of all channel supported.
//
// TODO:
// A mode.
// By Bruce, 2008-02-04.
//
BOOLEAN
PHY_UpdateTxPowerDbm8188E(
IN PADAPTER Adapter,
IN int powerInDbm
)
{
return _TRUE;
}
VOID
PHY_ScanOperationBackup8188E(
IN PADAPTER Adapter,
IN u8 Operation
)
{
#if 0
IO_TYPE IoType;
if (!rtw_is_drv_stopped(padapter)) {
switch(Operation)
{
case SCAN_OPT_BACKUP:
IoType = IO_CMD_PAUSE_DM_BY_SCAN;
rtw_hal_set_hwreg(Adapter,HW_VAR_IO_CMD, (pu1Byte)&IoType);
break;
case SCAN_OPT_RESTORE:
IoType = IO_CMD_RESUME_DM_BY_SCAN;
rtw_hal_set_hwreg(Adapter,HW_VAR_IO_CMD, (pu1Byte)&IoType);
break;
default:
RT_TRACE(COMP_SCAN, DBG_LOUD, ("Unknown Scan Backup Operation. \n"));
break;
}
}
#endif
}
void
phy_SpurCalibration_8188E(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//DbgPrint("===> phy_SpurCalibration_8188E CurrentChannelBW = %d, CurrentChannel = %d\n", pHalData->CurrentChannelBW, pHalData->CurrentChannel);
if(pHalData->CurrentChannelBW == CHANNEL_WIDTH_20 &&( pHalData->CurrentChannel == 13 || pHalData->CurrentChannel == 14)){
PHY_SetBBReg(Adapter, rOFDM0_RxDSP, BIT(9), 0x1); //enable notch filter
PHY_SetBBReg(Adapter, rOFDM1_IntfDet, BIT(8)|BIT(7)|BIT(6), 0x2); //intf_TH
}
else if(pHalData->CurrentChannelBW == CHANNEL_WIDTH_40 && pHalData->CurrentChannel == 11){
PHY_SetBBReg(Adapter, rOFDM0_RxDSP, BIT(9), 0x1); //enable notch filter
PHY_SetBBReg(Adapter, rOFDM1_IntfDet, BIT(8)|BIT(7)|BIT(6), 0x2); //intf_TH
}
else{
if(Adapter->registrypriv.notch_filter == 0)
PHY_SetBBReg(Adapter, rOFDM0_RxDSP, BIT(9), 0x0); //disable notch filter
}
}
/*-----------------------------------------------------------------------------
* Function: PHY_SetBWModeCallback8192C()
*
* Overview: Timer callback function for SetSetBWMode
*
* Input: PRT_TIMER pTimer
*
* Output: NONE
*
* Return: NONE
*
* Note: (1) We do not take j mode into consideration now
* (2) Will two workitem of "switch channel" and "switch channel bandwidth" run
* concurrently?
*---------------------------------------------------------------------------*/
static VOID
_PHY_SetBWMode88E(
IN PADAPTER Adapter
)
{
// PADAPTER Adapter = (PADAPTER)pTimer->Adapter;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 regBwOpMode;
u8 regRRSR_RSC;
//return;
// Added it for 20/40 mhz switch time evaluation by guangan 070531
//u4Byte NowL, NowH;
//u8Byte BeginTime, EndTime;
/*RT_TRACE(COMP_SCAN, DBG_LOUD, ("==>PHY_SetBWModeCallback8192C() Switch to %s bandwidth\n", \
pHalData->CurrentChannelBW == CHANNEL_WIDTH_20?"20MHz":"40MHz"))*/
if(pHalData->rf_chip == RF_PSEUDO_11N)
{
//pHalData->SetBWModeInProgress= _FALSE;
return;
}
// There is no 40MHz mode in RF_8225.
