1469 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1469 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
 | |
|  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
 | |
|  */
 | |
| #include <linux/sched.h>		/* test_thread_flag(), ...	*/
 | |
| #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
 | |
| #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
 | |
| #include <linux/extable.h>		/* search_exception_tables	*/
 | |
| #include <linux/bootmem.h>		/* max_low_pfn			*/
 | |
| #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
 | |
| #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
 | |
| #include <linux/perf_event.h>		/* perf_sw_event		*/
 | |
| #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
 | |
| #include <linux/prefetch.h>		/* prefetchw			*/
 | |
| #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
 | |
| #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
 | |
| #include <linux/mm_types.h>
 | |
| 
 | |
| #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
 | |
| #include <asm/traps.h>			/* dotraplinkage, ...		*/
 | |
| #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
 | |
| #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
 | |
| #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
 | |
| #include <asm/vm86.h>			/* struct vm86			*/
 | |
| #include <asm/mmu_context.h>		/* vma_pkey()			*/
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <asm/trace/exceptions.h>
 | |
| 
 | |
| /*
 | |
|  * Returns 0 if mmiotrace is disabled, or if the fault is not
 | |
|  * handled by mmiotrace:
 | |
|  */
 | |
| static nokprobe_inline int
 | |
| kmmio_fault(struct pt_regs *regs, unsigned long addr)
 | |
| {
 | |
| 	if (unlikely(is_kmmio_active()))
 | |
| 		if (kmmio_handler(regs, addr) == 1)
 | |
| 			return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* kprobe_running() needs smp_processor_id() */
 | |
| 	if (kprobes_built_in() && !user_mode(regs)) {
 | |
| 		preempt_disable();
 | |
| 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 | |
| 			ret = 1;
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prefetch quirks:
 | |
|  *
 | |
|  * 32-bit mode:
 | |
|  *
 | |
|  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 | |
|  *   Check that here and ignore it.
 | |
|  *
 | |
|  * 64-bit mode:
 | |
|  *
 | |
|  *   Sometimes the CPU reports invalid exceptions on prefetch.
 | |
|  *   Check that here and ignore it.
 | |
|  *
 | |
|  * Opcode checker based on code by Richard Brunner.
 | |
|  */
 | |
| static inline int
 | |
| check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
 | |
| 		      unsigned char opcode, int *prefetch)
 | |
| {
 | |
| 	unsigned char instr_hi = opcode & 0xf0;
 | |
| 	unsigned char instr_lo = opcode & 0x0f;
 | |
| 
 | |
| 	switch (instr_hi) {
 | |
| 	case 0x20:
 | |
| 	case 0x30:
 | |
| 		/*
 | |
| 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
 | |
| 		 * In X86_64 long mode, the CPU will signal invalid
 | |
| 		 * opcode if some of these prefixes are present so
 | |
| 		 * X86_64 will never get here anyway
 | |
| 		 */
 | |
| 		return ((instr_lo & 7) == 0x6);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case 0x40:
 | |
| 		/*
 | |
| 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 | |
| 		 * Need to figure out under what instruction mode the
 | |
| 		 * instruction was issued. Could check the LDT for lm,
 | |
| 		 * but for now it's good enough to assume that long
 | |
| 		 * mode only uses well known segments or kernel.
 | |
| 		 */
 | |
| 		return (!user_mode(regs) || user_64bit_mode(regs));
 | |
| #endif
 | |
| 	case 0x60:
 | |
| 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 | |
| 		return (instr_lo & 0xC) == 0x4;
 | |
| 	case 0xF0:
 | |
| 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 | |
| 		return !instr_lo || (instr_lo>>1) == 1;
 | |
| 	case 0x00:
 | |
| 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 | |
| 		if (probe_kernel_address(instr, opcode))
 | |
| 			return 0;
 | |
| 
 | |
| 		*prefetch = (instr_lo == 0xF) &&
 | |
| 			(opcode == 0x0D || opcode == 0x18);
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 | |
| {
 | |
| 	unsigned char *max_instr;
 | |
| 	unsigned char *instr;
 | |
| 	int prefetch = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it was a exec (instruction fetch) fault on NX page, then
 | |
| 	 * do not ignore the fault:
 | |
| 	 */
 | |
| 	if (error_code & X86_PF_INSTR)
 | |
| 		return 0;
 | |
| 
 | |
| 	instr = (void *)convert_ip_to_linear(current, regs);
 | |
| 	max_instr = instr + 15;
 | |
| 
 | |
| 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (instr < max_instr) {
 | |
| 		unsigned char opcode;
 | |
| 
 | |
| 		if (probe_kernel_address(instr, opcode))
 | |
| 			break;
 | |
| 
 | |
| 		instr++;
 | |
| 
 | |
| 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 | |
| 			break;
 | |
| 	}
 | |
| 	return prefetch;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A protection key fault means that the PKRU value did not allow
 | |
|  * access to some PTE.  Userspace can figure out what PKRU was
 | |
|  * from the XSAVE state, and this function fills out a field in
 | |
|  * siginfo so userspace can discover which protection key was set
 | |
|  * on the PTE.
 | |
|  *
 | |
|  * If we get here, we know that the hardware signaled a X86_PF_PK
 | |
|  * fault and that there was a VMA once we got in the fault
 | |
|  * handler.  It does *not* guarantee that the VMA we find here
 | |
|  * was the one that we faulted on.
 | |
|  *
 | |
|  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 | |
|  * 2. T1   : set PKRU to deny access to pkey=4, touches page
 | |
|  * 3. T1   : faults...
 | |
|  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 | |
|  * 5. T1   : enters fault handler, takes mmap_sem, etc...
