912 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			912 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2018 Chen-Yu Tsai
 | |
|  *
 | |
|  * Chen-Yu Tsai <wens@csie.org>
 | |
|  *
 | |
|  * arch/arm/mach-sunxi/mc_smp.c
 | |
|  *
 | |
|  * Based on Allwinner code, arch/arm/mach-exynos/mcpm-exynos.c, and
 | |
|  * arch/arm/mach-hisi/platmcpm.c
 | |
|  * Cluster cache enable trampoline code adapted from MCPM framework
 | |
|  */
 | |
| 
 | |
| #include <linux/arm-cci.h>
 | |
| #include <linux/cpu_pm.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/iopoll.h>
 | |
| #include <linux/irqchip/arm-gic.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/smp.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cp15.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/idmap.h>
 | |
| #include <asm/smp_plat.h>
 | |
| #include <asm/suspend.h>
 | |
| 
 | |
| #define SUNXI_CPUS_PER_CLUSTER		4
 | |
| #define SUNXI_NR_CLUSTERS		2
 | |
| 
 | |
| #define POLL_USEC	100
 | |
| #define TIMEOUT_USEC	100000
 | |
| 
 | |
| #define CPUCFG_CX_CTRL_REG0(c)		(0x10 * (c))
 | |
| #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(n)	BIT(n)
 | |
| #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL	0xf
 | |
| #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7	BIT(4)
 | |
| #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15	BIT(0)
 | |
| #define CPUCFG_CX_CTRL_REG1(c)		(0x10 * (c) + 0x4)
 | |
| #define CPUCFG_CX_CTRL_REG1_ACINACTM	BIT(0)
 | |
| #define CPUCFG_CX_STATUS(c)		(0x30 + 0x4 * (c))
 | |
| #define CPUCFG_CX_STATUS_STANDBYWFI(n)	BIT(16 + (n))
 | |
| #define CPUCFG_CX_STATUS_STANDBYWFIL2	BIT(0)
 | |
| #define CPUCFG_CX_RST_CTRL(c)		(0x80 + 0x4 * (c))
 | |
| #define CPUCFG_CX_RST_CTRL_DBG_SOC_RST	BIT(24)
 | |
| #define CPUCFG_CX_RST_CTRL_ETM_RST(n)	BIT(20 + (n))
 | |
| #define CPUCFG_CX_RST_CTRL_ETM_RST_ALL	(0xf << 20)
 | |
| #define CPUCFG_CX_RST_CTRL_DBG_RST(n)	BIT(16 + (n))
 | |
| #define CPUCFG_CX_RST_CTRL_DBG_RST_ALL	(0xf << 16)
 | |
| #define CPUCFG_CX_RST_CTRL_H_RST	BIT(12)
 | |
| #define CPUCFG_CX_RST_CTRL_L2_RST	BIT(8)
 | |
| #define CPUCFG_CX_RST_CTRL_CX_RST(n)	BIT(4 + (n))
 | |
| #define CPUCFG_CX_RST_CTRL_CORE_RST(n)	BIT(n)
 | |
| #define CPUCFG_CX_RST_CTRL_CORE_RST_ALL	(0xf << 0)
 | |
| 
 | |
| #define PRCM_CPU_PO_RST_CTRL(c)		(0x4 + 0x4 * (c))
 | |
| #define PRCM_CPU_PO_RST_CTRL_CORE(n)	BIT(n)
 | |
| #define PRCM_CPU_PO_RST_CTRL_CORE_ALL	0xf
 | |
| #define PRCM_PWROFF_GATING_REG(c)	(0x100 + 0x4 * (c))
 | |
| /* The power off register for clusters are different from a80 and a83t */
 | |
| #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I	BIT(0)
 | |
| #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I	BIT(4)
 | |
| #define PRCM_PWROFF_GATING_REG_CORE(n)	BIT(n)
 | |
| #define PRCM_PWR_SWITCH_REG(c, cpu)	(0x140 + 0x10 * (c) + 0x4 * (cpu))
 | |
| #define PRCM_CPU_SOFT_ENTRY_REG		0x164
 | |
| 
 | |
| /* R_CPUCFG registers, specific to sun8i-a83t */
 | |
| #define R_CPUCFG_CLUSTER_PO_RST_CTRL(c)	(0x30 + (c) * 0x4)
 | |
| #define R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(n)	BIT(n)
 | |
| #define R_CPUCFG_CPU_SOFT_ENTRY_REG		0x01a4
 | |
| 
 | |
| #define CPU0_SUPPORT_HOTPLUG_MAGIC0	0xFA50392F
 | |
| #define CPU0_SUPPORT_HOTPLUG_MAGIC1	0x790DCA3A
 | |
| 
 | |
| static void __iomem *cpucfg_base;
 | |
| static void __iomem *prcm_base;
 | |
| static void __iomem *sram_b_smp_base;
 | |
| static void __iomem *r_cpucfg_base;
 | |
| 
 | |
| extern void sunxi_mc_smp_secondary_startup(void);
 | |
| extern void sunxi_mc_smp_resume(void);
 | |
| static bool is_a83t;
 | |
| 
