14569 lines
		
	
	
		
			410 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			14569 lines
		
	
	
		
			410 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * This module enables machines with Intel VT-x extensions to run virtual
 | |
|  * machines without emulation or binary translation.
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "irq.h"
 | |
| #include "mmu.h"
 | |
| #include "cpuid.h"
 | |
| #include "lapic.h"
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/smt.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/mod_devicetable.h>
 | |
| #include <linux/trace_events.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/tboot.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/frame.h>
 | |
| #include <linux/nospec.h>
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "x86.h"
 | |
| 
 | |
| #include <asm/asm.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/vmx.h>
 | |
| #include <asm/virtext.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/fpu/internal.h>
 | |
| #include <asm/perf_event.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/kexec.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/irq_remapping.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/spec-ctrl.h>
 | |
| #include <asm/mshyperv.h>
 | |
| 
 | |
| #include "trace.h"
 | |
| #include "pmu.h"
 | |
| #include "vmx_evmcs.h"
 | |
| 
 | |
| #define __ex(x) __kvm_handle_fault_on_reboot(x)
 | |
| #define __ex_clear(x, reg) \
 | |
| 	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
 | |
| 
 | |
| MODULE_AUTHOR("Qumranet");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| static const struct x86_cpu_id vmx_cpu_id[] = {
 | |
| 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
 | |
| 
 | |
| static bool __read_mostly enable_vpid = 1;
 | |
| module_param_named(vpid, enable_vpid, bool, 0444);
 | |
| 
 | |
| static bool __read_mostly enable_vnmi = 1;
 | |
| module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
 | |
| 
 | |
| static bool __read_mostly flexpriority_enabled = 1;
 | |
| module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
 | |
| 
 | |
| static bool __read_mostly enable_ept = 1;
 | |
| module_param_named(ept, enable_ept, bool, S_IRUGO);
 | |
| 
 | |
| static bool __read_mostly enable_unrestricted_guest = 1;
 | |
| module_param_named(unrestricted_guest,
 | |
| 			enable_unrestricted_guest, bool, S_IRUGO);
 | |
| 
 | |
| static bool __read_mostly enable_ept_ad_bits = 1;
 | |
| module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
 | |
| 
 | |
| static bool __read_mostly emulate_invalid_guest_state = true;
 | |
| module_param(emulate_invalid_guest_state, bool, S_IRUGO);
 | |
| 
 | |
| static bool __read_mostly fasteoi = 1;
 | |
| module_param(fasteoi, bool, S_IRUGO);
 | |
| 
 | |
| static bool __read_mostly enable_apicv = 1;
 | |
| module_param(enable_apicv, bool, S_IRUGO);
 | |
| 
 | |
| static bool __read_mostly enable_shadow_vmcs = 1;
 | |
| module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
 | |
| /*
 | |
|  * If nested=1, nested virtualization is supported, i.e., guests may use
 | |
|  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
 | |
|  * use VMX instructions.
 | |
|  */
 | |
| static bool __read_mostly nested = 0;
 | |
| module_param(nested, bool, S_IRUGO);
 | |
| 
 | |
| static u64 __read_mostly host_xss;
 | |
| 
 | |
| static bool __read_mostly enable_pml = 1;
 | |
| module_param_named(pml, enable_pml, bool, S_IRUGO);
 | |
| 
 | |
| #define MSR_TYPE_R	1
 | |
| #define MSR_TYPE_W	2
 | |
| #define MSR_TYPE_RW	3
 | |
| 
 | |
| #define MSR_BITMAP_MODE_X2APIC		1
 | |
| #define MSR_BITMAP_MODE_X2APIC_APICV	2
 | |
| 
 | |
| #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
 | |
| 
 | |
| /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
 | |
| static int __read_mostly cpu_preemption_timer_multi;
 | |
| static bool __read_mostly enable_preemption_timer = 1;
 | |
| #ifdef CONFIG_X86_64
 | |
| module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
 | |
| #endif
 | |
| 
 | |
| #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
 | |
| #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
 | |
| #define KVM_VM_CR0_ALWAYS_ON				\
 | |
| 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
 | |
| 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
 | |
| #define KVM_CR4_GUEST_OWNED_BITS				      \
 | |
| 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 | |
| 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
 | |
| 
 | |
| #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
 | |
| #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 | |
| #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 | |
| 
 | |
| #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 | |
| 
 | |
| #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
 | |
| 
 | |
| /*
 | |
|  * Hyper-V requires all of these, so mark them as supported even though
 | |
|  * they are just treated the same as all-context.
 | |
|  */
 | |
| #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
 | |
| 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
 | |
| 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
 | |
| 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
 | |
| 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
 | |
| 
 | |
| /*
 | |
|  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 | |
|  * ple_gap:    upper bound on the amount of time between two successive
 | |
|  *             executions of PAUSE in a loop. Also indicate if ple enabled.
 | |
|  *             According to test, this time is usually smaller than 128 cycles.
 | |
|  * ple_window: upper bound on the amount of time a guest is allowed to execute
 | |
|  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 | |
|  *             less than 2^12 cycles
 | |
|  * Time is measured based on a counter that runs at the same rate as the TSC,
 | |
|  * refer SDM volume 3b section 21.6.13 & 22.1.3.
 | |
|  */
 | |
| static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
 | |
| module_param(ple_gap, uint, 0444);
 | |
| 
 | |
| static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 | |
| module_param(ple_window, uint, 0444);
 | |
| 
 | |
| /* Default doubles per-vcpu window every exit. */
 | |
| static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 | |
| module_param(ple_window_grow, uint, 0444);
 | |
| 
 | |
| /* Default resets per-vcpu window every exit to ple_window. */
 | |
| static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 | |
| module_param(ple_window_shrink, uint, 0444);
 | |
| 
 | |
| /* Default is to compute the maximum so we can never overflow. */
 | |
| static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 | |
| module_param(ple_window_max, uint, 0444);
 | |
| 
 | |
| extern const ulong vmx_return;
 | |
| 
 | |
| static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
 | |
| static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
 | |
| static DEFINE_MUTEX(vmx_l1d_flush_mutex);
 | |
| 
 | |
| /* Storage for pre module init parameter parsing */
 | |
| static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
 | |
| 
 | |
| static const struct {
 | |
| 	const char *option;
 | |
| 	bool for_parse;
 | |
| } vmentry_l1d_param[] = {
 | |
| 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
 | |
| 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
 | |
| 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
 | |
| 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
 | |
| 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
 | |
| 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
 | |
| };
 | |
| 
 | |
| #define L1D_CACHE_ORDER 4
 | |
| static void *vmx_l1d_flush_pages;
 | |
| 
 | |
| static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!enable_ept) {
 | |
| 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
 | |
| 		u64 msr;
 | |
| 
 | |
| 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
 | |
| 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
 | |
| 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If set to auto use the default l1tf mitigation method */
 | |
| 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
 | |
| 		switch (l1tf_mitigation) {
 | |
| 		case L1TF_MITIGATION_OFF:
 | |
| 			l1tf = VMENTER_L1D_FLUSH_NEVER;
 | |
| 			break;
 | |
| 		case L1TF_MITIGATION_FLUSH_NOWARN:
 | |
| 		case L1TF_MITIGATION_FLUSH:
 | |
| 		case L1TF_MITIGATION_FLUSH_NOSMT:
 | |
| 			l1tf = VMENTER_L1D_FLUSH_COND;
 | |
| 			break;
 | |
| 		case L1TF_MITIGATION_FULL:
 | |
| 		case L1TF_MITIGATION_FULL_FORCE:
 | |
| 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 | |
| 			break;
 | |
| 		}
 | |
| 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
 | |
| 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 | |
| 	}
 | |
| 
 | |
| 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
 | |
| 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
 | |
| 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 		vmx_l1d_flush_pages = page_address(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * Initialize each page with a different pattern in
 | |
| 		 * order to protect against KSM in the nested
 | |
| 		 * virtualization case.
 | |
| 		 */
 | |
| 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
 | |
| 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
 | |
| 			       PAGE_SIZE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	l1tf_vmx_mitigation = l1tf;
 | |
| 
 | |
| 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
 | |
| 		static_branch_enable(&vmx_l1d_should_flush);
 | |
| 	else
 | |
| 		static_branch_disable(&vmx_l1d_should_flush);
 | |
| 
 | |
| 	if (l1tf == VMENTER_L1D_FLUSH_COND)
 | |
| 		static_branch_enable(&vmx_l1d_flush_cond);
 | |
| 	else
 | |
| 		static_branch_disable(&vmx_l1d_flush_cond);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmentry_l1d_flush_parse(const char *s)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (s) {
 | |
| 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
 | |
| 			if (vmentry_l1d_param[i].for_parse &&
 | |
| 			    sysfs_streq(s, vmentry_l1d_param[i].option))
 | |
| 				return i;
 | |
| 		}
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
 | |
| {
 | |
| 	int l1tf, ret;
 | |
| 
 | |
| 	l1tf = vmentry_l1d_flush_parse(s);
 | |
| 	if (l1tf < 0)
 | |
| 		return l1tf;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_BUG_L1TF))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Has vmx_init() run already? If not then this is the pre init
 | |
| 	 * parameter parsing. In that case just store the value and let
 | |
| 	 * vmx_init() do the proper setup after enable_ept has been
 | |
| 	 * established.
 | |
| 	 */
 | |
| 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
 | |
| 		vmentry_l1d_flush_param = l1tf;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&vmx_l1d_flush_mutex);
 | |
| 	ret = vmx_setup_l1d_flush(l1tf);
 | |
| 	mutex_unlock(&vmx_l1d_flush_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
 | |
| 		return sprintf(s, "???\n");
 | |
| 
 | |
| 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
 | |
| }
 | |
| 
 | |
| static const struct kernel_param_ops vmentry_l1d_flush_ops = {
 | |
| 	.set = vmentry_l1d_flush_set,
 | |
| 	.get = vmentry_l1d_flush_get,
 | |
| };
 | |
| module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
 | |
| 
 | |
| enum ept_pointers_status {
 | |
| 	EPT_POINTERS_CHECK = 0,
 | |
| 	EPT_POINTERS_MATCH = 1,
 | |
| 	EPT_POINTERS_MISMATCH = 2
 | |
| };
 | |
| 
 | |
| struct kvm_vmx {
 | |
| 	struct kvm kvm;
 | |
| 
 | |
| 	unsigned int tss_addr;
 | |
| 	bool ept_identity_pagetable_done;
 | |
| 	gpa_t ept_identity_map_addr;
 | |
| 
 | |
| 	enum ept_pointers_status ept_pointers_match;
 | |
| 	spinlock_t ept_pointer_lock;
 | |
| };
 | |
| 
 | |
| #define NR_AUTOLOAD_MSRS 8
 | |
| 
 | |
| struct vmcs_hdr {
 | |
| 	u32 revision_id:31;
 | |
| 	u32 shadow_vmcs:1;
 | |
| };
 | |
| 
 | |
| struct vmcs {
 | |
| 	struct vmcs_hdr hdr;
 | |
| 	u32 abort;
 | |
| 	char data[0];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
 | |
|  * and whose values change infrequently, but are not constant.  I.e. this is
 | |
|  * used as a write-through cache of the corresponding VMCS fields.
 | |
|  */
 | |
| struct vmcs_host_state {
 | |
| 	unsigned long cr3;	/* May not match real cr3 */
 | |
| 	unsigned long cr4;	/* May not match real cr4 */
 | |
| 	unsigned long gs_base;
 | |
| 	unsigned long fs_base;
 | |
| 
 | |
| 	u16           fs_sel, gs_sel, ldt_sel;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	u16           ds_sel, es_sel;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
 | |
|  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
 | |
|  * loaded on this CPU (so we can clear them if the CPU goes down).
 | |
|  */
 | |
| struct loaded_vmcs {
 | |
| 	struct vmcs *vmcs;
 | |
| 	struct vmcs *shadow_vmcs;
 | |
| 	int cpu;
 | |
| 	bool launched;
 | |
| 	bool nmi_known_unmasked;
 | |
| 	bool hv_timer_armed;
 | |
| 	/* Support for vnmi-less CPUs */
 | |
| 	int soft_vnmi_blocked;
 | |
| 	ktime_t entry_time;
 | |
| 	s64 vnmi_blocked_time;
 | |
| 	unsigned long *msr_bitmap;
 | |
| 	struct list_head loaded_vmcss_on_cpu_link;
 | |
| 	struct vmcs_host_state host_state;
 | |
| };
 | |
| 
 | |
| struct shared_msr_entry {
 | |
| 	unsigned index;
 | |
| 	u64 data;
 | |
| 	u64 mask;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
 | |
|  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
 | |
|  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
 | |
|  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
 | |
|  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
 | |
|  * More than one of these structures may exist, if L1 runs multiple L2 guests.
 | |
|  * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
 | |
|  * underlying hardware which will be used to run L2.
 | |
|  * This structure is packed to ensure that its layout is identical across
 | |
|  * machines (necessary for live migration).
 | |
|  *
 | |
|  * IMPORTANT: Changing the layout of existing fields in this structure
 | |
|  * will break save/restore compatibility with older kvm releases. When
 | |
|  * adding new fields, either use space in the reserved padding* arrays
 | |
|  * or add the new fields to the end of the structure.
 | |
|  */
 | |
| typedef u64 natural_width;
 | |
| struct __packed vmcs12 {
 | |
| 	/* According to the Intel spec, a VMCS region must start with the
 | |
| 	 * following two fields. Then follow implementation-specific data.
 | |
| 	 */
 | |
| 	struct vmcs_hdr hdr;
 | |
| 	u32 abort;
 | |
| 
 | |
| 	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
 | |
| 	u32 padding[7]; /* room for future expansion */
 | |
| 
 | |
| 	u64 io_bitmap_a;
 | |
| 	u64 io_bitmap_b;
 | |
| 	u64 msr_bitmap;
 | |
| 	u64 vm_exit_msr_store_addr;
 | |
| 	u64 vm_exit_msr_load_addr;
 | |
| 	u64 vm_entry_msr_load_addr;
 | |
| 	u64 tsc_offset;
 | |
| 	u64 virtual_apic_page_addr;
 | |
| 	u64 apic_access_addr;
 | |
| 	u64 posted_intr_desc_addr;
 | |
| 	u64 ept_pointer;
 | |
| 	u64 eoi_exit_bitmap0;
 | |
| 	u64 eoi_exit_bitmap1;
 | |
| 	u64 eoi_exit_bitmap2;
 | |
| 	u64 eoi_exit_bitmap3;
 | |
| 	u64 xss_exit_bitmap;
 | |
| 	u64 guest_physical_address;
 | |
| 	u64 vmcs_link_pointer;
 | |
| 	u64 guest_ia32_debugctl;
 | |
| 	u64 guest_ia32_pat;
 | |
| 	u64 guest_ia32_efer;
 | |
| 	u64 guest_ia32_perf_global_ctrl;
 | |
| 	u64 guest_pdptr0;
 | |
| 	u64 guest_pdptr1;
 | |
| 	u64 guest_pdptr2;
 | |
| 	u64 guest_pdptr3;
 | |
| 	u64 guest_bndcfgs;
 | |
| 	u64 host_ia32_pat;
 | |
| 	u64 host_ia32_efer;
 | |
| 	u64 host_ia32_perf_global_ctrl;
 | |
| 	u64 vmread_bitmap;
 | |
| 	u64 vmwrite_bitmap;
 | |
| 	u64 vm_function_control;
 | |
| 	u64 eptp_list_address;
 | |
| 	u64 pml_address;
 | |
| 	u64 padding64[3]; /* room for future expansion */
 | |
| 	/*
 | |
| 	 * To allow migration of L1 (complete with its L2 guests) between
 | |
| 	 * machines of different natural widths (32 or 64 bit), we cannot have
 | |
| 	 * unsigned long fields with no explict size. We use u64 (aliased
 | |
| 	 * natural_width) instead. Luckily, x86 is little-endian.
 | |
| 	 */
 | |
| 	natural_width cr0_guest_host_mask;
 | |
| 	natural_width cr4_guest_host_mask;
 | |
| 	natural_width cr0_read_shadow;
 | |
| 	natural_width cr4_read_shadow;
 | |
| 	natural_width cr3_target_value0;
 | |
| 	natural_width cr3_target_value1;
 | |
| 	natural_width cr3_target_value2;
 | |
| 	natural_width cr3_target_value3;
 | |
| 	natural_width exit_qualification;
 | |
| 	natural_width guest_linear_address;
 | |
| 	natural_width guest_cr0;
 | |
| 	natural_width guest_cr3;
 | |
| 	natural_width guest_cr4;
 | |
| 	natural_width guest_es_base;
 | |
| 	natural_width guest_cs_base;
 | |
| 	natural_width guest_ss_base;
 | |
| 	natural_width guest_ds_base;
 | |
| 	natural_width guest_fs_base;
 | |
| 	natural_width guest_gs_base;
 | |
| 	natural_width guest_ldtr_base;
 | |
| 	natural_width guest_tr_base;
 | |
| 	natural_width guest_gdtr_base;
 | |
| 	natural_width guest_idtr_base;
 | |
| 	natural_width guest_dr7;
 | |
| 	natural_width guest_rsp;
 | |
| 	natural_width guest_rip;
 | |
| 	natural_width guest_rflags;
 | |
| 	natural_width guest_pending_dbg_exceptions;
 | |
| 	natural_width guest_sysenter_esp;
 | |
| 	natural_width guest_sysenter_eip;
 | |
| 	natural_width host_cr0;
 | |
| 	natural_width host_cr3;
 | |
| 	natural_width host_cr4;
 | |
| 	natural_width host_fs_base;
 | |
| 	natural_width host_gs_base;
 | |
| 	natural_width host_tr_base;
 | |
| 	natural_width host_gdtr_base;
 | |
| 	natural_width host_idtr_base;
 | |
| 	natural_width host_ia32_sysenter_esp;
 | |
| 	natural_width host_ia32_sysenter_eip;
 | |
| 	natural_width host_rsp;
 | |
| 	natural_width host_rip;
 | |
| 	natural_width paddingl[8]; /* room for future expansion */
 | |
| 	u32 pin_based_vm_exec_control;
 | |
| 	u32 cpu_based_vm_exec_control;
 | |
| 	u32 exception_bitmap;
 | |
| 	u32 page_fault_error_code_mask;
 | |
| 	u32 page_fault_error_code_match;
 | |
| 	u32 cr3_target_count;
 | |
| 	u32 vm_exit_controls;
 | |
| 	u32 vm_exit_msr_store_count;
 | |
| 	u32 vm_exit_msr_load_count;
 | |
| 	u32 vm_entry_controls;
 | |
| 	u32 vm_entry_msr_load_count;
 | |
| 	u32 vm_entry_intr_info_field;
 | |
| 	u32 vm_entry_exception_error_code;
 | |
| 	u32 vm_entry_instruction_len;
 | |
| 	u32 tpr_threshold;
 | |
| 	u32 secondary_vm_exec_control;
 | |
| 	u32 vm_instruction_error;
 | |
| 	u32 vm_exit_reason;
 | |
| 	u32 vm_exit_intr_info;
 | |
| 	u32 vm_exit_intr_error_code;
 | |
| 	u32 idt_vectoring_info_field;
 | |
| 	u32 idt_vectoring_error_code;
 | |
| 	u32 vm_exit_instruction_len;
 | |
| 	u32 vmx_instruction_info;
 | |
| 	u32 guest_es_limit;
 | |
| 	u32 guest_cs_limit;
 | |
| 	u32 guest_ss_limit;
 | |
| 	u32 guest_ds_limit;
 | |
| 	u32 guest_fs_limit;
 | |
| 	u32 guest_gs_limit;
 | |
| 	u32 guest_ldtr_limit;
 | |
| 	u32 guest_tr_limit;
 | |
| 	u32 guest_gdtr_limit;
 | |
| 	u32 guest_idtr_limit;
 | |
| 	u32 guest_es_ar_bytes;
 | |
| 	u32 guest_cs_ar_bytes;
 | |
| 	u32 guest_ss_ar_bytes;
 | |
| 	u32 guest_ds_ar_bytes;
 | |
| 	u32 guest_fs_ar_bytes;
 | |
| 	u32 guest_gs_ar_bytes;
 | |
| 	u32 guest_ldtr_ar_bytes;
 | |
| 	u32 guest_tr_ar_bytes;
 | |
| 	u32 guest_interruptibility_info;
 | |
| 	u32 guest_activity_state;
 | |
| 	u32 guest_sysenter_cs;
 | |
| 	u32 host_ia32_sysenter_cs;
 | |
| 	u32 vmx_preemption_timer_value;
 | |
| 	u32 padding32[7]; /* room for future expansion */
 | |
| 	u16 virtual_processor_id;
 | |
| 	u16 posted_intr_nv;
 | |
| 	u16 guest_es_selector;
 | |
| 	u16 guest_cs_selector;
 | |
| 	u16 guest_ss_selector;
 | |
| 	u16 guest_ds_selector;
 | |
| 	u16 guest_fs_selector;
 | |
| 	u16 guest_gs_selector;
 | |
| 	u16 guest_ldtr_selector;
 | |
| 	u16 guest_tr_selector;
 | |
| 	u16 guest_intr_status;
 | |
| 	u16 host_es_selector;
 | |
| 	u16 host_cs_selector;
 | |
| 	u16 host_ss_selector;
 | |
| 	u16 host_ds_selector;
 | |
| 	u16 host_fs_selector;
 | |
| 	u16 host_gs_selector;
 | |
| 	u16 host_tr_selector;
 | |
| 	u16 guest_pml_index;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * For save/restore compatibility, the vmcs12 field offsets must not change.
 | |
|  */
 | |
| #define CHECK_OFFSET(field, loc)				\
 | |
| 	BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc),	\
 | |
| 		"Offset of " #field " in struct vmcs12 has changed.")
 | |
| 
 | |
| static inline void vmx_check_vmcs12_offsets(void) {
 | |
| 	CHECK_OFFSET(hdr, 0);
 | |
| 	CHECK_OFFSET(abort, 4);
 | |
| 	CHECK_OFFSET(launch_state, 8);
 | |
| 	CHECK_OFFSET(io_bitmap_a, 40);
 | |
| 	CHECK_OFFSET(io_bitmap_b, 48);
 | |
| 	CHECK_OFFSET(msr_bitmap, 56);
 | |
| 	CHECK_OFFSET(vm_exit_msr_store_addr, 64);
 | |
| 	CHECK_OFFSET(vm_exit_msr_load_addr, 72);
 | |
| 	CHECK_OFFSET(vm_entry_msr_load_addr, 80);
 | |
| 	CHECK_OFFSET(tsc_offset, 88);
 | |
| 	CHECK_OFFSET(virtual_apic_page_addr, 96);
 | |
| 	CHECK_OFFSET(apic_access_addr, 104);
 | |
| 	CHECK_OFFSET(posted_intr_desc_addr, 112);
 | |
| 	CHECK_OFFSET(ept_pointer, 120);
 | |
| 	CHECK_OFFSET(eoi_exit_bitmap0, 128);
 | |
| 	CHECK_OFFSET(eoi_exit_bitmap1, 136);
 | |
| 	CHECK_OFFSET(eoi_exit_bitmap2, 144);
 | |
| 	CHECK_OFFSET(eoi_exit_bitmap3, 152);
 | |
| 	CHECK_OFFSET(xss_exit_bitmap, 160);
 | |
| 	CHECK_OFFSET(guest_physical_address, 168);
 | |
| 	CHECK_OFFSET(vmcs_link_pointer, 176);
 | |
| 	CHECK_OFFSET(guest_ia32_debugctl, 184);
 | |
| 	CHECK_OFFSET(guest_ia32_pat, 192);
 | |
| 	CHECK_OFFSET(guest_ia32_efer, 200);
 | |
| 	CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
 | |
| 	CHECK_OFFSET(guest_pdptr0, 216);
 | |
| 	CHECK_OFFSET(guest_pdptr1, 224);
 | |
| 	CHECK_OFFSET(guest_pdptr2, 232);
 | |
| 	CHECK_OFFSET(guest_pdptr3, 240);
 | |
| 	CHECK_OFFSET(guest_bndcfgs, 248);
 | |
| 	CHECK_OFFSET(host_ia32_pat, 256);
 | |
| 	CHECK_OFFSET(host_ia32_efer, 264);
 | |
| 	CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
 | |
| 	CHECK_OFFSET(vmread_bitmap, 280);
 | |
| 	CHECK_OFFSET(vmwrite_bitmap, 288);
 | |
| 	CHECK_OFFSET(vm_function_control, 296);
 | |
| 	CHECK_OFFSET(eptp_list_address, 304);
 | |
| 	CHECK_OFFSET(pml_address, 312);
 | |
| 	CHECK_OFFSET(cr0_guest_host_mask, 344);
 | |
| 	CHECK_OFFSET(cr4_guest_host_mask, 352);
 | |
| 	CHECK_OFFSET(cr0_read_shadow, 360);
 | |
| 	CHECK_OFFSET(cr4_read_shadow, 368);
 | |
| 	CHECK_OFFSET(cr3_target_value0, 376);
 | |
| 	CHECK_OFFSET(cr3_target_value1, 384);
 | |
| 	CHECK_OFFSET(cr3_target_value2, 392);
 | |
| 	CHECK_OFFSET(cr3_target_value3, 400);
 | |
| 	CHECK_OFFSET(exit_qualification, 408);
 | |
| 	CHECK_OFFSET(guest_linear_address, 416);
 | |
| 	CHECK_OFFSET(guest_cr0, 424);
 | |
| 	CHECK_OFFSET(guest_cr3, 432);
 | |
| 	CHECK_OFFSET(guest_cr4, 440);
 | |
| 	CHECK_OFFSET(guest_es_base, 448);
 | |
| 	CHECK_OFFSET(guest_cs_base, 456);
 | |
| 	CHECK_OFFSET(guest_ss_base, 464);
 | |
| 	CHECK_OFFSET(guest_ds_base, 472);
 | |
| 	CHECK_OFFSET(guest_fs_base, 480);
 | |
| 	CHECK_OFFSET(guest_gs_base, 488);
 | |
| 	CHECK_OFFSET(guest_ldtr_base, 496);
 | |
| 	CHECK_OFFSET(guest_tr_base, 504);
 | |
| 	CHECK_OFFSET(guest_gdtr_base, 512);
 | |
| 	CHECK_OFFSET(guest_idtr_base, 520);
 | |
| 	CHECK_OFFSET(guest_dr7, 528);
 | |
| 	CHECK_OFFSET(guest_rsp, 536);
 | |
| 	CHECK_OFFSET(guest_rip, 544);
 | |
| 	CHECK_OFFSET(guest_rflags, 552);
 | |
| 	CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
 | |
| 	CHECK_OFFSET(guest_sysenter_esp, 568);
 | |
| 	CHECK_OFFSET(guest_sysenter_eip, 576);
 | |
| 	CHECK_OFFSET(host_cr0, 584);
 | |
| 	CHECK_OFFSET(host_cr3, 592);
 | |
| 	CHECK_OFFSET(host_cr4, 600);
 | |
| 	CHECK_OFFSET(host_fs_base, 608);
 | |
| 	CHECK_OFFSET(host_gs_base, 616);
 | |
| 	CHECK_OFFSET(host_tr_base, 624);
 | |
| 	CHECK_OFFSET(host_gdtr_base, 632);
 | |
| 	CHECK_OFFSET(host_idtr_base, 640);
 | |
| 	CHECK_OFFSET(host_ia32_sysenter_esp, 648);
 | |
| 	CHECK_OFFSET(host_ia32_sysenter_eip, 656);
 | |
| 	CHECK_OFFSET(host_rsp, 664);
 | |
| 	CHECK_OFFSET(host_rip, 672);
 | |
| 	CHECK_OFFSET(pin_based_vm_exec_control, 744);
 | |
| 	CHECK_OFFSET(cpu_based_vm_exec_control, 748);
 | |
| 	CHECK_OFFSET(exception_bitmap, 752);
 | |
| 	CHECK_OFFSET(page_fault_error_code_mask, 756);
 | |
| 	CHECK_OFFSET(page_fault_error_code_match, 760);
 | |
| 	CHECK_OFFSET(cr3_target_count, 764);
 | |
| 	CHECK_OFFSET(vm_exit_controls, 768);
 | |
| 	CHECK_OFFSET(vm_exit_msr_store_count, 772);
 | |
| 	CHECK_OFFSET(vm_exit_msr_load_count, 776);
 | |
| 	CHECK_OFFSET(vm_entry_controls, 780);
 | |
| 	CHECK_OFFSET(vm_entry_msr_load_count, 784);
 | |
| 	CHECK_OFFSET(vm_entry_intr_info_field, 788);
 | |
| 	CHECK_OFFSET(vm_entry_exception_error_code, 792);
 | |
| 	CHECK_OFFSET(vm_entry_instruction_len, 796);
 | |
| 	CHECK_OFFSET(tpr_threshold, 800);
 | |
| 	CHECK_OFFSET(secondary_vm_exec_control, 804);
 | |
| 	CHECK_OFFSET(vm_instruction_error, 808);
 | |
| 	CHECK_OFFSET(vm_exit_reason, 812);
 | |
| 	CHECK_OFFSET(vm_exit_intr_info, 816);
 | |
| 	CHECK_OFFSET(vm_exit_intr_error_code, 820);
 | |
| 	CHECK_OFFSET(idt_vectoring_info_field, 824);
 | |
| 	CHECK_OFFSET(idt_vectoring_error_code, 828);
 | |
| 	CHECK_OFFSET(vm_exit_instruction_len, 832);
 | |
| 	CHECK_OFFSET(vmx_instruction_info, 836);
 | |
| 	CHECK_OFFSET(guest_es_limit, 840);
 | |
| 	CHECK_OFFSET(guest_cs_limit, 844);
 | |
| 	CHECK_OFFSET(guest_ss_limit, 848);
 | |
| 	CHECK_OFFSET(guest_ds_limit, 852);
 | |
| 	CHECK_OFFSET(guest_fs_limit, 856);
 | |
| 	CHECK_OFFSET(guest_gs_limit, 860);
 | |
| 	CHECK_OFFSET(guest_ldtr_limit, 864);
 | |
| 	CHECK_OFFSET(guest_tr_limit, 868);
 | |
| 	CHECK_OFFSET(guest_gdtr_limit, 872);
 | |
| 	CHECK_OFFSET(guest_idtr_limit, 876);
 | |
| 	CHECK_OFFSET(guest_es_ar_bytes, 880);
 | |
| 	CHECK_OFFSET(guest_cs_ar_bytes, 884);
 | |
| 	CHECK_OFFSET(guest_ss_ar_bytes, 888);
 | |
| 	CHECK_OFFSET(guest_ds_ar_bytes, 892);
 | |
| 	CHECK_OFFSET(guest_fs_ar_bytes, 896);
 | |
| 	CHECK_OFFSET(guest_gs_ar_bytes, 900);
 | |
| 	CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
 | |
| 	CHECK_OFFSET(guest_tr_ar_bytes, 908);
 | |
| 	CHECK_OFFSET(guest_interruptibility_info, 912);
 | |
| 	CHECK_OFFSET(guest_activity_state, 916);
 | |
| 	CHECK_OFFSET(guest_sysenter_cs, 920);
 | |
| 	CHECK_OFFSET(host_ia32_sysenter_cs, 924);
 | |
| 	CHECK_OFFSET(vmx_preemption_timer_value, 928);
 | |
| 	CHECK_OFFSET(virtual_processor_id, 960);
 | |
| 	CHECK_OFFSET(posted_intr_nv, 962);
 | |
| 	CHECK_OFFSET(guest_es_selector, 964);
 | |
| 	CHECK_OFFSET(guest_cs_selector, 966);
 | |
| 	CHECK_OFFSET(guest_ss_selector, 968);
 | |
| 	CHECK_OFFSET(guest_ds_selector, 970);
 | |
| 	CHECK_OFFSET(guest_fs_selector, 972);
 | |
| 	CHECK_OFFSET(guest_gs_selector, 974);
 | |
| 	CHECK_OFFSET(guest_ldtr_selector, 976);
 | |
| 	CHECK_OFFSET(guest_tr_selector, 978);
 | |
| 	CHECK_OFFSET(guest_intr_status, 980);
 | |
| 	CHECK_OFFSET(host_es_selector, 982);
 | |
| 	CHECK_OFFSET(host_cs_selector, 984);
 | |
| 	CHECK_OFFSET(host_ss_selector, 986);
 | |
| 	CHECK_OFFSET(host_ds_selector, 988);
 | |
| 	CHECK_OFFSET(host_fs_selector, 990);
 | |
| 	CHECK_OFFSET(host_gs_selector, 992);
 | |
| 	CHECK_OFFSET(host_tr_selector, 994);
 | |
| 	CHECK_OFFSET(guest_pml_index, 996);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
 | |
|  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
 | |
|  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
 | |
|  *
 | |
|  * IMPORTANT: Changing this value will break save/restore compatibility with
 | |
|  * older kvm releases.
 | |
|  */
 | |
| #define VMCS12_REVISION 0x11e57ed0
 | |
| 
 | |
| /*
 | |
|  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
 | |
|  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
 | |
|  * current implementation, 4K are reserved to avoid future complications.
 | |
|  */
 | |
| #define VMCS12_SIZE 0x1000
 | |
| 
 | |
| /*
 | |
|  * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
 | |
|  * supported VMCS12 field encoding.
 | |
|  */
 | |
| #define VMCS12_MAX_FIELD_INDEX 0x17
 | |
| 
 | |
| struct nested_vmx_msrs {
 | |
| 	/*
 | |
| 	 * We only store the "true" versions of the VMX capability MSRs. We
 | |
| 	 * generate the "non-true" versions by setting the must-be-1 bits
 | |
| 	 * according to the SDM.