 | |
|  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 | |
|  *	     faulted on a pte with its pkey=4.
 | |
|  */
 | |
| static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
 | |
| 		u32 *pkey)
 | |
| {
 | |
| 	/* This is effectively an #ifdef */
 | |
| 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 | |
| 		return;
 | |
| 
 | |
| 	/* Fault not from Protection Keys: nothing to do */
 | |
| 	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * force_sig_info_fault() is called from a number of
 | |
| 	 * contexts, some of which have a VMA and some of which
 | |
| 	 * do not.  The X86_PF_PK handing happens after we have a
 | |
| 	 * valid VMA, so we should never reach this without a
 | |
| 	 * valid VMA.
 | |
| 	 */
 | |
| 	if (!pkey) {
 | |
| 		WARN_ONCE(1, "PKU fault with no VMA passed in");
 | |
| 		info->si_pkey = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * si_pkey should be thought of as a strong hint, but not
 | |
| 	 * absolutely guranteed to be 100% accurate because of
 | |
| 	 * the race explained above.
 | |
| 	 */
 | |
| 	info->si_pkey = *pkey;
 | |
| }
 | |
| 
 | |
| static void
 | |
| force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 | |
| 		     struct task_struct *tsk, u32 *pkey, int fault)
 | |
| {
 | |
| 	unsigned lsb = 0;
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo	= si_signo;
 | |
| 	info.si_errno	= 0;
 | |
| 	info.si_code	= si_code;
 | |
| 	info.si_addr	= (void __user *)address;
 | |
| 	if (fault & VM_FAULT_HWPOISON_LARGE)
 | |
| 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 | |
| 	if (fault & VM_FAULT_HWPOISON)
 | |
| 		lsb = PAGE_SHIFT;
 | |
| 	info.si_addr_lsb = lsb;
 | |
| 
 | |
| 	fill_sig_info_pkey(si_signo, si_code, &info, pkey);
 | |
| 
 | |
| 	force_sig_info(si_signo, &info, tsk);
 | |
| }
 | |
| 
 | |
| DEFINE_SPINLOCK(pgd_lock);
 | |
| LIST_HEAD(pgd_list);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 | |
| {
 | |
| 	unsigned index = pgd_index(address);
 | |
| 	pgd_t *pgd_k;
 | |
| 	p4d_t *p4d, *p4d_k;
 | |
| 	pud_t *pud, *pud_k;
 | |
| 	pmd_t *pmd, *pmd_k;
 | |
| 
 | |
| 	pgd += index;
 | |
| 	pgd_k = init_mm.pgd + index;
 | |
| 
 | |
| 	if (!pgd_present(*pgd_k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 | |
| 	 * and redundant with the set_pmd() on non-PAE. As would
 | |
| 	 * set_p4d/set_pud.
 | |
| 	 */
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	p4d_k = p4d_offset(pgd_k, address);
 | |
| 	if (!p4d_present(*p4d_k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	pud_k = pud_offset(p4d_k, address);
 | |
| 	if (!pud_present(*pud_k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	pmd_k = pmd_offset(pud_k, address);
 | |
| 
 | |
| 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
 | |
| 		set_pmd(pmd, *pmd_k);
 | |
| 
 | |
| 	if (!pmd_present(*pmd_k))
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 | |
| 
 | |
| 	return pmd_k;
 | |
| }
 | |
| 
 | |
| void vmalloc_sync_all(void)
 | |
| {
 | |
| 	unsigned long address;
 | |
| 
 | |
| 	if (SHARED_KERNEL_PMD)
 | |
| 		return;
 | |
| 
 | |
| 	for (address = VMALLOC_START & PMD_MASK;
 | |
| 	     address >= TASK_SIZE_MAX && address < VMALLOC_END;
 | |
| 	     address += PMD_SIZE) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		spin_lock(&pgd_lock);
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			spinlock_t *pgt_lock;
 | |
| 
 | |
| 			/* the pgt_lock only for Xen */
 | |
| 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 | |
| 
 | |
| 			spin_lock(pgt_lock);
 | |
| 			vmalloc_sync_one(page_address(page), address);
 | |
| 			spin_unlock(pgt_lock);
 | |
| 		}
 | |
| 		spin_unlock(&pgd_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 32-bit:
 | |
|  *
 | |
|  *   Handle a fault on the vmalloc or module mapping area
 | |
|  */
 | |
| static noinline int vmalloc_fault(unsigned long address)
 | |
| {
 | |
| 	unsigned long pgd_paddr;
 | |
| 	pmd_t *pmd_k;
 | |
| 	pte_t *pte_k;
 | |
| 
 | |
| 	/* Make sure we are in vmalloc area: */
 | |
| 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Synchronize this task's top level page-table
 | |
| 	 * with the 'reference' page table.
 | |
| 	 *
 | |
| 	 * Do _not_ use "current" here. We might be inside
 | |
| 	 * an interrupt in the middle of a task switch..
 | |
| 	 */
 | |
| 	pgd_paddr = read_cr3_pa();
 | |
| 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 | |
| 	if (!pmd_k)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pmd_large(*pmd_k))
 | |
| 		return 0;
 | |
| 
 | |
| 	pte_k = pte_offset_kernel(pmd_k, address);
 | |
| 	if (!pte_present(*pte_k))
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| NOKPROBE_SYMBOL(vmalloc_fault);
 | |
| 
 | |
| /*
 | |
|  * Did it hit the DOS screen memory VA from vm86 mode?