 | |
| static bool sunxi_core_is_cortex_a15(unsigned int core, unsigned int cluster)
 | |
| {
 | |
| 	struct device_node *node;
 | |
| 	int cpu = cluster * SUNXI_CPUS_PER_CLUSTER + core;
 | |
| 
 | |
| 	node = of_cpu_device_node_get(cpu);
 | |
| 
 | |
| 	/* In case of_cpu_device_node_get fails */
 | |
| 	if (!node)
 | |
| 		node = of_get_cpu_node(cpu, NULL);
 | |
| 
 | |
| 	if (!node) {
 | |
| 		/*
 | |
| 		 * There's no point in returning an error, since we
 | |
| 		 * would be mid way in a core or cluster power sequence.
 | |
| 		 */
 | |
| 		pr_err("%s: Couldn't get CPU cluster %u core %u device node\n",
 | |
| 		       __func__, cluster, core);
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return of_device_is_compatible(node, "arm,cortex-a15");
 | |
| }
 | |
| 
 | |
| static int sunxi_cpu_power_switch_set(unsigned int cpu, unsigned int cluster,
 | |
| 				      bool enable)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	/* control sequence from Allwinner A80 user manual v1.2 PRCM section */
 | |
| 	reg = readl(prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
 | |
| 	if (enable) {
 | |
| 		if (reg == 0x00) {
 | |
| 			pr_debug("power clamp for cluster %u cpu %u already open\n",
 | |
| 				 cluster, cpu);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
 | |
| 		udelay(10);
 | |
| 		writel(0xfe, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
 | |
| 		udelay(10);
 | |
| 		writel(0xf8, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
 | |
| 		udelay(10);
 | |
| 		writel(0xf0, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
 | |
| 		udelay(10);
 | |
| 		writel(0x00, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
 | |
| 		udelay(10);
 | |
| 	} else {
 | |
| 		writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sunxi_cpu0_hotplug_support_set(bool enable)
 | |
| {
 | |
| 	if (enable) {
 | |
| 		writel(CPU0_SUPPORT_HOTPLUG_MAGIC0, sram_b_smp_base);
 | |
| 		writel(CPU0_SUPPORT_HOTPLUG_MAGIC1, sram_b_smp_base + 0x4);
 | |
| 	} else {
 | |
| 		writel(0x0, sram_b_smp_base);
 | |
| 		writel(0x0, sram_b_smp_base + 0x4);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
 | |
| 	if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Set hotplug support magic flags for cpu0 */
 | |
| 	if (cluster == 0 && cpu == 0)
 | |
| 		sunxi_cpu0_hotplug_support_set(true);
 | |
| 
 | |
| 	/* assert processor power-on reset */
 | |
| 	reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
 | |
| 	reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu);
 | |
| 	writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
 | |
| 
 | |
| 	if (is_a83t) {
 | |
| 		/* assert cpu power-on reset */
 | |
| 		reg  = readl(r_cpucfg_base +
 | |
| 			     R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
 | |
| 		reg &= ~(R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu));
 | |
| 		writel(reg, r_cpucfg_base +
 | |
| 		       R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	/* Cortex-A7: hold L1 reset disable signal low */
 | |
| 	if (!sunxi_core_is_cortex_a15(cpu, cluster)) {
 | |
| 		reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
 | |
| 		reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(cpu);
 | |
| 		writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
 | |
| 	}
 | |
| 
 | |
| 	/* assert processor related resets */
 | |
| 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 	reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allwinner code also asserts resets for NEON on A15. According
 | |
| 	 * to ARM manuals, asserting power-on reset is sufficient.