 | |
| 	 */
 | |
| 	u32 procbased_ctls_low;
 | |
| 	u32 procbased_ctls_high;
 | |
| 	u32 secondary_ctls_low;
 | |
| 	u32 secondary_ctls_high;
 | |
| 	u32 pinbased_ctls_low;
 | |
| 	u32 pinbased_ctls_high;
 | |
| 	u32 exit_ctls_low;
 | |
| 	u32 exit_ctls_high;
 | |
| 	u32 entry_ctls_low;
 | |
| 	u32 entry_ctls_high;
 | |
| 	u32 misc_low;
 | |
| 	u32 misc_high;
 | |
| 	u32 ept_caps;
 | |
| 	u32 vpid_caps;
 | |
| 	u64 basic;
 | |
| 	u64 cr0_fixed0;
 | |
| 	u64 cr0_fixed1;
 | |
| 	u64 cr4_fixed0;
 | |
| 	u64 cr4_fixed1;
 | |
| 	u64 vmcs_enum;
 | |
| 	u64 vmfunc_controls;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 | |
|  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 | |
|  */
 | |
| struct nested_vmx {
 | |
| 	/* Has the level1 guest done vmxon? */
 | |
| 	bool vmxon;
 | |
| 	gpa_t vmxon_ptr;
 | |
| 	bool pml_full;
 | |
| 
 | |
| 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
 | |
| 	gpa_t current_vmptr;
 | |
| 	/*
 | |
| 	 * Cache of the guest's VMCS, existing outside of guest memory.
 | |
| 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
 | |
| 	 * memory during VMCLEAR and VMPTRLD.
 | |
| 	 */
 | |
| 	struct vmcs12 *cached_vmcs12;
 | |
| 	/*
 | |
| 	 * Cache of the guest's shadow VMCS, existing outside of guest
 | |
| 	 * memory. Loaded from guest memory during VM entry. Flushed
 | |
| 	 * to guest memory during VM exit.
 | |
| 	 */
 | |
| 	struct vmcs12 *cached_shadow_vmcs12;
 | |
| 	/*
 | |
| 	 * Indicates if the shadow vmcs must be updated with the
 | |
| 	 * data hold by vmcs12
 | |
| 	 */
 | |
| 	bool sync_shadow_vmcs;
 | |
| 	bool dirty_vmcs12;
 | |
| 
 | |
| 	bool change_vmcs01_virtual_apic_mode;
 | |
| 
 | |
| 	/* L2 must run next, and mustn't decide to exit to L1. */
 | |
| 	bool nested_run_pending;
 | |
| 
 | |
| 	struct loaded_vmcs vmcs02;
 | |
| 
 | |
| 	/*
 | |
| 	 * Guest pages referred to in the vmcs02 with host-physical
 | |
| 	 * pointers, so we must keep them pinned while L2 runs.
 | |
| 	 */
 | |
| 	struct page *apic_access_page;
 | |
| 	struct page *virtual_apic_page;
 | |
| 	struct page *pi_desc_page;
 | |
| 	struct pi_desc *pi_desc;
 | |
| 	bool pi_pending;
 | |
| 	u16 posted_intr_nv;
 | |
| 
 | |
| 	struct hrtimer preemption_timer;
 | |
| 	bool preemption_timer_expired;
 | |
| 
 | |
| 	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
 | |
| 	u64 vmcs01_debugctl;
 | |
| 	u64 vmcs01_guest_bndcfgs;
 | |
| 
 | |
| 	u16 vpid02;
 | |
| 	u16 last_vpid;
 | |
| 
 | |
| 	struct nested_vmx_msrs msrs;
 | |
| 
 | |
| 	/* SMM related state */
 | |
| 	struct {
 | |
| 		/* in VMX operation on SMM entry? */
 | |
| 		bool vmxon;
 | |
| 		/* in guest mode on SMM entry? */
 | |
| 		bool guest_mode;
 | |
| 	} smm;
 | |
| };
 | |
| 
 | |
| #define POSTED_INTR_ON  0
 | |
| #define POSTED_INTR_SN  1
 | |
| 
 | |
| /* Posted-Interrupt Descriptor */
 | |
| struct pi_desc {
 | |
| 	u32 pir[8];     /* Posted interrupt requested */
 | |
| 	union {
 | |
| 		struct {
 | |
| 				/* bit 256 - Outstanding Notification */
 | |
| 			u16	on	: 1,
 | |
| 				/* bit 257 - Suppress Notification */
 | |
| 				sn	: 1,
 | |
| 				/* bit 271:258 - Reserved */
 | |
| 				rsvd_1	: 14;
 | |
| 				/* bit 279:272 - Notification Vector */
 | |
| 			u8	nv;
 | |
| 				/* bit 287:280 - Reserved */
 | |
| 			u8	rsvd_2;
 | |
| 				/* bit 319:288 - Notification Destination */
 | |
| 			u32	ndst;
 | |
| 		};
 | |
| 		u64 control;
 | |
| 	};
 | |
| 	u32 rsvd[6];
 | |
| } __aligned(64);
 | |
| 
 | |
| static bool pi_test_and_set_on(struct pi_desc *pi_desc)
 | |
| {
 | |
| 	return test_and_set_bit(POSTED_INTR_ON,
 | |
| 			(unsigned long *)&pi_desc->control);
 | |
| }
 | |
| 
 | |
| static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
 | |
| {
 | |
| 	return test_and_clear_bit(POSTED_INTR_ON,
 | |
| 			(unsigned long *)&pi_desc->control);
 | |
| }
 | |
| 
 | |
| static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
 | |
| {
 | |
| 	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
 | |
| }
 | |
| 
 | |
| static inline void pi_clear_sn(struct pi_desc *pi_desc)
 | |
| {
 | |
| 	return clear_bit(POSTED_INTR_SN,
 | |
| 			(unsigned long *)&pi_desc->control);
 | |
| }
 | |
| 
 | |
| static inline void pi_set_sn(struct pi_desc *pi_desc)
 | |
| {
 | |
| 	return set_bit(POSTED_INTR_SN,
 | |
| 			(unsigned long *)&pi_desc->control);
 | |
| }
 | |
| 
 | |
| static inline void pi_clear_on(struct pi_desc *pi_desc)
 | |
| {
 | |
| 	clear_bit(POSTED_INTR_ON,
 | |
|   		  (unsigned long *)&pi_desc->control);
 | |
| }
 | |
| 
 | |
| static inline int pi_test_on(struct pi_desc *pi_desc)
 | |
| {
 | |
| 	return test_bit(POSTED_INTR_ON,
 | |
| 			(unsigned long *)&pi_desc->control);
 | |
| }
 | |
| 
 | |
| static inline int pi_test_sn(struct pi_desc *pi_desc)
 | |
| {
 | |
| 	return test_bit(POSTED_INTR_SN,
 | |
| 			(unsigned long *)&pi_desc->control);
 | |
| }
 | |
| 
 | |
| struct vmx_msrs {
 | |
| 	unsigned int		nr;
 | |
| 	struct vmx_msr_entry	val[NR_AUTOLOAD_MSRS];
 | |
| };
 | |
| 
 | |
| struct vcpu_vmx {
 | |
| 	struct kvm_vcpu       vcpu;
 | |
| 	unsigned long         host_rsp;
 | |
| 	u8                    fail;
 | |
| 	u8		      msr_bitmap_mode;
 | |
| 	u32                   exit_intr_info;
 | |
| 	u32                   idt_vectoring_info;
 | |
| 	ulong                 rflags;
 | |
| 	struct shared_msr_entry *guest_msrs;
 | |
| 	int                   nmsrs;
 | |
| 	int                   save_nmsrs;
 | |
| 	bool                  guest_msrs_dirty;
 | |
| 	unsigned long	      host_idt_base;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	u64 		      msr_host_kernel_gs_base;
 | |
| 	u64 		      msr_guest_kernel_gs_base;
 | |
| #endif
 | |
| 
 | |
| 	u64 		      spec_ctrl;
 | |
| 
 | |
| 	u32 vm_entry_controls_shadow;
 | |
| 	u32 vm_exit_controls_shadow;
 | |
| 	u32 secondary_exec_control;
 | |
| 
 | |
| 	/*
 | |
| 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
 | |
| 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
 | |
| 	 * guest (L2), it points to a different VMCS.  loaded_cpu_state points
 | |
| 	 * to the VMCS whose state is loaded into the CPU registers that only
 | |
| 	 * need to be switched when transitioning to/from the kernel; a NULL
 | |
| 	 * value indicates that host state is loaded.
 | |
| 	 */
 | |
| 	struct loaded_vmcs    vmcs01;
 | |
| 	struct loaded_vmcs   *loaded_vmcs;
 | |
| 	struct loaded_vmcs   *loaded_cpu_state;
 | |
| 	bool                  __launched; /* temporary, used in vmx_vcpu_run */
 | |
| 	struct msr_autoload {
 | |
| 		struct vmx_msrs guest;
 | |
| 		struct vmx_msrs host;
 | |
| 	} msr_autoload;
 | |
| 
 | |
| 	struct {
 | |
| 		int vm86_active;
 | |
| 		ulong save_rflags;
 | |
| 		struct kvm_segment segs[8];
 | |
| 	} rmode;
 | |
| 	struct {
 | |
| 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
 | |
| 		struct kvm_save_segment {
 | |
| 			u16 selector;
 | |
| 			unsigned long base;
 | |
| 			u32 limit;
 | |
| 			u32 ar;
 | |
| 		} seg[8];
 | |
| 	} segment_cache;
 | |
| 	int vpid;
 | |
| 	bool emulation_required;
 | |
| 
 | |
| 	u32 exit_reason;
 | |
| 
 | |
| 	/* Posted interrupt descriptor */
 | |
| 	struct pi_desc pi_desc;
 | |
| 
 | |
| 	/* Support for a guest hypervisor (nested VMX) */
 | |
| 	struct nested_vmx nested;
 | |
| 
 | |
| 	/* Dynamic PLE window. */
 | |
| 	int ple_window;
 | |
| 	bool ple_window_dirty;
 | |
| 
 | |
| 	bool req_immediate_exit;
 | |
| 
 | |
| 	/* Support for PML */
 | |
| #define PML_ENTITY_NUM		512
 | |
| 	struct page *pml_pg;
 | |
| 
 | |
| 	/* apic deadline value in host tsc */
 | |
| 	u64 hv_deadline_tsc;
 | |
| 
 | |
| 	u64 current_tsc_ratio;
 | |
| 
 | |
| 	u32 host_pkru;
 | |
| 
 | |
| 	unsigned long host_debugctlmsr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
 | |
| 	 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
 | |
| 	 * in msr_ia32_feature_control_valid_bits.
 | |
| 	 */
 | |
| 	u64 msr_ia32_feature_control;
 | |
| 	u64 msr_ia32_feature_control_valid_bits;
 | |
| 	u64 ept_pointer;
 | |
| };
 | |
| 
 | |
| enum segment_cache_field {
 | |
| 	SEG_FIELD_SEL = 0,
 | |
| 	SEG_FIELD_BASE = 1,
 | |
| 	SEG_FIELD_LIMIT = 2,
 | |
| 	SEG_FIELD_AR = 3,
 | |
| 
 | |
| 	SEG_FIELD_NR = 4
 | |
| };
 | |
| 
 | |
| static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
 | |
| {
 | |
| 	return container_of(kvm, struct kvm_vmx, kvm);
 | |
| }
 | |
| 
 | |
| static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return container_of(vcpu, struct vcpu_vmx, vcpu);
 | |
| }
 | |
| 
 | |
| static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return &(to_vmx(vcpu)->pi_desc);
 | |
| }
 | |
| 
 | |
| #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
 | |
| #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
 | |
| #define FIELD(number, name)	[ROL16(number, 6)] = VMCS12_OFFSET(name)
 | |
| #define FIELD64(number, name)						\
 | |
| 	FIELD(number, name),						\
 | |
| 	[ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
 | |
| 
 | |
| 
 | |
| static u16 shadow_read_only_fields[] = {
 | |
| #define SHADOW_FIELD_RO(x) x,
 | |
| #include "vmx_shadow_fields.h"
 | |
| };
 | |
| static int max_shadow_read_only_fields =
 | |
| 	ARRAY_SIZE(shadow_read_only_fields);
 | |
| 
 | |
| static u16 shadow_read_write_fields[] = {
 | |
| #define SHADOW_FIELD_RW(x) x,
 | |
| #include "vmx_shadow_fields.h"
 | |
| };
 | |
| static int max_shadow_read_write_fields =
 | |
| 	ARRAY_SIZE(shadow_read_write_fields);
 | |
| 
 | |
| static const unsigned short vmcs_field_to_offset_table[] = {
 | |
| 	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
 | |
| 	FIELD(POSTED_INTR_NV, posted_intr_nv),
 | |
| 	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
 | |
| 	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
 | |
| 	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
 | |
| 	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
 | |
| 	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
 | |
| 	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
 | |
| 	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
 | |
| 	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
 | |
| 	FIELD(GUEST_INTR_STATUS, guest_intr_status),
 | |
| 	FIELD(GUEST_PML_INDEX, guest_pml_index),
 | |
| 	FIELD(HOST_ES_SELECTOR, host_es_selector),
 | |
| 	FIELD(HOST_CS_SELECTOR, host_cs_selector),
 | |
| 	FIELD(HOST_SS_SELECTOR, host_ss_selector),
 | |
| 	FIELD(HOST_DS_SELECTOR, host_ds_selector),
 | |
| 	FIELD(HOST_FS_SELECTOR, host_fs_selector),
 | |
| 	FIELD(HOST_GS_SELECTOR, host_gs_selector),
 | |
| 	FIELD(HOST_TR_SELECTOR, host_tr_selector),
 | |
| 	FIELD64(IO_BITMAP_A, io_bitmap_a),
 | |
| 	FIELD64(IO_BITMAP_B, io_bitmap_b),
 | |
| 	FIELD64(MSR_BITMAP, msr_bitmap),
 | |
| 	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
 | |
| 	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
 | |
| 	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
 | |
| 	FIELD64(PML_ADDRESS, pml_address),
 | |
| 	FIELD64(TSC_OFFSET, tsc_offset),
 | |
| 	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
 | |
| 	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
 | |
| 	FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
 | |
| 	FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
 | |
| 	FIELD64(EPT_POINTER, ept_pointer),
 | |
| 	FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
 | |
| 	FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
 | |
| 	FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
 | |
| 	FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
 | |
| 	FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
 | |
| 	FIELD64(VMREAD_BITMAP, vmread_bitmap),
 | |
| 	FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
 | |
| 	FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
 | |
| 	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
 | |
| 	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
 | |
| 	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
 | |
| 	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
 | |
| 	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
 | |
| 	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
 | |
| 	FIELD64(GUEST_PDPTR0, guest_pdptr0),
 | |
| 	FIELD64(GUEST_PDPTR1, guest_pdptr1),
 | |
| 	FIELD64(GUEST_PDPTR2, guest_pdptr2),
 | |
| 	FIELD64(GUEST_PDPTR3, guest_pdptr3),
 | |
| 	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
 | |
| 	FIELD64(HOST_IA32_PAT, host_ia32_pat),
 | |
| 	FIELD64(HOST_IA32_EFER, host_ia32_efer),
 | |
| 	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
 | |
| 	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
 | |
| 	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
 | |
| 	FIELD(EXCEPTION_BITMAP, exception_bitmap),
 | |
| 	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
 | |
| 	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
 | |
| 	FIELD(CR3_TARGET_COUNT, cr3_target_count),
 | |
| 	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
 | |
| 	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
 | |
| 	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
 | |
| 	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
 | |
| 	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
 | |
| 	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
 | |
| 	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
 | |
| 	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
 | |
| 	FIELD(TPR_THRESHOLD, tpr_threshold),
 | |
| 	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
 | |
| 	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
 | |
| 	FIELD(VM_EXIT_REASON, vm_exit_reason),
 | |
| 	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
 | |
| 	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
 | |
| 	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
 | |
| 	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
 | |
| 	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
 | |
| 	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
 | |
| 	FIELD(GUEST_ES_LIMIT, guest_es_limit),
 | |
| 	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
 | |
| 	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
 | |
| 	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
 | |
| 	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
 | |
| 	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
 | |
| 	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
 | |
| 	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
 | |
| 	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
 | |
| 	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
 | |
| 	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
 | |
| 	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
 | |
| 	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
 | |
| 	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
 | |
| 	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
 | |
| 	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
 | |
| 	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
 | |
| 	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
 | |
| 	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
 | |
| 	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
 | |
| 	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
 | |
| 	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
 | |
| 	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
 | |
| 	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
 | |
| 	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
 | |
| 	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
 | |
| 	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
 | |
| 	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
 | |
| 	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
 | |
| 	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
 | |
| 	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
 | |
| 	FIELD(EXIT_QUALIFICATION, exit_qualification),
 | |
| 	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
 | |
| 	FIELD(GUEST_CR0, guest_cr0),
 | |
| 	FIELD(GUEST_CR3, guest_cr3),
 | |
| 	FIELD(GUEST_CR4, guest_cr4),
 | |
| 	FIELD(GUEST_ES_BASE, guest_es_base),
 | |
| 	FIELD(GUEST_CS_BASE, guest_cs_base),
 | |
| 	FIELD(GUEST_SS_BASE, guest_ss_base),
 | |
| 	FIELD(GUEST_DS_BASE, guest_ds_base),
 | |
| 	FIELD(GUEST_FS_BASE, guest_fs_base),
 | |
| 	FIELD(GUEST_GS_BASE, guest_gs_base),
 | |
| 	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
 | |
| 	FIELD(GUEST_TR_BASE, guest_tr_base),
 | |
| 	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
 | |
| 	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
 | |
| 	FIELD(GUEST_DR7, guest_dr7),
 | |
| 	FIELD(GUEST_RSP, guest_rsp),
 | |
| 	FIELD(GUEST_RIP, guest_rip),
 | |
| 	FIELD(GUEST_RFLAGS, guest_rflags),
 | |
| 	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
 | |
| 	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
 | |
| 	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
 | |
| 	FIELD(HOST_CR0, host_cr0),
 | |
| 	FIELD(HOST_CR3, host_cr3),
 | |
| 	FIELD(HOST_CR4, host_cr4),
 | |
| 	FIELD(HOST_FS_BASE, host_fs_base),
 | |
| 	FIELD(HOST_GS_BASE, host_gs_base),
 | |
| 	FIELD(HOST_TR_BASE, host_tr_base),
 | |
| 	FIELD(HOST_GDTR_BASE, host_gdtr_base),
 | |
| 	FIELD(HOST_IDTR_BASE, host_idtr_base),
 | |
| 	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
 | |
| 	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
 | |
| 	FIELD(HOST_RSP, host_rsp),
 | |
| 	FIELD(HOST_RIP, host_rip),
 | |
| };
 | |
| 
 | |
| static inline short vmcs_field_to_offset(unsigned long field)
 | |
| {
 | |
| 	const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
 | |
| 	unsigned short offset;
 | |
| 	unsigned index;
 | |
| 
 | |
| 	if (field >> 15)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	index = ROL16(field, 6);
 | |
| 	if (index >= size)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	index = array_index_nospec(index, size);
 | |
| 	offset = vmcs_field_to_offset_table[index];
 | |
| 	if (offset == 0)
 | |
| 		return -ENOENT;
 | |
| 	return offset;
 | |
| }
 | |
| 
 | |
| static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return to_vmx(vcpu)->nested.cached_vmcs12;
 | |
| }
 | |
| 
 | |
| static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
 | |
| }
 | |
| 
 | |
| static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
 | |
| static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
 | |
| static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
 | |
| static bool vmx_xsaves_supported(void);
 | |
| static void vmx_set_segment(struct kvm_vcpu *vcpu,
 | |
| 			    struct kvm_segment *var, int seg);
 | |
| static void vmx_get_segment(struct kvm_vcpu *vcpu,
 | |
| 			    struct kvm_segment *var, int seg);
 | |
| static bool guest_state_valid(struct kvm_vcpu *vcpu);
 | |
| static u32 vmx_segment_access_rights(struct kvm_segment *var);
 | |
| static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
 | |
| static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
 | |
| static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
 | |
| static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
 | |
| 					    u16 error_code);
 | |
| static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
 | |
| static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
 | |
| 							  u32 msr, int type);
 | |
| 
 | |
| static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 | |
| static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 | |
| /*
 | |
|  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 | |
|  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 | |
| 
 | |
| /*
 | |
|  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
 | |
|  * can find which vCPU should be waken up.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
 | |
| static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
 | |
| 
 | |
| enum {
 | |
| 	VMX_VMREAD_BITMAP,
 | |
| 	VMX_VMWRITE_BITMAP,
 | |
| 	VMX_BITMAP_NR
 | |
| };
 | |
| 
 | |
| static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
 | |
| 
 | |
| #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
 | |
| #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
 | |
| 
 | |
| static bool cpu_has_load_ia32_efer;
 | |
| static bool cpu_has_load_perf_global_ctrl;
 | |
| 
 | |
| static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 | |
| static DEFINE_SPINLOCK(vmx_vpid_lock);
 | |
| 
 | |
| static struct vmcs_config {
 | |
| 	int size;
 | |
| 	int order;
 | |
| 	u32 basic_cap;
 | |
| 	u32 revision_id;
 | |
| 	u32 pin_based_exec_ctrl;
 | |
| 	u32 cpu_based_exec_ctrl;
 | |
| 	u32 cpu_based_2nd_exec_ctrl;
 | |
| 	u32 vmexit_ctrl;
 | |
| 	u32 vmentry_ctrl;
 | |
| 	struct nested_vmx_msrs nested;
 | |
| } vmcs_config;
 | |
| 
 | |
| static struct vmx_capability {
 | |
| 	u32 ept;
 | |
| 	u32 vpid;
 | |
| } vmx_capability;
 | |
| 
 | |
| #define VMX_SEGMENT_FIELD(seg)					\
 | |
| 	[VCPU_SREG_##seg] = {                                   \
 | |
| 		.selector = GUEST_##seg##_SELECTOR,		\
 | |
| 		.base = GUEST_##seg##_BASE,		   	\
 | |
| 		.limit = GUEST_##seg##_LIMIT,		   	\
 | |
| 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
 | |
| 	}
 | |
| 
 | |
| static const struct kvm_vmx_segment_field {
 | |
| 	unsigned selector;
 | |
| 	unsigned base;
 | |
| 	unsigned limit;
 | |
| 	unsigned ar_bytes;
 | |
| } kvm_vmx_segment_fields[] = {
 | |
| 	VMX_SEGMENT_FIELD(CS),
 | |
| 	VMX_SEGMENT_FIELD(DS),
 | |
| 	VMX_SEGMENT_FIELD(ES),
 | |
| 	VMX_SEGMENT_FIELD(FS),
 | |
| 	VMX_SEGMENT_FIELD(GS),
 | |
| 	VMX_SEGMENT_FIELD(SS),
 | |
| 	VMX_SEGMENT_FIELD(TR),
 | |
| 	VMX_SEGMENT_FIELD(LDTR),
 | |
| };
 | |
| 
 | |
| static u64 host_efer;
 | |
| 
 | |
| static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| /*
 | |
|  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
 | |
|  * away by decrementing the array size.
 | |
|  */
 | |
| static const u32 vmx_msr_index[] = {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 | |
| #endif
 | |
| 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 | |
| };
 | |
| 
 | |
| DEFINE_STATIC_KEY_FALSE(enable_evmcs);
 | |
| 
 | |
| #define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
 | |
| 
 | |
| #define KVM_EVMCS_VERSION 1
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HYPERV)
 | |
| static bool __read_mostly enlightened_vmcs = true;
 | |
| module_param(enlightened_vmcs, bool, 0444);
 | |
| 
 | |
| static inline void evmcs_write64(unsigned long field, u64 value)
 | |
| {
 | |
| 	u16 clean_field;
 | |
| 	int offset = get_evmcs_offset(field, &clean_field);
 | |
| 
 | |
| 	if (offset < 0)
 | |
| 		return;
 | |
| 
 | |
| 	*(u64 *)((char *)current_evmcs + offset) = value;
 | |
| 
 | |
| 	current_evmcs->hv_clean_fields &= ~clean_field;
 | |
| }
 | |
| 
 | |
| static inline void evmcs_write32(unsigned long field, u32 value)
 | |
| {
 | |
| 	u16 clean_field;
 | |
| 	int offset = get_evmcs_offset(field, &clean_field);
 | |
| 
 | |
| 	if (offset < 0)
 | |
| 		return;
 | |
| 
 | |
| 	*(u32 *)((char *)current_evmcs + offset) = value;
 | |
| 	current_evmcs->hv_clean_fields &= ~clean_field;
 | |
| }
 | |
| 
 | |
| static inline void evmcs_write16(unsigned long field, u16 value)
 | |
| {
 | |
| 	u16 clean_field;
 | |
| 	int offset = get_evmcs_offset(field, &clean_field);
 | |
| 
 | |
| 	if (offset < 0)
 | |
| 		return;
 | |
| 
 | |
| 	*(u16 *)((char *)current_evmcs + offset) = value;
 | |
| 	current_evmcs->hv_clean_fields &= ~clean_field;
 | |
| }
 | |
| 
 | |
| static inline u64 evmcs_read64(unsigned long field)
 | |
| {
 | |
| 	int offset = get_evmcs_offset(field, NULL);
 | |
| 
 | |
| 	if (offset < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return *(u64 *)((char *)current_evmcs + offset);
 | |
| }
 | |
| 
 | |
| static inline u32 evmcs_read32(unsigned long field)
 | |
| {
 | |
| 	int offset = get_evmcs_offset(field, NULL);
 | |
| 
 | |
| 	if (offset < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return *(u32 *)((char *)current_evmcs + offset);
 | |
| }
 | |
| 
 | |
| static inline u16 evmcs_read16(unsigned long field)
 | |
| {
 | |
| 	int offset = get_evmcs_offset(field, NULL);
 | |
| 
 | |
| 	if (offset < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return *(u16 *)((char *)current_evmcs + offset);
 | |
| }
 | |
| 
 | |
| static inline void evmcs_touch_msr_bitmap(void)
 | |
| {
 | |
| 	if (unlikely(!current_evmcs))
 | |
| 		return;
 | |
| 
 | |
| 	if (current_evmcs->hv_enlightenments_control.msr_bitmap)
 | |
| 		current_evmcs->hv_clean_fields &=
 | |
| 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
 | |
| }
 | |
| 
 | |
| static void evmcs_load(u64 phys_addr)
 | |
| {
 | |
| 	struct hv_vp_assist_page *vp_ap =
 | |
| 		hv_get_vp_assist_page(smp_processor_id());
 | |
| 
 | |
| 	vp_ap->current_nested_vmcs = phys_addr;
 | |
| 	vp_ap->enlighten_vmentry = 1;
 | |
| }
 | |
| 
 | |
| static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
 | |
| {
 | |
| 	/*
 | |
| 	 * Enlightened VMCSv1 doesn't support these:
 | |
| 	 *
 | |
| 	 *	POSTED_INTR_NV                  = 0x00000002,
 | |
| 	 *	GUEST_INTR_STATUS               = 0x00000810,
 | |
| 	 *	APIC_ACCESS_ADDR		= 0x00002014,
 | |
| 	 *	POSTED_INTR_DESC_ADDR           = 0x00002016,
 | |
| 	 *	EOI_EXIT_BITMAP0                = 0x0000201c,
 | |
| 	 *	EOI_EXIT_BITMAP1                = 0x0000201e,
 | |
| 	 *	EOI_EXIT_BITMAP2                = 0x00002020,
 | |
| 	 *	EOI_EXIT_BITMAP3                = 0x00002022,
 | |
| 	 */
 | |
| 	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl &=
 | |
| 		~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl &=
 | |
| 		~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl &=
 | |
| 		~SECONDARY_EXEC_APIC_REGISTER_VIRT;
 | |
| 
 | |
| 	/*
 | |
| 	 *	GUEST_PML_INDEX			= 0x00000812,
 | |
| 	 *	PML_ADDRESS			= 0x0000200e,
 | |
| 	 */
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML;
 | |
| 
 | |
| 	/*	VM_FUNCTION_CONTROL             = 0x00002018, */
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
 | |
| 
 | |
| 	/*
 | |
| 	 *	EPTP_LIST_ADDRESS               = 0x00002024,
 | |
| 	 *	VMREAD_BITMAP                   = 0x00002026,
 | |
| 	 *	VMWRITE_BITMAP                  = 0x00002028,
 | |
| 	 */
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS;
 | |
| 
 | |
| 	/*
 | |
| 	 *	TSC_MULTIPLIER                  = 0x00002032,
 | |
| 	 */
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING;
 | |
| 
 | |
| 	/*
 | |
| 	 *	PLE_GAP                         = 0x00004020,
 | |
| 	 *	PLE_WINDOW                      = 0x00004022,
 | |
| 	 */
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
 | |
| 
 | |
| 	/*
 | |
| 	 *	VMX_PREEMPTION_TIMER_VALUE      = 0x0000482E,
 | |
| 	 */
 | |
| 	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
 | |
| 
 | |
| 	/*
 | |
| 	 *      GUEST_IA32_PERF_GLOBAL_CTRL     = 0x00002808,
 | |
| 	 *      HOST_IA32_PERF_GLOBAL_CTRL      = 0x00002c04,
 | |
| 	 */
 | |
| 	vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
 | |
| 	vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently unsupported in KVM:
 | |
| 	 *	GUEST_IA32_RTIT_CTL		= 0x00002814,
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /* check_ept_pointer() should be under protection of ept_pointer_lock. */
 | |
| static void check_ept_pointer_match(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	u64 tmp_eptp = INVALID_PAGE;
 | |
| 	int i;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		if (!VALID_PAGE(tmp_eptp)) {
 | |
| 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
 | |
| 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
 | |
| 			to_kvm_vmx(kvm)->ept_pointers_match
 | |
| 				= EPT_POINTERS_MISMATCH;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
 | |
| }
 | |
| 
 | |
| static int vmx_hv_remote_flush_tlb(struct kvm *kvm)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 | |
| 
 | |
| 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
 | |
| 		check_ept_pointer_match(kvm);
 | |
| 
 | |
| 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
 | |
| 		ret = -ENOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
 | |
| 	 * base of EPT PML4 table, strip off EPT configuration information.
 | |
| 	 */
 | |
| 	ret = hyperv_flush_guest_mapping(
 | |
| 			to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK);
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 | |
| 	return ret;
 | |
| }
 | |
| #else /* !IS_ENABLED(CONFIG_HYPERV) */
 | |
| static inline void evmcs_write64(unsigned long field, u64 value) {}
 | |
| static inline void evmcs_write32(unsigned long field, u32 value) {}
 | |
| static inline void evmcs_write16(unsigned long field, u16 value) {}
 | |
| static inline u64 evmcs_read64(unsigned long field) { return 0; }
 | |
| static inline u32 evmcs_read32(unsigned long field) { return 0; }
 | |
| static inline u16 evmcs_read16(unsigned long field) { return 0; }
 | |
| static inline void evmcs_load(u64 phys_addr) {}
 | |
| static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
 | |
| static inline void evmcs_touch_msr_bitmap(void) {}
 | |
| #endif /* IS_ENABLED(CONFIG_HYPERV) */
 | |
| 
 | |
| static inline bool is_exception_n(u32 intr_info, u8 vector)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 | |
| 			     INTR_INFO_VALID_MASK)) ==
 | |
| 		(INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool is_debug(u32 intr_info)
 | |
| {
 | |
| 	return is_exception_n(intr_info, DB_VECTOR);
 | |
| }
 | |
| 
 | |
| static inline bool is_breakpoint(u32 intr_info)
 | |
| {
 | |
| 	return is_exception_n(intr_info, BP_VECTOR);
 | |
| }
 | |
| 
 | |
| static inline bool is_page_fault(u32 intr_info)
 | |
| {
 | |
| 	return is_exception_n(intr_info, PF_VECTOR);
 | |
| }
 | |
| 
 | |
| static inline bool is_no_device(u32 intr_info)
 | |
| {
 | |
| 	return is_exception_n(intr_info, NM_VECTOR);
 | |
| }
 | |
| 
 | |
| static inline bool is_invalid_opcode(u32 intr_info)
 | |
| {
 | |
| 	return is_exception_n(intr_info, UD_VECTOR);
 | |
| }
 | |
| 
 | |
| static inline bool is_gp_fault(u32 intr_info)
 | |
| {
 | |
| 	return is_exception_n(intr_info, GP_VECTOR);
 | |
| }
 | |
| 
 | |
| static inline bool is_external_interrupt(u32 intr_info)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
 | |
| 		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool is_machine_check(u32 intr_info)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 | |
| 			     INTR_INFO_VALID_MASK)) ==
 | |
| 		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| /* Undocumented: icebp/int1 */
 | |
| static inline bool is_icebp(u32 intr_info)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
 | |
| 		== (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_msr_bitmap(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_tpr_shadow(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_secondary_exec_ctrls(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_exec_ctrl &
 | |
| 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_apic_register_virt(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_APIC_REGISTER_VIRT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_virtual_intr_delivery(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_encls_vmexit(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_ENCLS_EXITING;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Comment's format: document - errata name - stepping - processor name.