 | |
|  */
 | |
| static inline void
 | |
| check_v8086_mode(struct pt_regs *regs, unsigned long address,
 | |
| 		 struct task_struct *tsk)
 | |
| {
 | |
| #ifdef CONFIG_VM86
 | |
| 	unsigned long bit;
 | |
| 
 | |
| 	if (!v8086_mode(regs) || !tsk->thread.vm86)
 | |
| 		return;
 | |
| 
 | |
| 	bit = (address - 0xA0000) >> PAGE_SHIFT;
 | |
| 	if (bit < 32)
 | |
| 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool low_pfn(unsigned long pfn)
 | |
| {
 | |
| 	return pfn < max_low_pfn;
 | |
| }
 | |
| 
 | |
| static void dump_pagetable(unsigned long address)
 | |
| {
 | |
| 	pgd_t *base = __va(read_cr3_pa());
 | |
| 	pgd_t *pgd = &base[pgd_index(address)];
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 | |
| 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 | |
| 		goto out;
 | |
| #define pr_pde pr_cont
 | |
| #else
 | |
| #define pr_pde pr_info
 | |
| #endif
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 | |
| #undef pr_pde
 | |
| 
 | |
| 	/*
 | |
| 	 * We must not directly access the pte in the highpte
 | |
| 	 * case if the page table is located in highmem.
 | |
| 	 * And let's rather not kmap-atomic the pte, just in case
 | |
| 	 * it's allocated already:
 | |
| 	 */
 | |
| 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 | |
| out:
 | |
| 	pr_cont("\n");
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_X86_64: */
 | |
| 
 | |
| void vmalloc_sync_all(void)
 | |
| {
 | |
| 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 64-bit:
 | |
|  *
 | |
|  *   Handle a fault on the vmalloc area
 | |
|  */
 | |
| static noinline int vmalloc_fault(unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd, *pgd_k;
 | |
| 	p4d_t *p4d, *p4d_k;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	/* Make sure we are in vmalloc area: */
 | |
| 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy kernel mappings over when needed. This can also
 | |
| 	 * happen within a race in page table update. In the later
 | |
| 	 * case just flush:
 | |
| 	 */
 | |
| 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
 | |
| 	pgd_k = pgd_offset_k(address);
 | |
| 	if (pgd_none(*pgd_k))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pgtable_l5_enabled()) {
 | |
| 		if (pgd_none(*pgd)) {
 | |
| 			set_pgd(pgd, *pgd_k);
 | |
| 			arch_flush_lazy_mmu_mode();
 | |
| 		} else {
 | |
| 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* With 4-level paging, copying happens on the p4d level. */
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	p4d_k = p4d_offset(pgd_k, address);
 | |
| 	if (p4d_none(*p4d_k))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
 | |
| 		set_p4d(p4d, *p4d_k);
 | |
| 		arch_flush_lazy_mmu_mode();
 | |
| 	} else {
 | |
| 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
 | |
| 	}
 | |
| 
 | |
| 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (pud_none(*pud))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pud_large(*pud))
 | |
| 		return 0;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pmd_large(*pmd))
 | |
| 		return 0;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	if (!pte_present(*pte))
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| NOKPROBE_SYMBOL(vmalloc_fault);
 | |
| 
 | |
| #ifdef CONFIG_CPU_SUP_AMD
 | |
| static const char errata93_warning[] =
 | |
| KERN_ERR 
 | |
| "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 | |
| "******* Working around it, but it may cause SEGVs or burn power.\n"
 | |
| "******* Please consider a BIOS update.\n"
 | |
| "******* Disabling USB legacy in the BIOS may also help.\n";
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * No vm86 mode in 64-bit mode:
 | |
|  */
 | |
| static inline void
 | |
| check_v8086_mode(struct pt_regs *regs, unsigned long address,
 | |
| 		 struct task_struct *tsk)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int bad_address(void *p)
 | |
| {
 | |
| 	unsigned long dummy;
 | |
| 
 | |
| 	return probe_kernel_address((unsigned long *)p, dummy);
 | |
| }
 | |
| 
 | |
| static void dump_pagetable(unsigned long address)
 | |
| {
 | |
| 	pgd_t *base = __va(read_cr3_pa());
 | |
| 	pgd_t *pgd = base + pgd_index(address);
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (bad_address(pgd))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_info("PGD %lx ", pgd_val(*pgd));
 | |
| 
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		goto out;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (bad_address(p4d))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_cont("P4D %lx ", p4d_val(*p4d));
 | |
| 	if (!p4d_present(*p4d) || p4d_large(*p4d))
 | |
| 		goto out;
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (bad_address(pud))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_cont("PUD %lx ", pud_val(*pud));
 | |
| 	if (!pud_present(*pud) || pud_large(*pud))
 | |
| 		goto out;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (bad_address(pmd))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_cont("PMD %lx ", pmd_val(*pmd));
 | |
| 	if (!pmd_present(*pmd) || pmd_large(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	if (bad_address(pte))
 | |
| 		goto bad;
 | |
| 
 | |
| 	pr_cont("PTE %lx", pte_val(*pte));
 | |
| out:
 | |
| 	pr_cont("\n");
 | |
| 	return;
 | |
| bad:
 | |
| 	pr_info("BAD\n");
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_X86_64 */
 | |
| 
 | |
| /*
 | |
|  * Workaround for K8 erratum #93 & buggy BIOS.
 | |
|  *
 | |
|  * BIOS SMM functions are required to use a specific workaround
 | |
|  * to avoid corruption of the 64bit RIP register on C stepping K8.
 | |
|  *
 | |
|  * A lot of BIOS that didn't get tested properly miss this.
 | |
|  *
 | |
|  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 | |
|  * Try to work around it here.