if(pHalData->rf_chip==RF_8225)
return;
if (rtw_is_drv_stopped(Adapter))
return;
// Added it for 20/40 mhz switch time evaluation by guangan 070531
//NowL = PlatformEFIORead4Byte(Adapter, TSFR);
//NowH = PlatformEFIORead4Byte(Adapter, TSFR+4);
//BeginTime = ((u8Byte)NowH << 32) + NowL;
//3//
//3//<1>Set MAC register
//3//
//Adapter->HalFunc.SetBWModeHandler();
regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE);
regRRSR_RSC = rtw_read8(Adapter, REG_RRSR+2);
//regBwOpMode = rtw_hal_get_hwreg(Adapter,HW_VAR_BWMODE,(pu1Byte)&regBwOpMode);
switch(pHalData->CurrentChannelBW)
{
case CHANNEL_WIDTH_20:
regBwOpMode |= BW_OPMODE_20MHZ;
// 2007/02/07 Mark by Emily becasue we have not verify whether this register works
rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
break;
case CHANNEL_WIDTH_40:
regBwOpMode &= ~BW_OPMODE_20MHZ;
// 2007/02/07 Mark by Emily becasue we have not verify whether this register works
rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
regRRSR_RSC = (regRRSR_RSC&0x90) |(pHalData->nCur40MhzPrimeSC<<5);
rtw_write8(Adapter, REG_RRSR+2, regRRSR_RSC);
break;
default:
/*RT_TRACE(COMP_DBG, DBG_LOUD, ("PHY_SetBWModeCallback8192C():
unknown Bandwidth: %#X\n",pHalData->CurrentChannelBW));*/
break;
}
//3//
//3//<2>Set PHY related register
//3//
switch(pHalData->CurrentChannelBW)
{
/* 20 MHz channel*/
case CHANNEL_WIDTH_20:
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0);
PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0);
//PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1);
break;
/* 40 MHz channel*/
case CHANNEL_WIDTH_40:
PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1);
PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1);
// Set Control channel to upper or lower. These settings are required only for 40MHz
PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1));
PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC);
//PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 0);
PHY_SetBBReg(Adapter, 0x818, (BIT26|BIT27), (pHalData->nCur40MhzPrimeSC==HAL_PRIME_CHNL_OFFSET_LOWER)?2:1);
break;
default:
/*RT_TRACE(COMP_DBG, DBG_LOUD, ("PHY_SetBWModeCallback8192C(): unknown Bandwidth: %#X\n"\
,pHalData->CurrentChannelBW));*/
break;
}
//Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315
// Added it for 20/40 mhz switch time evaluation by guangan 070531
//NowL = PlatformEFIORead4Byte(Adapter, TSFR);
//NowH = PlatformEFIORead4Byte(Adapter, TSFR+4);
//EndTime = ((u8Byte)NowH << 32) + NowL;
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("SetBWModeCallback8190Pci: time of SetBWMode = %I64d us!\n", (EndTime - BeginTime)));
//3<3>Set RF related register
switch(pHalData->rf_chip)
{
case RF_8225:
//PHY_SetRF8225Bandwidth(Adapter, pHalData->CurrentChannelBW);
break;
case RF_8256:
// Please implement this function in Hal8190PciPhy8256.c
//PHY_SetRF8256Bandwidth(Adapter, pHalData->CurrentChannelBW);
break;
case RF_8258:
// Please implement this function in Hal8190PciPhy8258.c
// PHY_SetRF8258Bandwidth();
break;
case RF_PSEUDO_11N:
// Do Nothing
break;
case RF_6052:
rtl8188e_PHY_RF6052SetBandwidth(Adapter, pHalData->CurrentChannelBW);
break;
default:
//RT_ASSERT(FALSE, ("Unknown RFChipID: %d\n", pHalData->RFChipID));
break;
}
//pHalData->SetBWModeInProgress= FALSE;
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("<==PHY_SetBWModeCallback8192C() \n" ));
}
/*-----------------------------------------------------------------------------
* Function: SetBWMode8190Pci()