 | |
| 	 */
 | |
| 	if (!sunxi_core_is_cortex_a15(cpu, cluster))
 | |
| 		reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
 | |
| 
 | |
| 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 
 | |
| 	/* open power switch */
 | |
| 	sunxi_cpu_power_switch_set(cpu, cluster, true);
 | |
| 
 | |
| 	/* Handle A83T bit swap */
 | |
| 	if (is_a83t) {
 | |
| 		if (cpu == 0)
 | |
| 			cpu = 4;
 | |
| 	}
 | |
| 
 | |
| 	/* clear processor power gate */
 | |
| 	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
 | |
| 	reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu);
 | |
| 	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
 | |
| 	udelay(20);
 | |
| 
 | |
| 	/* Handle A83T bit swap */
 | |
| 	if (is_a83t) {
 | |
| 		if (cpu == 4)
 | |
| 			cpu = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* de-assert processor power-on reset */
 | |
| 	reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
 | |
| 	reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu);
 | |
| 	writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
 | |
| 
 | |
| 	if (is_a83t) {
 | |
| 		reg  = readl(r_cpucfg_base +
 | |
| 			     R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
 | |
| 		reg |= R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu);
 | |
| 		writel(reg, r_cpucfg_base +
 | |
| 		       R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	/* de-assert all processor resets */
 | |
| 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 	reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
 | |
| 	reg |= CPUCFG_CX_RST_CTRL_CORE_RST(cpu);
 | |
| 	if (!sunxi_core_is_cortex_a15(cpu, cluster))
 | |
| 		reg |= CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
 | |
| 	else
 | |
| 		reg |= CPUCFG_CX_RST_CTRL_CX_RST(cpu); /* NEON */
 | |
| 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sunxi_cluster_powerup(unsigned int cluster)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pr_debug("%s: cluster %u\n", __func__, cluster);
 | |
| 	if (cluster >= SUNXI_NR_CLUSTERS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* For A83T, assert cluster cores resets */
 | |
| 	if (is_a83t) {
 | |
| 		reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 		reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;   /* Core Reset    */
 | |
| 		writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	/* assert ACINACTM */
 | |
| 	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
 | |
| 	reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
 | |
| 	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
 | |
| 
 | |
| 	/* assert cluster processor power-on resets */
 | |
| 	reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
 | |
| 	reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL;
 | |
| 	writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
 | |
| 
 | |
| 	/* assert cluster cores resets */
 | |
| 	if (is_a83t) {
 | |
| 		reg  = readl(r_cpucfg_base +
 | |
| 			     R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
 | |
| 		reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;
 | |
| 		writel(reg, r_cpucfg_base +
 | |
| 		       R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	/* assert cluster resets */
 | |
| 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 	reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
 | |
| 	reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST_ALL;
 | |
| 	reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
 | |
| 	reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allwinner code also asserts resets for NEON on A15. According
 | |
| 	 * to ARM manuals, asserting power-on reset is sufficient.
 | |
| 	 */
 | |
| 	if (!sunxi_core_is_cortex_a15(0, cluster))
 | |
| 		reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST_ALL;
 | |
| 
 | |
| 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 
 | |
| 	/* hold L1/L2 reset disable signals low */
 | |
| 	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
 | |
| 	if (sunxi_core_is_cortex_a15(0, cluster)) {
 | |
| 		/* Cortex-A15: hold L2RSTDISABLE low */
 | |
| 		reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15;
 | |
| 	} else {
 | |
| 		/* Cortex-A7: hold L1RSTDISABLE and L2RSTDISABLE low */
 | |
| 		reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL;
 | |
| 		reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7;
 | |
| 	}
 | |
| 	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
 | |
| 
 | |
| 	/* clear cluster power gate */
 | |
| 	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
 | |
| 	if (is_a83t)
 | |
| 		reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
 | |
| 	else
 | |
| 		reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
 | |
| 	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
 | |
| 	udelay(20);
 | |
| 
 | |
| 	/* de-assert cluster resets */
 | |
| 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 	reg |= CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
 | |
| 	reg |= CPUCFG_CX_RST_CTRL_H_RST;
 | |
| 	reg |= CPUCFG_CX_RST_CTRL_L2_RST;
 | |
| 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 
 | |
| 	/* de-assert ACINACTM */
 | |
| 	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
 | |
| 	reg &= ~CPUCFG_CX_CTRL_REG1_ACINACTM;
 | |
| 	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This bit is shared between the initial nocache_trampoline call to
 | |
|  * enable CCI-400 and proper cluster cache disable before power down.