 | |
|  *
 | |
|  * Note we only handle faults in kernel here.
 | |
|  * Does nothing on 32-bit.
 | |
|  */
 | |
| static int is_errata93(struct pt_regs *regs, unsigned long address)
 | |
| {
 | |
| #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 | |
| 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 | |
| 	    || boot_cpu_data.x86 != 0xf)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (address != regs->ip)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((address >> 32) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	address |= 0xffffffffUL << 32;
 | |
| 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 | |
| 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 | |
| 		printk_once(errata93_warning);
 | |
| 		regs->ip = address;
 | |
| 		return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 | |
|  * to illegal addresses >4GB.
 | |
|  *
 | |
|  * We catch this in the page fault handler because these addresses
 | |
|  * are not reachable. Just detect this case and return.  Any code
 | |
|  * segment in LDT is compatibility mode.
 | |
|  */
 | |
| static int is_errata100(struct pt_regs *regs, unsigned long address)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 | |
| {
 | |
| #ifdef CONFIG_X86_F00F_BUG
 | |
| 	unsigned long nr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pentium F0 0F C7 C8 bug workaround:
 | |
| 	 */
 | |
| 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
 | |
| 		nr = (address - idt_descr.address) >> 3;
 | |
| 
 | |
| 		if (nr == 6) {
 | |
| 			do_invalid_op(regs, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	if (!oops_may_print())
 | |
| 		return;
 | |
| 
 | |
| 	if (error_code & X86_PF_INSTR) {
 | |
| 		unsigned int level;
 | |
| 		pgd_t *pgd;
 | |
| 		pte_t *pte;
 | |
| 
 | |
| 		pgd = __va(read_cr3_pa());
 | |
| 		pgd += pgd_index(address);
 | |
| 
 | |
| 		pte = lookup_address_in_pgd(pgd, address, &level);
 | |
| 
 | |
| 		if (pte && pte_present(*pte) && !pte_exec(*pte))
 | |
| 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 | |
| 				from_kuid(&init_user_ns, current_uid()));
 | |
| 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 | |
| 				(pgd_flags(*pgd) & _PAGE_USER) &&
 | |
| 				(__read_cr4() & X86_CR4_SMEP))
 | |
| 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 | |
| 				from_kuid(&init_user_ns, current_uid()));
 | |
| 	}
 | |
| 
 | |
| 	pr_alert("BUG: unable to handle kernel %s at %px\n",
 | |
| 		 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
 | |
| 		 (void *)address);
 | |
| 
 | |
| 	dump_pagetable(address);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 | |
| 	    unsigned long address)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	unsigned long flags;
 | |
| 	int sig;
 | |
| 
 | |
| 	flags = oops_begin();
 | |
| 	tsk = current;
 | |
| 	sig = SIGKILL;
 | |
| 
 | |
| 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 | |
| 	       tsk->comm, address);
 | |
| 	dump_pagetable(address);
 | |
| 
 | |
| 	tsk->thread.cr2		= address;
 | |
| 	tsk->thread.trap_nr	= X86_TRAP_PF;
 | |
| 	tsk->thread.error_code	= error_code;
 | |
| 
 | |
| 	if (__die("Bad pagetable", regs, error_code))
 | |
| 		sig = 0;
 | |
| 
 | |
| 	oops_end(flags, regs, sig);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| no_context(struct pt_regs *regs, unsigned long error_code,
 | |
| 	   unsigned long address, int signal, int si_code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	unsigned long flags;
 | |
| 	int sig;
 | |
| 
 | |
| 	/* Are we prepared to handle this kernel fault? */
 | |
| 	if (fixup_exception(regs, X86_TRAP_PF)) {
 | |
| 		/*
 | |
| 		 * Any interrupt that takes a fault gets the fixup. This makes
 | |
| 		 * the below recursive fault logic only apply to a faults from
 | |
| 		 * task context.
 | |
| 		 */
 | |
| 		if (in_interrupt())
 | |
| 			return;
 | |
| 
 | |
| 		/*
 | |
| 		 * Per the above we're !in_interrupt(), aka. task context.
 | |
| 		 *
 | |
| 		 * In this case we need to make sure we're not recursively
 | |
| 		 * faulting through the emulate_vsyscall() logic.
 | |
| 		 */
 | |
| 		if (current->thread.sig_on_uaccess_err && signal) {
 | |
| 			tsk->thread.trap_nr = X86_TRAP_PF;
 | |
| 			tsk->thread.error_code = error_code | X86_PF_USER;
 | |
| 			tsk->thread.cr2 = address;
 | |
| 
 | |
| 			/* XXX: hwpoison faults will set the wrong code. */
 | |
| 			force_sig_info_fault(signal, si_code, address,
 | |
| 					     tsk, NULL, 0);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Barring that, we can do the fixup and be happy.