 | |
|  * Refer from
 | |
|  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
 | |
|  */
 | |
| static u32 vmx_preemption_cpu_tfms[] = {
 | |
| /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
 | |
| 0x000206E6,
 | |
| /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
 | |
| /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
 | |
| /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
 | |
| 0x00020652,
 | |
| /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
 | |
| 0x00020655,
 | |
| /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
 | |
| /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
 | |
| /*
 | |
|  * 320767.pdf - AAP86  - B1 -
 | |
|  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
 | |
|  */
 | |
| 0x000106E5,
 | |
| /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
 | |
| 0x000106A0,
 | |
| /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
 | |
| 0x000106A1,
 | |
| /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
 | |
| 0x000106A4,
 | |
|  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
 | |
|  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
 | |
|  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
 | |
| 0x000106A5,
 | |
| };
 | |
| 
 | |
| static inline bool cpu_has_broken_vmx_preemption_timer(void)
 | |
| {
 | |
| 	u32 eax = cpuid_eax(0x00000001), i;
 | |
| 
 | |
| 	/* Clear the reserved bits */
 | |
| 	eax &= ~(0x3U << 14 | 0xfU << 28);
 | |
| 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
 | |
| 		if (eax == vmx_preemption_cpu_tfms[i])
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_preemption_timer(void)
 | |
| {
 | |
| 	return vmcs_config.pin_based_exec_ctrl &
 | |
| 		PIN_BASED_VMX_PREEMPTION_TIMER;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_posted_intr(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
 | |
| 		vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_apicv(void)
 | |
| {
 | |
| 	return cpu_has_vmx_apic_register_virt() &&
 | |
| 		cpu_has_vmx_virtual_intr_delivery() &&
 | |
| 		cpu_has_vmx_posted_intr();
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_flexpriority(void)
 | |
| {
 | |
| 	return cpu_has_vmx_tpr_shadow() &&
 | |
| 		cpu_has_vmx_virtualize_apic_accesses();
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_execute_only(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_2m_page(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_1g_page(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_4levels(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_mt_wb(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPTP_WB_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_5levels(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept_ad_bits(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_AD_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invept_context(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invept_global(void)
 | |
| {
 | |
| 	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invvpid_individual_addr(void)
 | |
| {
 | |
| 	return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invvpid_single(void)
 | |
| {
 | |
| 	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invvpid_global(void)
 | |
| {
 | |
| 	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invvpid(void)
 | |
| {
 | |
| 	return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ept(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_ENABLE_EPT;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_unrestricted_guest(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_UNRESTRICTED_GUEST;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_ple(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_basic_inout(void)
 | |
| {
 | |
| 	return	(((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
 | |
| }
 | |
| 
 | |
| static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return flexpriority_enabled && lapic_in_kernel(vcpu);
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_vpid(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_ENABLE_VPID;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_rdtscp(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_RDTSCP;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_invpcid(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_ENABLE_INVPCID;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_virtual_nmis(void)
 | |
| {
 | |
| 	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_wbinvd_exit(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_WBINVD_EXITING;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_shadow_vmcs(void)
 | |
| {
 | |
| 	u64 vmx_msr;
 | |
| 	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
 | |
| 	/* check if the cpu supports writing r/o exit information fields */
 | |
| 	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
 | |
| 		return false;
 | |
| 
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_SHADOW_VMCS;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_pml(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_tsc_scaling(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_TSC_SCALING;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_vmx_vmfunc(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_ENABLE_VMFUNC;
 | |
| }
 | |
| 
 | |
| static bool vmx_umip_emulated(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_DESC;
 | |
| }
 | |
| 
 | |
| static inline bool report_flexpriority(void)
 | |
| {
 | |
| 	return flexpriority_enabled;
 | |
| }
 | |
| 
 | |
| static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
 | |
|  * to modify any valid field of the VMCS, or are the VM-exit
 | |
|  * information fields read-only?
 | |
|  */
 | |
| static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return to_vmx(vcpu)->nested.msrs.misc_low &
 | |
| 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
 | |
| 			CPU_BASED_MONITOR_TRAP_FLAG;
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
 | |
| 		SECONDARY_EXEC_SHADOW_VMCS;
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
 | |
| {
 | |
| 	return vmcs12->cpu_based_vm_exec_control & bit;
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
 | |
| {
 | |
| 	return (vmcs12->cpu_based_vm_exec_control &
 | |
| 			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
 | |
| 		(vmcs12->secondary_vm_exec_control & bit);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return vmcs12->pin_based_vm_exec_control &
 | |
| 		PIN_BASED_VMX_PREEMPTION_TIMER;
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
 | |
| }
 | |
| 
 | |
| static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has_vmfunc(vmcs12) &&
 | |
| 		(vmcs12->vm_function_control &
 | |
| 		 VMX_VMFUNC_EPTP_SWITCHING);
 | |
| }
 | |
| 
 | |
| static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
 | |
| }
 | |
| 
 | |
| static inline bool is_nmi(u32 intr_info)
 | |
| {
 | |
| 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
 | |
| 		== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
 | |
| }
 | |
| 
 | |
| static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
 | |
| 			      u32 exit_intr_info,
 | |
| 			      unsigned long exit_qualification);
 | |
| static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
 | |
| 			struct vmcs12 *vmcs12,
 | |
| 			u32 reason, unsigned long qualification);
 | |
| 
 | |
| static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < vmx->nmsrs; ++i)
 | |
| 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
 | |
| 			return i;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
 | |
| {
 | |
|     struct {
 | |
| 	u64 vpid : 16;
 | |
| 	u64 rsvd : 48;
 | |
| 	u64 gva;
 | |
|     } operand = { vpid, 0, gva };
 | |
|     bool error;
 | |
| 
 | |
|     asm volatile (__ex(ASM_VMX_INVVPID) CC_SET(na)
 | |
| 		  : CC_OUT(na) (error) : "a"(&operand), "c"(ext)
 | |
| 		  : "memory");
 | |
|     BUG_ON(error);
 | |
| }
 | |
| 
 | |
| static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
 | |
| {
 | |
| 	struct {
 | |
| 		u64 eptp, gpa;
 | |
| 	} operand = {eptp, gpa};
 | |
| 	bool error;
 | |
| 
 | |
| 	asm volatile (__ex(ASM_VMX_INVEPT) CC_SET(na)
 | |
| 		      : CC_OUT(na) (error) : "a" (&operand), "c" (ext)
 | |
| 		      : "memory");
 | |
| 	BUG_ON(error);
 | |
| }
 | |
| 
 | |
| static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	i = __find_msr_index(vmx, msr);
 | |
| 	if (i >= 0)
 | |
| 		return &vmx->guest_msrs[i];
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void vmcs_clear(struct vmcs *vmcs)
 | |
| {
 | |
| 	u64 phys_addr = __pa(vmcs);
 | |
| 	bool error;
 | |
| 
 | |
| 	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) CC_SET(na)
 | |
| 		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
 | |
| 		      : "memory");
 | |
| 	if (unlikely(error))
 | |
| 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
 | |
| 		       vmcs, phys_addr);
 | |
| }
 | |
| 
 | |
| static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
 | |
| {
 | |
| 	vmcs_clear(loaded_vmcs->vmcs);
 | |
| 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
 | |
| 		vmcs_clear(loaded_vmcs->shadow_vmcs);
 | |
| 	loaded_vmcs->cpu = -1;
 | |
| 	loaded_vmcs->launched = 0;
 | |
| }
 | |
| 
 | |
| static void vmcs_load(struct vmcs *vmcs)
 | |
| {
 | |
| 	u64 phys_addr = __pa(vmcs);
 | |
| 	bool error;
 | |
| 
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_load(phys_addr);
 | |
| 
 | |
| 	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) CC_SET(na)
 | |
| 		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
 | |
| 		      : "memory");
 | |
| 	if (unlikely(error))
 | |
| 		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
 | |
| 		       vmcs, phys_addr);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_CORE
 | |
| /*
 | |
|  * This bitmap is used to indicate whether the vmclear
 | |
|  * operation is enabled on all cpus. All disabled by
 | |
|  * default.
 | |
|  */
 | |
| static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
 | |
| 
 | |
| static inline void crash_enable_local_vmclear(int cpu)
 | |
| {
 | |
| 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
 | |
| }
 | |
| 
 | |
| static inline void crash_disable_local_vmclear(int cpu)
 | |
| {
 | |
| 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
 | |
| }
 | |
| 
 | |
| static inline int crash_local_vmclear_enabled(int cpu)
 | |
| {
 | |
| 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
 | |
| }
 | |
| 
 | |
| static void crash_vmclear_local_loaded_vmcss(void)
 | |
| {
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 	struct loaded_vmcs *v;
 | |
| 
 | |
| 	if (!crash_local_vmclear_enabled(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
 | |
| 			    loaded_vmcss_on_cpu_link)
 | |
| 		vmcs_clear(v->vmcs);
 | |
| }
 | |
| #else
 | |
| static inline void crash_enable_local_vmclear(int cpu) { }
 | |
| static inline void crash_disable_local_vmclear(int cpu) { }
 | |
| #endif /* CONFIG_KEXEC_CORE */
 | |
| 
 | |
| static void __loaded_vmcs_clear(void *arg)
 | |
| {
 | |
| 	struct loaded_vmcs *loaded_vmcs = arg;
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	if (loaded_vmcs->cpu != cpu)
 | |
| 		return; /* vcpu migration can race with cpu offline */
 | |
| 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
 | |
| 		per_cpu(current_vmcs, cpu) = NULL;
 | |
| 	crash_disable_local_vmclear(cpu);
 | |
| 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
 | |
| 
 | |
| 	/*
 | |
| 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
 | |
| 	 * is before setting loaded_vmcs->vcpu to -1 which is done in
 | |
| 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
 | |
| 	 * then adds the vmcs into percpu list before it is deleted.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	loaded_vmcs_init(loaded_vmcs);
 | |
| 	crash_enable_local_vmclear(cpu);
 | |
| }
 | |
| 
 | |
| static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
 | |
| {
 | |
| 	int cpu = loaded_vmcs->cpu;
 | |
| 
 | |
| 	if (cpu != -1)
 | |
| 		smp_call_function_single(cpu,
 | |
| 			 __loaded_vmcs_clear, loaded_vmcs, 1);
 | |
| }
 | |
| 
 | |
| static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr)
 | |
| {
 | |
| 	if (vpid == 0)
 | |
| 		return true;
 | |
| 
 | |
| 	if (cpu_has_vmx_invvpid_individual_addr()) {
 | |
| 		__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void vpid_sync_vcpu_single(int vpid)
 | |
| {
 | |
| 	if (vpid == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (cpu_has_vmx_invvpid_single())
 | |
| 		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
 | |
| }
 | |
| 
 | |
| static inline void vpid_sync_vcpu_global(void)
 | |
| {
 | |
| 	if (cpu_has_vmx_invvpid_global())
 | |
| 		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
 | |
| }
 | |
| 
 | |
| static inline void vpid_sync_context(int vpid)
 | |
| {
 | |
| 	if (cpu_has_vmx_invvpid_single())
 | |
| 		vpid_sync_vcpu_single(vpid);
 | |
| 	else
 | |
| 		vpid_sync_vcpu_global();
 | |
| }
 | |
| 
 | |
| static inline void ept_sync_global(void)
 | |
| {
 | |
| 	__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
 | |
| }
 | |
| 
 | |
| static inline void ept_sync_context(u64 eptp)
 | |
| {
 | |
| 	if (cpu_has_vmx_invept_context())
 | |
| 		__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
 | |
| 	else
 | |
| 		ept_sync_global();
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_check16(unsigned long field)
 | |
| {
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
 | |
| 			 "16-bit accessor invalid for 64-bit field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
 | |
| 			 "16-bit accessor invalid for 64-bit high field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
 | |
| 			 "16-bit accessor invalid for 32-bit high field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
 | |
| 			 "16-bit accessor invalid for natural width field");
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_check32(unsigned long field)
 | |
| {
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
 | |
| 			 "32-bit accessor invalid for 16-bit field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
 | |
| 			 "32-bit accessor invalid for natural width field");
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_check64(unsigned long field)
 | |
| {
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
 | |
| 			 "64-bit accessor invalid for 16-bit field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
 | |
| 			 "64-bit accessor invalid for 64-bit high field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
 | |
| 			 "64-bit accessor invalid for 32-bit field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
 | |
| 			 "64-bit accessor invalid for natural width field");
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_checkl(unsigned long field)
 | |
| {
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
 | |
| 			 "Natural width accessor invalid for 16-bit field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
 | |
| 			 "Natural width accessor invalid for 64-bit field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
 | |
| 			 "Natural width accessor invalid for 64-bit high field");
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
 | |
| 			 "Natural width accessor invalid for 32-bit field");
 | |
| }
 | |
| 
 | |
| static __always_inline unsigned long __vmcs_readl(unsigned long field)
 | |
| {
 | |
| 	unsigned long value;
 | |
| 
 | |
| 	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
 | |
| 		      : "=a"(value) : "d"(field) : "cc");
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| static __always_inline u16 vmcs_read16(unsigned long field)
 | |
| {
 | |
| 	vmcs_check16(field);
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_read16(field);
 | |
| 	return __vmcs_readl(field);
 | |
| }
 | |
| 
 | |
| static __always_inline u32 vmcs_read32(unsigned long field)
 | |
| {
 | |
| 	vmcs_check32(field);
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_read32(field);
 | |
| 	return __vmcs_readl(field);
 | |
| }
 | |
| 
 | |
| static __always_inline u64 vmcs_read64(unsigned long field)
 | |
| {
 | |
| 	vmcs_check64(field);
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_read64(field);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	return __vmcs_readl(field);
 | |
| #else
 | |
| 	return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static __always_inline unsigned long vmcs_readl(unsigned long field)
 | |
| {
 | |
| 	vmcs_checkl(field);
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_read64(field);
 | |
| 	return __vmcs_readl(field);
 | |
| }
 | |
| 
 | |
| static noinline void vmwrite_error(unsigned long field, unsigned long value)
 | |
| {
 | |
| 	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
 | |
| 	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
 | |
| {
 | |
| 	bool error;
 | |
| 
 | |
| 	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) CC_SET(na)
 | |
| 		      : CC_OUT(na) (error) : "a"(value), "d"(field));
 | |
| 	if (unlikely(error))
 | |
| 		vmwrite_error(field, value);
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_write16(unsigned long field, u16 value)
 | |
| {
 | |
| 	vmcs_check16(field);
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_write16(field, value);
 | |
| 
 | |
| 	__vmcs_writel(field, value);
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_write32(unsigned long field, u32 value)
 | |
| {
 | |
| 	vmcs_check32(field);
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_write32(field, value);
 | |
| 
 | |
| 	__vmcs_writel(field, value);
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_write64(unsigned long field, u64 value)
 | |
| {
 | |
| 	vmcs_check64(field);
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_write64(field, value);
 | |
| 
 | |
| 	__vmcs_writel(field, value);
 | |
| #ifndef CONFIG_X86_64
 | |
| 	asm volatile ("");
 | |
| 	__vmcs_writel(field+1, value >> 32);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
 | |
| {
 | |
| 	vmcs_checkl(field);
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_write64(field, value);
 | |
| 
 | |
| 	__vmcs_writel(field, value);
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
 | |
| {
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
 | |
| 			 "vmcs_clear_bits does not support 64-bit fields");
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_write32(field, evmcs_read32(field) & ~mask);
 | |
| 
 | |
| 	__vmcs_writel(field, __vmcs_readl(field) & ~mask);
 | |
| }
 | |
| 
 | |
| static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
 | |
| {
 | |
|         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
 | |
| 			 "vmcs_set_bits does not support 64-bit fields");
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		return evmcs_write32(field, evmcs_read32(field) | mask);
 | |
| 
 | |
| 	__vmcs_writel(field, __vmcs_readl(field) | mask);
 | |
| }
 | |
| 
 | |
| static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
 | |
| }
 | |
| 
 | |
| static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
 | |
| {
 | |
| 	vmcs_write32(VM_ENTRY_CONTROLS, val);
 | |
| 	vmx->vm_entry_controls_shadow = val;
 | |
| }
 | |
| 
 | |
| static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
 | |
| {
 | |
| 	if (vmx->vm_entry_controls_shadow != val)
 | |
| 		vm_entry_controls_init(vmx, val);
 | |
| }
 | |
| 
 | |
| static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	return vmx->vm_entry_controls_shadow;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
 | |
| {
 | |
| 	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
 | |
| }
 | |
| 
 | |
| static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
 | |
| {
 | |
| 	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
 | |
| }
 | |
| 
 | |
| static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
 | |
| }
 | |
| 
 | |
| static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
 | |
| {
 | |
| 	vmcs_write32(VM_EXIT_CONTROLS, val);
 | |
| 	vmx->vm_exit_controls_shadow = val;
 | |
| }
 | |
| 
 | |
| static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
 | |
| {
 | |
| 	if (vmx->vm_exit_controls_shadow != val)
 | |
| 		vm_exit_controls_init(vmx, val);
 | |
| }
 | |
| 
 | |
| static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	return vmx->vm_exit_controls_shadow;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
 | |
| {
 | |
| 	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
 | |
| }
 | |
| 
 | |
| static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
 | |
| {
 | |
| 	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
 | |
| }
 | |
| 
 | |
| static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	vmx->segment_cache.bitmask = 0;
 | |
| }
 | |
| 
 | |
| static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
 | |
| 				       unsigned field)
 | |
| {
 | |
| 	bool ret;
 | |
| 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
 | |
| 
 | |
| 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
 | |
| 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
 | |
| 		vmx->segment_cache.bitmask = 0;
 | |
| 	}
 | |
| 	ret = vmx->segment_cache.bitmask & mask;
 | |
| 	vmx->segment_cache.bitmask |= mask;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
 | |
| {
 | |
| 	u16 *p = &vmx->segment_cache.seg[seg].selector;
 | |
| 
 | |
| 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
 | |
| 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
 | |
| 	return *p;
 | |
| }
 | |
| 
 | |
| static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
 | |
| {
 | |
| 	ulong *p = &vmx->segment_cache.seg[seg].base;
 | |
| 
 | |
| 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
 | |
| 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
 | |
| 	return *p;
 | |
| }
 | |
| 
 | |
| static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
 | |
| {
 | |
| 	u32 *p = &vmx->segment_cache.seg[seg].limit;
 | |
| 
 | |
| 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
 | |
| 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
 | |
| 	return *p;
 | |
| }
 | |
| 
 | |
| static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
 | |
| {
 | |
| 	u32 *p = &vmx->segment_cache.seg[seg].ar;
 | |
| 
 | |
| 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
 | |
| 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
 | |
| 	return *p;
 | |
| }
 | |
| 
 | |
| static void update_exception_bitmap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 eb;
 | |
| 
 | |
| 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
 | |
| 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
 | |
| 	/*
 | |
| 	 * Guest access to VMware backdoor ports could legitimately
 | |
| 	 * trigger #GP because of TSS I/O permission bitmap.
 | |
| 	 * We intercept those #GP and allow access to them anyway
 | |
| 	 * as VMware does.
 | |
| 	 */
 | |
| 	if (enable_vmware_backdoor)
 | |
| 		eb |= (1u << GP_VECTOR);
 | |
| 	if ((vcpu->guest_debug &
 | |
| 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
 | |
| 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
 | |
| 		eb |= 1u << BP_VECTOR;
 | |
| 	if (to_vmx(vcpu)->rmode.vm86_active)
 | |
| 		eb = ~0;
 | |
| 	if (enable_ept)
 | |
| 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
 | |
| 
 | |
| 	/* When we are running a nested L2 guest and L1 specified for it a
 | |
| 	 * certain exception bitmap, we must trap the same exceptions and pass
 | |
| 	 * them to L1. When running L2, we will only handle the exceptions
 | |
| 	 * specified above if L1 did not want them.
 | |
| 	 */
 | |
| 	if (is_guest_mode(vcpu))
 | |
| 		eb |= get_vmcs12(vcpu)->exception_bitmap;
 | |
| 
 | |
| 	vmcs_write32(EXCEPTION_BITMAP, eb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if MSR is intercepted for currently loaded MSR bitmap.
 | |
|  */
 | |
| static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
 | |
| {
 | |
| 	unsigned long *msr_bitmap;
 | |
| 	int f = sizeof(unsigned long);
 | |
| 
 | |
| 	if (!cpu_has_vmx_msr_bitmap())
 | |
| 		return true;
 | |
| 
 | |
| 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
 | |
| 
 | |
| 	if (msr <= 0x1fff) {
 | |
| 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
 | |
| 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 | |
| 		msr &= 0x1fff;
 | |
| 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if MSR is intercepted for L01 MSR bitmap.
 | |
|  */
 | |
| static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
 | |
| {
 | |
| 	unsigned long *msr_bitmap;
 | |
| 	int f = sizeof(unsigned long);
 | |
| 
 | |
| 	if (!cpu_has_vmx_msr_bitmap())
 | |
| 		return true;
 | |
| 
 | |
| 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
 | |
| 
 | |
| 	if (msr <= 0x1fff) {
 | |
| 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
 | |
| 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 | |
| 		msr &= 0x1fff;
 | |
| 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 | |
| 		unsigned long entry, unsigned long exit)
 | |
| {
 | |
| 	vm_entry_controls_clearbit(vmx, entry);
 | |
| 	vm_exit_controls_clearbit(vmx, exit);
 | |
| }
 | |
| 
 | |
| static int find_msr(struct vmx_msrs *m, unsigned int msr)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < m->nr; ++i) {
 | |
| 		if (m->val[i].index == msr)
 | |
| 			return i;
 | |
| 	}
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
 | |
| {
 | |
| 	int i;
 | |
| 	struct msr_autoload *m = &vmx->msr_autoload;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_EFER:
 | |
| 		if (cpu_has_load_ia32_efer) {
 | |
| 			clear_atomic_switch_msr_special(vmx,
 | |
| 					VM_ENTRY_LOAD_IA32_EFER,
 | |
| 					VM_EXIT_LOAD_IA32_EFER);
 | |
| 			return;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_CORE_PERF_GLOBAL_CTRL:
 | |
| 		if (cpu_has_load_perf_global_ctrl) {
 | |
| 			clear_atomic_switch_msr_special(vmx,
 | |
| 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 | |
| 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
 | |
| 			return;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	i = find_msr(&m->guest, msr);
 | |
| 	if (i < 0)
 | |
| 		goto skip_guest;
 | |
| 	--m->guest.nr;
 | |
| 	m->guest.val[i] = m->guest.val[m->guest.nr];
 | |
| 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 | |
| 
 | |
| skip_guest:
 | |
| 	i = find_msr(&m->host, msr);
 | |
| 	if (i < 0)
 | |
| 		return;
 | |
| 
 | |
| 	--m->host.nr;
 | |
| 	m->host.val[i] = m->host.val[m->host.nr];
 | |
| 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 | |
| }
 | |
| 
 | |
| static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 | |
| 		unsigned long entry, unsigned long exit,
 | |
| 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
 | |
| 		u64 guest_val, u64 host_val)
 | |
| {
 | |
| 	vmcs_write64(guest_val_vmcs, guest_val);
 | |
| 	vmcs_write64(host_val_vmcs, host_val);
 | |
| 	vm_entry_controls_setbit(vmx, entry);
 | |
| 	vm_exit_controls_setbit(vmx, exit);
 | |
| }
 | |
| 
 | |
| static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
 | |
| 				  u64 guest_val, u64 host_val, bool entry_only)
 | |
| {
 | |
| 	int i, j = 0;
 | |
| 	struct msr_autoload *m = &vmx->msr_autoload;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_EFER:
 | |
| 		if (cpu_has_load_ia32_efer) {
 | |
| 			add_atomic_switch_msr_special(vmx,
 | |
| 					VM_ENTRY_LOAD_IA32_EFER,
 | |
| 					VM_EXIT_LOAD_IA32_EFER,
 | |
| 					GUEST_IA32_EFER,
 | |
| 					HOST_IA32_EFER,
 | |
| 					guest_val, host_val);
 | |
| 			return;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_CORE_PERF_GLOBAL_CTRL:
 | |
| 		if (cpu_has_load_perf_global_ctrl) {
 | |
| 			add_atomic_switch_msr_special(vmx,
 | |
| 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 | |
| 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
 | |
| 					GUEST_IA32_PERF_GLOBAL_CTRL,
 | |
| 					HOST_IA32_PERF_GLOBAL_CTRL,
 | |
| 					guest_val, host_val);
 | |
| 			return;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_IA32_PEBS_ENABLE:
 | |
| 		/* PEBS needs a quiescent period after being disabled (to write
 | |
| 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
 | |
| 		 * provide that period, so a CPU could write host's record into
 | |
| 		 * guest's memory.
 | |
| 		 */
 | |
| 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
 | |
| 	}
 | |
| 
 | |
| 	i = find_msr(&m->guest, msr);
 | |
| 	if (!entry_only)
 | |
| 		j = find_msr(&m->host, msr);
 | |
| 
 | |
| 	if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
 | |
| 		(j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
 | |
| 		printk_once(KERN_WARNING "Not enough msr switch entries. "
 | |
| 				"Can't add msr %x\n", msr);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (i < 0) {
 | |
| 		i = m->guest.nr++;
 | |
| 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 | |
| 	}
 | |
| 	m->guest.val[i].index = msr;
 | |
| 	m->guest.val[i].value = guest_val;
 | |
| 
 | |
| 	if (entry_only)
 | |
| 		return;
 | |
| 
 | |
| 	if (j < 0) {
 | |
| 		j = m->host.nr++;
 | |
| 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 | |
| 	}
 | |
| 	m->host.val[j].index = msr;
 | |
| 	m->host.val[j].value = host_val;
 | |
| }
 | |
| 
 | |
| static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
 | |
| {
 | |
| 	u64 guest_efer = vmx->vcpu.arch.efer;
 | |
| 	u64 ignore_bits = 0;
 | |
| 
 | |
| 	/* Shadow paging assumes NX to be available.  */
 | |
| 	if (!enable_ept)
 | |
| 		guest_efer |= EFER_NX;
 | |
| 
 | |
| 	/*
 | |
| 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
 | |
| 	 */
 | |
| 	ignore_bits |= EFER_SCE;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	ignore_bits |= EFER_LMA | EFER_LME;
 | |
| 	/* SCE is meaningful only in long mode on Intel */
 | |
| 	if (guest_efer & EFER_LMA)
 | |
| 		ignore_bits &= ~(u64)EFER_SCE;
 | |
| #endif
 | |
| 
 | |
| 	clear_atomic_switch_msr(vmx, MSR_EFER);
 | |
| 
 | |
| 	/*
 | |
| 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
 | |
| 	 * On CPUs that support "load IA32_EFER", always switch EFER
 | |
| 	 * atomically, since it's faster than switching it manually.
 | |
| 	 */
 | |
| 	if (cpu_has_load_ia32_efer ||
 | |
| 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
 | |
| 		if (!(guest_efer & EFER_LMA))
 | |
| 			guest_efer &= ~EFER_LME;
 | |
| 		if (guest_efer != host_efer)
 | |
| 			add_atomic_switch_msr(vmx, MSR_EFER,
 | |
| 					      guest_efer, host_efer, false);
 | |
| 		return false;
 | |
| 	} else {
 | |
| 		guest_efer &= ~ignore_bits;
 | |
| 		guest_efer |= host_efer & ignore_bits;
 | |
| 
 | |
| 		vmx->guest_msrs[efer_offset].data = guest_efer;
 | |
| 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| /*
 | |
|  * On 32-bit kernels, VM exits still load the FS and GS bases from the
 | |
|  * VMCS rather than the segment table.  KVM uses this helper to figure
 | |
|  * out the current bases to poke them into the VMCS before entry.
 | |
|  */
 | |
| static unsigned long segment_base(u16 selector)
 | |
| {
 | |
| 	struct desc_struct *table;
 | |
| 	unsigned long v;
 | |
| 
 | |
| 	if (!(selector & ~SEGMENT_RPL_MASK))
 | |
| 		return 0;
 | |
| 
 | |
| 	table = get_current_gdt_ro();
 | |
| 
 | |
| 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 | |
| 		u16 ldt_selector = kvm_read_ldt();
 | |
| 
 | |
| 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
 | |
| 			return 0;
 | |
| 
 | |
| 		table = (struct desc_struct *)segment_base(ldt_selector);
 | |
| 	}
 | |
| 	v = get_desc_base(&table[selector >> 3]);
 | |
| 	return v;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs_host_state *host_state;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| #endif
 | |
| 	unsigned long fs_base, gs_base;
 | |
| 	u16 fs_sel, gs_sel;
 | |
| 	int i;
 | |
| 
 | |
| 	vmx->req_immediate_exit = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that guest MSRs to be saved/restored can also be changed
 | |
| 	 * when guest state is loaded. This happens when guest transitions
 | |
| 	 * to/from long-mode by setting MSR_EFER.LMA.
 | |
| 	 */
 | |
| 	if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
 | |
| 		vmx->guest_msrs_dirty = false;
 | |
| 		for (i = 0; i < vmx->save_nmsrs; ++i)
 | |
| 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
 | |
| 					   vmx->guest_msrs[i].data,
 | |
| 					   vmx->guest_msrs[i].mask);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->loaded_cpu_state)
 | |
| 		return;
 | |
| 
 | |
| 	vmx->loaded_cpu_state = vmx->loaded_vmcs;
 | |
| 	host_state = &vmx->loaded_cpu_state->host_state;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
 | |
| 	 * allow segment selectors with cpl > 0 or ti == 1.
 | |
| 	 */
 | |
| 	host_state->ldt_sel = kvm_read_ldt();
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	savesegment(ds, host_state->ds_sel);
 | |
| 	savesegment(es, host_state->es_sel);
 | |
| 
 | |
| 	gs_base = cpu_kernelmode_gs_base(cpu);
 | |
| 	if (likely(is_64bit_mm(current->mm))) {
 | |
| 		save_fsgs_for_kvm();
 | |
| 		fs_sel = current->thread.fsindex;
 | |
| 		gs_sel = current->thread.gsindex;
 | |
| 		fs_base = current->thread.fsbase;
 | |
| 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
 | |
| 	} else {
 | |
| 		savesegment(fs, fs_sel);
 | |
| 		savesegment(gs, gs_sel);
 | |
| 		fs_base = read_msr(MSR_FS_BASE);
 | |
| 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
 | |
| 	}
 | |
| 
 | |
| 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
 | |
| #else
 | |
| 	savesegment(fs, fs_sel);
 | |
| 	savesegment(gs, gs_sel);
 | |
| 	fs_base = segment_base(fs_sel);
 | |
| 	gs_base = segment_base(gs_sel);
 | |
| #endif
 | |
| 
 | |
| 	if (unlikely(fs_sel != host_state->fs_sel)) {
 | |
| 		if (!(fs_sel & 7))
 | |
| 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
 | |
| 		else
 | |
| 			vmcs_write16(HOST_FS_SELECTOR, 0);
 | |
| 		host_state->fs_sel = fs_sel;
 | |
| 	}
 | |
| 	if (unlikely(gs_sel != host_state->gs_sel)) {
 | |
| 		if (!(gs_sel & 7))
 | |
| 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
 | |
| 		else
 | |
| 			vmcs_write16(HOST_GS_SELECTOR, 0);
 | |
| 		host_state->gs_sel = gs_sel;
 | |
| 	}
 | |
| 	if (unlikely(fs_base != host_state->fs_base)) {
 | |
| 		vmcs_writel(HOST_FS_BASE, fs_base);
 | |
| 		host_state->fs_base = fs_base;
 | |
| 	}
 | |
| 	if (unlikely(gs_base != host_state->gs_base)) {
 | |
| 		vmcs_writel(HOST_GS_BASE, gs_base);
 | |
| 		host_state->gs_base = gs_base;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	struct vmcs_host_state *host_state;
 | |
| 
 | |
| 	if (!vmx->loaded_cpu_state)
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
 | |
| 	host_state = &vmx->loaded_cpu_state->host_state;
 | |
| 
 | |
| 	++vmx->vcpu.stat.host_state_reload;
 | |
| 	vmx->loaded_cpu_state = NULL;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
 | |
| #endif
 | |
| 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
 | |
| 		kvm_load_ldt(host_state->ldt_sel);
 | |
| #ifdef CONFIG_X86_64
 | |
| 		load_gs_index(host_state->gs_sel);
 | |
| #else
 | |
| 		loadsegment(gs, host_state->gs_sel);
 | |
| #endif
 | |
| 	}
 | |
| 	if (host_state->fs_sel & 7)
 | |
| 		loadsegment(fs, host_state->fs_sel);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
 | |
| 		loadsegment(ds, host_state->ds_sel);
 | |
| 		loadsegment(es, host_state->es_sel);
 | |
| 	}
 | |
| #endif
 | |
| 	invalidate_tss_limit();
 | |
| #ifdef CONFIG_X86_64
 | |
| 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
 | |
| #endif
 | |
| 	load_fixmap_gdt(raw_smp_processor_id());
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (vmx->loaded_cpu_state)
 | |
| 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
 | |
| 	preempt_enable();
 | |
| 	return vmx->msr_guest_kernel_gs_base;
 | |
| }
 | |
| 
 | |
| static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (vmx->loaded_cpu_state)
 | |
| 		wrmsrl(MSR_KERNEL_GS_BASE, data);
 | |
| 	preempt_enable();
 | |
| 	vmx->msr_guest_kernel_gs_base = data;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
 | |
| 	struct pi_desc old, new;
 | |
| 	unsigned int dest;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of hot-plug or hot-unplug, we may have to undo
 | |
| 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
 | |
| 	 * always keep PI.NDST up to date for simplicity: it makes the
 | |
| 	 * code easier, and CPU migration is not a fast path.
 | |
| 	 */
 | |
| 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * First handle the simple case where no cmpxchg is necessary; just
 | |
| 	 * allow posting non-urgent interrupts.
 | |
| 	 *
 | |
| 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
 | |
| 	 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
 | |
| 	 * expects the VCPU to be on the blocked_vcpu_list that matches
 | |
| 	 * PI.NDST.
 | |
| 	 */
 | |
| 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
 | |
| 	    vcpu->cpu == cpu) {
 | |
| 		pi_clear_sn(pi_desc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* The full case.  */
 | |
| 	do {
 | |
| 		old.control = new.control = pi_desc->control;
 | |
| 
 | |
| 		dest = cpu_physical_id(cpu);
 | |
| 
 | |
| 		if (x2apic_enabled())
 | |
| 			new.ndst = dest;
 | |
| 		else
 | |
| 			new.ndst = (dest << 8) & 0xFF00;
 | |
| 
 | |
| 		new.sn = 0;
 | |
| 	} while (cmpxchg64(&pi_desc->control, old.control,
 | |
| 			   new.control) != old.control);
 | |
| }
 | |
| 
 | |
| static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
 | |
| 	vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
 | |
|  * vcpu mutex is already taken.
 | |
|  */
 | |
| static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
 | |
| 
 | |
| 	if (!already_loaded) {
 | |
| 		loaded_vmcs_clear(vmx->loaded_vmcs);
 | |
| 		local_irq_disable();
 | |
| 		crash_disable_local_vmclear(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Read loaded_vmcs->cpu should be before fetching
 | |
| 		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
 | |
| 		 * See the comments in __loaded_vmcs_clear().
 | |
| 		 */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
 | |
| 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
 | |
| 		crash_enable_local_vmclear(cpu);
 | |
| 		local_irq_enable();
 | |
| 	}
 | |
| 
 | |
| 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
 | |
| 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
 | |
| 		vmcs_load(vmx->loaded_vmcs->vmcs);
 | |
| 		indirect_branch_prediction_barrier();
 | |
| 	}
 | |
| 
 | |
| 	if (!already_loaded) {
 | |
| 		void *gdt = get_current_gdt_ro();
 | |
| 		unsigned long sysenter_esp;
 | |
| 
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Linux uses per-cpu TSS and GDT, so set these when switching
 | |
| 		 * processors.  See 22.2.4.