 | |
|  */
 | |
| static void sunxi_cluster_cache_disable_without_axi(void)
 | |
| {
 | |
| 	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
 | |
| 		/*
 | |
| 		 * On the Cortex-A15 we need to disable
 | |
| 		 * L2 prefetching before flushing the cache.
 | |
| 		 */
 | |
| 		asm volatile(
 | |
| 		"mcr	p15, 1, %0, c15, c0, 3\n"
 | |
| 		"isb\n"
 | |
| 		"dsb"
 | |
| 		: : "r" (0x400));
 | |
| 	}
 | |
| 
 | |
| 	/* Flush all cache levels for this cluster. */
 | |
| 	v7_exit_coherency_flush(all);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable cluster-level coherency by masking
 | |
| 	 * incoming snoops and DVM messages:
 | |
| 	 */
 | |
| 	cci_disable_port_by_cpu(read_cpuid_mpidr());
 | |
| }
 | |
| 
 | |
| static int sunxi_mc_smp_cpu_table[SUNXI_NR_CLUSTERS][SUNXI_CPUS_PER_CLUSTER];
 | |
| int sunxi_mc_smp_first_comer;
 | |
| 
 | |
| static DEFINE_SPINLOCK(boot_lock);
 | |
| 
 | |
| static bool sunxi_mc_smp_cluster_is_down(unsigned int cluster)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < SUNXI_CPUS_PER_CLUSTER; i++)
 | |
| 		if (sunxi_mc_smp_cpu_table[cluster][i])
 | |
| 			return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void sunxi_mc_smp_secondary_init(unsigned int cpu)
 | |
| {
 | |
| 	/* Clear hotplug support magic flags for cpu0 */
 | |
| 	if (cpu == 0)
 | |
| 		sunxi_cpu0_hotplug_support_set(false);
 | |
| }
 | |
| 
 | |
| static int sunxi_mc_smp_boot_secondary(unsigned int l_cpu, struct task_struct *idle)
 | |
| {
 | |
| 	unsigned int mpidr, cpu, cluster;
 | |
| 
 | |
| 	mpidr = cpu_logical_map(l_cpu);
 | |
| 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | |
| 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | |
| 
 | |
| 	if (!cpucfg_base)
 | |
| 		return -ENODEV;
 | |
| 	if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_irq(&boot_lock);
 | |
| 
 | |
| 	if (sunxi_mc_smp_cpu_table[cluster][cpu])
 | |
| 		goto out;
 | |
| 
 | |
| 	if (sunxi_mc_smp_cluster_is_down(cluster)) {
 | |
| 		sunxi_mc_smp_first_comer = true;
 | |
| 		sunxi_cluster_powerup(cluster);
 | |
| 	} else {
 | |
| 		sunxi_mc_smp_first_comer = false;
 | |
| 	}
 | |
| 
 | |
| 	/* This is read by incoming CPUs with their cache and MMU disabled */
 | |
| 	sync_cache_w(&sunxi_mc_smp_first_comer);
 | |
| 	sunxi_cpu_powerup(cpu, cluster);
 | |
| 
 | |
| out:
 | |
| 	sunxi_mc_smp_cpu_table[cluster][cpu]++;
 | |
| 	spin_unlock_irq(&boot_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static void sunxi_cluster_cache_disable(void)
 | |
| {
 | |
| 	unsigned int cluster = MPIDR_AFFINITY_LEVEL(read_cpuid_mpidr(), 1);
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pr_debug("%s: cluster %u\n", __func__, cluster);
 | |
| 
 | |
| 	sunxi_cluster_cache_disable_without_axi();
 | |
| 
 | |
| 	/* last man standing, assert ACINACTM */
 | |
| 	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
 | |
| 	reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
 | |
| 	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
 | |
| }
 | |
| 
 | |
| static void sunxi_mc_smp_cpu_die(unsigned int l_cpu)
 | |
| {
 | |
| 	unsigned int mpidr, cpu, cluster;
 | |
| 	bool last_man;
 | |
| 
 | |
| 	mpidr = cpu_logical_map(l_cpu);
 | |
| 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | |
| 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | |
| 	pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
 | |
| 
 | |
| 	spin_lock(&boot_lock);
 | |
| 	sunxi_mc_smp_cpu_table[cluster][cpu]--;
 | |
| 	if (sunxi_mc_smp_cpu_table[cluster][cpu] == 1) {
 | |
| 		/* A power_up request went ahead of us. */
 | |
| 		pr_debug("%s: aborting due to a power up request\n",