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_VMAP_STACK
 | |
| 	/*
 | |
| 	 * Stack overflow?  During boot, we can fault near the initial
 | |
| 	 * stack in the direct map, but that's not an overflow -- check
 | |
| 	 * that we're in vmalloc space to avoid this.
 | |
| 	 */
 | |
| 	if (is_vmalloc_addr((void *)address) &&
 | |
| 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
 | |
| 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
 | |
| 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
 | |
| 		/*
 | |
| 		 * We're likely to be running with very little stack space
 | |
| 		 * left.  It's plausible that we'd hit this condition but
 | |
| 		 * double-fault even before we get this far, in which case
 | |
| 		 * we're fine: the double-fault handler will deal with it.
 | |
| 		 *
 | |
| 		 * We don't want to make it all the way into the oops code
 | |
| 		 * and then double-fault, though, because we're likely to
 | |
| 		 * break the console driver and lose most of the stack dump.
 | |
| 		 */
 | |
| 		asm volatile ("movq %[stack], %%rsp\n\t"
 | |
| 			      "call handle_stack_overflow\n\t"
 | |
| 			      "1: jmp 1b"
 | |
| 			      : ASM_CALL_CONSTRAINT
 | |
| 			      : "D" ("kernel stack overflow (page fault)"),
 | |
| 				"S" (regs), "d" (address),
 | |
| 				[stack] "rm" (stack));
 | |
| 		unreachable();
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * 32-bit:
 | |
| 	 *
 | |
| 	 *   Valid to do another page fault here, because if this fault
 | |
| 	 *   had been triggered by is_prefetch fixup_exception would have
 | |
| 	 *   handled it.
 | |
| 	 *
 | |
| 	 * 64-bit:
 | |
| 	 *
 | |
| 	 *   Hall of shame of CPU/BIOS bugs.
 | |
| 	 */
 | |
| 	if (is_prefetch(regs, error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	if (is_errata93(regs, address))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Oops. The kernel tried to access some bad page. We'll have to
 | |
| 	 * terminate things with extreme prejudice:
 | |
| 	 */
 | |
| 	flags = oops_begin();
 | |
| 
 | |
| 	show_fault_oops(regs, error_code, address);
 | |
| 
 | |
| 	if (task_stack_end_corrupted(tsk))
 | |
| 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 | |
| 
 | |
| 	tsk->thread.cr2		= address;
 | |
| 	tsk->thread.trap_nr	= X86_TRAP_PF;
 | |
| 	tsk->thread.error_code	= error_code;
 | |
| 
 | |
| 	sig = SIGKILL;
 | |
| 	if (__die("Oops", regs, error_code))
 | |
| 		sig = 0;
 | |
| 
 | |
| 	/* Executive summary in case the body of the oops scrolled away */
 | |
| 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 | |
| 
 | |
| 	oops_end(flags, regs, sig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print out info about fatal segfaults, if the show_unhandled_signals
 | |
|  * sysctl is set:
 | |
|  */
 | |
| static inline void
 | |
| show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 | |
| 		unsigned long address, struct task_struct *tsk)
 | |
| {
 | |
| 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 | |
| 
 | |
| 	if (!unhandled_signal(tsk, SIGSEGV))
 | |
| 		return;
 | |
| 
 | |
| 	if (!printk_ratelimit())
 | |
| 		return;
 | |
| 
 | |
| 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 | |
| 		loglvl, tsk->comm, task_pid_nr(tsk), address,
 | |
| 		(void *)regs->ip, (void *)regs->sp, error_code);
 | |
| 
 | |
| 	print_vma_addr(KERN_CONT " in ", regs->ip);
 | |
| 
 | |
| 	printk(KERN_CONT "\n");
 | |
| 
 | |
| 	show_opcodes(regs, loglvl);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 | |
| 		       unsigned long address, u32 *pkey, int si_code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	/* User mode accesses just cause a SIGSEGV */
 | |
| 	if (error_code & X86_PF_USER) {
 | |
| 		/*
 | |
| 		 * It's possible to have interrupts off here:
 | |
| 		 */
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 		/*
 | |
| 		 * Valid to do another page fault here because this one came
 | |
| 		 * from user space:
 | |
| 		 */
 | |
| 		if (is_prefetch(regs, error_code, address))
 | |
| 			return;
 | |
| 
 | |
| 		if (is_errata100(regs, address))
 | |
| 			return;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 		/*
 | |
| 		 * Instruction fetch faults in the vsyscall page might need
 | |
| 		 * emulation.
 | |
| 		 */
 | |
| 		if (unlikely((error_code & X86_PF_INSTR) &&
 | |
| 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
 | |
| 			if (emulate_vsyscall(regs, address))
 | |
| 				return;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * To avoid leaking information about the kernel page table
 | |
| 		 * layout, pretend that user-mode accesses to kernel addresses
 | |
| 		 * are always protection faults.
 | |
| 		 */
 | |
| 		if (address >= TASK_SIZE_MAX)
 | |
| 			error_code |= X86_PF_PROT;
 | |
| 
 | |
| 		if (likely(show_unhandled_signals))
 | |
| 			show_signal_msg(regs, error_code, address, tsk);
 | |
| 
 | |
| 		tsk->thread.cr2		= address;
 | |
| 		tsk->thread.error_code	= error_code;
 | |
| 		tsk->thread.trap_nr	= X86_TRAP_PF;
 | |
| 
 | |
| 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (is_f00f_bug(regs, address))
 | |
| 		return;
 | |
| 
 | |
| 	no_context(regs, error_code, address, SIGSEGV, si_code);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 | |
| 		     unsigned long address, u32 *pkey)
 | |
| {
 | |
| 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __bad_area(struct pt_regs *regs, unsigned long error_code,
 | |
| 	   unsigned long address,  struct vm_area_struct *vma, int si_code)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	u32 pkey;
 | |
| 
 | |
| 	if (vma)
 | |
| 		pkey = vma_pkey(vma);
 | |
| 
 | |
| 	/*
 | |
| 	 * Something tried to access memory that isn't in our memory map..
 | |
| 	 * Fix it, but check if it's kernel or user first..