 | |
| 		 */
 | |
| 		vmcs_writel(HOST_TR_BASE,
 | |
| 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
 | |
| 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
 | |
| 
 | |
| 		/*
 | |
| 		 * VM exits change the host TR limit to 0x67 after a VM
 | |
| 		 * exit.  This is okay, since 0x67 covers everything except
 | |
| 		 * the IO bitmap and have have code to handle the IO bitmap
 | |
| 		 * being lost after a VM exit.
 | |
| 		 */
 | |
| 		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
 | |
| 
 | |
| 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
 | |
| 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
 | |
| 
 | |
| 		vmx->loaded_vmcs->cpu = cpu;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup TSC multiplier */
 | |
| 	if (kvm_has_tsc_control &&
 | |
| 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
 | |
| 		decache_tsc_multiplier(vmx);
 | |
| 
 | |
| 	vmx_vcpu_pi_load(vcpu, cpu);
 | |
| 	vmx->host_pkru = read_pkru();
 | |
| 	vmx->host_debugctlmsr = get_debugctlmsr();
 | |
| }
 | |
| 
 | |
| static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
 | |
| 
 | |
| 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
 | |
| 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
 | |
| 		!kvm_vcpu_apicv_active(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	/* Set SN when the vCPU is preempted */
 | |
| 	if (vcpu->preempted)
 | |
| 		pi_set_sn(pi_desc);
 | |
| }
 | |
| 
 | |
| static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vmx_vcpu_pi_put(vcpu);
 | |
| 
 | |
| 	vmx_prepare_switch_to_host(to_vmx(vcpu));
 | |
| }
 | |
| 
 | |
| static bool emulation_required(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
 | |
| }
 | |
| 
 | |
| static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| /*
 | |
|  * Return the cr0 value that a nested guest would read. This is a combination
 | |
|  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
 | |
|  * its hypervisor (cr0_read_shadow).
 | |
|  */
 | |
| static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
 | |
| {
 | |
| 	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
 | |
| 		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
 | |
| }
 | |
| static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
 | |
| {
 | |
| 	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
 | |
| 		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
 | |
| }
 | |
| 
 | |
| static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long rflags, save_rflags;
 | |
| 
 | |
| 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
 | |
| 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
 | |
| 		rflags = vmcs_readl(GUEST_RFLAGS);
 | |
| 		if (to_vmx(vcpu)->rmode.vm86_active) {
 | |
| 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
 | |
| 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
 | |
| 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
 | |
| 		}
 | |
| 		to_vmx(vcpu)->rflags = rflags;
 | |
| 	}
 | |
| 	return to_vmx(vcpu)->rflags;
 | |
| }
 | |
| 
 | |
| static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
 | |
| {
 | |
| 	unsigned long old_rflags = vmx_get_rflags(vcpu);
 | |
| 
 | |
| 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
 | |
| 	to_vmx(vcpu)->rflags = rflags;
 | |
| 	if (to_vmx(vcpu)->rmode.vm86_active) {
 | |
| 		to_vmx(vcpu)->rmode.save_rflags = rflags;
 | |
| 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
 | |
| 	}
 | |
| 	vmcs_writel(GUEST_RFLAGS, rflags);
 | |
| 
 | |
| 	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
 | |
| 		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
 | |
| }
 | |
| 
 | |
| static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (interruptibility & GUEST_INTR_STATE_STI)
 | |
| 		ret |= KVM_X86_SHADOW_INT_STI;
 | |
| 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
 | |
| 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 | |
| {
 | |
| 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 | |
| 	u32 interruptibility = interruptibility_old;
 | |
| 
 | |
| 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
 | |
| 
 | |
| 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
 | |
| 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
 | |
| 	else if (mask & KVM_X86_SHADOW_INT_STI)
 | |
| 		interruptibility |= GUEST_INTR_STATE_STI;
 | |
| 
 | |
| 	if ((interruptibility != interruptibility_old))
 | |
| 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
 | |
| }
 | |
| 
 | |
| static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long rip;
 | |
| 
 | |
| 	rip = kvm_rip_read(vcpu);
 | |
| 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 	kvm_rip_write(vcpu, rip);
 | |
| 
 | |
| 	/* skipping an emulated instruction also counts */
 | |
| 	vmx_set_interrupt_shadow(vcpu, 0);
 | |
| }
 | |
| 
 | |
| static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
 | |
| 					       unsigned long exit_qual)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	unsigned int nr = vcpu->arch.exception.nr;
 | |
| 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
 | |
| 
 | |
| 	if (vcpu->arch.exception.has_error_code) {
 | |
| 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
 | |
| 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_exception_is_soft(nr))
 | |
| 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
 | |
| 	else
 | |
| 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
 | |
| 
 | |
| 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
 | |
| 	    vmx_get_nmi_mask(vcpu))
 | |
| 		intr_info |= INTR_INFO_UNBLOCK_NMI;
 | |
| 
 | |
| 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * KVM wants to inject page-faults which it got to the guest. This function
 | |
|  * checks whether in a nested guest, we need to inject them to L1 or L2.
 | |
|  */
 | |
| static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	unsigned int nr = vcpu->arch.exception.nr;
 | |
| 
 | |
| 	if (nr == PF_VECTOR) {
 | |
| 		if (vcpu->arch.exception.nested_apf) {
 | |
| 			*exit_qual = vcpu->arch.apf.nested_apf_token;
 | |
| 			return 1;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
 | |
| 		 * The fix is to add the ancillary datum (CR2 or DR6) to structs
 | |
| 		 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
 | |
| 		 * can be written only when inject_pending_event runs.  This should be
 | |
| 		 * conditional on a new capability---if the capability is disabled,
 | |
| 		 * kvm_multiple_exception would write the ancillary information to
 | |
| 		 * CR2 or DR6, for backwards ABI-compatibility.
 | |
| 		 */
 | |
| 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
 | |
| 						    vcpu->arch.exception.error_code)) {
 | |
| 			*exit_qual = vcpu->arch.cr2;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (vmcs12->exception_bitmap & (1u << nr)) {
 | |
| 			if (nr == DB_VECTOR) {
 | |
| 				*exit_qual = vcpu->arch.dr6;
 | |
| 				*exit_qual &= ~(DR6_FIXED_1 | DR6_BT);
 | |
| 				*exit_qual ^= DR6_RTM;
 | |
| 			} else {
 | |
| 				*exit_qual = 0;
 | |
| 			}
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
 | |
| 	 * explicitly skip the instruction because if the HLT state is set,
 | |
| 	 * then the instruction is already executing and RIP has already been
 | |
| 	 * advanced.
 | |
| 	 */
 | |
| 	if (kvm_hlt_in_guest(vcpu->kvm) &&
 | |
| 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
 | |
| 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
 | |
| }
 | |
| 
 | |
| static void vmx_queue_exception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned nr = vcpu->arch.exception.nr;
 | |
| 	bool has_error_code = vcpu->arch.exception.has_error_code;
 | |
| 	u32 error_code = vcpu->arch.exception.error_code;
 | |
| 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
 | |
| 
 | |
| 	if (has_error_code) {
 | |
| 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
 | |
| 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->rmode.vm86_active) {
 | |
| 		int inc_eip = 0;
 | |
| 		if (kvm_exception_is_soft(nr))
 | |
| 			inc_eip = vcpu->arch.event_exit_inst_len;
 | |
| 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
 | |
| 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(vmx->emulation_required);
 | |
| 
 | |
| 	if (kvm_exception_is_soft(nr)) {
 | |
| 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
 | |
| 			     vmx->vcpu.arch.event_exit_inst_len);
 | |
| 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
 | |
| 	} else
 | |
| 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
 | |
| 
 | |
| 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
 | |
| 
 | |
| 	vmx_clear_hlt(vcpu);
 | |
| }
 | |
| 
 | |
| static bool vmx_rdtscp_supported(void)
 | |
| {
 | |
| 	return cpu_has_vmx_rdtscp();
 | |
| }
 | |
| 
 | |
| static bool vmx_invpcid_supported(void)
 | |
| {
 | |
| 	return cpu_has_vmx_invpcid();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Swap MSR entry in host/guest MSR entry array.
 | |
|  */
 | |
| static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
 | |
| {
 | |
| 	struct shared_msr_entry tmp;
 | |
| 
 | |
| 	tmp = vmx->guest_msrs[to];
 | |
| 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
 | |
| 	vmx->guest_msrs[from] = tmp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the vmcs to automatically save and restore system
 | |
|  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
 | |
|  * mode, as fiddling with msrs is very expensive.
 | |
|  */
 | |
| static void setup_msrs(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	int save_nmsrs, index;
 | |
| 
 | |
| 	save_nmsrs = 0;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (is_long_mode(&vmx->vcpu)) {
 | |
| 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
 | |
| 		if (index >= 0)
 | |
| 			move_msr_up(vmx, index, save_nmsrs++);
 | |
| 		index = __find_msr_index(vmx, MSR_LSTAR);
 | |
| 		if (index >= 0)
 | |
| 			move_msr_up(vmx, index, save_nmsrs++);
 | |
| 		index = __find_msr_index(vmx, MSR_CSTAR);
 | |
| 		if (index >= 0)
 | |
| 			move_msr_up(vmx, index, save_nmsrs++);
 | |
| 		/*
 | |
| 		 * MSR_STAR is only needed on long mode guests, and only
 | |
| 		 * if efer.sce is enabled.
 | |
| 		 */
 | |
| 		index = __find_msr_index(vmx, MSR_STAR);
 | |
| 		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
 | |
| 			move_msr_up(vmx, index, save_nmsrs++);
 | |
| 	}
 | |
| #endif
 | |
| 	index = __find_msr_index(vmx, MSR_EFER);
 | |
| 	if (index >= 0 && update_transition_efer(vmx, index))
 | |
| 		move_msr_up(vmx, index, save_nmsrs++);
 | |
| 	index = __find_msr_index(vmx, MSR_TSC_AUX);
 | |
| 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
 | |
| 		move_msr_up(vmx, index, save_nmsrs++);
 | |
| 
 | |
| 	vmx->save_nmsrs = save_nmsrs;
 | |
| 	vmx->guest_msrs_dirty = true;
 | |
| 
 | |
| 	if (cpu_has_vmx_msr_bitmap())
 | |
| 		vmx_update_msr_bitmap(&vmx->vcpu);
 | |
| }
 | |
| 
 | |
| static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	if (is_guest_mode(vcpu) &&
 | |
| 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
 | |
| 		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
 | |
| 
 | |
| 	return vcpu->arch.tsc_offset;
 | |
| }
 | |
| 
 | |
| static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
 | |
| {
 | |
| 	u64 active_offset = offset;
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		/*
 | |
| 		 * We're here if L1 chose not to trap WRMSR to TSC. According
 | |
| 		 * to the spec, this should set L1's TSC; The offset that L1
 | |
| 		 * set for L2 remains unchanged, and still needs to be added
 | |
| 		 * to the newly set TSC to get L2's TSC.
 | |
| 		 */
 | |
| 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 		if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING))
 | |
| 			active_offset += vmcs12->tsc_offset;
 | |
| 	} else {
 | |
| 		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
 | |
| 					   vmcs_read64(TSC_OFFSET), offset);
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write64(TSC_OFFSET, active_offset);
 | |
| 	return active_offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
 | |
|  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
 | |
|  * all guests if the "nested" module option is off, and can also be disabled
 | |
|  * for a single guest by disabling its VMX cpuid bit.
 | |
|  */
 | |
| static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
 | |
|  * returned for the various VMX controls MSRs when nested VMX is enabled.
 | |
|  * The same values should also be used to verify that vmcs12 control fields are
 | |
|  * valid during nested entry from L1 to L2.
 | |
|  * Each of these control msrs has a low and high 32-bit half: A low bit is on
 | |
|  * if the corresponding bit in the (32-bit) control field *must* be on, and a
 | |
|  * bit in the high half is on if the corresponding bit in the control field
 | |
|  * may be on. See also vmx_control_verify().
 | |
|  */
 | |
| static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
 | |
| {
 | |
| 	if (!nested) {
 | |
| 		memset(msrs, 0, sizeof(*msrs));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that as a general rule, the high half of the MSRs (bits in
 | |
| 	 * the control fields which may be 1) should be initialized by the
 | |
| 	 * intersection of the underlying hardware's MSR (i.e., features which
 | |
| 	 * can be supported) and the list of features we want to expose -
 | |
| 	 * because they are known to be properly supported in our code.
 | |
| 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
 | |
| 	 * be set to 0, meaning that L1 may turn off any of these bits. The
 | |
| 	 * reason is that if one of these bits is necessary, it will appear
 | |
| 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
 | |
| 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
 | |
| 	 * nested_vmx_exit_reflected() will not pass related exits to L1.
 | |
| 	 * These rules have exceptions below.
 | |
| 	 */
 | |
| 
 | |
| 	/* pin-based controls */
 | |
| 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
 | |
| 		msrs->pinbased_ctls_low,
 | |
| 		msrs->pinbased_ctls_high);
 | |
| 	msrs->pinbased_ctls_low |=
 | |
| 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 	msrs->pinbased_ctls_high &=
 | |
| 		PIN_BASED_EXT_INTR_MASK |
 | |
| 		PIN_BASED_NMI_EXITING |
 | |
| 		PIN_BASED_VIRTUAL_NMIS |
 | |
| 		(apicv ? PIN_BASED_POSTED_INTR : 0);
 | |
| 	msrs->pinbased_ctls_high |=
 | |
| 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
 | |
| 		PIN_BASED_VMX_PREEMPTION_TIMER;
 | |
| 
 | |
| 	/* exit controls */
 | |
| 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
 | |
| 		msrs->exit_ctls_low,
 | |
| 		msrs->exit_ctls_high);
 | |
| 	msrs->exit_ctls_low =
 | |
| 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 
 | |
| 	msrs->exit_ctls_high &=
 | |
| #ifdef CONFIG_X86_64
 | |
| 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
 | |
| #endif
 | |
| 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
 | |
| 	msrs->exit_ctls_high |=
 | |
| 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
 | |
| 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
 | |
| 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
 | |
| 
 | |
| 	/* We support free control of debug control saving. */
 | |
| 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
 | |
| 
 | |
| 	/* entry controls */
 | |
| 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
 | |
| 		msrs->entry_ctls_low,
 | |
| 		msrs->entry_ctls_high);
 | |
| 	msrs->entry_ctls_low =
 | |
| 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 	msrs->entry_ctls_high &=
 | |
| #ifdef CONFIG_X86_64
 | |
| 		VM_ENTRY_IA32E_MODE |
 | |
| #endif
 | |
| 		VM_ENTRY_LOAD_IA32_PAT;
 | |
| 	msrs->entry_ctls_high |=
 | |
| 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
 | |
| 
 | |
| 	/* We support free control of debug control loading. */
 | |
| 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
 | |
| 
 | |
| 	/* cpu-based controls */
 | |
| 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
 | |
| 		msrs->procbased_ctls_low,
 | |
| 		msrs->procbased_ctls_high);
 | |
| 	msrs->procbased_ctls_low =
 | |
| 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 	msrs->procbased_ctls_high &=
 | |
| 		CPU_BASED_VIRTUAL_INTR_PENDING |
 | |
| 		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
 | |
| 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
 | |
| 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
 | |
| 		CPU_BASED_CR3_STORE_EXITING |
 | |
| #ifdef CONFIG_X86_64
 | |
| 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
 | |
| #endif
 | |
| 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
 | |
| 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
 | |
| 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
 | |
| 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
 | |
| 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 | |
| 	/*
 | |
| 	 * We can allow some features even when not supported by the
 | |
| 	 * hardware. For example, L1 can specify an MSR bitmap - and we
 | |
| 	 * can use it to avoid exits to L1 - even when L0 runs L2
 | |
| 	 * without MSR bitmaps.
 | |
| 	 */
 | |
| 	msrs->procbased_ctls_high |=
 | |
| 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
 | |
| 		CPU_BASED_USE_MSR_BITMAPS;
 | |
| 
 | |
| 	/* We support free control of CR3 access interception. */
 | |
| 	msrs->procbased_ctls_low &=
 | |
| 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
 | |
| 
 | |
| 	/*
 | |
| 	 * secondary cpu-based controls.  Do not include those that
 | |
| 	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
 | |
| 	 */
 | |
| 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
 | |
| 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
 | |
| 		      msrs->secondary_ctls_low,
 | |
| 		      msrs->secondary_ctls_high);
 | |
| 
 | |
| 	msrs->secondary_ctls_low = 0;
 | |
| 	msrs->secondary_ctls_high &=
 | |
| 		SECONDARY_EXEC_DESC |
 | |
| 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
 | |
| 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
 | |
| 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
 | |
| 		SECONDARY_EXEC_WBINVD_EXITING;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can emulate "VMCS shadowing," even if the hardware
 | |
| 	 * doesn't support it.
 | |
| 	 */
 | |
| 	msrs->secondary_ctls_high |=
 | |
| 		SECONDARY_EXEC_SHADOW_VMCS;
 | |
| 
 | |
| 	if (enable_ept) {
 | |
| 		/* nested EPT: emulate EPT also to L1 */
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_ENABLE_EPT;
 | |
| 		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
 | |
| 			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
 | |
| 		if (cpu_has_vmx_ept_execute_only())
 | |
| 			msrs->ept_caps |=
 | |
| 				VMX_EPT_EXECUTE_ONLY_BIT;
 | |
| 		msrs->ept_caps &= vmx_capability.ept;
 | |
| 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
 | |
| 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
 | |
| 			VMX_EPT_1GB_PAGE_BIT;
 | |
| 		if (enable_ept_ad_bits) {
 | |
| 			msrs->secondary_ctls_high |=
 | |
| 				SECONDARY_EXEC_ENABLE_PML;
 | |
| 			msrs->ept_caps |= VMX_EPT_AD_BIT;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_vmx_vmfunc()) {
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_ENABLE_VMFUNC;
 | |
| 		/*
 | |
| 		 * Advertise EPTP switching unconditionally
 | |
| 		 * since we emulate it
 | |
| 		 */
 | |
| 		if (enable_ept)
 | |
| 			msrs->vmfunc_controls =
 | |
| 				VMX_VMFUNC_EPTP_SWITCHING;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Old versions of KVM use the single-context version without
 | |
| 	 * checking for support, so declare that it is supported even
 | |
| 	 * though it is treated as global context.  The alternative is
 | |
| 	 * not failing the single-context invvpid, and it is worse.
 | |
| 	 */
 | |
| 	if (enable_vpid) {
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_ENABLE_VPID;
 | |
| 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
 | |
| 			VMX_VPID_EXTENT_SUPPORTED_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (enable_unrestricted_guest)
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
 | |
| 
 | |
| 	if (flexpriority_enabled)
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 | |
| 
 | |
| 	/* miscellaneous data */
 | |
| 	rdmsr(MSR_IA32_VMX_MISC,
 | |
| 		msrs->misc_low,
 | |
| 		msrs->misc_high);
 | |
| 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
 | |
| 	msrs->misc_low |=
 | |
| 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
 | |
| 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
 | |
| 		VMX_MISC_ACTIVITY_HLT;
 | |
| 	msrs->misc_high = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This MSR reports some information about VMX support. We
 | |
| 	 * should return information about the VMX we emulate for the
 | |
| 	 * guest, and the VMCS structure we give it - not about the
 | |
| 	 * VMX support of the underlying hardware.
 | |
| 	 */
 | |
| 	msrs->basic =
 | |
| 		VMCS12_REVISION |
 | |
| 		VMX_BASIC_TRUE_CTLS |
 | |
| 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
 | |
| 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
 | |
| 
 | |
| 	if (cpu_has_vmx_basic_inout())
 | |
| 		msrs->basic |= VMX_BASIC_INOUT;
 | |
| 
 | |
| 	/*
 | |
| 	 * These MSRs specify bits which the guest must keep fixed on
 | |
| 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
 | |
| 	 * We picked the standard core2 setting.
 | |
| 	 */
 | |
| #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
 | |
| #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
 | |
| 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
 | |
| 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
 | |
| 
 | |
| 	/* These MSRs specify bits which the guest must keep fixed off. */
 | |
| 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
 | |
| 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
 | |
| 
 | |
| 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
 | |
| 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * if fixed0[i] == 1: val[i] must be 1
 | |
|  * if fixed1[i] == 0: val[i] must be 0
 | |
|  */
 | |
| static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
 | |
| {
 | |
| 	return ((val & fixed1) | fixed0) == val;
 | |
| }
 | |
| 
 | |
| static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
 | |
| {
 | |
| 	return fixed_bits_valid(control, low, high);
 | |
| }
 | |
| 
 | |
| static inline u64 vmx_control_msr(u32 low, u32 high)
 | |
| {
 | |
| 	return low | ((u64)high << 32);
 | |
| }
 | |
| 
 | |
| static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
 | |
| {
 | |
| 	superset &= mask;
 | |
| 	subset &= mask;
 | |
| 
 | |
| 	return (superset | subset) == superset;
 | |
| }
 | |
| 
 | |
| static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
 | |
| {
 | |
| 	const u64 feature_and_reserved =
 | |
| 		/* feature (except bit 48; see below) */
 | |
| 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
 | |
| 		/* reserved */
 | |
| 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
 | |
| 	u64 vmx_basic = vmx->nested.msrs.basic;
 | |
| 
 | |
| 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM does not emulate a version of VMX that constrains physical
 | |
| 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
 | |
| 	 */
 | |
| 	if (data & BIT_ULL(48))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
 | |
| 	    vmx_basic_vmcs_revision_id(data))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vmx->nested.msrs.basic = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
 | |
| {
 | |
| 	u64 supported;
 | |
| 	u32 *lowp, *highp;
 | |
| 
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 | |
| 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.pinbased_ctls_high;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 | |
| 		lowp = &vmx->nested.msrs.procbased_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.procbased_ctls_high;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 | |
| 		lowp = &vmx->nested.msrs.exit_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.exit_ctls_high;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 | |
| 		lowp = &vmx->nested.msrs.entry_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.entry_ctls_high;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS2:
 | |
| 		lowp = &vmx->nested.msrs.secondary_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.secondary_ctls_high;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	supported = vmx_control_msr(*lowp, *highp);
 | |
| 
 | |
| 	/* Check must-be-1 bits are still 1. */
 | |
| 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Check must-be-0 bits are still 0. */
 | |
| 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*lowp = data;
 | |
| 	*highp = data >> 32;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
 | |
| {
 | |
| 	const u64 feature_and_reserved_bits =
 | |
| 		/* feature */
 | |
| 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
 | |
| 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
 | |
| 		/* reserved */
 | |
| 		GENMASK_ULL(13, 9) | BIT_ULL(31);
 | |
| 	u64 vmx_misc;
 | |
| 
 | |
| 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
 | |
| 				   vmx->nested.msrs.misc_high);
 | |
| 
 | |
| 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((vmx->nested.msrs.pinbased_ctls_high &
 | |
| 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
 | |
| 	    vmx_misc_preemption_timer_rate(data) !=
 | |
| 	    vmx_misc_preemption_timer_rate(vmx_misc))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vmx->nested.msrs.misc_low = data;
 | |
| 	vmx->nested.msrs.misc_high = data >> 32;
 | |
| 
 | |
| 	/*
 | |
| 	 * If L1 has read-only VM-exit information fields, use the
 | |
| 	 * less permissive vmx_vmwrite_bitmap to specify write
 | |
| 	 * permissions for the shadow VMCS.
 | |
| 	 */
 | |
| 	if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
 | |
| 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
 | |
| {
 | |
| 	u64 vmx_ept_vpid_cap;
 | |
| 
 | |
| 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
 | |
| 					   vmx->nested.msrs.vpid_caps);
 | |
| 
 | |
| 	/* Every bit is either reserved or a feature bit. */
 | |
| 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vmx->nested.msrs.ept_caps = data;
 | |
| 	vmx->nested.msrs.vpid_caps = data >> 32;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
 | |
| {
 | |
| 	u64 *msr;
 | |
| 
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_IA32_VMX_CR0_FIXED0:
 | |
| 		msr = &vmx->nested.msrs.cr0_fixed0;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR4_FIXED0:
 | |
| 		msr = &vmx->nested.msrs.cr4_fixed0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
 | |
| 	 * must be 1 in the restored value.
 | |
| 	 */
 | |
| 	if (!is_bitwise_subset(data, *msr, -1ULL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*msr = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when userspace is restoring VMX MSRs.
 | |
|  *
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  */
 | |
| static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow changes to the VMX capability MSRs while the vCPU
 | |
| 	 * is in VMX operation.
 | |
| 	 */
 | |
| 	if (vmx->nested.vmxon)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_IA32_VMX_BASIC:
 | |
| 		return vmx_restore_vmx_basic(vmx, data);
 | |
| 	case MSR_IA32_VMX_PINBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_EXIT_CTLS:
 | |
| 	case MSR_IA32_VMX_ENTRY_CTLS:
 | |
| 		/*
 | |
| 		 * The "non-true" VMX capability MSRs are generated from the
 | |
| 		 * "true" MSRs, so we do not support restoring them directly.
 | |
| 		 *
 | |
| 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
 | |
| 		 * should restore the "true" MSRs with the must-be-1 bits
 | |
| 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
 | |
| 		 * DEFAULT SETTINGS".
 | |
| 		 */
 | |
| 		return -EINVAL;
 | |
| 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 | |
| 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS2:
 | |
| 		return vmx_restore_control_msr(vmx, msr_index, data);
 | |
| 	case MSR_IA32_VMX_MISC:
 | |
| 		return vmx_restore_vmx_misc(vmx, data);
 | |
| 	case MSR_IA32_VMX_CR0_FIXED0:
 | |
| 	case MSR_IA32_VMX_CR4_FIXED0:
 | |
| 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
 | |
| 	case MSR_IA32_VMX_CR0_FIXED1:
 | |
| 	case MSR_IA32_VMX_CR4_FIXED1:
 | |
| 		/*
 | |
| 		 * These MSRs are generated based on the vCPU's CPUID, so we
 | |
| 		 * do not support restoring them directly.
 | |
| 		 */
 | |
| 		return -EINVAL;
 | |
| 	case MSR_IA32_VMX_EPT_VPID_CAP:
 | |
| 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
 | |
| 	case MSR_IA32_VMX_VMCS_ENUM:
 | |
| 		vmx->nested.msrs.vmcs_enum = data;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * The rest of the VMX capability MSRs do not support restore.
 | |
| 		 */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Returns 0 on success, non-0 otherwise. */
 | |
| static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
 | |
| {
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_IA32_VMX_BASIC:
 | |
| 		*pdata = msrs->basic;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_PINBASED_CTLS:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->pinbased_ctls_low,
 | |
| 			msrs->pinbased_ctls_high);
 | |
| 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
 | |
| 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->procbased_ctls_low,
 | |
| 			msrs->procbased_ctls_high);
 | |
| 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
 | |
| 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 | |
| 	case MSR_IA32_VMX_EXIT_CTLS:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->exit_ctls_low,
 | |
| 			msrs->exit_ctls_high);
 | |
| 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
 | |
| 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 | |
| 	case MSR_IA32_VMX_ENTRY_CTLS:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->entry_ctls_low,
 | |
| 			msrs->entry_ctls_high);
 | |
| 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
 | |
| 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_MISC:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->misc_low,
 | |
| 			msrs->misc_high);
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR0_FIXED0:
 | |
| 		*pdata = msrs->cr0_fixed0;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR0_FIXED1:
 | |
| 		*pdata = msrs->cr0_fixed1;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR4_FIXED0:
 | |
| 		*pdata = msrs->cr4_fixed0;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR4_FIXED1:
 | |
| 		*pdata = msrs->cr4_fixed1;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_VMCS_ENUM:
 | |
| 		*pdata = msrs->vmcs_enum;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS2:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->secondary_ctls_low,
 | |
| 			msrs->secondary_ctls_high);
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_EPT_VPID_CAP:
 | |
| 		*pdata = msrs->ept_caps |
 | |
| 			((u64)msrs->vpid_caps << 32);
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_VMFUNC:
 | |
| 		*pdata = msrs->vmfunc_controls;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
 | |
| 						 uint64_t val)
 | |
| {
 | |
| 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
 | |
| 
 | |
| 	return !(val & ~valid_bits);
 | |
| }
 | |
| 
 | |
| static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
 | |
| {
 | |
| 	switch (msr->index) {
 | |
| 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
 | |
| 		if (!nested)
 | |
| 			return 1;
 | |
| 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
 | |
| 	default:
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reads an msr value (of 'msr_index') into 'pdata'.
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct shared_msr_entry *msr;
 | |
| 
 | |
| 	switch (msr_info->index) {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case MSR_FS_BASE:
 | |
| 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
 | |
| 		break;
 | |
| 	case MSR_GS_BASE:
 | |
| 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
 | |
| 		break;
 | |
| 	case MSR_KERNEL_GS_BASE:
 | |
| 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
 | |
| 		break;
 | |
| #endif
 | |
| 	case MSR_EFER:
 | |
| 		return kvm_get_msr_common(vcpu, msr_info);
 | |
| 	case MSR_IA32_SPEC_CTRL:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_CS:
 | |
| 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_EIP:
 | |
| 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_ESP:
 | |
| 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
 | |
| 		break;
 | |
| 	case MSR_IA32_BNDCFGS:
 | |
| 		if (!kvm_mpx_supported() ||
 | |
| 		    (!msr_info->host_initiated &&
 | |
| 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
 | |
| 			return 1;
 | |
| 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_EXT_CTL:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !(vmx->msr_ia32_feature_control &
 | |
| 		      FEATURE_CONTROL_LMCE))
 | |
| 			return 1;
 | |
| 		msr_info->data = vcpu->arch.mcg_ext_ctl;
 | |
| 		break;
 | |
| 	case MSR_IA32_FEATURE_CONTROL:
 | |
| 		msr_info->data = vmx->msr_ia32_feature_control;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
 | |
| 		if (!nested_vmx_allowed(vcpu))
 | |
| 			return 1;
 | |
| 		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
 | |
| 				       &msr_info->data);
 | |
| 	case MSR_IA32_XSS:
 | |
| 		if (!vmx_xsaves_supported() ||
 | |
| 		    (!msr_info->host_initiated &&
 | |
| 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
 | |
| 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
 | |
| 			return 1;
 | |
| 		msr_info->data = vcpu->arch.ia32_xss;
 | |
| 		break;
 | |
| 	case MSR_TSC_AUX:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
 | |
| 			return 1;
 | |
| 		/* Otherwise falls through */
 | |
| 	default:
 | |
| 		msr = find_msr_entry(vmx, msr_info->index);
 | |
| 		if (msr) {
 | |
| 			msr_info->data = msr->data;
 | |
| 			break;
 | |
| 		}
 | |
| 		return kvm_get_msr_common(vcpu, msr_info);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmx_leave_nested(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| /*
 | |
|  * Writes msr value into into the appropriate "register".