 | |
| 			 __func__);
 | |
| 		spin_unlock(&boot_lock);
 | |
| 		return;
 | |
| 	} else if (sunxi_mc_smp_cpu_table[cluster][cpu] > 1) {
 | |
| 		pr_err("Cluster %d CPU%d boots multiple times\n",
 | |
| 		       cluster, cpu);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	last_man = sunxi_mc_smp_cluster_is_down(cluster);
 | |
| 	spin_unlock(&boot_lock);
 | |
| 
 | |
| 	gic_cpu_if_down(0);
 | |
| 	if (last_man)
 | |
| 		sunxi_cluster_cache_disable();
 | |
| 	else
 | |
| 		v7_exit_coherency_flush(louis);
 | |
| 
 | |
| 	for (;;)
 | |
| 		wfi();
 | |
| }
 | |
| 
 | |
| static int sunxi_cpu_powerdown(unsigned int cpu, unsigned int cluster)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	int gating_bit = cpu;
 | |
| 
 | |
| 	pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
 | |
| 	if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (is_a83t && cpu == 0)
 | |
| 		gating_bit = 4;
 | |
| 
 | |
| 	/* gate processor power */
 | |
| 	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
 | |
| 	reg |= PRCM_PWROFF_GATING_REG_CORE(gating_bit);
 | |
| 	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
 | |
| 	udelay(20);
 | |
| 
 | |
| 	/* close power switch */
 | |
| 	sunxi_cpu_power_switch_set(cpu, cluster, false);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sunxi_cluster_powerdown(unsigned int cluster)
 | |
| {
 | |
| 	u32 reg;
 | |
| 
 | |
| 	pr_debug("%s: cluster %u\n", __func__, cluster);
 | |
| 	if (cluster >= SUNXI_NR_CLUSTERS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* assert cluster resets or system will hang */
 | |
| 	pr_debug("%s: assert cluster reset\n", __func__);
 | |
| 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 	reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
 | |
| 	reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
 | |
| 	reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
 | |
| 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
 | |
| 
 | |
| 	/* gate cluster power */
 | |
| 	pr_debug("%s: gate cluster power\n", __func__);
 | |
| 	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
 | |
| 	if (is_a83t)
 | |
| 		reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
 | |
| 	else
 | |
| 		reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
 | |
| 	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
 | |
| 	udelay(20);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sunxi_mc_smp_cpu_kill(unsigned int l_cpu)
 | |
| {
 | |
| 	unsigned int mpidr, cpu, cluster;
 | |
| 	unsigned int tries, count;
 | |
| 	int ret = 0;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	mpidr = cpu_logical_map(l_cpu);
 | |
| 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | |
| 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | |
| 
 | |
| 	/* This should never happen */
 | |
| 	if (WARN_ON(cluster >= SUNXI_NR_CLUSTERS ||
 | |
| 		    cpu >= SUNXI_CPUS_PER_CLUSTER))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* wait for CPU core to die and enter WFI */
 | |
| 	count = TIMEOUT_USEC / POLL_USEC;
 | |
| 	spin_lock_irq(&boot_lock);
 | |
| 	for (tries = 0; tries < count; tries++) {
 | |
| 		spin_unlock_irq(&boot_lock);
 | |
| 		usleep_range(POLL_USEC / 2, POLL_USEC);
 | |
| 		spin_lock_irq(&boot_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the user turns off a bunch of cores at the same
 | |
| 		 * time, the kernel might call cpu_kill before some of
 | |
| 		 * them are ready. This is because boot_lock serializes
 | |
| 		 * both cpu_die and cpu_kill callbacks. Either one could
 | |
| 		 * run first. We should wait for cpu_die to complete.