 | |
| 	 */
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	__bad_area_nosemaphore(regs, error_code, address,
 | |
| 			       (vma) ? &pkey : NULL, si_code);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 | |
| {
 | |
| 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
 | |
| }
 | |
| 
 | |
| static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 | |
| 		struct vm_area_struct *vma)
 | |
| {
 | |
| 	/* This code is always called on the current mm */
 | |
| 	bool foreign = false;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 | |
| 		return false;
 | |
| 	if (error_code & X86_PF_PK)
 | |
| 		return true;
 | |
| 	/* this checks permission keys on the VMA: */
 | |
| 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 | |
| 				       (error_code & X86_PF_INSTR), foreign))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 | |
| 		      unsigned long address, struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * This OSPKE check is not strictly necessary at runtime.
 | |
| 	 * But, doing it this way allows compiler optimizations
 | |
| 	 * if pkeys are compiled out.
 | |
| 	 */
 | |
| 	if (bad_area_access_from_pkeys(error_code, vma))
 | |
| 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
 | |
| 	else
 | |
| 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
 | |
| }
 | |
| 
 | |
| static void
 | |
| do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 | |
| 	  u32 *pkey, unsigned int fault)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	int code = BUS_ADRERR;
 | |
| 
 | |
| 	/* Kernel mode? Handle exceptions or die: */
 | |
| 	if (!(error_code & X86_PF_USER)) {
 | |
| 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* User-space => ok to do another page fault: */
 | |
| 	if (is_prefetch(regs, error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	tsk->thread.cr2		= address;
 | |
| 	tsk->thread.error_code	= error_code;
 | |
| 	tsk->thread.trap_nr	= X86_TRAP_PF;
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 | |
| 		printk(KERN_ERR
 | |
| 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 | |
| 			tsk->comm, tsk->pid, address);
 | |
| 		code = BUS_MCEERR_AR;
 | |
| 	}
 | |
| #endif
 | |
| 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 | |
| 	       unsigned long address, u32 *pkey, vm_fault_t fault)
 | |
| {
 | |
| 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
 | |
| 		no_context(regs, error_code, address, 0, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (fault & VM_FAULT_OOM) {
 | |
| 		/* Kernel mode? Handle exceptions or die: */
 | |
| 		if (!(error_code & X86_PF_USER)) {
 | |
| 			no_context(regs, error_code, address,
 | |
| 				   SIGSEGV, SEGV_MAPERR);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We ran out of memory, call the OOM killer, and return the
 | |
| 		 * userspace (which will retry the fault, or kill us if we got
 | |
| 		 * oom-killed):
 | |
| 		 */
 | |
| 		pagefault_out_of_memory();
 | |
| 	} else {
 | |
| 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 | |
| 			     VM_FAULT_HWPOISON_LARGE))
 | |
| 			do_sigbus(regs, error_code, address, pkey, fault);
 | |
| 		else if (fault & VM_FAULT_SIGSEGV)
 | |
| 			bad_area_nosemaphore(regs, error_code, address, pkey);
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int spurious_fault_check(unsigned long error_code, pte_t *pte)
 | |
| {
 | |
| 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Note: We do not do lazy flushing on protection key
 | |
| 	 * changes, so no spurious fault will ever set X86_PF_PK.
 | |
| 	 */
 | |
| 	if ((error_code & X86_PF_PK))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle a spurious fault caused by a stale TLB entry.
 | |
|  *
 | |
|  * This allows us to lazily refresh the TLB when increasing the
 | |
|  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 | |
|  * eagerly is very expensive since that implies doing a full
 | |
|  * cross-processor TLB flush, even if no stale TLB entries exist
 | |
|  * on other processors.
 | |
|  *
 | |
|  * Spurious faults may only occur if the TLB contains an entry with
 | |
|  * fewer permission than the page table entry.  Non-present (P = 0)
 | |
|  * and reserved bit (R = 1) faults are never spurious.
 | |
|  *
 | |
|  * There are no security implications to leaving a stale TLB when
 | |
|  * increasing the permissions on a page.
 | |
|  *
 | |
|  * Returns non-zero if a spurious fault was handled, zero otherwise.
 | |
|  *
 | |
|  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 | |
|  * (Optional Invalidation).
 | |
|  */
 | |
| static noinline int
 | |
| spurious_fault(unsigned long error_code, unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only writes to RO or instruction fetches from NX may cause
 | |
| 	 * spurious faults.
 | |
| 	 *
 | |
| 	 * These could be from user or supervisor accesses but the TLB
 | |
| 	 * is only lazily flushed after a kernel mapping protection
 | |
| 	 * change, so user accesses are not expected to cause spurious
 | |
| 	 * faults.
 | |
| 	 */
 | |
| 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
 | |
| 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
 | |
| 		return 0;
 | |
| 
 | |
| 	pgd = init_mm.pgd + pgd_index(address);
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		return 0;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (!p4d_present(*p4d))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (p4d_large(*p4d))
 | |
| 		return spurious_fault_check(error_code, (pte_t *) p4d);
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (!pud_present(*pud))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pud_large(*pud))
 | |
| 		return spurious_fault_check(error_code, (pte_t *) pud);
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (!pmd_present(*pmd))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_large(*pmd))
 | |
| 		return spurious_fault_check(error_code, (pte_t *) pmd);
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	if (!pte_present(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = spurious_fault_check(error_code, pte);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we have permissions in PMD.
 | |
| 	 * If not, then there's a bug in the page tables:
 | |
| 	 */
 | |
| 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
 | |
| 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| NOKPROBE_SYMBOL(spurious_fault);
 | |
| 
 | |
| int show_unhandled_signals = 1;
 | |
| 
 | |
| static inline int
 | |
| access_error(unsigned long error_code, struct vm_area_struct *vma)
 | |
| {
 | |
| 	/* This is only called for the current mm, so: */
 | |
| 	bool foreign = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read or write was blocked by protection keys.  This is
 | |
| 	 * always an unconditional error and can never result in
 | |
| 	 * a follow-up action to resolve the fault, like a COW.