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct shared_msr_entry *msr;
 | |
| 	int ret = 0;
 | |
| 	u32 msr_index = msr_info->index;
 | |
| 	u64 data = msr_info->data;
 | |
| 
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_EFER:
 | |
| 		ret = kvm_set_msr_common(vcpu, msr_info);
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case MSR_FS_BASE:
 | |
| 		vmx_segment_cache_clear(vmx);
 | |
| 		vmcs_writel(GUEST_FS_BASE, data);
 | |
| 		break;
 | |
| 	case MSR_GS_BASE:
 | |
| 		vmx_segment_cache_clear(vmx);
 | |
| 		vmcs_writel(GUEST_GS_BASE, data);
 | |
| 		break;
 | |
| 	case MSR_KERNEL_GS_BASE:
 | |
| 		vmx_write_guest_kernel_gs_base(vmx, data);
 | |
| 		break;
 | |
| #endif
 | |
| 	case MSR_IA32_SYSENTER_CS:
 | |
| 		vmcs_write32(GUEST_SYSENTER_CS, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_EIP:
 | |
| 		vmcs_writel(GUEST_SYSENTER_EIP, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_ESP:
 | |
| 		vmcs_writel(GUEST_SYSENTER_ESP, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_BNDCFGS:
 | |
| 		if (!kvm_mpx_supported() ||
 | |
| 		    (!msr_info->host_initiated &&
 | |
| 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
 | |
| 			return 1;
 | |
| 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
 | |
| 		    (data & MSR_IA32_BNDCFGS_RSVD))
 | |
| 			return 1;
 | |
| 		vmcs_write64(GUEST_BNDCFGS, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_SPEC_CTRL:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
 | |
| 			return 1;
 | |
| 
 | |
| 		/* The STIBP bit doesn't fault even if it's not advertised */
 | |
| 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
 | |
| 			return 1;
 | |
| 
 | |
| 		vmx->spec_ctrl = data;
 | |
| 
 | |
| 		if (!data)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * For non-nested:
 | |
| 		 * When it's written (to non-zero) for the first time, pass
 | |
| 		 * it through.
 | |
| 		 *
 | |
| 		 * For nested:
 | |
| 		 * The handling of the MSR bitmap for L2 guests is done in
 | |
| 		 * nested_vmx_merge_msr_bitmap. We should not touch the
 | |
| 		 * vmcs02.msr_bitmap here since it gets completely overwritten
 | |
| 		 * in the merging. We update the vmcs01 here for L1 as well
 | |
| 		 * since it will end up touching the MSR anyway now.
 | |
| 		 */
 | |
| 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
 | |
| 					      MSR_IA32_SPEC_CTRL,
 | |
| 					      MSR_TYPE_RW);
 | |
| 		break;
 | |
| 	case MSR_IA32_PRED_CMD:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (data & ~PRED_CMD_IBPB)
 | |
| 			return 1;
 | |
| 
 | |
| 		if (!data)
 | |
| 			break;
 | |
| 
 | |
| 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
 | |
| 
 | |
| 		/*
 | |
| 		 * For non-nested:
 | |
| 		 * When it's written (to non-zero) for the first time, pass
 | |
| 		 * it through.
 | |
| 		 *
 | |
| 		 * For nested:
 | |
| 		 * The handling of the MSR bitmap for L2 guests is done in
 | |
| 		 * nested_vmx_merge_msr_bitmap. We should not touch the
 | |
| 		 * vmcs02.msr_bitmap here since it gets completely overwritten
 | |
| 		 * in the merging.
 | |
| 		 */
 | |
| 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
 | |
| 					      MSR_TYPE_W);
 | |
| 		break;
 | |
| 	case MSR_IA32_CR_PAT:
 | |
| 		if (!kvm_pat_valid(data))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
 | |
| 			vmcs_write64(GUEST_IA32_PAT, data);
 | |
| 			vcpu->arch.pat = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = kvm_set_msr_common(vcpu, msr_info);
 | |
| 		break;
 | |
| 	case MSR_IA32_TSC_ADJUST:
 | |
| 		ret = kvm_set_msr_common(vcpu, msr_info);
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_EXT_CTL:
 | |
| 		if ((!msr_info->host_initiated &&
 | |
| 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
 | |
| 		       FEATURE_CONTROL_LMCE)) ||
 | |
| 		    (data & ~MCG_EXT_CTL_LMCE_EN))
 | |
| 			return 1;
 | |
| 		vcpu->arch.mcg_ext_ctl = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_FEATURE_CONTROL:
 | |
| 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
 | |
| 		    (to_vmx(vcpu)->msr_ia32_feature_control &
 | |
| 		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
 | |
| 			return 1;
 | |
| 		vmx->msr_ia32_feature_control = data;
 | |
| 		if (msr_info->host_initiated && data == 0)
 | |
| 			vmx_leave_nested(vcpu);
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
 | |
| 		if (!msr_info->host_initiated)
 | |
| 			return 1; /* they are read-only */
 | |
| 		if (!nested_vmx_allowed(vcpu))
 | |
| 			return 1;
 | |
| 		return vmx_set_vmx_msr(vcpu, msr_index, data);
 | |
| 	case MSR_IA32_XSS:
 | |
| 		if (!vmx_xsaves_supported() ||
 | |
| 		    (!msr_info->host_initiated &&
 | |
| 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
 | |
| 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
 | |
| 			return 1;
 | |
| 		/*
 | |
| 		 * The only supported bit as of Skylake is bit 8, but
 | |
| 		 * it is not supported on KVM.
 | |
| 		 */
 | |
| 		if (data != 0)
 | |
| 			return 1;
 | |
| 		vcpu->arch.ia32_xss = data;
 | |
| 		if (vcpu->arch.ia32_xss != host_xss)
 | |
| 			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
 | |
| 				vcpu->arch.ia32_xss, host_xss, false);
 | |
| 		else
 | |
| 			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
 | |
| 		break;
 | |
| 	case MSR_TSC_AUX:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
 | |
| 			return 1;
 | |
| 		/* Check reserved bit, higher 32 bits should be zero */
 | |
| 		if ((data >> 32) != 0)
 | |
| 			return 1;
 | |
| 		/* Otherwise falls through */
 | |
| 	default:
 | |
| 		msr = find_msr_entry(vmx, msr_index);
 | |
| 		if (msr) {
 | |
| 			u64 old_msr_data = msr->data;
 | |
| 			msr->data = data;
 | |
| 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
 | |
| 				preempt_disable();
 | |
| 				ret = kvm_set_shared_msr(msr->index, msr->data,
 | |
| 							 msr->mask);
 | |
| 				preempt_enable();
 | |
| 				if (ret)
 | |
| 					msr->data = old_msr_data;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = kvm_set_msr_common(vcpu, msr_info);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
 | |
| {
 | |
| 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
 | |
| 	switch (reg) {
 | |
| 	case VCPU_REGS_RSP:
 | |
| 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
 | |
| 		break;
 | |
| 	case VCPU_REGS_RIP:
 | |
| 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
 | |
| 		break;
 | |
| 	case VCPU_EXREG_PDPTR:
 | |
| 		if (enable_ept)
 | |
| 			ept_save_pdptrs(vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __init int cpu_has_kvm_support(void)
 | |
| {
 | |
| 	return cpu_has_vmx();
 | |
| }
 | |
| 
 | |
| static __init int vmx_disabled_by_bios(void)
 | |
| {
 | |
| 	u64 msr;
 | |
| 
 | |
| 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
 | |
| 	if (msr & FEATURE_CONTROL_LOCKED) {
 | |
| 		/* launched w/ TXT and VMX disabled */
 | |
| 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
 | |
| 			&& tboot_enabled())
 | |
| 			return 1;
 | |
| 		/* launched w/o TXT and VMX only enabled w/ TXT */
 | |
| 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
 | |
| 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
 | |
| 			&& !tboot_enabled()) {
 | |
| 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
 | |
| 				"activate TXT before enabling KVM\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 		/* launched w/o TXT and VMX disabled */
 | |
| 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
 | |
| 			&& !tboot_enabled())
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_cpu_vmxon(u64 addr)
 | |
| {
 | |
| 	cr4_set_bits(X86_CR4_VMXE);
 | |
| 	intel_pt_handle_vmx(1);
 | |
| 
 | |
| 	asm volatile (ASM_VMX_VMXON_RAX
 | |
| 			: : "a"(&addr), "m"(addr)
 | |
| 			: "memory", "cc");
 | |
| }
 | |
| 
 | |
| static int hardware_enable(void)
 | |
| {
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
 | |
| 	u64 old, test_bits;
 | |
| 
 | |
| 	if (cr4_read_shadow() & X86_CR4_VMXE)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/*
 | |
| 	 * This can happen if we hot-added a CPU but failed to allocate
 | |
| 	 * VP assist page for it.
 | |
| 	 */
 | |
| 	if (static_branch_unlikely(&enable_evmcs) &&
 | |
| 	    !hv_get_vp_assist_page(cpu))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
 | |
| 	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
 | |
| 	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we can enable the vmclear operation in kdump
 | |
| 	 * since the loaded_vmcss_on_cpu list on this cpu
 | |
| 	 * has been initialized.
 | |
| 	 *
 | |
| 	 * Though the cpu is not in VMX operation now, there
 | |
| 	 * is no problem to enable the vmclear operation
 | |
| 	 * for the loaded_vmcss_on_cpu list is empty!
 | |
| 	 */
 | |
| 	crash_enable_local_vmclear(cpu);
 | |
| 
 | |
| 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
 | |
| 
 | |
| 	test_bits = FEATURE_CONTROL_LOCKED;
 | |
| 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
 | |
| 	if (tboot_enabled())
 | |
| 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
 | |
| 
 | |
| 	if ((old & test_bits) != test_bits) {
 | |
| 		/* enable and lock */
 | |
| 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
 | |
| 	}
 | |
| 	kvm_cpu_vmxon(phys_addr);
 | |
| 	if (enable_ept)
 | |
| 		ept_sync_global();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmclear_local_loaded_vmcss(void)
 | |
| {
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 	struct loaded_vmcs *v, *n;
 | |
| 
 | |
| 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
 | |
| 				 loaded_vmcss_on_cpu_link)
 | |
| 		__loaded_vmcs_clear(v);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
 | |
|  * tricks.
 | |
|  */
 | |
| static void kvm_cpu_vmxoff(void)
 | |
| {
 | |
| 	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
 | |
| 
 | |
| 	intel_pt_handle_vmx(0);
 | |
| 	cr4_clear_bits(X86_CR4_VMXE);
 | |
| }
 | |
| 
 | |
| static void hardware_disable(void)
 | |
| {
 | |
| 	vmclear_local_loaded_vmcss();
 | |
| 	kvm_cpu_vmxoff();
 | |
| }
 | |
| 
 | |
| static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
 | |
| 				      u32 msr, u32 *result)
 | |
| {
 | |
| 	u32 vmx_msr_low, vmx_msr_high;
 | |
| 	u32 ctl = ctl_min | ctl_opt;
 | |
| 
 | |
| 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
 | |
| 
 | |
| 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
 | |
| 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
 | |
| 
 | |
| 	/* Ensure minimum (required) set of control bits are supported. */
 | |
| 	if (ctl_min & ~ctl)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	*result = ctl;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __init bool allow_1_setting(u32 msr, u32 ctl)
 | |
| {
 | |
| 	u32 vmx_msr_low, vmx_msr_high;
 | |
| 
 | |
| 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
 | |
| 	return vmx_msr_high & ctl;
 | |
| }
 | |
| 
 | |
| static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
 | |
| {
 | |
| 	u32 vmx_msr_low, vmx_msr_high;
 | |
| 	u32 min, opt, min2, opt2;
 | |
| 	u32 _pin_based_exec_control = 0;
 | |
| 	u32 _cpu_based_exec_control = 0;
 | |
| 	u32 _cpu_based_2nd_exec_control = 0;
 | |
| 	u32 _vmexit_control = 0;
 | |
| 	u32 _vmentry_control = 0;
 | |
| 
 | |
| 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
 | |
| 	min = CPU_BASED_HLT_EXITING |
 | |
| #ifdef CONFIG_X86_64
 | |
| 	      CPU_BASED_CR8_LOAD_EXITING |
 | |
| 	      CPU_BASED_CR8_STORE_EXITING |
 | |
| #endif
 | |
| 	      CPU_BASED_CR3_LOAD_EXITING |
 | |
| 	      CPU_BASED_CR3_STORE_EXITING |
 | |
| 	      CPU_BASED_UNCOND_IO_EXITING |
 | |
| 	      CPU_BASED_MOV_DR_EXITING |
 | |
| 	      CPU_BASED_USE_TSC_OFFSETING |
 | |
| 	      CPU_BASED_MWAIT_EXITING |
 | |
| 	      CPU_BASED_MONITOR_EXITING |
 | |
| 	      CPU_BASED_INVLPG_EXITING |
 | |
| 	      CPU_BASED_RDPMC_EXITING;
 | |
| 
 | |
| 	opt = CPU_BASED_TPR_SHADOW |
 | |
| 	      CPU_BASED_USE_MSR_BITMAPS |
 | |
| 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 | |
| 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
 | |
| 				&_cpu_based_exec_control) < 0)
 | |
| 		return -EIO;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
 | |
| 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
 | |
| 					   ~CPU_BASED_CR8_STORE_EXITING;
 | |
| #endif
 | |
| 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
 | |
| 		min2 = 0;
 | |
| 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
 | |
| 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
 | |
| 			SECONDARY_EXEC_WBINVD_EXITING |
 | |
| 			SECONDARY_EXEC_ENABLE_VPID |
 | |
| 			SECONDARY_EXEC_ENABLE_EPT |
 | |
| 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
 | |
| 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
 | |
| 			SECONDARY_EXEC_DESC |
 | |
| 			SECONDARY_EXEC_RDTSCP |
 | |
| 			SECONDARY_EXEC_ENABLE_INVPCID |
 | |
| 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
 | |
| 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
 | |
| 			SECONDARY_EXEC_SHADOW_VMCS |
 | |
| 			SECONDARY_EXEC_XSAVES |
 | |
| 			SECONDARY_EXEC_RDSEED_EXITING |
 | |
| 			SECONDARY_EXEC_RDRAND_EXITING |
 | |
| 			SECONDARY_EXEC_ENABLE_PML |
 | |
| 			SECONDARY_EXEC_TSC_SCALING |
 | |
| 			SECONDARY_EXEC_ENABLE_VMFUNC |
 | |
| 			SECONDARY_EXEC_ENCLS_EXITING;
 | |
| 		if (adjust_vmx_controls(min2, opt2,
 | |
| 					MSR_IA32_VMX_PROCBASED_CTLS2,
 | |
| 					&_cpu_based_2nd_exec_control) < 0)
 | |
| 			return -EIO;
 | |
| 	}
 | |
| #ifndef CONFIG_X86_64
 | |
| 	if (!(_cpu_based_2nd_exec_control &
 | |
| 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
 | |
| 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
 | |
| #endif
 | |
| 
 | |
| 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
 | |
| 		_cpu_based_2nd_exec_control &= ~(
 | |
| 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
 | |
| 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
 | |
| 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
 | |
| 
 | |
| 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
 | |
| 		&vmx_capability.ept, &vmx_capability.vpid);
 | |
| 
 | |
| 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
 | |
| 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
 | |
| 		   enabled */
 | |
| 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
 | |
| 					     CPU_BASED_CR3_STORE_EXITING |
 | |
| 					     CPU_BASED_INVLPG_EXITING);
 | |
| 	} else if (vmx_capability.ept) {
 | |
| 		vmx_capability.ept = 0;
 | |
| 		pr_warn_once("EPT CAP should not exist if not support "
 | |
| 				"1-setting enable EPT VM-execution control\n");
 | |
| 	}
 | |
| 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
 | |
| 		vmx_capability.vpid) {
 | |
| 		vmx_capability.vpid = 0;
 | |
| 		pr_warn_once("VPID CAP should not exist if not support "
 | |
| 				"1-setting enable VPID VM-execution control\n");
 | |
| 	}
 | |
| 
 | |
| 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
 | |
| #endif
 | |
| 	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
 | |
| 		VM_EXIT_CLEAR_BNDCFGS;
 | |
| 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
 | |
| 				&_vmexit_control) < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
 | |
| 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
 | |
| 		 PIN_BASED_VMX_PREEMPTION_TIMER;
 | |
| 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
 | |
| 				&_pin_based_exec_control) < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (cpu_has_broken_vmx_preemption_timer())
 | |
| 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
 | |
| 	if (!(_cpu_based_2nd_exec_control &
 | |
| 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
 | |
| 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
 | |
| 
 | |
| 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
 | |
| 	opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
 | |
| 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
 | |
| 				&_vmentry_control) < 0)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
 | |
| 
 | |
| 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
 | |
| 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
 | |
| 		return -EIO;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
 | |
| 	if (vmx_msr_high & (1u<<16))
 | |
| 		return -EIO;
 | |
| #endif
 | |
| 
 | |
| 	/* Require Write-Back (WB) memory type for VMCS accesses. */
 | |
| 	if (((vmx_msr_high >> 18) & 15) != 6)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	vmcs_conf->size = vmx_msr_high & 0x1fff;
 | |
| 	vmcs_conf->order = get_order(vmcs_conf->size);
 | |
| 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
 | |
| 
 | |
| 	vmcs_conf->revision_id = vmx_msr_low;
 | |
| 
 | |
| 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
 | |
| 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
 | |
| 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
 | |
| 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
 | |
| 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
 | |
| 
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		evmcs_sanitize_exec_ctrls(vmcs_conf);
 | |
| 
 | |
| 	cpu_has_load_ia32_efer =
 | |
| 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
 | |
| 				VM_ENTRY_LOAD_IA32_EFER)
 | |
| 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
 | |
| 				   VM_EXIT_LOAD_IA32_EFER);
 | |
| 
 | |
| 	cpu_has_load_perf_global_ctrl =
 | |
| 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
 | |
| 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
 | |
| 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
 | |
| 				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
 | |
| 	 * but due to errata below it can't be used. Workaround is to use
 | |
| 	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
 | |
| 	 *
 | |
| 	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
 | |
| 	 *
 | |
| 	 * AAK155             (model 26)
 | |
| 	 * AAP115             (model 30)
 | |
| 	 * AAT100             (model 37)
 | |
| 	 * BC86,AAY89,BD102   (model 44)
 | |
| 	 * BA97               (model 46)
 | |
| 	 *
 | |
| 	 */
 | |
| 	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
 | |
| 		switch (boot_cpu_data.x86_model) {
 | |
| 		case 26:
 | |
| 		case 30:
 | |
| 		case 37:
 | |
| 		case 44:
 | |
| 		case 46:
 | |
| 			cpu_has_load_perf_global_ctrl = false;
 | |
| 			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
 | |
| 					"does not work properly. Using workaround\n");
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_XSAVES))
 | |
| 		rdmsrl(MSR_IA32_XSS, host_xss);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
 | |
| {
 | |
| 	int node = cpu_to_node(cpu);
 | |
| 	struct page *pages;
 | |
| 	struct vmcs *vmcs;
 | |
| 
 | |
| 	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
 | |
| 	if (!pages)
 | |
| 		return NULL;
 | |
| 	vmcs = page_address(pages);
 | |
| 	memset(vmcs, 0, vmcs_config.size);
 | |
| 
 | |
| 	/* KVM supports Enlightened VMCS v1 only */
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
 | |
| 	else
 | |
| 		vmcs->hdr.revision_id = vmcs_config.revision_id;
 | |
| 
 | |
| 	if (shadow)
 | |
| 		vmcs->hdr.shadow_vmcs = 1;
 | |
| 	return vmcs;
 | |
| }
 | |
| 
 | |
| static void free_vmcs(struct vmcs *vmcs)
 | |
| {
 | |
| 	free_pages((unsigned long)vmcs, vmcs_config.order);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
 | |
|  */
 | |
| static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
 | |
| {
 | |
| 	if (!loaded_vmcs->vmcs)
 | |
| 		return;
 | |
| 	loaded_vmcs_clear(loaded_vmcs);
 | |
| 	free_vmcs(loaded_vmcs->vmcs);
 | |
| 	loaded_vmcs->vmcs = NULL;
 | |
| 	if (loaded_vmcs->msr_bitmap)
 | |
| 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
 | |
| 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
 | |
| }
 | |
| 
 | |
| static struct vmcs *alloc_vmcs(bool shadow)
 | |
| {
 | |
| 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id());
 | |
| }
 | |
| 
 | |
| static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
 | |
| {
 | |
| 	loaded_vmcs->vmcs = alloc_vmcs(false);
 | |
| 	if (!loaded_vmcs->vmcs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	loaded_vmcs->shadow_vmcs = NULL;
 | |
| 	loaded_vmcs_init(loaded_vmcs);
 | |
| 
 | |
| 	if (cpu_has_vmx_msr_bitmap()) {
 | |
| 		loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
 | |
| 		if (!loaded_vmcs->msr_bitmap)
 | |
| 			goto out_vmcs;
 | |
| 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
 | |
| 
 | |
| 		if (IS_ENABLED(CONFIG_HYPERV) &&
 | |
| 		    static_branch_unlikely(&enable_evmcs) &&
 | |
| 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
 | |
| 			struct hv_enlightened_vmcs *evmcs =
 | |
| 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
 | |
| 
 | |
| 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_vmcs:
 | |
| 	free_loaded_vmcs(loaded_vmcs);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void free_kvm_area(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		free_vmcs(per_cpu(vmxarea, cpu));
 | |
| 		per_cpu(vmxarea, cpu) = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| enum vmcs_field_width {
 | |
| 	VMCS_FIELD_WIDTH_U16 = 0,
 | |
| 	VMCS_FIELD_WIDTH_U64 = 1,
 | |
| 	VMCS_FIELD_WIDTH_U32 = 2,
 | |
| 	VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
 | |
| };
 | |
| 
 | |
| static inline int vmcs_field_width(unsigned long field)
 | |
| {
 | |
| 	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
 | |
| 		return VMCS_FIELD_WIDTH_U32;
 | |
| 	return (field >> 13) & 0x3 ;
 | |
| }
 | |
| 
 | |
| static inline int vmcs_field_readonly(unsigned long field)
 | |
| {
 | |
| 	return (((field >> 10) & 0x3) == 1);
 | |
| }
 | |
| 
 | |
| static void init_vmcs_shadow_fields(void)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
 | |
| 		u16 field = shadow_read_only_fields[i];
 | |
| 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
 | |
| 		    (i + 1 == max_shadow_read_only_fields ||
 | |
| 		     shadow_read_only_fields[i + 1] != field + 1))
 | |
| 			pr_err("Missing field from shadow_read_only_field %x\n",
 | |
| 			       field + 1);
 | |
| 
 | |
| 		clear_bit(field, vmx_vmread_bitmap);
 | |
| #ifdef CONFIG_X86_64
 | |
| 		if (field & 1)
 | |
| 			continue;
 | |
| #endif
 | |
| 		if (j < i)
 | |
| 			shadow_read_only_fields[j] = field;
 | |
| 		j++;
 | |
| 	}
 | |
| 	max_shadow_read_only_fields = j;
 | |
| 
 | |
| 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
 | |
| 		u16 field = shadow_read_write_fields[i];
 | |
| 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
 | |
| 		    (i + 1 == max_shadow_read_write_fields ||
 | |
| 		     shadow_read_write_fields[i + 1] != field + 1))
 | |
| 			pr_err("Missing field from shadow_read_write_field %x\n",
 | |
| 			       field + 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * PML and the preemption timer can be emulated, but the
 | |
| 		 * processor cannot vmwrite to fields that don't exist
 | |
| 		 * on bare metal.
 | |
| 		 */
 | |
| 		switch (field) {
 | |
| 		case GUEST_PML_INDEX:
 | |
| 			if (!cpu_has_vmx_pml())
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case VMX_PREEMPTION_TIMER_VALUE:
 | |
| 			if (!cpu_has_vmx_preemption_timer())
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case GUEST_INTR_STATUS:
 | |
| 			if (!cpu_has_vmx_apicv())
 | |
| 				continue;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		clear_bit(field, vmx_vmwrite_bitmap);
 | |
| 		clear_bit(field, vmx_vmread_bitmap);
 | |
| #ifdef CONFIG_X86_64
 | |
| 		if (field & 1)
 | |
| 			continue;
 | |
| #endif
 | |
| 		if (j < i)
 | |
| 			shadow_read_write_fields[j] = field;
 | |
| 		j++;
 | |
| 	}
 | |
| 	max_shadow_read_write_fields = j;
 | |
| }
 | |
| 
 | |
| static __init int alloc_kvm_area(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct vmcs *vmcs;
 | |
| 
 | |
| 		vmcs = alloc_vmcs_cpu(false, cpu);
 | |
| 		if (!vmcs) {
 | |
| 			free_kvm_area();
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
 | |
| 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
 | |
| 		 * revision_id reported by MSR_IA32_VMX_BASIC.
 | |
| 		 *
 | |
| 		 * However, even though not explictly documented by
 | |
| 		 * TLFS, VMXArea passed as VMXON argument should
 | |
| 		 * still be marked with revision_id reported by
 | |
| 		 * physical CPU.
 | |
| 		 */
 | |
| 		if (static_branch_unlikely(&enable_evmcs))
 | |
| 			vmcs->hdr.revision_id = vmcs_config.revision_id;
 | |
| 
 | |
| 		per_cpu(vmxarea, cpu) = vmcs;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
 | |
| 		struct kvm_segment *save)
 | |
| {
 | |
| 	if (!emulate_invalid_guest_state) {
 | |
| 		/*
 | |
| 		 * CS and SS RPL should be equal during guest entry according
 | |
| 		 * to VMX spec, but in reality it is not always so. Since vcpu
 | |
| 		 * is in the middle of the transition from real mode to
 | |
| 		 * protected mode it is safe to assume that RPL 0 is a good
 | |
| 		 * default value.
 | |
| 		 */
 | |
| 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
 | |
| 			save->selector &= ~SEGMENT_RPL_MASK;
 | |
| 		save->dpl = save->selector & SEGMENT_RPL_MASK;
 | |
| 		save->s = 1;
 | |
| 	}
 | |
| 	vmx_set_segment(vcpu, save, seg);
 | |
| }
 | |
| 
 | |
| static void enter_pmode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update real mode segment cache. It may be not up-to-date if sement
 | |
| 	 * register was written while vcpu was in a guest mode.
 | |
| 	 */
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
 | |
| 
 | |
| 	vmx->rmode.vm86_active = 0;
 | |
| 
 | |
| 	vmx_segment_cache_clear(vmx);
 | |
| 
 | |
| 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
 | |
| 
 | |
| 	flags = vmcs_readl(GUEST_RFLAGS);
 | |
| 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
 | |
| 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
 | |
| 	vmcs_writel(GUEST_RFLAGS, flags);
 | |
| 
 | |
| 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
 | |
| 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
 | |
| 
 | |
| 	update_exception_bitmap(vcpu);
 | |
| 
 | |
| 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
 | |
| 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
 | |
| 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
 | |
| 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
 | |
| 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
 | |
| 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
 | |
| }
 | |
| 
 | |
| static void fix_rmode_seg(int seg, struct kvm_segment *save)
 | |
| {
 | |
| 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 | |
| 	struct kvm_segment var = *save;
 | |
| 
 | |
| 	var.dpl = 0x3;
 | |
| 	if (seg == VCPU_SREG_CS)
 | |
| 		var.type = 0x3;
 | |
| 
 | |
| 	if (!emulate_invalid_guest_state) {
 | |
| 		var.selector = var.base >> 4;
 | |
| 		var.base = var.base & 0xffff0;
 | |
| 		var.limit = 0xffff;
 | |
| 		var.g = 0;
 | |
| 		var.db = 0;
 | |
| 		var.present = 1;
 | |
| 		var.s = 1;
 | |
| 		var.l = 0;
 | |
| 		var.unusable = 0;
 | |
| 		var.type = 0x3;
 | |
| 		var.avl = 0;
 | |
| 		if (save->base & 0xf)
 | |
| 			printk_once(KERN_WARNING "kvm: segment base is not "
 | |
| 					"paragraph aligned when entering "
 | |
| 					"protected mode (seg=%d)", seg);
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write16(sf->selector, var.selector);
 | |
| 	vmcs_writel(sf->base, var.base);
 | |
| 	vmcs_write32(sf->limit, var.limit);
 | |
| 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
 | |
| }
 | |
| 
 | |
| static void enter_rmode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
 | |
| 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
 | |
| 
 | |
| 	vmx->rmode.vm86_active = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
 | |
| 	 * vcpu. Warn the user that an update is overdue.
 | |
| 	 */
 | |
| 	if (!kvm_vmx->tss_addr)
 | |
| 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
 | |
| 			     "called before entering vcpu\n");
 | |
| 
 | |
| 	vmx_segment_cache_clear(vmx);
 | |
| 
 | |
| 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
 | |
| 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
 | |
| 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
 | |
| 
 | |
| 	flags = vmcs_readl(GUEST_RFLAGS);
 | |
| 	vmx->rmode.save_rflags = flags;
 | |
| 
 | |
| 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
 | |
| 
 | |
| 	vmcs_writel(GUEST_RFLAGS, flags);
 | |
| 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
 | |
| 	update_exception_bitmap(vcpu);
 | |
| 
 | |
| 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
 | |
| 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
 | |
| 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
 | |
| 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
 | |
| 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
 | |
| 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
 | |
| 
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| }
 | |
| 
 | |
| static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
 | |
| 
 | |
| 	if (!msr)
 | |
| 		return;
 | |
| 
 | |
| 	vcpu->arch.efer = efer;
 | |
| 	if (efer & EFER_LMA) {
 | |
| 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
 | |
| 		msr->data = efer;
 | |
| 	} else {
 | |
| 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
 | |
| 
 | |
| 		msr->data = efer & ~EFER_LME;
 | |
| 	}
 | |
| 	setup_msrs(vmx);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| static void enter_lmode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 guest_tr_ar;
 | |
| 
 | |
| 	vmx_segment_cache_clear(to_vmx(vcpu));
 | |
| 
 | |
| 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
 | |
| 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
 | |
| 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
 | |
| 				     __func__);
 | |
| 		vmcs_write32(GUEST_TR_AR_BYTES,
 | |
| 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
 | |
| 			     | VMX_AR_TYPE_BUSY_64_TSS);
 | |
| 	}
 | |
| 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
 | |
| }
 | |
| 
 | |
| static void exit_lmode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
 | |
| 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
 | |
| 				bool invalidate_gpa)
 | |
| {
 | |
| 	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
 | |
| 		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 			return;
 | |
| 		ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
 | |
| 	} else {
 | |
| 		vpid_sync_context(vpid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
 | |
| {
 | |
| 	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
 | |
| }
 | |
| 
 | |
| static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
 | |
| {
 | |
| 	int vpid = to_vmx(vcpu)->vpid;
 | |
| 
 | |
| 	if (!vpid_sync_vcpu_addr(vpid, addr))
 | |
| 		vpid_sync_context(vpid);
 | |
| 
 | |
| 	/*
 | |
| 	 * If VPIDs are not supported or enabled, then the above is a no-op.
 | |
| 	 * But we don't really need a TLB flush in that case anyway, because
 | |
| 	 * each VM entry/exit includes an implicit flush when VPID is 0.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
 | |
| 
 | |
| 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
 | |
| 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
 | |
| }
 | |
| 
 | |
| static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
 | |
| 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
 | |
| 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 | |
| }
 | |
| 
 | |
| static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
 | |
| 
 | |
| 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
 | |
| 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
 | |
| }
 | |
| 
 | |
| static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	if (!test_bit(VCPU_EXREG_PDPTR,
 | |
| 		      (unsigned long *)&vcpu->arch.regs_dirty))
 | |
| 		return;
 | |
| 
 | |
| 	if (is_pae_paging(vcpu)) {
 | |
| 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
 | |
| 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
 | |
| 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
 | |
| 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	if (is_pae_paging(vcpu)) {
 | |
| 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
 | |
| 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
 | |
| 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
 | |
| 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
 | |
| 	}
 | |
| 
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_avail);
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_dirty);
 | |
| }
 | |
| 
 | |
| static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| 	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
 | |
| 	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
 | |
| 		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
 | |
| 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
 | |
| 		fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
 | |
| 
 | |
| 	return fixed_bits_valid(val, fixed0, fixed1);
 | |
| }
 | |
| 
 | |
| static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| 	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
 | |
| 	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
 | |
| 
 | |
| 	return fixed_bits_valid(val, fixed0, fixed1);
 | |
| }
 | |
| 
 | |
| static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| 	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
 | |
| 	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
 | |
| 
 | |
| 	return fixed_bits_valid(val, fixed0, fixed1);
 | |
| }
 | |
| 
 | |
| /* No difference in the restrictions on guest and host CR4 in VMX operation. */
 | |
| #define nested_guest_cr4_valid	nested_cr4_valid
 | |
| #define nested_host_cr4_valid	nested_cr4_valid
 | |
| 
 | |
| static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
 | |
| 
 | |
| static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
 | |
| 					unsigned long cr0,
 | |
| 					struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
 | |
| 		vmx_decache_cr3(vcpu);
 | |
| 	if (!(cr0 & X86_CR0_PG)) {
 | |
| 		/* From paging/starting to nonpaging */
 | |
| 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
 | |
| 			     (CPU_BASED_CR3_LOAD_EXITING |
 | |
| 			      CPU_BASED_CR3_STORE_EXITING));
 | |
| 		vcpu->arch.cr0 = cr0;
 | |
| 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
 | |
| 	} else if (!is_paging(vcpu)) {
 | |
| 		/* From nonpaging to paging */
 | |
| 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
 | |
| 			     ~(CPU_BASED_CR3_LOAD_EXITING |
 | |
| 			       CPU_BASED_CR3_STORE_EXITING));
 | |
| 		vcpu->arch.cr0 = cr0;
 | |
| 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
 | |
| 	}
 | |
| 
 | |
| 	if (!(cr0 & X86_CR0_WP))
 | |
| 		*hw_cr0 &= ~X86_CR0_WP;
 | |
| }
 | |
| 
 | |
| static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long hw_cr0;
 | |
| 
 | |
| 	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
 | |
| 	if (enable_unrestricted_guest)
 | |
| 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
 | |
| 	else {
 | |
| 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
 | |
| 
 | |
| 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
 | |
| 			enter_pmode(vcpu);
 | |
| 
 | |
| 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
 | |
| 			enter_rmode(vcpu);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (vcpu->arch.efer & EFER_LME) {
 | |
| 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
 | |
| 			enter_lmode(vcpu);
 | |
| 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
 | |
| 			exit_lmode(vcpu);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (enable_ept && !enable_unrestricted_guest)
 | |
| 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
 | |
| 
 | |
| 	vmcs_writel(CR0_READ_SHADOW, cr0);
 | |
| 	vmcs_writel(GUEST_CR0, hw_cr0);
 | |
| 	vcpu->arch.cr0 = cr0;
 | |
| 
 | |
| 	/* depends on vcpu->arch.cr0 to be set to a new value */
 | |
| 	vmx->emulation_required = emulation_required(vcpu);
 | |
| }
 | |
| 
 | |
| static int get_ept_level(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
 | |
| 		return 5;
 | |
| 	return 4;
 | |
| }
 | |
| 
 | |
| static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
 | |
| {
 | |
| 	u64 eptp = VMX_EPTP_MT_WB;
 | |
| 
 | |
| 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
 | |
| 
 | |
| 	if (enable_ept_ad_bits &&
 | |
| 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
 | |
| 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
 | |
| 	eptp |= (root_hpa & PAGE_MASK);
 | |
| 
 | |
| 	return eptp;
 | |
| }
 | |
| 
 | |
| static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	unsigned long guest_cr3;
 | |
| 	u64 eptp;
 | |
| 
 | |
| 	guest_cr3 = cr3;
 | |
| 	if (enable_ept) {
 | |
| 		eptp = construct_eptp(vcpu, cr3);
 | |
| 		vmcs_write64(EPT_POINTER, eptp);
 | |
| 
 | |
| 		if (kvm_x86_ops->tlb_remote_flush) {
 | |
| 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 | |
| 			to_vmx(vcpu)->ept_pointer = eptp;
 | |
| 			to_kvm_vmx(kvm)->ept_pointers_match
 | |
| 				= EPT_POINTERS_CHECK;
 | |
| 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 | |
| 		}
 | |
| 
 | |
| 		if (enable_unrestricted_guest || is_paging(vcpu) ||
 | |
| 		    is_guest_mode(vcpu))
 | |
| 			guest_cr3 = kvm_read_cr3(vcpu);
 | |
| 		else
 | |
| 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
 | |
| 		ept_load_pdptrs(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	vmcs_writel(GUEST_CR3, guest_cr3);
 | |
| }
 | |
| 
 | |
| static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 | |
| {
 | |
| 	/*
 | |
| 	 * Pass through host's Machine Check Enable value to hw_cr4, which
 | |
| 	 * is in force while we are in guest mode.  Do not let guests control
 | |
| 	 * this bit, even if host CR4.MCE == 0.
 | |
| 	 */
 | |
| 	unsigned long hw_cr4;
 | |
| 
 | |
| 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
 | |
| 	if (enable_unrestricted_guest)
 | |
| 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
 | |
| 	else if (to_vmx(vcpu)->rmode.vm86_active)
 | |
| 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
 | |
| 	else
 | |
| 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
 | |
| 		if (cr4 & X86_CR4_UMIP) {
 | |
| 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
 | |
| 				SECONDARY_EXEC_DESC);
 | |
| 			hw_cr4 &= ~X86_CR4_UMIP;
 | |
| 		} else if (!is_guest_mode(vcpu) ||
 | |
| 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
 | |
| 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
 | |
| 					SECONDARY_EXEC_DESC);
 | |
| 	}
 | |
| 
 | |
| 	if (cr4 & X86_CR4_VMXE) {
 | |
| 		/*
 | |
| 		 * To use VMXON (and later other VMX instructions), a guest
 | |
| 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
 | |
| 		 * So basically the check on whether to allow nested VMX
 | |
| 		 * is here.  We operate under the default treatment of SMM,
 | |
| 		 * so VMX cannot be enabled under SMM.