 | |
| 		 */
 | |
| 		if (sunxi_mc_smp_cpu_table[cluster][cpu])
 | |
| 			continue;
 | |
| 
 | |
| 		reg = readl(cpucfg_base + CPUCFG_CX_STATUS(cluster));
 | |
| 		if (reg & CPUCFG_CX_STATUS_STANDBYWFI(cpu))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (tries >= count) {
 | |
| 		ret = ETIMEDOUT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* power down CPU core */
 | |
| 	sunxi_cpu_powerdown(cpu, cluster);
 | |
| 
 | |
| 	if (!sunxi_mc_smp_cluster_is_down(cluster))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* wait for cluster L2 WFI */
 | |
| 	ret = readl_poll_timeout(cpucfg_base + CPUCFG_CX_STATUS(cluster), reg,
 | |
| 				 reg & CPUCFG_CX_STATUS_STANDBYWFIL2,
 | |
| 				 POLL_USEC, TIMEOUT_USEC);
 | |
| 	if (ret) {
 | |
| 		/*
 | |
| 		 * Ignore timeout on the cluster. Leaving the cluster on
 | |
| 		 * will not affect system execution, just use a bit more
 | |
| 		 * power. But returning an error here will only confuse
 | |
| 		 * the user as the CPU has already been shutdown.
 | |
| 		 */
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Power down cluster */
 | |
| 	sunxi_cluster_powerdown(cluster);
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irq(&boot_lock);
 | |
| 	pr_debug("%s: cluster %u cpu %u powerdown: %d\n",
 | |
| 		 __func__, cluster, cpu, ret);
 | |
| 	return !ret;
 | |
| }
 | |
| 
 | |
| static bool sunxi_mc_smp_cpu_can_disable(unsigned int cpu)
 | |
| {
 | |
| 	/* CPU0 hotplug not handled for sun8i-a83t */
 | |
| 	if (is_a83t)
 | |
| 		if (cpu == 0)
 | |
| 			return false;
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct smp_operations sunxi_mc_smp_smp_ops __initconst = {
 | |
| 	.smp_secondary_init	= sunxi_mc_smp_secondary_init,
 | |
| 	.smp_boot_secondary	= sunxi_mc_smp_boot_secondary,
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	.cpu_die		= sunxi_mc_smp_cpu_die,
 | |
| 	.cpu_kill		= sunxi_mc_smp_cpu_kill,
 | |
| 	.cpu_can_disable	= sunxi_mc_smp_cpu_can_disable,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static bool __init sunxi_mc_smp_cpu_table_init(void)
 | |
| {
 | |
| 	unsigned int mpidr, cpu, cluster;
 | |
| 
 | |
| 	mpidr = read_cpuid_mpidr();
 | |
| 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 | |
| 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | |
| 
 | |
| 	if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) {
 | |
| 		pr_err("%s: boot CPU is out of bounds!\n", __func__);
 | |
| 		return false;
 | |
| 	}
 | |
| 	sunxi_mc_smp_cpu_table[cluster][cpu] = 1;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adapted from arch/arm/common/mc_smp_entry.c
 | |
|  *
 | |
|  * We need the trampoline code to enable CCI-400 on the first cluster
 | |
|  */
 | |
| typedef typeof(cpu_reset) phys_reset_t;
 | |
| 
 | |
| static int __init nocache_trampoline(unsigned long __unused)
 | |
| {
 | |
| 	phys_reset_t phys_reset;
 | |
| 
 | |
| 	setup_mm_for_reboot();
 | |
| 	sunxi_cluster_cache_disable_without_axi();
 | |
| 
 | |
| 	phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
 | |
| 	phys_reset(__pa_symbol(sunxi_mc_smp_resume), false);
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| static int __init sunxi_mc_smp_loopback(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're going to soft-restart the current CPU through the
 | |
| 	 * low-level MCPM code by leveraging the suspend/resume
 | |
| 	 * infrastructure. Let's play it safe by using cpu_pm_enter()
 | |
| 	 * in case the CPU init code path resets the VFP or similar.
 | |
| 	 */
 | |
| 	sunxi_mc_smp_first_comer = true;
 | |
| 	local_irq_disable();
 | |
| 	local_fiq_disable();
 | |
| 	ret = cpu_pm_enter();
 | |
| 	if (!ret) {
 | |
| 		ret = cpu_suspend(0, nocache_trampoline);
 | |
| 		cpu_pm_exit();
 | |
| 	}
 | |
| 	local_fiq_enable();
 | |
| 	local_irq_enable();
 | |
| 	sunxi_mc_smp_first_comer = false;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This holds any device nodes that we requested resources for,
 | |
|  * so that we may easily release resources in the error path.