 | |
| 	 */
 | |
| 	if (error_code & X86_PF_PK)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure to check the VMA so that we do not perform
 | |
| 	 * faults just to hit a X86_PF_PK as soon as we fill in a
 | |
| 	 * page.
 | |
| 	 */
 | |
| 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 | |
| 				       (error_code & X86_PF_INSTR), foreign))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (error_code & X86_PF_WRITE) {
 | |
| 		/* write, present and write, not present: */
 | |
| 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
 | |
| 			return 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* read, present: */
 | |
| 	if (unlikely(error_code & X86_PF_PROT))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* read, not present: */
 | |
| 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fault_in_kernel_space(unsigned long address)
 | |
| {
 | |
| 	return address >= TASK_SIZE_MAX;
 | |
| }
 | |
| 
 | |
| static inline bool smap_violation(int error_code, struct pt_regs *regs)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_X86_SMAP))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!static_cpu_has(X86_FEATURE_SMAP))
 | |
| 		return false;
 | |
| 
 | |
| 	if (error_code & X86_PF_USER)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine handles page faults.  It determines the address,
 | |
|  * and the problem, and then passes it off to one of the appropriate
 | |
|  * routines.
 | |
|  */
 | |
| static noinline void
 | |
| __do_page_fault(struct pt_regs *regs, unsigned long error_code,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct task_struct *tsk;
 | |
| 	struct mm_struct *mm;
 | |
| 	vm_fault_t fault, major = 0;
 | |
| 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 | |
| 	u32 pkey;
 | |
| 
 | |
| 	tsk = current;
 | |
| 	mm = tsk->mm;
 | |
| 
 | |
| 	prefetchw(&mm->mmap_sem);
 | |
| 
 | |
| 	if (unlikely(kmmio_fault(regs, address)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We fault-in kernel-space virtual memory on-demand. The
 | |
| 	 * 'reference' page table is init_mm.pgd.
 | |
| 	 *
 | |
| 	 * NOTE! We MUST NOT take any locks for this case. We may
 | |
| 	 * be in an interrupt or a critical region, and should
 | |
| 	 * only copy the information from the master page table,
 | |
| 	 * nothing more.
 | |
| 	 *
 | |
| 	 * This verifies that the fault happens in kernel space
 | |
| 	 * (error_code & 4) == 0, and that the fault was not a
 | |
| 	 * protection error (error_code & 9) == 0.
 | |
| 	 */
 | |
| 	if (unlikely(fault_in_kernel_space(address))) {
 | |
| 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
 | |
| 			if (vmalloc_fault(address) >= 0)
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 		/* Can handle a stale RO->RW TLB: */
 | |
| 		if (spurious_fault(error_code, address))
 | |
| 			return;
 | |
| 
 | |
| 		/* kprobes don't want to hook the spurious faults: */
 | |
| 		if (kprobes_fault(regs))
 | |
| 			return;
 | |
| 		/*
 | |
| 		 * Don't take the mm semaphore here. If we fixup a prefetch
 | |
| 		 * fault we could otherwise deadlock:
 | |
| 		 */
 | |
| 		bad_area_nosemaphore(regs, error_code, address, NULL);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* kprobes don't want to hook the spurious faults: */
 | |
| 	if (unlikely(kprobes_fault(regs)))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(error_code & X86_PF_RSVD))
 | |
| 		pgtable_bad(regs, error_code, address);
 | |
| 
 | |
| 	if (unlikely(smap_violation(error_code, regs))) {
 | |
| 		bad_area_nosemaphore(regs, error_code, address, NULL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're in an interrupt, have no user context or are running
 | |
| 	 * in a region with pagefaults disabled then we must not take the fault
 | |
| 	 */
 | |
| 	if (unlikely(faulthandler_disabled() || !mm)) {
 | |
| 		bad_area_nosemaphore(regs, error_code, address, NULL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's safe to allow irq's after cr2 has been saved and the
 | |
| 	 * vmalloc fault has been handled.
 | |
| 	 *
 | |
| 	 * User-mode registers count as a user access even for any
 | |
| 	 * potential system fault or CPU buglet:
 | |
| 	 */
 | |
| 	if (user_mode(regs)) {
 | |
| 		local_irq_enable();
 | |
| 		error_code |= X86_PF_USER;
 | |
| 		flags |= FAULT_FLAG_USER;
 | |
| 	} else {
 | |
| 		if (regs->flags & X86_EFLAGS_IF)
 | |
| 			local_irq_enable();
 | |
| 	}
 | |
| 
 | |
| 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 | |
| 
 | |
| 	if (error_code & X86_PF_WRITE)
 | |
| 		flags |= FAULT_FLAG_WRITE;
 | |
| 	if (error_code & X86_PF_INSTR)
 | |
| 		flags |= FAULT_FLAG_INSTRUCTION;
 | |
| 
 | |
| 	/*
 | |
| 	 * When running in the kernel we expect faults to occur only to
 | |
| 	 * addresses in user space.  All other faults represent errors in
 | |
| 	 * the kernel and should generate an OOPS.  Unfortunately, in the
 | |
| 	 * case of an erroneous fault occurring in a code path which already
 | |
| 	 * holds mmap_sem we will deadlock attempting to validate the fault
 | |
| 	 * against the address space.  Luckily the kernel only validly
 | |
| 	 * references user space from well defined areas of code, which are
 | |
| 	 * listed in the exceptions table.