 | |
| 		 */
 | |
| 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
 | |
| 		return 1;
 | |
| 
 | |
| 	vcpu->arch.cr4 = cr4;
 | |
| 
 | |
| 	if (!enable_unrestricted_guest) {
 | |
| 		if (enable_ept) {
 | |
| 			if (!is_paging(vcpu)) {
 | |
| 				hw_cr4 &= ~X86_CR4_PAE;
 | |
| 				hw_cr4 |= X86_CR4_PSE;
 | |
| 			} else if (!(cr4 & X86_CR4_PAE)) {
 | |
| 				hw_cr4 &= ~X86_CR4_PAE;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
 | |
| 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
 | |
| 		 * to be manually disabled when guest switches to non-paging
 | |
| 		 * mode.
 | |
| 		 *
 | |
| 		 * If !enable_unrestricted_guest, the CPU is always running
 | |
| 		 * with CR0.PG=1 and CR4 needs to be modified.
 | |
| 		 * If enable_unrestricted_guest, the CPU automatically
 | |
| 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
 | |
| 		 */
 | |
| 		if (!is_paging(vcpu))
 | |
| 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
 | |
| 	}
 | |
| 
 | |
| 	vmcs_writel(CR4_READ_SHADOW, cr4);
 | |
| 	vmcs_writel(GUEST_CR4, hw_cr4);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmx_get_segment(struct kvm_vcpu *vcpu,
 | |
| 			    struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 ar;
 | |
| 
 | |
| 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
 | |
| 		*var = vmx->rmode.segs[seg];
 | |
| 		if (seg == VCPU_SREG_TR
 | |
| 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
 | |
| 			return;
 | |
| 		var->base = vmx_read_guest_seg_base(vmx, seg);
 | |
| 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
 | |
| 		return;
 | |
| 	}
 | |
| 	var->base = vmx_read_guest_seg_base(vmx, seg);
 | |
| 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
 | |
| 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
 | |
| 	ar = vmx_read_guest_seg_ar(vmx, seg);
 | |
| 	var->unusable = (ar >> 16) & 1;
 | |
| 	var->type = ar & 15;
 | |
| 	var->s = (ar >> 4) & 1;
 | |
| 	var->dpl = (ar >> 5) & 3;
 | |
| 	/*
 | |
| 	 * Some userspaces do not preserve unusable property. Since usable
 | |
| 	 * segment has to be present according to VMX spec we can use present
 | |
| 	 * property to amend userspace bug by making unusable segment always
 | |
| 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
 | |
| 	 * segment as unusable.
 | |
| 	 */
 | |
| 	var->present = !var->unusable;
 | |
| 	var->avl = (ar >> 12) & 1;
 | |
| 	var->l = (ar >> 13) & 1;
 | |
| 	var->db = (ar >> 14) & 1;
 | |
| 	var->g = (ar >> 15) & 1;
 | |
| }
 | |
| 
 | |
| static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	struct kvm_segment s;
 | |
| 
 | |
| 	if (to_vmx(vcpu)->rmode.vm86_active) {
 | |
| 		vmx_get_segment(vcpu, &s, seg);
 | |
| 		return s.base;
 | |
| 	}
 | |
| 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
 | |
| }
 | |
| 
 | |
| static int vmx_get_cpl(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (unlikely(vmx->rmode.vm86_active))
 | |
| 		return 0;
 | |
| 	else {
 | |
| 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
 | |
| 		return VMX_AR_DPL(ar);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 vmx_segment_access_rights(struct kvm_segment *var)
 | |
| {
 | |
| 	u32 ar;
 | |
| 
 | |
| 	if (var->unusable || !var->present)
 | |
| 		ar = 1 << 16;
 | |
| 	else {
 | |
| 		ar = var->type & 15;
 | |
| 		ar |= (var->s & 1) << 4;
 | |
| 		ar |= (var->dpl & 3) << 5;
 | |
| 		ar |= (var->present & 1) << 7;
 | |
| 		ar |= (var->avl & 1) << 12;
 | |
| 		ar |= (var->l & 1) << 13;
 | |
| 		ar |= (var->db & 1) << 14;
 | |
| 		ar |= (var->g & 1) << 15;
 | |
| 	}
 | |
| 
 | |
| 	return ar;
 | |
| }
 | |
| 
 | |
| static void vmx_set_segment(struct kvm_vcpu *vcpu,
 | |
| 			    struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 | |
| 
 | |
| 	vmx_segment_cache_clear(vmx);
 | |
| 
 | |
| 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
 | |
| 		vmx->rmode.segs[seg] = *var;
 | |
| 		if (seg == VCPU_SREG_TR)
 | |
| 			vmcs_write16(sf->selector, var->selector);
 | |
| 		else if (var->s)
 | |
| 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	vmcs_writel(sf->base, var->base);
 | |
| 	vmcs_write32(sf->limit, var->limit);
 | |
| 	vmcs_write16(sf->selector, var->selector);
 | |
| 
 | |
| 	/*
 | |
| 	 *   Fix the "Accessed" bit in AR field of segment registers for older
 | |
| 	 * qemu binaries.
 | |
| 	 *   IA32 arch specifies that at the time of processor reset the
 | |
| 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
 | |
| 	 * is setting it to 0 in the userland code. This causes invalid guest
 | |
| 	 * state vmexit when "unrestricted guest" mode is turned on.
 | |
| 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
 | |
| 	 * tree. Newer qemu binaries with that qemu fix would not need this
 | |
| 	 * kvm hack.
 | |
| 	 */
 | |
| 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
 | |
| 		var->type |= 0x1; /* Accessed */
 | |
| 
 | |
| 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
 | |
| 
 | |
| out:
 | |
| 	vmx->emulation_required = emulation_required(vcpu);
 | |
| }
 | |
| 
 | |
| static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
 | |
| {
 | |
| 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
 | |
| 
 | |
| 	*db = (ar >> 14) & 1;
 | |
| 	*l = (ar >> 13) & 1;
 | |
| }
 | |
| 
 | |
| static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
 | |
| 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
 | |
| }
 | |
| 
 | |
| static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
 | |
| 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
 | |
| }
 | |
| 
 | |
| static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
 | |
| 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
 | |
| }
 | |
| 
 | |
| static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
 | |
| 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
 | |
| }
 | |
| 
 | |
| static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	struct kvm_segment var;
 | |
| 	u32 ar;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &var, seg);
 | |
| 	var.dpl = 0x3;
 | |
| 	if (seg == VCPU_SREG_CS)
 | |
| 		var.type = 0x3;
 | |
| 	ar = vmx_segment_access_rights(&var);
 | |
| 
 | |
| 	if (var.base != (var.selector << 4))
 | |
| 		return false;
 | |
| 	if (var.limit != 0xffff)
 | |
| 		return false;
 | |
| 	if (ar != 0xf3)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool code_segment_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment cs;
 | |
| 	unsigned int cs_rpl;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
 | |
| 
 | |
| 	if (cs.unusable)
 | |
| 		return false;
 | |
| 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
 | |
| 		return false;
 | |
| 	if (!cs.s)
 | |
| 		return false;
 | |
| 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
 | |
| 		if (cs.dpl > cs_rpl)
 | |
| 			return false;
 | |
| 	} else {
 | |
| 		if (cs.dpl != cs_rpl)
 | |
| 			return false;
 | |
| 	}
 | |
| 	if (!cs.present)
 | |
| 		return false;
 | |
| 
 | |
| 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool stack_segment_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment ss;
 | |
| 	unsigned int ss_rpl;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
 | |
| 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
 | |
| 
 | |
| 	if (ss.unusable)
 | |
| 		return true;
 | |
| 	if (ss.type != 3 && ss.type != 7)
 | |
| 		return false;
 | |
| 	if (!ss.s)
 | |
| 		return false;
 | |
| 	if (ss.dpl != ss_rpl) /* DPL != RPL */
 | |
| 		return false;
 | |
| 	if (!ss.present)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	struct kvm_segment var;
 | |
| 	unsigned int rpl;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &var, seg);
 | |
| 	rpl = var.selector & SEGMENT_RPL_MASK;
 | |
| 
 | |
| 	if (var.unusable)
 | |
| 		return true;
 | |
| 	if (!var.s)
 | |
| 		return false;
 | |
| 	if (!var.present)
 | |
| 		return false;
 | |
| 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
 | |
| 		if (var.dpl < rpl) /* DPL < RPL */
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
 | |
| 	 * rights flags
 | |
| 	 */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool tr_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment tr;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
 | |
| 
 | |
| 	if (tr.unusable)
 | |
| 		return false;
 | |
| 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
 | |
| 		return false;
 | |
| 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
 | |
| 		return false;
 | |
| 	if (!tr.present)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool ldtr_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment ldtr;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	if (ldtr.unusable)
 | |
| 		return true;
 | |
| 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
 | |
| 		return false;
 | |
| 	if (ldtr.type != 2)
 | |
| 		return false;
 | |
| 	if (!ldtr.present)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_segment cs, ss;
 | |
| 
 | |
| 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	return ((cs.selector & SEGMENT_RPL_MASK) ==
 | |
| 		 (ss.selector & SEGMENT_RPL_MASK));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if guest state is valid. Returns true if valid, false if
 | |
|  * not.
 | |
|  * We assume that registers are always usable
 | |
|  */
 | |
| static bool guest_state_valid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (enable_unrestricted_guest)
 | |
| 		return true;
 | |
| 
 | |
| 	/* real mode guest state checks */
 | |
| 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
 | |
| 			return false;
 | |
| 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
 | |
| 			return false;
 | |
| 	} else {
 | |
| 	/* protected mode guest state checks */
 | |
| 		if (!cs_ss_rpl_check(vcpu))
 | |
| 			return false;
 | |
| 		if (!code_segment_valid(vcpu))
 | |
| 			return false;
 | |
| 		if (!stack_segment_valid(vcpu))
 | |
| 			return false;
 | |
| 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
 | |
| 			return false;
 | |
| 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
 | |
| 			return false;
 | |
| 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
 | |
| 			return false;
 | |
| 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
 | |
| 			return false;
 | |
| 		if (!tr_valid(vcpu))
 | |
| 			return false;
 | |
| 		if (!ldtr_valid(vcpu))
 | |
| 			return false;
 | |
| 	}
 | |
| 	/* TODO:
 | |
| 	 * - Add checks on RIP
 | |
| 	 * - Add checks on RFLAGS
 | |
| 	 */
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
 | |
| {
 | |
| 	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
 | |
| }
 | |
| 
 | |
| static int init_rmode_tss(struct kvm *kvm)
 | |
| {
 | |
| 	gfn_t fn;
 | |
| 	u16 data = 0;
 | |
| 	int idx, r;
 | |
| 
 | |
| 	idx = srcu_read_lock(&kvm->srcu);
 | |
| 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
 | |
| 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
 | |
| 	r = kvm_write_guest_page(kvm, fn++, &data,
 | |
| 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	data = ~0;
 | |
| 	r = kvm_write_guest_page(kvm, fn, &data,
 | |
| 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
 | |
| 				 sizeof(u8));
 | |
| out:
 | |
| 	srcu_read_unlock(&kvm->srcu, idx);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int init_rmode_identity_map(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
 | |
| 	int i, idx, r = 0;
 | |
| 	kvm_pfn_t identity_map_pfn;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 
 | |
| 	if (likely(kvm_vmx->ept_identity_pagetable_done))
 | |
| 		goto out2;
 | |
| 
 | |
| 	if (!kvm_vmx->ept_identity_map_addr)
 | |
| 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
 | |
| 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
 | |
| 
 | |
| 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
 | |
| 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
 | |
| 	if (r < 0)
 | |
| 		goto out2;
 | |
| 
 | |
| 	idx = srcu_read_lock(&kvm->srcu);
 | |
| 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	/* Set up identity-mapping pagetable for EPT in real mode */
 | |
| 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
 | |
| 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
 | |
| 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
 | |
| 		r = kvm_write_guest_page(kvm, identity_map_pfn,
 | |
| 				&tmp, i * sizeof(tmp), sizeof(tmp));
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	kvm_vmx->ept_identity_pagetable_done = true;
 | |
| 
 | |
| out:
 | |
| 	srcu_read_unlock(&kvm->srcu, idx);
 | |
| 
 | |
| out2:
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void seg_setup(int seg)
 | |
| {
 | |
| 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
 | |
| 	unsigned int ar;
 | |
| 
 | |
| 	vmcs_write16(sf->selector, 0);
 | |
| 	vmcs_writel(sf->base, 0);
 | |
| 	vmcs_write32(sf->limit, 0xffff);
 | |
| 	ar = 0x93;
 | |
| 	if (seg == VCPU_SREG_CS)
 | |
| 		ar |= 0x08; /* code segment */
 | |
| 
 | |
| 	vmcs_write32(sf->ar_bytes, ar);
 | |
| }
 | |
| 
 | |
| static int alloc_apic_access_page(struct kvm *kvm)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 	if (kvm->arch.apic_access_page_done)
 | |
| 		goto out;
 | |
| 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
 | |
| 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
 | |
| 	if (is_error_page(page)) {
 | |
| 		r = -EFAULT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not pin the page in memory, so that memory hot-unplug
 | |
| 	 * is able to migrate it.
 | |
| 	 */
 | |
| 	put_page(page);
 | |
| 	kvm->arch.apic_access_page_done = true;
 | |
| out:
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int allocate_vpid(void)
 | |
| {
 | |
| 	int vpid;
 | |
| 
 | |
| 	if (!enable_vpid)
 | |
| 		return 0;
 | |
| 	spin_lock(&vmx_vpid_lock);
 | |
| 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
 | |
| 	if (vpid < VMX_NR_VPIDS)
 | |
| 		__set_bit(vpid, vmx_vpid_bitmap);
 | |
| 	else
 | |
| 		vpid = 0;
 | |
| 	spin_unlock(&vmx_vpid_lock);
 | |
| 	return vpid;
 | |
| }
 | |
| 
 | |
| static void free_vpid(int vpid)
 | |
| {
 | |
| 	if (!enable_vpid || vpid == 0)
 | |
| 		return;
 | |
| 	spin_lock(&vmx_vpid_lock);
 | |
| 	__clear_bit(vpid, vmx_vpid_bitmap);
 | |
| 	spin_unlock(&vmx_vpid_lock);
 | |
| }
 | |
| 
 | |
| static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
 | |
| 							  u32 msr, int type)
 | |
| {
 | |
| 	int f = sizeof(unsigned long);
 | |
| 
 | |
| 	if (!cpu_has_vmx_msr_bitmap())
 | |
| 		return;
 | |
| 
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		evmcs_touch_msr_bitmap();
 | |
| 
 | |
| 	/*
 | |
| 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
 | |
| 	 * have the write-low and read-high bitmap offsets the wrong way round.
 | |
| 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
 | |
| 	 */
 | |
| 	if (msr <= 0x1fff) {
 | |
| 		if (type & MSR_TYPE_R)
 | |
| 			/* read-low */
 | |
| 			__clear_bit(msr, msr_bitmap + 0x000 / f);
 | |
| 
 | |
| 		if (type & MSR_TYPE_W)
 | |
| 			/* write-low */
 | |
| 			__clear_bit(msr, msr_bitmap + 0x800 / f);
 | |
| 
 | |
| 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 | |
| 		msr &= 0x1fff;
 | |
| 		if (type & MSR_TYPE_R)
 | |
| 			/* read-high */
 | |
| 			__clear_bit(msr, msr_bitmap + 0x400 / f);
 | |
| 
 | |
| 		if (type & MSR_TYPE_W)
 | |
| 			/* write-high */
 | |
| 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
 | |
| 							 u32 msr, int type)
 | |
| {
 | |
| 	int f = sizeof(unsigned long);
 | |
| 
 | |
| 	if (!cpu_has_vmx_msr_bitmap())
 | |
| 		return;
 | |
| 
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		evmcs_touch_msr_bitmap();
 | |
| 
 | |
| 	/*
 | |
| 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
 | |
| 	 * have the write-low and read-high bitmap offsets the wrong way round.
 | |
| 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
 | |
| 	 */
 | |
| 	if (msr <= 0x1fff) {
 | |
| 		if (type & MSR_TYPE_R)
 | |
| 			/* read-low */
 | |
| 			__set_bit(msr, msr_bitmap + 0x000 / f);
 | |
| 
 | |
| 		if (type & MSR_TYPE_W)
 | |
| 			/* write-low */
 | |
| 			__set_bit(msr, msr_bitmap + 0x800 / f);
 | |
| 
 | |
| 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 | |
| 		msr &= 0x1fff;
 | |
| 		if (type & MSR_TYPE_R)
 | |
| 			/* read-high */
 | |
| 			__set_bit(msr, msr_bitmap + 0x400 / f);
 | |
| 
 | |
| 		if (type & MSR_TYPE_W)
 | |
| 			/* write-high */
 | |
| 			__set_bit(msr, msr_bitmap + 0xc00 / f);
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
 | |
| 			     			      u32 msr, int type, bool value)
 | |
| {
 | |
| 	if (value)
 | |
| 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
 | |
| 	else
 | |
| 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If a msr is allowed by L0, we should check whether it is allowed by L1.
 | |
|  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
 | |
|  */
 | |
| static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
 | |
| 					       unsigned long *msr_bitmap_nested,
 | |
| 					       u32 msr, int type)
 | |
| {
 | |
| 	int f = sizeof(unsigned long);
 | |
| 
 | |
| 	/*
 | |
| 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
 | |
| 	 * have the write-low and read-high bitmap offsets the wrong way round.
 | |
| 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
 | |
| 	 */
 | |
| 	if (msr <= 0x1fff) {
 | |
| 		if (type & MSR_TYPE_R &&
 | |
| 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
 | |
| 			/* read-low */
 | |
| 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
 | |
| 
 | |
| 		if (type & MSR_TYPE_W &&
 | |
| 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
 | |
| 			/* write-low */
 | |
| 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
 | |
| 
 | |
| 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 | |
| 		msr &= 0x1fff;
 | |
| 		if (type & MSR_TYPE_R &&
 | |
| 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
 | |
| 			/* read-high */
 | |
| 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
 | |
| 
 | |
| 		if (type & MSR_TYPE_W &&
 | |
| 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
 | |
| 			/* write-high */
 | |
| 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u8 mode = 0;
 | |
| 
 | |
| 	if (cpu_has_secondary_exec_ctrls() &&
 | |
| 	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
 | |
| 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
 | |
| 		mode |= MSR_BITMAP_MODE_X2APIC;
 | |
| 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
 | |
| 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
 | |
| 	}
 | |
| 
 | |
| 	return mode;
 | |
| }
 | |
| 
 | |
| #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
 | |
| 
 | |
| static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
 | |
| 					 u8 mode)
 | |
| {
 | |
| 	int msr;
 | |
| 
 | |
| 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 | |
| 		unsigned word = msr / BITS_PER_LONG;
 | |
| 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
 | |
| 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
 | |
| 	}
 | |
| 
 | |
| 	if (mode & MSR_BITMAP_MODE_X2APIC) {
 | |
| 		/*
 | |
| 		 * TPR reads and writes can be virtualized even if virtual interrupt
 | |
| 		 * delivery is not in use.
 | |
| 		 */
 | |
| 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
 | |
| 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
 | |
| 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
 | |
| 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
 | |
| 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
 | |
| 	u8 mode = vmx_msr_bitmap_mode(vcpu);
 | |
| 	u8 changed = mode ^ vmx->msr_bitmap_mode;
 | |
| 
 | |
| 	if (!changed)
 | |
| 		return;
 | |
| 
 | |
| 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
 | |
| 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
 | |
| 
 | |
| 	vmx->msr_bitmap_mode = mode;
 | |
| }
 | |
| 
 | |
| static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return enable_apicv;
 | |
| }
 | |
| 
 | |
| static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't need to mark the APIC access page dirty; it is never
 | |
| 	 * written to by the CPU during APIC virtualization.
 | |
| 	 */
 | |
| 
 | |
| 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
 | |
| 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
 | |
| 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
 | |
| 	}
 | |
| 
 | |
| 	if (nested_cpu_has_posted_intr(vmcs12)) {
 | |
| 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
 | |
| 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int max_irr;
 | |
| 	void *vapic_page;
 | |
| 	u16 status;
 | |
| 
 | |
| 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
 | |
| 		return;
 | |
| 
 | |
| 	vmx->nested.pi_pending = false;
 | |
| 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
 | |
| 		return;
 | |
| 
 | |
| 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
 | |
| 	if (max_irr != 256) {
 | |
| 		vapic_page = kmap(vmx->nested.virtual_apic_page);
 | |
| 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
 | |
| 			vapic_page, &max_irr);
 | |
| 		kunmap(vmx->nested.virtual_apic_page);
 | |
| 
 | |
| 		status = vmcs_read16(GUEST_INTR_STATUS);
 | |
| 		if ((u8)max_irr > ((u8)status & 0xff)) {
 | |
| 			status &= ~0xff;
 | |
| 			status |= (u8)max_irr;
 | |
| 			vmcs_write16(GUEST_INTR_STATUS, status);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nested_mark_vmcs12_pages_dirty(vcpu);
 | |
| }
 | |
| 
 | |
| static u8 vmx_get_rvi(void)
 | |
| {
 | |
| 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
 | |
| }
 | |
| 
 | |
| static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	void *vapic_page;
 | |
| 	u32 vppr;
 | |
| 	int rvi;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
 | |
| 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
 | |
| 		WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
 | |
| 		return false;
 | |
| 
 | |
| 	rvi = vmx_get_rvi();
 | |
| 
 | |
| 	vapic_page = kmap(vmx->nested.virtual_apic_page);
 | |
| 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
 | |
| 	kunmap(vmx->nested.virtual_apic_page);
 | |
| 
 | |
| 	return ((rvi & 0xf0) > (vppr & 0xf0));
 | |
| }
 | |
| 
 | |
| static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
 | |
| 						     bool nested)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
 | |
| 
 | |
| 	if (vcpu->mode == IN_GUEST_MODE) {
 | |
| 		/*
 | |
| 		 * The vector of interrupt to be delivered to vcpu had
 | |
| 		 * been set in PIR before this function.
 | |
| 		 *
 | |
| 		 * Following cases will be reached in this block, and
 | |
| 		 * we always send a notification event in all cases as
 | |
| 		 * explained below.
 | |
| 		 *
 | |
| 		 * Case 1: vcpu keeps in non-root mode. Sending a
 | |
| 		 * notification event posts the interrupt to vcpu.
 | |
| 		 *
 | |
| 		 * Case 2: vcpu exits to root mode and is still
 | |
| 		 * runnable. PIR will be synced to vIRR before the
 | |
| 		 * next vcpu entry. Sending a notification event in
 | |
| 		 * this case has no effect, as vcpu is not in root
 | |
| 		 * mode.
 | |
| 		 *
 | |
| 		 * Case 3: vcpu exits to root mode and is blocked.
 | |
| 		 * vcpu_block() has already synced PIR to vIRR and
 | |
| 		 * never blocks vcpu if vIRR is not cleared. Therefore,
 | |
| 		 * a blocked vcpu here does not wait for any requested
 | |
| 		 * interrupts in PIR, and sending a notification event
 | |
| 		 * which has no effect is safe here.
 | |
| 		 */
 | |
| 
 | |
| 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
 | |
| 		return true;
 | |
| 	}
 | |
| #endif
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
 | |
| 						int vector)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (is_guest_mode(vcpu) &&
 | |
| 	    vector == vmx->nested.posted_intr_nv) {
 | |
| 		/*
 | |
| 		 * If a posted intr is not recognized by hardware,
 | |
| 		 * we will accomplish it in the next vmentry.
 | |
| 		 */
 | |
| 		vmx->nested.pi_pending = true;
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 		/* the PIR and ON have been set by L1. */
 | |
| 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
 | |
| 			kvm_vcpu_kick(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| /*
 | |
|  * Send interrupt to vcpu via posted interrupt way.
 | |
|  * 1. If target vcpu is running(non-root mode), send posted interrupt
 | |
|  * notification to vcpu and hardware will sync PIR to vIRR atomically.
 | |
|  * 2. If target vcpu isn't running(root mode), kick it to pick up the
 | |
|  * interrupt from PIR in next vmentry.
 | |
|  */
 | |
| static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int r;
 | |
| 
 | |
| 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
 | |
| 	if (!r)
 | |
| 		return;
 | |
| 
 | |
| 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
 | |
| 		return;
 | |
| 
 | |
| 	/* If a previous notification has sent the IPI, nothing to do.  */
 | |
| 	if (pi_test_and_set_on(&vmx->pi_desc))
 | |
| 		return;
 | |
| 
 | |
| 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
 | |
| 		kvm_vcpu_kick(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
 | |
|  * will not change in the lifetime of the guest.
 | |
|  * Note that host-state that does change is set elsewhere. E.g., host-state
 | |
|  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
 | |
|  */
 | |
| static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	u32 low32, high32;
 | |
| 	unsigned long tmpl;
 | |
| 	struct desc_ptr dt;
 | |
| 	unsigned long cr0, cr3, cr4;
 | |
| 
 | |
| 	cr0 = read_cr0();
 | |
| 	WARN_ON(cr0 & X86_CR0_TS);
 | |
| 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Save the most likely value for this task's CR3 in the VMCS.
 | |
| 	 * We can't use __get_current_cr3_fast() because we're not atomic.
 | |
| 	 */
 | |
| 	cr3 = __read_cr3();
 | |
| 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
 | |
| 	vmx->loaded_vmcs->host_state.cr3 = cr3;
 | |
| 
 | |
| 	/* Save the most likely value for this task's CR4 in the VMCS. */
 | |
| 	cr4 = cr4_read_shadow();
 | |
| 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
 | |
| 	vmx->loaded_vmcs->host_state.cr4 = cr4;
 | |
| 
 | |
| 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * Load null selectors, so we can avoid reloading them in
 | |
| 	 * vmx_prepare_switch_to_host(), in case userspace uses
 | |
| 	 * the null selectors too (the expected case).
 | |
| 	 */
 | |
| 	vmcs_write16(HOST_DS_SELECTOR, 0);
 | |
| 	vmcs_write16(HOST_ES_SELECTOR, 0);
 | |
| #else
 | |
| 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
 | |
| 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
 | |
| #endif
 | |
| 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
 | |
| 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
 | |
| 
 | |
| 	store_idt(&dt);
 | |
| 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
 | |
| 	vmx->host_idt_base = dt.address;
 | |
| 
 | |
| 	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
 | |
| 
 | |
| 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
 | |
| 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
 | |
| 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
 | |
| 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
 | |
| 
 | |
| 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
 | |
| 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
 | |
| 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
 | |
| 	if (enable_ept)
 | |
| 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
 | |
| 	if (is_guest_mode(&vmx->vcpu))
 | |
| 		vmx->vcpu.arch.cr4_guest_owned_bits &=
 | |
| 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
 | |
| 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
 | |
| }
 | |
| 
 | |
| static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
 | |
| 
 | |
| 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
 | |
| 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
 | |
| 
 | |
| 	if (!enable_vnmi)
 | |
| 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
 | |
| 
 | |
| 	/* Enable the preemption timer dynamically */
 | |
| 	pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
 | |
| 	return pin_based_exec_ctrl;
 | |
| }
 | |
| 
 | |
| static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
 | |
| 	if (cpu_has_secondary_exec_ctrls()) {
 | |
| 		if (kvm_vcpu_apicv_active(vcpu))
 | |
| 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
 | |
| 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
 | |
| 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
 | |
| 		else
 | |
| 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
 | |
| 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
 | |
| 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_vmx_msr_bitmap())
 | |
| 		vmx_update_msr_bitmap(vcpu);
 | |
| }
 | |
| 
 | |
| static u32 vmx_exec_control(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
 | |
| 
 | |
| 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
 | |
| 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
 | |
| 
 | |
| 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
 | |
| 		exec_control &= ~CPU_BASED_TPR_SHADOW;
 | |
| #ifdef CONFIG_X86_64
 | |
| 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
 | |
| 				CPU_BASED_CR8_LOAD_EXITING;
 | |
| #endif
 | |
| 	}
 | |
| 	if (!enable_ept)
 | |
| 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
 | |
| 				CPU_BASED_CR3_LOAD_EXITING  |
 | |
| 				CPU_BASED_INVLPG_EXITING;
 | |
| 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
 | |
| 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
 | |
| 				CPU_BASED_MONITOR_EXITING);
 | |
| 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
 | |
| 		exec_control &= ~CPU_BASED_HLT_EXITING;
 | |
| 	return exec_control;
 | |
| }
 | |
| 
 | |
| static bool vmx_rdrand_supported(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_RDRAND_EXITING;
 | |
| }
 | |
| 
 | |
| static bool vmx_rdseed_supported(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_RDSEED_EXITING;
 | |
| }
 | |
| 
 | |
| static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = &vmx->vcpu;
 | |
| 
 | |
| 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
 | |
| 
 | |
| 	if (!cpu_need_virtualize_apic_accesses(vcpu))
 | |
| 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 | |
| 	if (vmx->vpid == 0)
 | |
| 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
 | |
| 	if (!enable_ept) {
 | |
| 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
 | |
| 		enable_unrestricted_guest = 0;
 | |
| 	}
 | |
| 	if (!enable_unrestricted_guest)
 | |
| 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
 | |
| 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
 | |
| 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
 | |
| 	if (!kvm_vcpu_apicv_active(vcpu))
 | |
| 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
 | |
| 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
 | |
| 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
 | |
| 
 | |
| 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
 | |
| 	 * in vmx_set_cr4.  */
 | |
| 	exec_control &= ~SECONDARY_EXEC_DESC;
 | |
| 
 | |
| 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
 | |
| 	   (handle_vmptrld).
 | |
| 	   We can NOT enable shadow_vmcs here because we don't have yet
 | |
| 	   a current VMCS12
 | |
| 	*/
 | |
| 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
 | |
| 
 | |
| 	if (!enable_pml)
 | |
| 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
 | |
| 
 | |
| 	if (vmx_xsaves_supported()) {
 | |
| 		/* Exposing XSAVES only when XSAVE is exposed */
 | |
| 		bool xsaves_enabled =
 | |
| 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
 | |
| 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
 | |
| 
 | |
| 		if (!xsaves_enabled)
 | |
| 			exec_control &= ~SECONDARY_EXEC_XSAVES;
 | |
| 
 | |
| 		if (nested) {
 | |
| 			if (xsaves_enabled)
 | |
| 				vmx->nested.msrs.secondary_ctls_high |=
 | |
| 					SECONDARY_EXEC_XSAVES;
 | |
| 			else
 | |
| 				vmx->nested.msrs.secondary_ctls_high &=
 | |
| 					~SECONDARY_EXEC_XSAVES;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vmx_rdtscp_supported()) {
 | |
| 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
 | |
| 		if (!rdtscp_enabled)
 | |
| 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
 | |
| 
 | |
| 		if (nested) {
 | |
| 			if (rdtscp_enabled)
 | |
| 				vmx->nested.msrs.secondary_ctls_high |=
 | |
| 					SECONDARY_EXEC_RDTSCP;
 | |
| 			else
 | |
| 				vmx->nested.msrs.secondary_ctls_high &=
 | |
| 					~SECONDARY_EXEC_RDTSCP;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vmx_invpcid_supported()) {
 | |
| 		/* Exposing INVPCID only when PCID is exposed */
 | |
| 		bool invpcid_enabled =
 | |
| 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
 | |
| 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
 | |
| 
 | |
| 		if (!invpcid_enabled) {
 | |
| 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
 | |
| 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
 | |
| 		}
 | |
| 
 | |
| 		if (nested) {
 | |
| 			if (invpcid_enabled)
 | |
| 				vmx->nested.msrs.secondary_ctls_high |=
 | |
| 					SECONDARY_EXEC_ENABLE_INVPCID;
 | |
| 			else
 | |
| 				vmx->nested.msrs.secondary_ctls_high &=
 | |
| 					~SECONDARY_EXEC_ENABLE_INVPCID;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vmx_rdrand_supported()) {
 | |
| 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
 | |
| 		if (rdrand_enabled)
 | |
| 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
 | |
| 
 | |
| 		if (nested) {
 | |
| 			if (rdrand_enabled)
 | |
| 				vmx->nested.msrs.secondary_ctls_high |=
 | |
| 					SECONDARY_EXEC_RDRAND_EXITING;
 | |
| 			else
 | |
| 				vmx->nested.msrs.secondary_ctls_high &=
 | |
| 					~SECONDARY_EXEC_RDRAND_EXITING;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vmx_rdseed_supported()) {
 | |
| 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
 | |
| 		if (rdseed_enabled)
 | |
| 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
 | |
| 
 | |
| 		if (nested) {
 | |
| 			if (rdseed_enabled)
 | |
| 				vmx->nested.msrs.secondary_ctls_high |=
 | |
| 					SECONDARY_EXEC_RDSEED_EXITING;
 | |
| 			else
 | |
| 				vmx->nested.msrs.secondary_ctls_high &=
 | |
| 					~SECONDARY_EXEC_RDSEED_EXITING;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vmx->secondary_exec_control = exec_control;
 | |
| }
 | |
| 
 | |
| static void ept_set_mmio_spte_mask(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * EPT Misconfigurations can be generated if the value of bits 2:0
 | |
| 	 * of an EPT paging-structure entry is 110b (write/execute).
 | |
| 	 */
 | |
| 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
 | |
| 				   VMX_EPT_MISCONFIG_WX_VALUE);
 | |
| }
 | |
| 
 | |
| #define VMX_XSS_EXIT_BITMAP 0
 | |
| /*
 | |
|  * Sets up the vmcs for emulated real mode.
 | |
|  */
 | |
| static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		/*
 | |
| 		 * At vCPU creation, "VMWRITE to any supported field
 | |
| 		 * in the VMCS" is supported, so use the more
 | |
| 		 * permissive vmx_vmread_bitmap to specify both read
 | |
| 		 * and write permissions for the shadow VMCS.