 | |
|  */
 | |
| struct sunxi_mc_smp_nodes {
 | |
| 	struct device_node *prcm_node;
 | |
| 	struct device_node *cpucfg_node;
 | |
| 	struct device_node *sram_node;
 | |
| 	struct device_node *r_cpucfg_node;
 | |
| };
 | |
| 
 | |
| /* This structure holds SoC-specific bits tied to an enable-method string. */
 | |
| struct sunxi_mc_smp_data {
 | |
| 	const char *enable_method;
 | |
| 	int (*get_smp_nodes)(struct sunxi_mc_smp_nodes *nodes);
 | |
| 	bool is_a83t;
 | |
| };
 | |
| 
 | |
| static void __init sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes *nodes)
 | |
| {
 | |
| 	of_node_put(nodes->prcm_node);
 | |
| 	of_node_put(nodes->cpucfg_node);
 | |
| 	of_node_put(nodes->sram_node);
 | |
| 	of_node_put(nodes->r_cpucfg_node);
 | |
| 	memset(nodes, 0, sizeof(*nodes));
 | |
| }
 | |
| 
 | |
| static int __init sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
 | |
| {
 | |
| 	nodes->prcm_node = of_find_compatible_node(NULL, NULL,
 | |
| 						   "allwinner,sun9i-a80-prcm");
 | |
| 	if (!nodes->prcm_node) {
 | |
| 		pr_err("%s: PRCM not available\n", __func__);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
 | |
| 						     "allwinner,sun9i-a80-cpucfg");
 | |
| 	if (!nodes->cpucfg_node) {
 | |
| 		pr_err("%s: CPUCFG not available\n", __func__);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	nodes->sram_node = of_find_compatible_node(NULL, NULL,
 | |
| 						   "allwinner,sun9i-a80-smp-sram");
 | |
| 	if (!nodes->sram_node) {
 | |
| 		pr_err("%s: Secure SRAM not available\n", __func__);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init sun8i_a83t_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
 | |
| {
 | |
| 	nodes->prcm_node = of_find_compatible_node(NULL, NULL,
 | |
| 						   "allwinner,sun8i-a83t-r-ccu");
 | |
| 	if (!nodes->prcm_node) {
 | |
| 		pr_err("%s: PRCM not available\n", __func__);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
 | |
| 						     "allwinner,sun8i-a83t-cpucfg");
 | |
| 	if (!nodes->cpucfg_node) {
 | |
| 		pr_err("%s: CPUCFG not available\n", __func__);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	nodes->r_cpucfg_node = of_find_compatible_node(NULL, NULL,
 | |
| 						       "allwinner,sun8i-a83t-r-cpucfg");
 | |
| 	if (!nodes->r_cpucfg_node) {
 | |
| 		pr_err("%s: RCPUCFG not available\n", __func__);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct sunxi_mc_smp_data sunxi_mc_smp_data[] __initconst = {
 | |
| 	{
 | |
| 		.enable_method	= "allwinner,sun9i-a80-smp",
 | |
| 		.get_smp_nodes	= sun9i_a80_get_smp_nodes,
 | |
| 	},
 | |
| 	{
 | |
| 		.enable_method	= "allwinner,sun8i-a83t-smp",
 | |
| 		.get_smp_nodes	= sun8i_a83t_get_smp_nodes,
 | |
| 		.is_a83t	= true,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init sunxi_mc_smp_init(void)
 | |
| {
 | |
| 	struct sunxi_mc_smp_nodes nodes = { 0 };
 | |
| 	struct device_node *node;
 | |
| 	struct resource res;
 | |
| 	void __iomem *addr;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't bother checking the "cpus" node, as an enable-method
 | |
| 	 * property in that node is undocumented.
 | |
| 	 */
 | |
| 	node = of_cpu_device_node_get(0);
 | |
| 	if (!node)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't actually use the enable-method magic in the kernel.
 | |
| 	 * Our loopback / trampoline code uses the CPU suspend framework,
 | |
| 	 * which requires the identity mapping be available. It would not
 | |
| 	 * yet be available if we used the .init_cpus or .prepare_cpus
 | |
| 	 * callbacks in smp_operations, which we would use if we were to
 | |
| 	 * use CPU_METHOD_OF_DECLARE
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(sunxi_mc_smp_data); i++) {
 | |
| 		ret = of_property_match_string(node, "enable-method",
 | |
| 					       sunxi_mc_smp_data[i].enable_method);
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	is_a83t = sunxi_mc_smp_data[i].is_a83t;
 | |
| 
 | |
| 	of_node_put(node);
 | |
| 	if (ret)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!sunxi_mc_smp_cpu_table_init())
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!cci_probed()) {
 | |
| 		pr_err("%s: CCI-400 not available\n", __func__);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Get needed device tree nodes */
 | |
| 	ret = sunxi_mc_smp_data[i].get_smp_nodes(&nodes);
 | |
| 	if (ret)
 | |
| 		goto err_put_nodes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unfortunately we can not request the I/O region for the PRCM.