 | |
| 	 *
 | |
| 	 * As the vast majority of faults will be valid we will only perform
 | |
| 	 * the source reference check when there is a possibility of a
 | |
| 	 * deadlock. Attempt to lock the address space, if we cannot we then
 | |
| 	 * validate the source. If this is invalid we can skip the address
 | |
| 	 * space check, thus avoiding the deadlock:
 | |
| 	 */
 | |
| 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
 | |
| 		if (!(error_code & X86_PF_USER) &&
 | |
| 		    !search_exception_tables(regs->ip)) {
 | |
| 			bad_area_nosemaphore(regs, error_code, address, NULL);
 | |
| 			return;
 | |
| 		}
 | |
| retry:
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The above down_read_trylock() might have succeeded in
 | |
| 		 * which case we'll have missed the might_sleep() from
 | |
| 		 * down_read():
 | |
| 		 */
 | |
| 		might_sleep();
 | |
| 	}
 | |
| 
 | |
| 	vma = find_vma(mm, address);
 | |
| 	if (unlikely(!vma)) {
 | |
| 		bad_area(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (likely(vma->vm_start <= address))
 | |
| 		goto good_area;
 | |
| 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
 | |
| 		bad_area(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (error_code & X86_PF_USER) {
 | |
| 		/*
 | |
| 		 * Accessing the stack below %sp is always a bug.
 | |
| 		 * The large cushion allows instructions like enter
 | |
| 		 * and pusha to work. ("enter $65535, $31" pushes
 | |
| 		 * 32 pointers and then decrements %sp by 65535.)
 | |
| 		 */
 | |
| 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
 | |
| 			bad_area(regs, error_code, address);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	if (unlikely(expand_stack(vma, address))) {
 | |
| 		bad_area(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, we have a good vm_area for this memory access, so
 | |
| 	 * we can handle it..
 | |
| 	 */
 | |
| good_area:
 | |
| 	if (unlikely(access_error(error_code, vma))) {
 | |
| 		bad_area_access_error(regs, error_code, address, vma);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If for any reason at all we couldn't handle the fault,
 | |
| 	 * make sure we exit gracefully rather than endlessly redo
 | |
| 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
 | |
| 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
 | |
| 	 *
 | |
| 	 * Note that handle_userfault() may also release and reacquire mmap_sem
 | |
| 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
 | |
| 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
 | |
| 	 * (potentially after handling any pending signal during the return to
 | |
| 	 * userland). The return to userland is identified whenever
 | |
| 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
 | |
| 	 * Thus we have to be careful about not touching vma after handling the
 | |
| 	 * fault, so we read the pkey beforehand.
 | |
| 	 */
 | |
| 	pkey = vma_pkey(vma);
 | |
| 	fault = handle_mm_fault(vma, address, flags);
 | |
| 	major |= fault & VM_FAULT_MAJOR;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need to retry the mmap_sem has already been released,
 | |
| 	 * and if there is a fatal signal pending there is no guarantee
 | |
| 	 * that we made any progress. Handle this case first.
 | |
| 	 */
 | |
| 	if (unlikely(fault & VM_FAULT_RETRY)) {
 | |
| 		/* Retry at most once */
 | |
| 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
 | |
| 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
 | |
| 			flags |= FAULT_FLAG_TRIED;
 | |
| 			if (!fatal_signal_pending(tsk))
 | |
| 				goto retry;
 | |
| 		}
 | |
| 
 | |
| 		/* User mode? Just return to handle the fatal exception */
 | |
| 		if (flags & FAULT_FLAG_USER)
 | |
| 			return;
 | |
| 
 | |
| 		/* Not returning to user mode? Handle exceptions or die: */
 | |
| 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	if (unlikely(fault & VM_FAULT_ERROR)) {
 | |
| 		mm_fault_error(regs, error_code, address, &pkey, fault);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Major/minor page fault accounting. If any of the events
 | |
| 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
 | |
| 	 */
 | |
| 	if (major) {
 | |
| 		tsk->maj_flt++;
 | |
| 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
 | |
| 	} else {
 | |
| 		tsk->min_flt++;
 | |
| 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
 | |
| 	}
 | |
| 
 | |
| 	check_v8086_mode(regs, address, tsk);
 | |
| }
 | |
| NOKPROBE_SYMBOL(__do_page_fault);
 | |
| 
 | |
| static nokprobe_inline void
 | |
| trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
 | |
| 			 unsigned long error_code)
 | |
| {
 | |
| 	if (user_mode(regs))
 | |
| 		trace_page_fault_user(address, regs, error_code);
 | |
| 	else
 | |
| 		trace_page_fault_kernel(address, regs, error_code);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We must have this function blacklisted from kprobes, tagged with notrace
 | |
|  * and call read_cr2() before calling anything else. To avoid calling any
 | |
|  * kind of tracing machinery before we've observed the CR2 value.
 | |
|  *
 | |
|  * exception_{enter,exit}() contains all sorts of tracepoints.
 | |
|  */
 | |
| dotraplinkage void notrace
 | |
| do_page_fault(struct pt_regs *regs, unsigned long error_code)
 | |
| {
 | |
| 	unsigned long address = read_cr2(); /* Get the faulting address */
 | |
| 	enum ctx_state prev_state;
 | |
| 
 | |
| 	prev_state = exception_enter();
 | |
| 	if (trace_pagefault_enabled())
 | |
| 		trace_page_fault_entries(address, regs, error_code);
 | |
| 
 | |
| 	__do_page_fault(regs, error_code, address);
 | |
| 	exception_exit(prev_state);
 | |
| }
 | |
| NOKPROBE_SYMBOL(do_page_fault);
 | 