 | |
| 		 */
 | |
| 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
 | |
| 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
 | |
| 	}
 | |
| 	if (cpu_has_vmx_msr_bitmap())
 | |
| 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
 | |
| 
 | |
| 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
 | |
| 
 | |
| 	/* Control */
 | |
| 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
 | |
| 	vmx->hv_deadline_tsc = -1;
 | |
| 
 | |
| 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
 | |
| 
 | |
| 	if (cpu_has_secondary_exec_ctrls()) {
 | |
| 		vmx_compute_secondary_exec_control(vmx);
 | |
| 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
 | |
| 			     vmx->secondary_exec_control);
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
 | |
| 
 | |
| 		vmcs_write16(GUEST_INTR_STATUS, 0);
 | |
| 
 | |
| 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
 | |
| 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
 | |
| 	}
 | |
| 
 | |
| 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
 | |
| 		vmcs_write32(PLE_GAP, ple_gap);
 | |
| 		vmx->ple_window = ple_window;
 | |
| 		vmx->ple_window_dirty = true;
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
 | |
| 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
 | |
| 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
 | |
| 
 | |
| 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
 | |
| 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
 | |
| 	vmx_set_constant_host_state(vmx);
 | |
| 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
 | |
| 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
 | |
| 
 | |
| 	if (cpu_has_vmx_vmfunc())
 | |
| 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
 | |
| 
 | |
| 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
 | |
| 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
 | |
| 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
 | |
| 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
 | |
| 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
 | |
| 
 | |
| 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
 | |
| 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
 | |
| 		u32 index = vmx_msr_index[i];
 | |
| 		u32 data_low, data_high;
 | |
| 		int j = vmx->nmsrs;
 | |
| 
 | |
| 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
 | |
| 			continue;
 | |
| 		if (wrmsr_safe(index, data_low, data_high) < 0)
 | |
| 			continue;
 | |
| 		vmx->guest_msrs[j].index = i;
 | |
| 		vmx->guest_msrs[j].data = 0;
 | |
| 		vmx->guest_msrs[j].mask = -1ull;
 | |
| 		++vmx->nmsrs;
 | |
| 	}
 | |
| 
 | |
| 	vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
 | |
| 
 | |
| 	/* 22.2.1, 20.8.1 */
 | |
| 	vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
 | |
| 
 | |
| 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
 | |
| 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
 | |
| 
 | |
| 	set_cr4_guest_host_mask(vmx);
 | |
| 
 | |
| 	if (vmx_xsaves_supported())
 | |
| 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
 | |
| 
 | |
| 	if (enable_pml) {
 | |
| 		ASSERT(vmx->pml_pg);
 | |
| 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
 | |
| 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_vmx_encls_vmexit())
 | |
| 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
 | |
| }
 | |
| 
 | |
| static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct msr_data apic_base_msr;
 | |
| 	u64 cr0;
 | |
| 
 | |
| 	vmx->rmode.vm86_active = 0;
 | |
| 	vmx->spec_ctrl = 0;
 | |
| 
 | |
| 	vcpu->arch.microcode_version = 0x100000000ULL;
 | |
| 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
 | |
| 	kvm_set_cr8(vcpu, 0);
 | |
| 
 | |
| 	if (!init_event) {
 | |
| 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
 | |
| 				     MSR_IA32_APICBASE_ENABLE;
 | |
| 		if (kvm_vcpu_is_reset_bsp(vcpu))
 | |
| 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
 | |
| 		apic_base_msr.host_initiated = true;
 | |
| 		kvm_set_apic_base(vcpu, &apic_base_msr);
 | |
| 	}
 | |
| 
 | |
| 	vmx_segment_cache_clear(vmx);
 | |
| 
 | |
| 	seg_setup(VCPU_SREG_CS);
 | |
| 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
 | |
| 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
 | |
| 
 | |
| 	seg_setup(VCPU_SREG_DS);
 | |
| 	seg_setup(VCPU_SREG_ES);
 | |
| 	seg_setup(VCPU_SREG_FS);
 | |
| 	seg_setup(VCPU_SREG_GS);
 | |
| 	seg_setup(VCPU_SREG_SS);
 | |
| 
 | |
| 	vmcs_write16(GUEST_TR_SELECTOR, 0);
 | |
| 	vmcs_writel(GUEST_TR_BASE, 0);
 | |
| 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
 | |
| 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
 | |
| 
 | |
| 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
 | |
| 	vmcs_writel(GUEST_LDTR_BASE, 0);
 | |
| 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
 | |
| 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
 | |
| 
 | |
| 	if (!init_event) {
 | |
| 		vmcs_write32(GUEST_SYSENTER_CS, 0);
 | |
| 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
 | |
| 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
 | |
| 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
 | |
| 	}
 | |
| 
 | |
| 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
 | |
| 	kvm_rip_write(vcpu, 0xfff0);
 | |
| 
 | |
| 	vmcs_writel(GUEST_GDTR_BASE, 0);
 | |
| 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
 | |
| 
 | |
| 	vmcs_writel(GUEST_IDTR_BASE, 0);
 | |
| 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
 | |
| 
 | |
| 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
 | |
| 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
 | |
| 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
 | |
| 	if (kvm_mpx_supported())
 | |
| 		vmcs_write64(GUEST_BNDCFGS, 0);
 | |
| 
 | |
| 	setup_msrs(vmx);
 | |
| 
 | |
| 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
 | |
| 
 | |
| 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
 | |
| 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
 | |
| 		if (cpu_need_tpr_shadow(vcpu))
 | |
| 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
 | |
| 				     __pa(vcpu->arch.apic->regs));
 | |
| 		vmcs_write32(TPR_THRESHOLD, 0);
 | |
| 	}
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
 | |
| 
 | |
| 	if (vmx->vpid != 0)
 | |
| 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
 | |
| 
 | |
| 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
 | |
| 	vmx->vcpu.arch.cr0 = cr0;
 | |
| 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
 | |
| 	vmx_set_cr4(vcpu, 0);
 | |
| 	vmx_set_efer(vcpu, 0);
 | |
| 
 | |
| 	update_exception_bitmap(vcpu);
 | |
| 
 | |
| 	vpid_sync_context(vmx->vpid);
 | |
| 	if (init_event)
 | |
| 		vmx_clear_hlt(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In nested virtualization, check if L1 asked to exit on external interrupts.
 | |
|  * For most existing hypervisors, this will always return true.
 | |
|  */
 | |
| static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
 | |
| 		PIN_BASED_EXT_INTR_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In nested virtualization, check if L1 has set
 | |
|  * VM_EXIT_ACK_INTR_ON_EXIT
 | |
|  */
 | |
| static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return get_vmcs12(vcpu)->vm_exit_controls &
 | |
| 		VM_EXIT_ACK_INTR_ON_EXIT;
 | |
| }
 | |
| 
 | |
| static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
 | |
| }
 | |
| 
 | |
| static void enable_irq_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 		      CPU_BASED_VIRTUAL_INTR_PENDING);
 | |
| }
 | |
| 
 | |
| static void enable_nmi_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!enable_vnmi ||
 | |
| 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
 | |
| 		enable_irq_window(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 		      CPU_BASED_VIRTUAL_NMI_PENDING);
 | |
| }
 | |
| 
 | |
| static void vmx_inject_irq(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	uint32_t intr;
 | |
| 	int irq = vcpu->arch.interrupt.nr;
 | |
| 
 | |
| 	trace_kvm_inj_virq(irq);
 | |
| 
 | |
| 	++vcpu->stat.irq_injections;
 | |
| 	if (vmx->rmode.vm86_active) {
 | |
| 		int inc_eip = 0;
 | |
| 		if (vcpu->arch.interrupt.soft)
 | |
| 			inc_eip = vcpu->arch.event_exit_inst_len;
 | |
| 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
 | |
| 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 	intr = irq | INTR_INFO_VALID_MASK;
 | |
| 	if (vcpu->arch.interrupt.soft) {
 | |
| 		intr |= INTR_TYPE_SOFT_INTR;
 | |
| 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
 | |
| 			     vmx->vcpu.arch.event_exit_inst_len);
 | |
| 	} else
 | |
| 		intr |= INTR_TYPE_EXT_INTR;
 | |
| 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
 | |
| 
 | |
| 	vmx_clear_hlt(vcpu);
 | |
| }
 | |
| 
 | |
| static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (!enable_vnmi) {
 | |
| 		/*
 | |
| 		 * Tracking the NMI-blocked state in software is built upon
 | |
| 		 * finding the next open IRQ window. This, in turn, depends on
 | |
| 		 * well-behaving guests: They have to keep IRQs disabled at
 | |
| 		 * least as long as the NMI handler runs. Otherwise we may
 | |
| 		 * cause NMI nesting, maybe breaking the guest. But as this is
 | |
| 		 * highly unlikely, we can live with the residual risk.
 | |
| 		 */
 | |
| 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
 | |
| 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
 | |
| 	}
 | |
| 
 | |
| 	++vcpu->stat.nmi_injections;
 | |
| 	vmx->loaded_vmcs->nmi_known_unmasked = false;
 | |
| 
 | |
| 	if (vmx->rmode.vm86_active) {
 | |
| 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
 | |
| 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
 | |
| 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
 | |
| 
 | |
| 	vmx_clear_hlt(vcpu);
 | |
| }
 | |
| 
 | |
| static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	bool masked;
 | |
| 
 | |
| 	if (!enable_vnmi)
 | |
| 		return vmx->loaded_vmcs->soft_vnmi_blocked;
 | |
| 	if (vmx->loaded_vmcs->nmi_known_unmasked)
 | |
| 		return false;
 | |
| 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
 | |
| 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
 | |
| 	return masked;
 | |
| }
 | |
| 
 | |
| static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (!enable_vnmi) {
 | |
| 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
 | |
| 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
 | |
| 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
 | |
| 		if (masked)
 | |
| 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 				      GUEST_INTR_STATE_NMI);
 | |
| 		else
 | |
| 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 					GUEST_INTR_STATE_NMI);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (to_vmx(vcpu)->nested.nested_run_pending)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!enable_vnmi &&
 | |
| 	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
 | |
| 		return 0;
 | |
| 
 | |
| 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
 | |
| 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
 | |
| 		   | GUEST_INTR_STATE_NMI));
 | |
| }
 | |
| 
 | |
| static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return (!to_vmx(vcpu)->nested.nested_run_pending &&
 | |
| 		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
 | |
| 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
 | |
| 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
 | |
| }
 | |
| 
 | |
| static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (enable_unrestricted_guest)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
 | |
| 				    PAGE_SIZE * 3);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	to_kvm_vmx(kvm)->tss_addr = addr;
 | |
| 	return init_rmode_tss(kvm);
 | |
| }
 | |
| 
 | |
| static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
 | |
| {
 | |
| 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
 | |
| {
 | |
| 	switch (vec) {
 | |
| 	case BP_VECTOR:
 | |
| 		/*
 | |
| 		 * Update instruction length as we may reinject the exception
 | |
| 		 * from user space while in guest debugging mode.
 | |
| 		 */
 | |
| 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
 | |
| 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
 | |
| 			return false;
 | |
| 		/* fall through */
 | |
| 	case DB_VECTOR:
 | |
| 		if (vcpu->guest_debug &
 | |
| 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
 | |
| 			return false;
 | |
| 		/* fall through */
 | |
| 	case DE_VECTOR:
 | |
| 	case OF_VECTOR:
 | |
| 	case BR_VECTOR:
 | |
| 	case UD_VECTOR:
 | |
| 	case DF_VECTOR:
 | |
| 	case SS_VECTOR:
 | |
| 	case GP_VECTOR:
 | |
| 	case MF_VECTOR:
 | |
| 		return true;
 | |
| 	break;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int handle_rmode_exception(struct kvm_vcpu *vcpu,
 | |
| 				  int vec, u32 err_code)
 | |
| {
 | |
| 	/*
 | |
| 	 * Instruction with address size override prefix opcode 0x67
 | |
| 	 * Cause the #SS fault with 0 error code in VM86 mode.
 | |
| 	 */
 | |
| 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
 | |
| 		if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
 | |
| 			if (vcpu->arch.halt_request) {
 | |
| 				vcpu->arch.halt_request = 0;
 | |
| 				return kvm_vcpu_halt(vcpu);
 | |
| 			}
 | |
| 			return 1;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Forward all other exceptions that are valid in real mode.
 | |
| 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
 | |
| 	 *        the required debugging infrastructure rework.
 | |
| 	 */
 | |
| 	kvm_queue_exception(vcpu, vec);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trigger machine check on the host. We assume all the MSRs are already set up
 | |
|  * by the CPU and that we still run on the same CPU as the MCE occurred on.
 | |
|  * We pass a fake environment to the machine check handler because we want
 | |
|  * the guest to be always treated like user space, no matter what context
 | |
|  * it used internally.
 | |
|  */
 | |
| static void kvm_machine_check(void)
 | |
| {
 | |
| #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
 | |
| 	struct pt_regs regs = {
 | |
| 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
 | |
| 		.flags = X86_EFLAGS_IF,
 | |
| 	};
 | |
| 
 | |
| 	do_machine_check(®s, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int handle_machine_check(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* already handled by vcpu_run */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_exception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 	u32 intr_info, ex_no, error_code;
 | |
| 	unsigned long cr2, rip, dr6;
 | |
| 	u32 vect_info;
 | |
| 	enum emulation_result er;
 | |
| 
 | |
| 	vect_info = vmx->idt_vectoring_info;
 | |
| 	intr_info = vmx->exit_intr_info;
 | |
| 
 | |
| 	if (is_machine_check(intr_info))
 | |
| 		return handle_machine_check(vcpu);
 | |
| 
 | |
| 	if (is_nmi(intr_info))
 | |
| 		return 1;  /* already handled by vmx_vcpu_run() */
 | |
| 
 | |
| 	if (is_invalid_opcode(intr_info))
 | |
| 		return handle_ud(vcpu);
 | |
| 
 | |
| 	error_code = 0;
 | |
| 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
 | |
| 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
 | |
| 
 | |
| 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
 | |
| 		WARN_ON_ONCE(!enable_vmware_backdoor);
 | |
| 		er = kvm_emulate_instruction(vcpu,
 | |
| 			EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
 | |
| 		if (er == EMULATE_USER_EXIT)
 | |
| 			return 0;
 | |
| 		else if (er != EMULATE_DONE)
 | |
| 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
 | |
| 	 * MMIO, it is better to report an internal error.
 | |
| 	 * See the comments in vmx_handle_exit.
 | |
| 	 */
 | |
| 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
 | |
| 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
 | |
| 		vcpu->run->internal.ndata = 3;
 | |
| 		vcpu->run->internal.data[0] = vect_info;
 | |
| 		vcpu->run->internal.data[1] = intr_info;
 | |
| 		vcpu->run->internal.data[2] = error_code;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (is_page_fault(intr_info)) {
 | |
| 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 		/* EPT won't cause page fault directly */
 | |
| 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
 | |
| 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
 | |
| 	}
 | |
| 
 | |
| 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
 | |
| 
 | |
| 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
 | |
| 		return handle_rmode_exception(vcpu, ex_no, error_code);
 | |
| 
 | |
| 	switch (ex_no) {
 | |
| 	case AC_VECTOR:
 | |
| 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
 | |
| 		return 1;
 | |
| 	case DB_VECTOR:
 | |
| 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 		if (!(vcpu->guest_debug &
 | |
| 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
 | |
| 			vcpu->arch.dr6 &= ~15;
 | |
| 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
 | |
| 			if (is_icebp(intr_info))
 | |
| 				skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 			kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
 | |
| 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
 | |
| 		/* fall through */
 | |
| 	case BP_VECTOR:
 | |
| 		/*
 | |
| 		 * Update instruction length as we may reinject #BP from
 | |
| 		 * user space while in guest debugging mode. Reading it for
 | |
| 		 * #DB as well causes no harm, it is not used in that case.
 | |
| 		 */
 | |
| 		vmx->vcpu.arch.event_exit_inst_len =
 | |
| 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 		rip = kvm_rip_read(vcpu);
 | |
| 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
 | |
| 		kvm_run->debug.arch.exception = ex_no;
 | |
| 		break;
 | |
| 	default:
 | |
| 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
 | |
| 		kvm_run->ex.exception = ex_no;
 | |
| 		kvm_run->ex.error_code = error_code;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_external_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.irq_exits;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_triple_fault(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
 | |
| 	vcpu->mmio_needed = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_io(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification;
 | |
| 	int size, in, string;
 | |
| 	unsigned port;
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	string = (exit_qualification & 16) != 0;
 | |
| 
 | |
| 	++vcpu->stat.io_exits;
 | |
| 
 | |
| 	if (string)
 | |
| 		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
 | |
| 
 | |
| 	port = exit_qualification >> 16;
 | |
| 	size = (exit_qualification & 7) + 1;
 | |
| 	in = (exit_qualification & 8) != 0;
 | |
| 
 | |
| 	return kvm_fast_pio(vcpu, size, port, in);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
 | |
| {
 | |
| 	/*
 | |
| 	 * Patch in the VMCALL instruction:
 | |
| 	 */
 | |
| 	hypercall[0] = 0x0f;
 | |
| 	hypercall[1] = 0x01;
 | |
| 	hypercall[2] = 0xc1;
 | |
| }
 | |
| 
 | |
| /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
 | |
| static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 		unsigned long orig_val = val;
 | |
| 
 | |
| 		/*
 | |
| 		 * We get here when L2 changed cr0 in a way that did not change
 | |
| 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
 | |
| 		 * but did change L0 shadowed bits. So we first calculate the
 | |
| 		 * effective cr0 value that L1 would like to write into the
 | |
| 		 * hardware. It consists of the L2-owned bits from the new
 | |
| 		 * value combined with the L1-owned bits from L1's guest_cr0.
 | |
| 		 */
 | |
| 		val = (val & ~vmcs12->cr0_guest_host_mask) |
 | |
| 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
 | |
| 
 | |
| 		if (!nested_guest_cr0_valid(vcpu, val))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (kvm_set_cr0(vcpu, val))
 | |
| 			return 1;
 | |
| 		vmcs_writel(CR0_READ_SHADOW, orig_val);
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		if (to_vmx(vcpu)->nested.vmxon &&
 | |
| 		    !nested_host_cr0_valid(vcpu, val))
 | |
| 			return 1;
 | |
| 
 | |
| 		return kvm_set_cr0(vcpu, val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 		unsigned long orig_val = val;
 | |
| 
 | |
| 		/* analogously to handle_set_cr0 */
 | |
| 		val = (val & ~vmcs12->cr4_guest_host_mask) |
 | |
| 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
 | |
| 		if (kvm_set_cr4(vcpu, val))
 | |
| 			return 1;
 | |
| 		vmcs_writel(CR4_READ_SHADOW, orig_val);
 | |
| 		return 0;
 | |
| 	} else
 | |
| 		return kvm_set_cr4(vcpu, val);
 | |
| }
 | |
| 
 | |
| static int handle_desc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
 | |
| 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| static int handle_cr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification, val;
 | |
| 	int cr;
 | |
| 	int reg;
 | |
| 	int err;
 | |
| 	int ret;
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	cr = exit_qualification & 15;
 | |
| 	reg = (exit_qualification >> 8) & 15;
 | |
| 	switch ((exit_qualification >> 4) & 3) {
 | |
| 	case 0: /* mov to cr */
 | |
| 		val = kvm_register_readl(vcpu, reg);
 | |
| 		trace_kvm_cr_write(cr, val);
 | |
| 		switch (cr) {
 | |
| 		case 0:
 | |
| 			err = handle_set_cr0(vcpu, val);
 | |
| 			return kvm_complete_insn_gp(vcpu, err);
 | |
| 		case 3:
 | |
| 			WARN_ON_ONCE(enable_unrestricted_guest);
 | |
| 			err = kvm_set_cr3(vcpu, val);
 | |
| 			return kvm_complete_insn_gp(vcpu, err);
 | |
| 		case 4:
 | |
| 			err = handle_set_cr4(vcpu, val);
 | |
| 			return kvm_complete_insn_gp(vcpu, err);
 | |
| 		case 8: {
 | |
| 				u8 cr8_prev = kvm_get_cr8(vcpu);
 | |
| 				u8 cr8 = (u8)val;
 | |
| 				err = kvm_set_cr8(vcpu, cr8);
 | |
| 				ret = kvm_complete_insn_gp(vcpu, err);
 | |
| 				if (lapic_in_kernel(vcpu))
 | |
| 					return ret;
 | |
| 				if (cr8_prev <= cr8)
 | |
| 					return ret;
 | |
| 				/*
 | |
| 				 * TODO: we might be squashing a
 | |
| 				 * KVM_GUESTDBG_SINGLESTEP-triggered
 | |
| 				 * KVM_EXIT_DEBUG here.
 | |
| 				 */
 | |
| 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 	case 2: /* clts */
 | |
| 		WARN_ONCE(1, "Guest should always own CR0.TS");
 | |
| 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
 | |
| 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	case 1: /*mov from cr*/
 | |
| 		switch (cr) {
 | |
| 		case 3:
 | |
| 			WARN_ON_ONCE(enable_unrestricted_guest);
 | |
| 			val = kvm_read_cr3(vcpu);
 | |
| 			kvm_register_write(vcpu, reg, val);
 | |
| 			trace_kvm_cr_read(cr, val);
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		case 8:
 | |
| 			val = kvm_get_cr8(vcpu);
 | |
| 			kvm_register_write(vcpu, reg, val);
 | |
| 			trace_kvm_cr_read(cr, val);
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		}
 | |
| 		break;
 | |
| 	case 3: /* lmsw */
 | |
| 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
 | |
| 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
 | |
| 		kvm_lmsw(vcpu, val);
 | |
| 
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	vcpu->run->exit_reason = 0;
 | |
| 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
 | |
| 	       (int)(exit_qualification >> 4) & 3, cr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_dr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification;
 | |
| 	int dr, dr7, reg;
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
 | |
| 
 | |
| 	/* First, if DR does not exist, trigger UD */
 | |
| 	if (!kvm_require_dr(vcpu, dr))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
 | |
| 	if (!kvm_require_cpl(vcpu, 0))
 | |
| 		return 1;
 | |
| 	dr7 = vmcs_readl(GUEST_DR7);
 | |
| 	if (dr7 & DR7_GD) {
 | |
| 		/*
 | |
| 		 * As the vm-exit takes precedence over the debug trap, we
 | |
| 		 * need to emulate the latter, either for the host or the
 | |
| 		 * guest debugging itself.
 | |
| 		 */
 | |
| 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
 | |
| 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
 | |
| 			vcpu->run->debug.arch.dr7 = dr7;
 | |
| 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
 | |
| 			vcpu->run->debug.arch.exception = DB_VECTOR;
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			vcpu->arch.dr6 &= ~15;
 | |
| 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
 | |
| 			kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->guest_debug == 0) {
 | |
| 		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 				CPU_BASED_MOV_DR_EXITING);
 | |
| 
 | |
| 		/*
 | |
| 		 * No more DR vmexits; force a reload of the debug registers
 | |
| 		 * and reenter on this instruction.  The next vmexit will
 | |
| 		 * retrieve the full state of the debug registers.
 | |
| 		 */
 | |
| 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
 | |
| 	if (exit_qualification & TYPE_MOV_FROM_DR) {
 | |
| 		unsigned long val;
 | |
| 
 | |
| 		if (kvm_get_dr(vcpu, dr, &val))
 | |
| 			return 1;
 | |
| 		kvm_register_write(vcpu, reg, val);
 | |
| 	} else
 | |
| 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
 | |
| 			return 1;
 | |
| 
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.dr6;
 | |
| }
 | |
| 
 | |
| static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	get_debugreg(vcpu->arch.db[0], 0);
 | |
| 	get_debugreg(vcpu->arch.db[1], 1);
 | |
| 	get_debugreg(vcpu->arch.db[2], 2);
 | |
| 	get_debugreg(vcpu->arch.db[3], 3);
 | |
| 	get_debugreg(vcpu->arch.dr6, 6);
 | |
| 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
 | |
| 
 | |
| 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
 | |
| 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
 | |
| }
 | |
| 
 | |
| static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| 	vmcs_writel(GUEST_DR7, val);
 | |
| }
 | |
| 
 | |
| static int handle_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_emulate_cpuid(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_rdmsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
 | |
| 	struct msr_data msr_info;
 | |
| 
 | |
| 	msr_info.index = ecx;
 | |
| 	msr_info.host_initiated = false;
 | |
| 	if (vmx_get_msr(vcpu, &msr_info)) {
 | |
| 		trace_kvm_msr_read_ex(ecx);
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_msr_read(ecx, msr_info.data);
 | |
| 
 | |
| 	/* FIXME: handling of bits 32:63 of rax, rdx */
 | |
| 	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
 | |
| 	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_wrmsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct msr_data msr;
 | |
| 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
 | |
| 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
 | |
| 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
 | |
| 
 | |
| 	msr.data = data;
 | |
| 	msr.index = ecx;
 | |
| 	msr.host_initiated = false;
 | |
| 	if (kvm_set_msr(vcpu, &msr) != 0) {
 | |
| 		trace_kvm_msr_write_ex(ecx, data);
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_msr_write(ecx, data);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_apic_update_ppr(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_interrupt_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 			CPU_BASED_VIRTUAL_INTR_PENDING);
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	++vcpu->stat.irq_window_exits;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_halt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_emulate_halt(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_vmcall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_emulate_hypercall(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_invd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| static int handle_invlpg(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 
 | |
| 	kvm_mmu_invlpg(vcpu, exit_qualification);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_rdpmc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = kvm_rdpmc(vcpu);
 | |
| 	return kvm_complete_insn_gp(vcpu, err);
 | |
| }
 | |
| 
 | |
| static int handle_wbinvd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_emulate_wbinvd(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_xsetbv(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 new_bv = kvm_read_edx_eax(vcpu);
 | |
| 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 
 | |
| 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_xsaves(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_skip_emulated_instruction(vcpu);
 | |
| 	WARN(1, "this should never happen\n");
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_xrstors(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_skip_emulated_instruction(vcpu);
 | |
| 	WARN(1, "this should never happen\n");
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_apic_access(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (likely(fasteoi)) {
 | |
| 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 		int access_type, offset;
 | |
| 
 | |
| 		access_type = exit_qualification & APIC_ACCESS_TYPE;
 | |
| 		offset = exit_qualification & APIC_ACCESS_OFFSET;
 | |
| 		/*
 | |
| 		 * Sane guest uses MOV to write EOI, with written value
 | |
| 		 * not cared. So make a short-circuit here by avoiding
 | |
| 		 * heavy instruction emulation.
 | |
| 		 */
 | |
| 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
 | |
| 		    (offset == APIC_EOI)) {
 | |
| 			kvm_lapic_set_eoi(vcpu);
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	int vector = exit_qualification & 0xff;
 | |
| 
 | |
| 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
 | |
| 	kvm_apic_set_eoi_accelerated(vcpu, vector);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_apic_write(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	u32 offset = exit_qualification & 0xfff;
 | |
| 
 | |
| 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
 | |
| 	kvm_apic_write_nodecode(vcpu, offset);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_task_switch(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long exit_qualification;
 | |
| 	bool has_error_code = false;
 | |
| 	u32 error_code = 0;
 | |
| 	u16 tss_selector;
 | |
| 	int reason, type, idt_v, idt_index;
 | |
| 
 | |
| 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
 | |
| 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
 | |
| 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 
 | |
| 	reason = (u32)exit_qualification >> 30;
 | |
| 	if (reason == TASK_SWITCH_GATE && idt_v) {
 | |
| 		switch (type) {
 | |
| 		case INTR_TYPE_NMI_INTR:
 | |
| 			vcpu->arch.nmi_injected = false;
 | |
| 			vmx_set_nmi_mask(vcpu, true);
 | |
| 			break;
 | |
| 		case INTR_TYPE_EXT_INTR:
 | |
| 		case INTR_TYPE_SOFT_INTR:
 | |
| 			kvm_clear_interrupt_queue(vcpu);
 | |
| 			break;
 | |
| 		case INTR_TYPE_HARD_EXCEPTION:
 | |
| 			if (vmx->idt_vectoring_info &
 | |
| 			    VECTORING_INFO_DELIVER_CODE_MASK) {
 | |
| 				has_error_code = true;
 | |
| 				error_code =
 | |
| 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
 | |
| 			}
 | |
| 			/* fall through */
 | |
| 		case INTR_TYPE_SOFT_EXCEPTION:
 | |
| 			kvm_clear_exception_queue(vcpu);
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	tss_selector = exit_qualification;
 | |
| 
 | |
| 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
 | |
| 		       type != INTR_TYPE_EXT_INTR &&
 | |
| 		       type != INTR_TYPE_NMI_INTR))
 | |
| 		skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	if (kvm_task_switch(vcpu, tss_selector,
 | |
| 			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
 | |
| 			    has_error_code, error_code) == EMULATE_FAIL) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
 | |
| 		vcpu->run->internal.ndata = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: What about debug traps on tss switch?
 | |
| 	 *       Are we supposed to inject them and update dr6?
 | |
| 	 */
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_ept_violation(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification;
 | |
| 	gpa_t gpa;
 | |
| 	u64 error_code;
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 
 | |
| 	/*
 | |
| 	 * EPT violation happened while executing iret from NMI,
 | |
| 	 * "blocked by NMI" bit has to be set before next VM entry.
 | |
| 	 * There are errata that may cause this bit to not be set:
 | |
| 	 * AAK134, BY25.
 | |
| 	 */
 | |
| 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
 | |
| 			enable_vnmi &&
 | |
| 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
 | |
| 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
 | |
| 
 | |
| 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
 | |
| 	trace_kvm_page_fault(gpa, exit_qualification);
 | |
| 
 | |
| 	/* Is it a read fault? */
 | |
| 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
 | |
| 		     ? PFERR_USER_MASK : 0;
 | |
| 	/* Is it a write fault? */
 | |
| 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
 | |
| 		      ? PFERR_WRITE_MASK : 0;
 | |
| 	/* Is it a fetch fault? */
 | |
| 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
 | |
| 		      ? PFERR_FETCH_MASK : 0;
 | |
| 	/* ept page table entry is present? */
 | |
| 	error_code |= (exit_qualification &
 | |
| 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
 | |
| 			EPT_VIOLATION_EXECUTABLE))
 | |
| 		      ? PFERR_PRESENT_MASK : 0;
 | |
| 
 | |
| 	error_code |= (exit_qualification & 0x100) != 0 ?
 | |
| 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
 | |
| 
 | |
| 	vcpu->arch.exit_qualification = exit_qualification;
 | |
| 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
 | |
| }
 | |
| 
 | |
| static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 
 | |
| 	/*
 | |
| 	 * A nested guest cannot optimize MMIO vmexits, because we have an
 | |
| 	 * nGPA here instead of the required GPA.
 | |
| 	 */
 | |
| 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
 | |
| 	if (!is_guest_mode(vcpu) &&
 | |
| 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
 | |
| 		trace_kvm_fast_mmio(gpa);
 | |
| 		/*
 | |
| 		 * Doing kvm_skip_emulated_instruction() depends on undefined
 | |
| 		 * behavior: Intel's manual doesn't mandate
 | |
| 		 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
 | |
| 		 * occurs and while on real hardware it was observed to be set,
 | |
| 		 * other hypervisors (namely Hyper-V) don't set it, we end up
 | |
| 		 * advancing IP with some random value. Disable fast mmio when
 | |
| 		 * running nested and keep it for real hardware in hope that
 | |
| 		 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
 | |
| 		 */
 | |
| 		if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		else
 | |
| 			return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
 | |
| 								EMULATE_DONE;
 | |
| 	}
 | |
| 
 | |
| 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
 | |
| }
 | |
| 
 | |
| static int handle_nmi_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	WARN_ON_ONCE(!enable_vnmi);
 | |
| 	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 			CPU_BASED_VIRTUAL_NMI_PENDING);
 | |
| 	++vcpu->stat.nmi_window_exits;
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	enum emulation_result err = EMULATE_DONE;
 | |
| 	int ret = 1;
 | |
| 	u32 cpu_exec_ctrl;
 | |
| 	bool intr_window_requested;
 | |
| 	unsigned count = 130;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should never reach the point where we are emulating L2
 | |
| 	 * due to invalid guest state as that means we incorrectly
 | |
| 	 * allowed a nested VMEntry with an invalid vmcs12.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
 | |
| 
 | |
| 	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
 | |
| 	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
 | |
| 
 | |
| 	while (vmx->emulation_required && count-- != 0) {
 | |
| 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
 | |
| 			return handle_interrupt_window(&vmx->vcpu);
 | |
| 
 | |
| 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
 | |
| 			return 1;
 | |
| 
 | |
| 		err = kvm_emulate_instruction(vcpu, 0);
 | |
| 
 | |
| 		if (err == EMULATE_USER_EXIT) {
 | |
| 			++vcpu->stat.mmio_exits;
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (err != EMULATE_DONE)
 | |
| 			goto emulation_error;
 | |
| 
 | |
| 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
 | |
| 		    vcpu->arch.exception.pending)
 | |
| 			goto emulation_error;
 | |
| 
 | |
| 		if (vcpu->arch.halt_request) {
 | |
| 			vcpu->arch.halt_request = 0;
 | |
| 			ret = kvm_vcpu_halt(vcpu);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (signal_pending(current))
 | |
| 			goto out;
 | |
| 		if (need_resched())
 | |
| 			schedule();
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| emulation_error:
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
 | |
| 	vcpu->run->internal.ndata = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void grow_ple_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int old = vmx->ple_window;
 | |
| 
 | |
| 	vmx->ple_window = __grow_ple_window(old, ple_window,
 | |
| 					    ple_window_grow,
 | |
| 					    ple_window_max);
 | |
| 
 | |
| 	if (vmx->ple_window != old)
 | |
| 		vmx->ple_window_dirty = true;
 | |
| 
 | |
| 	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
 | |
| }
 | |
| 
 | |
| static void shrink_ple_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int old = vmx->ple_window;
 | |
| 
 | |
| 	vmx->ple_window = __shrink_ple_window(old, ple_window,
 | |
| 					      ple_window_shrink,
 | |
| 					      ple_window);
 | |
| 
 | |
| 	if (vmx->ple_window != old)
 | |
| 		vmx->ple_window_dirty = true;
 | |
| 
 | |
| 	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
 | |
|  */
 | |
| static void wakeup_handler(void)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
 | |
| 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
 | |
| 			blocked_vcpu_list) {
 | |
| 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
 | |
| 
 | |
| 		if (pi_test_on(pi_desc) == 1)
 | |
| 			kvm_vcpu_kick(vcpu);
 | |
| 	}
 | |
| 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
 | |
| }
 | |
| 
 | |
| static void vmx_enable_tdp(void)
 | |
| {
 | |
| 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
 | |
| 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
 | |
| 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
 | |
| 		0ull, VMX_EPT_EXECUTABLE_MASK,
 | |
| 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
 | |
| 		VMX_EPT_RWX_MASK, 0ull);
 | |
| 
 | |
| 	ept_set_mmio_spte_mask();
 | |
| 	kvm_enable_tdp();
 | |
| }
 | |
| 
 | |
| static __init int hardware_setup(void)
 | |
| {
 | |
| 	unsigned long host_bndcfgs;
 | |
| 	int r = -ENOMEM, i;
 | |
| 
 | |
| 	rdmsrl_safe(MSR_EFER, &host_efer);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
 | |
| 		kvm_define_shared_msr(i, vmx_msr_index[i]);
 | |
| 
 | |
| 	for (i = 0; i < VMX_BITMAP_NR; i++) {
 | |
| 		vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
 | |
| 		if (!vmx_bitmap[i])
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
 | |
| 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
 | |
| 
 | |
| 	if (setup_vmcs_config(&vmcs_config) < 0) {
 | |
| 		r = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_NX))
 | |
| 		kvm_enable_efer_bits(EFER_NX);
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_MPX)) {
 | |
| 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
 | |
| 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
 | |
| 	}
 | |
| 
 | |
| 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
 | |
| 		!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
 | |
| 		enable_vpid = 0;
 | |
| 
 | |
| 	if (!cpu_has_vmx_ept() ||
 | |
| 	    !cpu_has_vmx_ept_4levels() ||
 | |
| 	    !cpu_has_vmx_ept_mt_wb() ||
 | |
| 	    !cpu_has_vmx_invept_global())
 | |
| 		enable_ept = 0;
 | |
| 
 | |
| 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
 | |
| 		enable_ept_ad_bits = 0;
 | |
| 
 | |
| 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
 | |
| 		enable_unrestricted_guest = 0;
 | |
| 
 | |
| 	if (!cpu_has_vmx_flexpriority())
 | |
| 		flexpriority_enabled = 0;
 | |
| 
 | |
| 	if (!cpu_has_virtual_nmis())
 | |
| 		enable_vnmi = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * set_apic_access_page_addr() is used to reload apic access
 | |
| 	 * page upon invalidation.  No need to do anything if not
 | |
| 	 * using the APIC_ACCESS_ADDR VMCS field.