*
* Overview: This function is export to "HalCommon" moudule
*
* Input: PADAPTER Adapter
* CHANNEL_WIDTH Bandwidth //20M or 40M
*
* Output: NONE
*
* Return: NONE
*
* Note: We do not take j mode into consideration now
*---------------------------------------------------------------------------*/
VOID
PHY_SetBWMode8188E(
IN PADAPTER Adapter,
IN CHANNEL_WIDTH Bandwidth, // 20M or 40M
IN unsigned char Offset // Upper, Lower, or Don't care
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
CHANNEL_WIDTH tmpBW= pHalData->CurrentChannelBW;
// Modified it for 20/40 mhz switch by guangan 070531
//PMGNT_INFO pMgntInfo=&Adapter->MgntInfo;
//return;
//if(pHalData->SwChnlInProgress)
// if(pMgntInfo->bScanInProgress)
// {
// RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() %s Exit because bScanInProgress!\n",
// Bandwidth == CHANNEL_WIDTH_20?"20MHz":"40MHz"));
// return;
// }
// if(pHalData->SetBWModeInProgress)
// {
// // Modified it for 20/40 mhz switch by guangan 070531
// RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() %s cancel last timer because SetBWModeInProgress!\n",
// Bandwidth == CHANNEL_WIDTH_20?"20MHz":"40MHz"));
// PlatformCancelTimer(Adapter, &pHalData->SetBWModeTimer);
// //return;
// }
//if(pHalData->SetBWModeInProgress)
// return;
//pHalData->SetBWModeInProgress= TRUE;
pHalData->CurrentChannelBW = Bandwidth;
#if 0
if(Offset==EXTCHNL_OFFSET_LOWER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if(Offset==EXTCHNL_OFFSET_UPPER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
#else
pHalData->nCur40MhzPrimeSC = Offset;
#endif
if (!RTW_CANNOT_RUN(Adapter)) {
#if 0
//PlatformSetTimer(Adapter, &(pHalData->SetBWModeTimer), 0);
#else
_PHY_SetBWMode88E(Adapter);
#endif
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI)
if(IS_VENDOR_8188E_I_CUT_SERIES(Adapter))
phy_SpurCalibration_8188E( Adapter);
#endif
}
else
{
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() SetBWModeInProgress FALSE driver sleep or unload\n"));
//pHalData->SetBWModeInProgress= FALSE;
pHalData->CurrentChannelBW = tmpBW;
}
}
static void _PHY_SwChnl8188E(PADAPTER Adapter, u8 channel)
{
u8 eRFPath;
u32 param1, param2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if ( Adapter->bNotifyChannelChange )
{
DBG_871X( "[%s] ch = %d\n", __FUNCTION__, channel );
}
//s1. pre common command - CmdID_SetTxPowerLevel
PHY_SetTxPowerLevel8188E(Adapter, channel);
//s2. RF dependent command - CmdID_RF_WriteReg, param1=RF_CHNLBW, param2=channel
param1 = RF_CHNLBW;
param2 = channel;
for(eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
{
pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | param2);
PHY_SetRFReg(Adapter, eRFPath, param1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]);
}
//s3. post common command - CmdID_End, None
}
VOID
PHY_SwChnl8188E( // Call after initialization
IN PADAPTER Adapter,
IN u8 channel
)
{
//PADAPTER Adapter = ADJUST_TO_ADAPTIVE_ADAPTER(pAdapter, _TRUE);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 tmpchannel = pHalData->CurrentChannel;
BOOLEAN bResult = _TRUE;
if(pHalData->rf_chip == RF_PSEUDO_11N)
{
//pHalData->SwChnlInProgress=FALSE;
return; //return immediately if it is peudo-phy
}
//if(pHalData->SwChnlInProgress)
// return;
//if(pHalData->SetBWModeInProgress)
// return;
while(pHalData->odmpriv.RFCalibrateInfo.bLCKInProgress)
{
rtw_msleep_os(50);
}
//--------------------------------------------
switch(pHalData->CurrentWirelessMode)
{
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_5G:
//RT_ASSERT((channel>14), ("WIRELESS_MODE_A but channel<=14"));
break;
case WIRELESS_MODE_B:
//RT_ASSERT((channel<=14), ("WIRELESS_MODE_B but channel>14"));
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
//RT_ASSERT((channel<=14), ("WIRELESS_MODE_G but channel>14"));
break;
default:
//RT_ASSERT(FALSE, ("Invalid WirelessMode(%#x)!!\n", pHalData->CurrentWirelessMode));
break;
}
//--------------------------------------------
//pHalData->SwChnlInProgress = TRUE;
if(channel == 0)
channel = 1;
pHalData->CurrentChannel=channel;
//pHalData->SwChnlStage=0;
//pHalData->SwChnlStep=0;
if (!RTW_CANNOT_RUN(Adapter)) {
#if 0
//PlatformSetTimer(Adapter, &(pHalData->SwChnlTimer), 0);
#else
_PHY_SwChnl8188E(Adapter, channel);
#endif
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI)
if(IS_VENDOR_8188E_I_CUT_SERIES(Adapter))
phy_SpurCalibration_8188E( Adapter);
#endif
if(bResult)
{
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SwChnl8192C SwChnlInProgress TRUE schdule workitem done\n"));
}
else
{
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SwChnl8192C SwChnlInProgress FALSE schdule workitem error\n"));
//if(IS_HARDWARE_TYPE_8192SU(Adapter))
//{
// pHalData->SwChnlInProgress = FALSE;
pHalData->CurrentChannel = tmpchannel;
//}
}
}
else
{
//RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SwChnl8192C SwChnlInProgress FALSE driver sleep or unload\n"));
//if(IS_HARDWARE_TYPE_8192SU(Adapter))
//{
// pHalData->SwChnlInProgress = FALSE;
pHalData->CurrentChannel = tmpchannel;
//}
}
}
VOID
PHY_SetSwChnlBWMode8188E(
IN PADAPTER Adapter,
IN u8 channel,
IN CHANNEL_WIDTH Bandwidth,
IN u8 Offset40,
IN u8 Offset80
)
{
//DBG_871X("%s()===>\n",__FUNCTION__);
PHY_SwChnl8188E(Adapter, channel);
PHY_SetBWMode8188E(Adapter, Bandwidth, Offset40);
//DBG_871X("<==%s()\n",__FUNCTION__);
}
//
// Description:
// Configure H/W functionality to enable/disable Monitor mode.
// Note, because we possibly need to configure BB and RF in this function,
// so caller should in PASSIVE_LEVEL. 080118, by rcnjko.
//
VOID
PHY_SetMonitorMode8192C(
IN PADAPTER pAdapter,
IN BOOLEAN bEnableMonitorMode
)
{
#if 0
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
BOOLEAN bFilterOutNonAssociatedBSSID = FALSE;
//2 Note: we may need to stop antenna diversity.
if(bEnableMonitorMode)
{
bFilterOutNonAssociatedBSSID = FALSE;
RT_TRACE(COMP_RM, DBG_LOUD, ("PHY_SetMonitorMode8192S(): enable monitor mode\n"));
pHalData->bInMonitorMode = TRUE;
pAdapter->HalFunc.AllowAllDestAddrHandler(pAdapter, TRUE, TRUE);
rtw_hal_set_hwreg(pAdapter, HW_VAR_CHECK_BSSID, (pu1Byte)&bFilterOutNonAssociatedBSSID);
}
else
{
bFilterOutNonAssociatedBSSID = TRUE;
RT_TRACE(COMP_RM, DBG_LOUD, ("PHY_SetMonitorMode8192S(): disable monitor mode\n"));
pAdapter->HalFunc.AllowAllDestAddrHandler(pAdapter, FALSE, TRUE);
pHalData->bInMonitorMode = FALSE;
rtw_hal_set_hwreg(pAdapter, HW_VAR_CHECK_BSSID, (pu1Byte)&bFilterOutNonAssociatedBSSID);
}
#endif
}
/*-----------------------------------------------------------------------------
* Function: PHYCheckIsLegalRfPath8190Pci()
*
* Overview: Check different RF type to execute legal judgement. If RF Path is illegal
* We will return false.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/15/2007 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
BOOLEAN
PHY_CheckIsLegalRfPath8192C(
IN PADAPTER pAdapter,
IN u32 eRFPath)
{
// HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
BOOLEAN rtValue = _TRUE;
// NOt check RF Path now.!