 | |
| 	 * It is shared with the PRCM clock.
 | |
| 	 */
 | |
| 	prcm_base = of_iomap(nodes.prcm_node, 0);
 | |
| 	if (!prcm_base) {
 | |
| 		pr_err("%s: failed to map PRCM registers\n", __func__);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_put_nodes;
 | |
| 	}
 | |
| 
 | |
| 	cpucfg_base = of_io_request_and_map(nodes.cpucfg_node, 0,
 | |
| 					    "sunxi-mc-smp");
 | |
| 	if (IS_ERR(cpucfg_base)) {
 | |
| 		ret = PTR_ERR(cpucfg_base);
 | |
| 		pr_err("%s: failed to map CPUCFG registers: %d\n",
 | |
| 		       __func__, ret);
 | |
| 		goto err_unmap_prcm;
 | |
| 	}
 | |
| 
 | |
| 	if (is_a83t) {
 | |
| 		r_cpucfg_base = of_io_request_and_map(nodes.r_cpucfg_node,
 | |
| 						      0, "sunxi-mc-smp");
 | |
| 		if (IS_ERR(r_cpucfg_base)) {
 | |
| 			ret = PTR_ERR(r_cpucfg_base);
 | |
| 			pr_err("%s: failed to map R-CPUCFG registers\n",
 | |
| 			       __func__);
 | |
| 			goto err_unmap_release_cpucfg;
 | |
| 		}
 | |
| 	} else {
 | |
| 		sram_b_smp_base = of_io_request_and_map(nodes.sram_node, 0,
 | |
| 							"sunxi-mc-smp");
 | |
| 		if (IS_ERR(sram_b_smp_base)) {
 | |
| 			ret = PTR_ERR(sram_b_smp_base);
 | |
| 			pr_err("%s: failed to map secure SRAM\n", __func__);
 | |
| 			goto err_unmap_release_cpucfg;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Configure CCI-400 for boot cluster */
 | |
| 	ret = sunxi_mc_smp_loopback();
 | |
| 	if (ret) {
 | |
| 		pr_err("%s: failed to configure boot cluster: %d\n",
 | |
| 		       __func__, ret);
 | |
| 		goto err_unmap_release_sram_rcpucfg;
 | |
| 	}
 | |
| 
 | |
| 	/* We don't need the device nodes anymore */
 | |
| 	sunxi_mc_smp_put_nodes(&nodes);
 | |
| 
 | |
| 	/* Set the hardware entry point address */
 | |
| 	if (is_a83t)
 | |
| 		addr = r_cpucfg_base + R_CPUCFG_CPU_SOFT_ENTRY_REG;
 | |
| 	else
 | |
| 		addr = prcm_base + PRCM_CPU_SOFT_ENTRY_REG;
 | |
| 	writel(__pa_symbol(sunxi_mc_smp_secondary_startup), addr);
 | |
| 
 | |
| 	/* Actually enable multi cluster SMP */
 | |
| 	smp_set_ops(&sunxi_mc_smp_smp_ops);
 | |
| 
 | |
| 	pr_info("sunxi multi cluster SMP support installed\n");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_unmap_release_sram_rcpucfg:
 | |
| 	if (is_a83t) {
 | |
| 		iounmap(r_cpucfg_base);
 | |
| 		of_address_to_resource(nodes.r_cpucfg_node, 0, &res);
 | |
| 	} else {
 | |
| 		iounmap(sram_b_smp_base);
 | |
| 		of_address_to_resource(nodes.sram_node, 0, &res);
 | |
| 	}
 | |
| 	release_mem_region(res.start, resource_size(&res));
 | |
| err_unmap_release_cpucfg:
 | |
| 	iounmap(cpucfg_base);
 | |
| 	of_address_to_resource(nodes.cpucfg_node, 0, &res);
 | |
| 	release_mem_region(res.start, resource_size(&res));
 | |
| err_unmap_prcm:
 | |
| 	iounmap(prcm_base);
 | |
| err_put_nodes:
 | |
| 	sunxi_mc_smp_put_nodes(&nodes);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| early_initcall(sunxi_mc_smp_init);
 | 