#if 0
if (pHalData->RF_Type == RF_1T2R && eRFPath != RF_PATH_A)
{
rtValue = FALSE;
}
if (pHalData->RF_Type == RF_1T2R && eRFPath != RF_PATH_A)
{
}
#endif
return rtValue;
} /* PHY_CheckIsLegalRfPath8192C */
static VOID _PHY_SetRFPathSwitch(
IN PADAPTER pAdapter,
IN BOOLEAN bMain,
IN BOOLEAN is2T
)
{
u8 u1bTmp;
if (!rtw_is_hw_init_completed(pAdapter)) {
u1bTmp = rtw_read8(pAdapter, REG_LEDCFG2) | BIT7;
rtw_write8(pAdapter, REG_LEDCFG2, u1bTmp);
//PHY_SetBBReg(pAdapter, REG_LEDCFG0, BIT23, 0x01);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01);
}
if(is2T)
{
if(bMain)
PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x1); //92C_Path_A
else
PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x2); //BT
}
else
{
if(bMain)
PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x2); //Main
else
PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300, 0x1); //Aux
}
}
//return value TRUE => Main; FALSE => Aux
static BOOLEAN _PHY_QueryRFPathSwitch(
IN PADAPTER pAdapter,
IN BOOLEAN is2T
)
{
// if(is2T)
// return _TRUE;
if (!rtw_is_hw_init_completed(pAdapter)) {
PHY_SetBBReg(pAdapter, REG_LEDCFG0, BIT23, 0x01);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT13, 0x01);
}
if(is2T)
{
if(PHY_QueryBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6) == 0x01)
return _TRUE;
else
return _FALSE;
}
else
{
if(PHY_QueryBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, 0x300) == 0x02)
return _TRUE;
else
return _FALSE;
}
}
static VOID
_PHY_DumpRFReg(IN PADAPTER pAdapter)
{
u32 rfRegValue,rfRegOffset;
//RTPRINT(FINIT, INIT_RF, ("PHY_DumpRFReg()====>\n"));
for(rfRegOffset = 0x00;rfRegOffset<=0x30;rfRegOffset++){
rfRegValue = PHY_QueryRFReg(pAdapter,RF_PATH_A, rfRegOffset, bMaskDWord);
//RTPRINT(FINIT, INIT_RF, (" 0x%02x = 0x%08x\n",rfRegOffset,rfRegValue));
}
//RTPRINT(FINIT, INIT_RF, ("<===== PHY_DumpRFReg()\n"));
}
//
// Move from phycfg.c to gen.c to be code independent later
//
//-------------------------Move to other DIR later----------------------------*/
#ifdef CONFIG_USB_HCI
//
// Description:
// To dump all Tx FIFO LLT related link-list table.
// Added by Roger, 2009.03.10.
//
VOID
DumpBBDbgPort_92CU(
IN PADAPTER Adapter
)
{
//RT_TRACE(COMP_SEND, DBG_WARNING, ("\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("BaseBand Debug Ports:\n"));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0000);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0803);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0a06);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0007);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0100);
PHY_SetBBReg(Adapter, 0x0a28, 0x00ff0000, 0x000f0000);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
PHY_SetBBReg(Adapter, 0x0908, 0xffff, 0x0100);
PHY_SetBBReg(Adapter, 0x0a28, 0x00ff0000, 0x00150000);
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xdf4, PHY_QueryBBReg(Adapter, 0x0df4, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0x800, PHY_QueryBBReg(Adapter, 0x0800, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0x900, PHY_QueryBBReg(Adapter, 0x0900, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xa00, PHY_QueryBBReg(Adapter, 0x0a00, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xa54, PHY_QueryBBReg(Adapter, 0x0a54, bMaskDWord)));
//RT_TRACE(COMP_SEND, DBG_WARNING, ("Offset[%x]: %x\n", 0xa58, PHY_QueryBBReg(Adapter, 0x0a58, bMaskDWord)));
}
#endif