 | |
| 	 */
 | |
| 	if (!flexpriority_enabled)
 | |
| 		kvm_x86_ops->set_apic_access_page_addr = NULL;
 | |
| 
 | |
| 	if (!cpu_has_vmx_tpr_shadow())
 | |
| 		kvm_x86_ops->update_cr8_intercept = NULL;
 | |
| 
 | |
| 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
 | |
| 		kvm_disable_largepages();
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HYPERV)
 | |
| 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
 | |
| 	    && enable_ept)
 | |
| 		kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb;
 | |
| #endif
 | |
| 
 | |
| 	if (!cpu_has_vmx_ple()) {
 | |
| 		ple_gap = 0;
 | |
| 		ple_window = 0;
 | |
| 		ple_window_grow = 0;
 | |
| 		ple_window_max = 0;
 | |
| 		ple_window_shrink = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!cpu_has_vmx_apicv()) {
 | |
| 		enable_apicv = 0;
 | |
| 		kvm_x86_ops->sync_pir_to_irr = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_vmx_tsc_scaling()) {
 | |
| 		kvm_has_tsc_control = true;
 | |
| 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
 | |
| 		kvm_tsc_scaling_ratio_frac_bits = 48;
 | |
| 	}
 | |
| 
 | |
| 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
 | |
| 
 | |
| 	if (enable_ept)
 | |
| 		vmx_enable_tdp();
 | |
| 	else
 | |
| 		kvm_disable_tdp();
 | |
| 
 | |
| 	if (!nested) {
 | |
| 		kvm_x86_ops->get_nested_state = NULL;
 | |
| 		kvm_x86_ops->set_nested_state = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only enable PML when hardware supports PML feature, and both EPT
 | |
| 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
 | |
| 	 */
 | |
| 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
 | |
| 		enable_pml = 0;
 | |
| 
 | |
| 	if (!enable_pml) {
 | |
| 		kvm_x86_ops->slot_enable_log_dirty = NULL;
 | |
| 		kvm_x86_ops->slot_disable_log_dirty = NULL;
 | |
| 		kvm_x86_ops->flush_log_dirty = NULL;
 | |
| 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!cpu_has_vmx_preemption_timer())
 | |
| 		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
 | |
| 
 | |
| 	if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
 | |
| 		u64 vmx_msr;
 | |
| 
 | |
| 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
 | |
| 		cpu_preemption_timer_multi =
 | |
| 			 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
 | |
| 	} else {
 | |
| 		kvm_x86_ops->set_hv_timer = NULL;
 | |
| 		kvm_x86_ops->cancel_hv_timer = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!cpu_has_vmx_shadow_vmcs())
 | |
| 		enable_shadow_vmcs = 0;
 | |
| 	if (enable_shadow_vmcs)
 | |
| 		init_vmcs_shadow_fields();
 | |
| 
 | |
| 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
 | |
| 	nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
 | |
| 
 | |
| 	kvm_mce_cap_supported |= MCG_LMCE_P;
 | |
| 
 | |
| 	r = alloc_kvm_area();
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	for (i = 0; i < VMX_BITMAP_NR; i++)
 | |
| 		free_page((unsigned long)vmx_bitmap[i]);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static __exit void hardware_unsetup(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < VMX_BITMAP_NR; i++)
 | |
| 		free_page((unsigned long)vmx_bitmap[i]);
 | |
| 
 | |
| 	free_kvm_area();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
 | |
|  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
 | |
|  */
 | |
| static int handle_pause(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!kvm_pause_in_guest(vcpu->kvm))
 | |
| 		grow_ple_window(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
 | |
| 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
 | |
| 	 * never set PAUSE_EXITING and just set PLE if supported,
 | |
| 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
 | |
| 	 */
 | |
| 	kvm_vcpu_on_spin(vcpu, true);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_nop(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_mwait(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
 | |
| 	return handle_nop(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_invalid_op(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_monitor_trap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_monitor(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
 | |
| 	return handle_nop(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 | |
|  * set the success or error code of an emulated VMX instruction, as specified
 | |
|  * by Vol 2B, VMX Instruction Reference, "Conventions".
 | |
|  */
 | |
| static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
 | |
| 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 | |
| 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
 | |
| }
 | |
| 
 | |
| static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 | |
| 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
 | |
| 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
 | |
| 			| X86_EFLAGS_CF);
 | |
| }
 | |
| 
 | |
| static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
 | |
| 					u32 vm_instruction_error)
 | |
| {
 | |
| 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
 | |
| 		/*
 | |
| 		 * failValid writes the error number to the current VMCS, which
 | |
| 		 * can't be done there isn't a current VMCS.
 | |
| 		 */
 | |
| 		nested_vmx_failInvalid(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 | |
| 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 | |
| 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
 | |
| 			| X86_EFLAGS_ZF);
 | |
| 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
 | |
| 	/*
 | |
| 	 * We don't need to force a shadow sync because
 | |
| 	 * VM_INSTRUCTION_ERROR is not shadowed
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
 | |
| {
 | |
| 	/* TODO: not to reset guest simply here. */
 | |
| 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx =
 | |
| 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
 | |
| 
 | |
| 	vmx->nested.preemption_timer_expired = true;
 | |
| 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
 | |
| 	kvm_vcpu_kick(&vmx->vcpu);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decode the memory-address operand of a vmx instruction, as recorded on an
 | |
|  * exit caused by such an instruction (run by a guest hypervisor).
 | |
|  * On success, returns 0. When the operand is invalid, returns 1 and throws
 | |
|  * #UD or #GP.
 | |
|  */
 | |
| static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
 | |
| 				 unsigned long exit_qualification,
 | |
| 				 u32 vmx_instruction_info, bool wr, gva_t *ret)
 | |
| {
 | |
| 	gva_t off;
 | |
| 	bool exn;
 | |
| 	struct kvm_segment s;
 | |
| 
 | |
| 	/*
 | |
| 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
 | |
| 	 * Execution", on an exit, vmx_instruction_info holds most of the
 | |
| 	 * addressing components of the operand. Only the displacement part
 | |
| 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
 | |
| 	 * For how an actual address is calculated from all these components,
 | |
| 	 * refer to Vol. 1, "Operand Addressing".
 | |
| 	 */
 | |
| 	int  scaling = vmx_instruction_info & 3;
 | |
| 	int  addr_size = (vmx_instruction_info >> 7) & 7;
 | |
| 	bool is_reg = vmx_instruction_info & (1u << 10);
 | |
| 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
 | |
| 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
 | |
| 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
 | |
| 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
 | |
| 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
 | |
| 
 | |
| 	if (is_reg) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Addr = segment_base + offset */
 | |
| 	/* offset = base + [index * scale] + displacement */
 | |
| 	off = exit_qualification; /* holds the displacement */
 | |
| 	if (addr_size == 1)
 | |
| 		off = (gva_t)sign_extend64(off, 31);
 | |
| 	else if (addr_size == 0)
 | |
| 		off = (gva_t)sign_extend64(off, 15);
 | |
| 	if (base_is_valid)
 | |
| 		off += kvm_register_read(vcpu, base_reg);
 | |
| 	if (index_is_valid)
 | |
| 		off += kvm_register_read(vcpu, index_reg)<<scaling;
 | |
| 	vmx_get_segment(vcpu, &s, seg_reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * The effective address, i.e. @off, of a memory operand is truncated
 | |
| 	 * based on the address size of the instruction.  Note that this is
 | |
| 	 * the *effective address*, i.e. the address prior to accounting for
 | |
| 	 * the segment's base.
 | |
| 	 */
 | |
| 	if (addr_size == 1) /* 32 bit */
 | |
| 		off &= 0xffffffff;
 | |
| 	else if (addr_size == 0) /* 16 bit */
 | |
| 		off &= 0xffff;
 | |
| 
 | |
| 	/* Checks for #GP/#SS exceptions. */
 | |
| 	exn = false;
 | |
| 	if (is_long_mode(vcpu)) {
 | |
| 		/*
 | |
| 		 * The virtual/linear address is never truncated in 64-bit
 | |
| 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
 | |
| 		 * address when using FS/GS with a non-zero base.
 | |
| 		 */
 | |
| 		*ret = s.base + off;
 | |
| 
 | |
| 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
 | |
| 		 * non-canonical form. This is the only check on the memory
 | |
| 		 * destination for long mode!
 | |
| 		 */
 | |
| 		exn = is_noncanonical_address(*ret, vcpu);
 | |
| 	} else if (is_protmode(vcpu)) {
 | |
| 		/*
 | |
| 		 * When not in long mode, the virtual/linear address is
 | |
| 		 * unconditionally truncated to 32 bits regardless of the
 | |
| 		 * address size.
 | |
| 		 */
 | |
| 		*ret = (s.base + off) & 0xffffffff;
 | |
| 
 | |
| 		/* Protected mode: apply checks for segment validity in the
 | |
| 		 * following order:
 | |
| 		 * - segment type check (#GP(0) may be thrown)
 | |
| 		 * - usability check (#GP(0)/#SS(0))
 | |
| 		 * - limit check (#GP(0)/#SS(0))
 | |
| 		 */
 | |
| 		if (wr)
 | |
| 			/* #GP(0) if the destination operand is located in a
 | |
| 			 * read-only data segment or any code segment.
 | |
| 			 */
 | |
| 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
 | |
| 		else
 | |
| 			/* #GP(0) if the source operand is located in an
 | |
| 			 * execute-only code segment
 | |
| 			 */
 | |
| 			exn = ((s.type & 0xa) == 8);
 | |
| 		if (exn) {
 | |
| 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
 | |
| 		 */
 | |
| 		exn = (s.unusable != 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
 | |
| 		 * outside the segment limit.  All CPUs that support VMX ignore
 | |
| 		 * limit checks for flat segments, i.e. segments with base==0,
 | |
| 		 * limit==0xffffffff and of type expand-up data or code.
 | |
| 		 */
 | |
| 		if (!(s.base == 0 && s.limit == 0xffffffff &&
 | |
| 		     ((s.type & 8) || !(s.type & 4))))
 | |
| 			exn = exn || (off + sizeof(u64) > s.limit);
 | |
| 	}
 | |
| 	if (exn) {
 | |
| 		kvm_queue_exception_e(vcpu,
 | |
| 				      seg_reg == VCPU_SREG_SS ?
 | |
| 						SS_VECTOR : GP_VECTOR,
 | |
| 				      0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
 | |
| {
 | |
| 	gva_t gva;
 | |
| 	struct x86_exception e;
 | |
| 
 | |
| 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
 | |
| 			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
 | |
| 		kvm_inject_page_fault(vcpu, &e);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a shadow VMCS and associate it with the currently loaded
 | |
|  * VMCS, unless such a shadow VMCS already exists. The newly allocated
 | |
|  * VMCS is also VMCLEARed, so that it is ready for use.
 | |
|  */
 | |
| static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should allocate a shadow vmcs for vmcs01 only when L1
 | |
| 	 * executes VMXON and free it when L1 executes VMXOFF.
 | |
| 	 * As it is invalid to execute VMXON twice, we shouldn't reach
 | |
| 	 * here when vmcs01 already have an allocated shadow vmcs.
 | |
| 	 */
 | |
| 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
 | |
| 
 | |
| 	if (!loaded_vmcs->shadow_vmcs) {
 | |
| 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
 | |
| 		if (loaded_vmcs->shadow_vmcs)
 | |
| 			vmcs_clear(loaded_vmcs->shadow_vmcs);
 | |
| 	}
 | |
| 	return loaded_vmcs->shadow_vmcs;
 | |
| }
 | |
| 
 | |
| static int enter_vmx_operation(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int r;
 | |
| 
 | |
| 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
 | |
| 	if (r < 0)
 | |
| 		goto out_vmcs02;
 | |
| 
 | |
| 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
 | |
| 	if (!vmx->nested.cached_vmcs12)
 | |
| 		goto out_cached_vmcs12;
 | |
| 
 | |
| 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
 | |
| 	if (!vmx->nested.cached_shadow_vmcs12)
 | |
| 		goto out_cached_shadow_vmcs12;
 | |
| 
 | |
| 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
 | |
| 		goto out_shadow_vmcs;
 | |
| 
 | |
| 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
 | |
| 		     HRTIMER_MODE_REL_PINNED);
 | |
| 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
 | |
| 
 | |
| 	vmx->nested.vpid02 = allocate_vpid();
 | |
| 
 | |
| 	vmx->nested.vmxon = true;
 | |
| 	return 0;
 | |
| 
 | |
| out_shadow_vmcs:
 | |
| 	kfree(vmx->nested.cached_shadow_vmcs12);
 | |
| 
 | |
| out_cached_shadow_vmcs12:
 | |
| 	kfree(vmx->nested.cached_vmcs12);
 | |
| 
 | |
| out_cached_vmcs12:
 | |
| 	free_loaded_vmcs(&vmx->nested.vmcs02);
 | |
| 
 | |
| out_vmcs02:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emulate the VMXON instruction.
 | |
|  * Currently, we just remember that VMX is active, and do not save or even
 | |
|  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
 | |
|  * do not currently need to store anything in that guest-allocated memory
 | |
|  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
 | |
|  * argument is different from the VMXON pointer (which the spec says they do).
 | |
|  */
 | |
| static int handle_vmon(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int ret;
 | |
| 	gpa_t vmptr;
 | |
| 	struct page *page;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
 | |
| 		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
 | |
| 
 | |
| 	/*
 | |
| 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
 | |
| 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
 | |
| 	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
 | |
| 	 * Otherwise, we should fail with #UD.  But most faulting conditions
 | |
| 	 * have already been checked by hardware, prior to the VM-exit for
 | |
| 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
 | |
| 	 * that bit set to 1 in non-root mode.
 | |
| 	 */
 | |
| 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* CPL=0 must be checked manually. */
 | |
| 	if (vmx_get_cpl(vcpu)) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->nested.vmxon) {
 | |
| 		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
 | |
| 			!= VMXON_NEEDED_FEATURES) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * SDM 3: 24.11.5
 | |
| 	 * The first 4 bytes of VMXON region contain the supported
 | |
| 	 * VMCS revision identifier
 | |
| 	 *
 | |
| 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
 | |
| 	 * which replaces physical address width with 32
 | |
| 	 */
 | |
| 	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
 | |
| 		nested_vmx_failInvalid(vcpu);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
 | |
| 	if (is_error_page(page)) {
 | |
| 		nested_vmx_failInvalid(vcpu);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 	if (*(u32 *)kmap(page) != VMCS12_REVISION) {
 | |
| 		kunmap(page);
 | |
| 		kvm_release_page_clean(page);
 | |
| 		nested_vmx_failInvalid(vcpu);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 	kunmap(page);
 | |
| 	kvm_release_page_clean(page);
 | |
| 
 | |
| 	vmx->nested.vmxon_ptr = vmptr;
 | |
| 	ret = enter_vmx_operation(vcpu);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	nested_vmx_succeed(vcpu);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Intel's VMX Instruction Reference specifies a common set of prerequisites
 | |
|  * for running VMX instructions (except VMXON, whose prerequisites are
 | |
|  * slightly different). It also specifies what exception to inject otherwise.
 | |
|  * Note that many of these exceptions have priority over VM exits, so they
 | |
|  * don't have to be checked again here.
 | |
|  */
 | |
| static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!to_vmx(vcpu)->nested.vmxon) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (vmx_get_cpl(vcpu)) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
 | |
| 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
 | |
| 	vmx->nested.sync_shadow_vmcs = false;
 | |
| }
 | |
| 
 | |
| static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	if (vmx->nested.current_vmptr == -1ull)
 | |
| 		return;
 | |
| 
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		/* copy to memory all shadowed fields in case
 | |
| 		   they were modified */
 | |
| 		copy_shadow_to_vmcs12(vmx);
 | |
| 		vmx_disable_shadow_vmcs(vmx);
 | |
| 	}
 | |
| 	vmx->nested.posted_intr_nv = -1;
 | |
| 
 | |
| 	/* Flush VMCS12 to guest memory */
 | |
| 	kvm_vcpu_write_guest_page(&vmx->vcpu,
 | |
| 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
 | |
| 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
 | |
| 
 | |
| 	vmx->nested.current_vmptr = -1ull;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 | |
|  * just stops using VMX.
 | |
|  */
 | |
| static void free_nested(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
 | |
| 		return;
 | |
| 
 | |
| 	kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, &vmx->vcpu);
 | |
| 
 | |
| 	hrtimer_cancel(&vmx->nested.preemption_timer);
 | |
| 	vmx->nested.vmxon = false;
 | |
| 	vmx->nested.smm.vmxon = false;
 | |
| 	free_vpid(vmx->nested.vpid02);
 | |
| 	vmx->nested.posted_intr_nv = -1;
 | |
| 	vmx->nested.current_vmptr = -1ull;
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		vmx_disable_shadow_vmcs(vmx);
 | |
| 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
 | |
| 		free_vmcs(vmx->vmcs01.shadow_vmcs);
 | |
| 		vmx->vmcs01.shadow_vmcs = NULL;
 | |
| 	}
 | |
| 	kfree(vmx->nested.cached_vmcs12);
 | |
| 	kfree(vmx->nested.cached_shadow_vmcs12);
 | |
| 	/* Unpin physical memory we referred to in the vmcs02 */
 | |
| 	if (vmx->nested.apic_access_page) {
 | |
| 		kvm_release_page_dirty(vmx->nested.apic_access_page);
 | |
| 		vmx->nested.apic_access_page = NULL;
 | |
| 	}
 | |
| 	if (vmx->nested.virtual_apic_page) {
 | |
| 		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
 | |
| 		vmx->nested.virtual_apic_page = NULL;
 | |
| 	}
 | |
| 	if (vmx->nested.pi_desc_page) {
 | |
| 		kunmap(vmx->nested.pi_desc_page);
 | |
| 		kvm_release_page_dirty(vmx->nested.pi_desc_page);
 | |
| 		vmx->nested.pi_desc_page = NULL;
 | |
| 		vmx->nested.pi_desc = NULL;
 | |
| 	}
 | |
| 
 | |
| 	free_loaded_vmcs(&vmx->nested.vmcs02);
 | |
| }
 | |
| 
 | |
| /* Emulate the VMXOFF instruction */
 | |
| static int handle_vmoff(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 	free_nested(to_vmx(vcpu));
 | |
| 	nested_vmx_succeed(vcpu);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| /* Emulate the VMCLEAR instruction */
 | |
| static int handle_vmclear(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 zero = 0;
 | |
| 	gpa_t vmptr;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
 | |
| 		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (vmptr == vmx->nested.vmxon_ptr) {
 | |
| 		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (vmptr == vmx->nested.current_vmptr)
 | |
| 		nested_release_vmcs12(vmx);
 | |
| 
 | |
| 	kvm_vcpu_write_guest(vcpu,
 | |
| 			vmptr + offsetof(struct vmcs12, launch_state),
 | |
| 			&zero, sizeof(zero));
 | |
| 
 | |
| 	nested_vmx_succeed(vcpu);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
 | |
| 
 | |
| /* Emulate the VMLAUNCH instruction */
 | |
| static int handle_vmlaunch(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return nested_vmx_run(vcpu, true);
 | |
| }
 | |
| 
 | |
| /* Emulate the VMRESUME instruction */
 | |
| static int handle_vmresume(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 
 | |
| 	return nested_vmx_run(vcpu, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a vmcs12 field. Since these can have varying lengths and we return
 | |
|  * one type, we chose the biggest type (u64) and zero-extend the return value
 | |
|  * to that size. Note that the caller, handle_vmread, might need to use only
 | |
|  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
 | |
|  * 64-bit fields are to be returned).
 | |
|  */
 | |
| static inline int vmcs12_read_any(struct vmcs12 *vmcs12,
 | |
| 				  unsigned long field, u64 *ret)
 | |
| {
 | |
| 	short offset = vmcs_field_to_offset(field);
 | |
| 	char *p;
 | |
| 
 | |
| 	if (offset < 0)
 | |
| 		return offset;
 | |
| 
 | |
| 	p = (char *)vmcs12 + offset;
 | |
| 
 | |
| 	switch (vmcs_field_width(field)) {
 | |
| 	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
 | |
| 		*ret = *((natural_width *)p);
 | |
| 		return 0;
 | |
| 	case VMCS_FIELD_WIDTH_U16:
 | |
| 		*ret = *((u16 *)p);
 | |
| 		return 0;
 | |
| 	case VMCS_FIELD_WIDTH_U32:
 | |
| 		*ret = *((u32 *)p);
 | |
| 		return 0;
 | |
| 	case VMCS_FIELD_WIDTH_U64:
 | |
| 		*ret = *((u64 *)p);
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
 | |
| 				   unsigned long field, u64 field_value){
 | |
| 	short offset = vmcs_field_to_offset(field);
 | |
| 	char *p = (char *)vmcs12 + offset;
 | |
| 	if (offset < 0)
 | |
| 		return offset;
 | |
| 
 | |
| 	switch (vmcs_field_width(field)) {
 | |
| 	case VMCS_FIELD_WIDTH_U16:
 | |
| 		*(u16 *)p = field_value;
 | |
| 		return 0;
 | |
| 	case VMCS_FIELD_WIDTH_U32:
 | |
| 		*(u32 *)p = field_value;
 | |
| 		return 0;
 | |
| 	case VMCS_FIELD_WIDTH_U64:
 | |
| 		*(u64 *)p = field_value;
 | |
| 		return 0;
 | |
| 	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
 | |
| 		*(natural_width *)p = field_value;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the writable VMCS shadow fields back to the VMCS12, in case
 | |
|  * they have been modified by the L1 guest. Note that the "read-only"
 | |
|  * VM-exit information fields are actually writable if the vCPU is
 | |
|  * configured to support "VMWRITE to any supported field in the VMCS."
 | |
|  */
 | |
| static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	const u16 *fields[] = {
 | |
| 		shadow_read_write_fields,
 | |
| 		shadow_read_only_fields
 | |
| 	};
 | |
| 	const int max_fields[] = {
 | |
| 		max_shadow_read_write_fields,
 | |
| 		max_shadow_read_only_fields
 | |
| 	};
 | |
| 	int i, q;
 | |
| 	unsigned long field;
 | |
| 	u64 field_value;
 | |
| 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
 | |
| 
 | |
| 	if (WARN_ON(!shadow_vmcs))
 | |
| 		return;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	vmcs_load(shadow_vmcs);
 | |
| 
 | |
| 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
 | |
| 		for (i = 0; i < max_fields[q]; i++) {
 | |
| 			field = fields[q][i];
 | |
| 			field_value = __vmcs_readl(field);
 | |
| 			vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Skip the VM-exit information fields if they are read-only.
 | |
| 		 */
 | |
| 		if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	vmcs_clear(shadow_vmcs);
 | |
| 	vmcs_load(vmx->loaded_vmcs->vmcs);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	const u16 *fields[] = {
 | |
| 		shadow_read_write_fields,
 | |
| 		shadow_read_only_fields
 | |
| 	};
 | |
| 	const int max_fields[] = {
 | |
| 		max_shadow_read_write_fields,
 | |
| 		max_shadow_read_only_fields
 | |
| 	};
 | |
| 	int i, q;
 | |
| 	unsigned long field;
 | |
| 	u64 field_value = 0;
 | |
| 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
 | |
| 
 | |
| 	if (WARN_ON(!shadow_vmcs))
 | |
| 		return;
 | |
| 
 | |
| 	vmcs_load(shadow_vmcs);
 | |
| 
 | |
| 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
 | |
| 		for (i = 0; i < max_fields[q]; i++) {
 | |
| 			field = fields[q][i];
 | |
| 			vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
 | |
| 			__vmcs_writel(field, field_value);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vmcs_clear(shadow_vmcs);
 | |
| 	vmcs_load(vmx->loaded_vmcs->vmcs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
 | |
|  * used before) all generate the same failure when it is missing.
 | |
|  */
 | |
| static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	if (vmx->nested.current_vmptr == -1ull) {
 | |
| 		nested_vmx_failInvalid(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_vmread(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long field;
 | |
| 	u64 field_value;
 | |
| 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	gva_t gva = 0;
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	struct x86_exception e;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!nested_vmx_check_vmcs12(vcpu))
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	if (!is_guest_mode(vcpu))
 | |
| 		vmcs12 = get_vmcs12(vcpu);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
 | |
| 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
 | |
| 		 */
 | |
| 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
 | |
| 			nested_vmx_failInvalid(vcpu);
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		}
 | |
| 		vmcs12 = get_shadow_vmcs12(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/* Decode instruction info and find the field to read */
 | |
| 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
 | |
| 	/* Read the field, zero-extended to a u64 field_value */
 | |
| 	if (vmcs12_read_any(vmcs12, field, &field_value) < 0) {
 | |
| 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Now copy part of this value to register or memory, as requested.
 | |
| 	 * Note that the number of bits actually copied is 32 or 64 depending
 | |
| 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
 | |
| 	 */
 | |
| 	if (vmx_instruction_info & (1u << 10)) {
 | |
| 		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
 | |
| 			field_value);
 | |
| 	} else {
 | |
| 		if (get_vmx_mem_address(vcpu, exit_qualification,
 | |
| 				vmx_instruction_info, true, &gva))
 | |
| 			return 1;
 | |
| 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
 | |
| 		if (kvm_write_guest_virt_system(vcpu, gva, &field_value,
 | |
| 						(is_long_mode(vcpu) ? 8 : 4),
 | |
| 						&e))
 | |
| 			kvm_inject_page_fault(vcpu, &e);
 | |
| 	}
 | |
| 
 | |
| 	nested_vmx_succeed(vcpu);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int handle_vmwrite(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long field;
 | |
| 	gva_t gva;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 
 | |
| 	/* The value to write might be 32 or 64 bits, depending on L1's long
 | |
| 	 * mode, and eventually we need to write that into a field of several
 | |
| 	 * possible lengths. The code below first zero-extends the value to 64
 | |
| 	 * bit (field_value), and then copies only the appropriate number of
 | |
| 	 * bits into the vmcs12 field.
 | |
| 	 */
 | |
| 	u64 field_value = 0;
 | |
| 	struct x86_exception e;
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!nested_vmx_check_vmcs12(vcpu))
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	if (vmx_instruction_info & (1u << 10))
 | |
| 		field_value = kvm_register_readl(vcpu,
 | |
| 			(((vmx_instruction_info) >> 3) & 0xf));
 | |
| 	else {
 | |
| 		if (get_vmx_mem_address(vcpu, exit_qualification,
 | |
| 				vmx_instruction_info, false, &gva))
 | |
| 			return 1;
 | |
| 		if (kvm_read_guest_virt(vcpu, gva, &field_value,
 | |
| 					(is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
 | |
| 			kvm_inject_page_fault(vcpu, &e);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
 | |
| 	/*
 | |
| 	 * If the vCPU supports "VMWRITE to any supported field in the
 | |
| 	 * VMCS," then the "read-only" fields are actually read/write.
 | |
| 	 */
 | |
| 	if (vmcs_field_readonly(field) &&
 | |
| 	    !nested_cpu_has_vmwrite_any_field(vcpu)) {
 | |
| 		nested_vmx_failValid(vcpu,
 | |
| 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (!is_guest_mode(vcpu))
 | |
| 		vmcs12 = get_vmcs12(vcpu);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
 | |
| 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
 | |
| 		 */
 | |
| 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
 | |
| 			nested_vmx_failInvalid(vcpu);
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		}
 | |
| 		vmcs12 = get_shadow_vmcs12(vcpu);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (vmcs12_write_any(vmcs12, field, field_value) < 0) {
 | |
| 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not track vmcs12 dirty-state if in guest-mode
 | |
| 	 * as we actually dirty shadow vmcs12 instead of vmcs12.
 | |
| 	 */
 | |
| 	if (!is_guest_mode(vcpu)) {
 | |
| 		switch (field) {
 | |
| #define SHADOW_FIELD_RW(x) case x:
 | |
| #include "vmx_shadow_fields.h"
 | |
| 			/*
 | |
| 			 * The fields that can be updated by L1 without a vmexit are
 | |
| 			 * always updated in the vmcs02, the others go down the slow
 | |
| 			 * path of prepare_vmcs02.
 | |
| 			 */
 | |
| 			break;
 | |
| 		default:
 | |
| 			vmx->nested.dirty_vmcs12 = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nested_vmx_succeed(vcpu);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
 | |
| {
 | |
| 	vmx->nested.current_vmptr = vmptr;
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
 | |
| 			      SECONDARY_EXEC_SHADOW_VMCS);
 | |
| 		vmcs_write64(VMCS_LINK_POINTER,
 | |
| 			     __pa(vmx->vmcs01.shadow_vmcs));
 | |
| 		vmx->nested.sync_shadow_vmcs = true;
 | |
| 	}
 | |
| 	vmx->nested.dirty_vmcs12 = true;
 | |
| }
 | |
| 
 | |
| /* Emulate the VMPTRLD instruction */
 | |
| static int handle_vmptrld(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	gpa_t vmptr;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
 | |
| 		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (vmptr == vmx->nested.vmxon_ptr) {
 | |
| 		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->nested.current_vmptr != vmptr) {
 | |
| 		struct vmcs12 *new_vmcs12;
 | |
| 		struct page *page;
 | |
| 		page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
 | |
| 		if (is_error_page(page)) {
 | |
| 			nested_vmx_failInvalid(vcpu);
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		}
 | |
| 		new_vmcs12 = kmap(page);
 | |
| 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
 | |
| 		    (new_vmcs12->hdr.shadow_vmcs &&
 | |
| 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
 | |
| 			kunmap(page);
 | |
| 			kvm_release_page_clean(page);
 | |
| 			nested_vmx_failValid(vcpu,
 | |
| 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		}
 | |
| 
 | |
| 		nested_release_vmcs12(vmx);
 | |
| 		/*
 | |
| 		 * Load VMCS12 from guest memory since it is not already
 | |
| 		 * cached.
 | |
| 		 */
 | |
| 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
 | |
| 		kunmap(page);
 | |
| 		kvm_release_page_clean(page);
 | |
| 
 | |
| 		set_current_vmptr(vmx, vmptr);
 | |
| 	}
 | |
| 
 | |
| 	nested_vmx_succeed(vcpu);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| /* Emulate the VMPTRST instruction */
 | |
| static int handle_vmptrst(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
 | |
| 	struct x86_exception e;
 | |
| 	gva_t gva;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
 | |
| 		return 1;
 | |
| 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
 | |
| 	if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
 | |
| 					sizeof(gpa_t), &e)) {
 | |
| 		kvm_inject_page_fault(vcpu, &e);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	nested_vmx_succeed(vcpu);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| /* Emulate the INVEPT instruction */
 | |
| static int handle_invept(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 vmx_instruction_info, types;
 | |
| 	unsigned long type;
 | |
| 	gva_t gva;
 | |
| 	struct x86_exception e;
 | |
| 	struct {
 | |
| 		u64 eptp, gpa;
 | |
| 	} operand;
 | |
| 
 | |
| 	if (!(vmx->nested.msrs.secondary_ctls_high &
 | |
| 	      SECONDARY_EXEC_ENABLE_EPT) ||
 | |
| 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
 | |
| 
 | |
| 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
 | |
| 
 | |
| 	if (type >= 32 || !(types & (1 << type))) {
 | |
| 		nested_vmx_failValid(vcpu,
 | |
| 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/* According to the Intel VMX instruction reference, the memory
 | |
| 	 * operand is read even if it isn't needed (e.g., for type==global)
 | |
| 	 */
 | |
| 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
 | |
| 			vmx_instruction_info, false, &gva))
 | |
| 		return 1;
 | |
| 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
 | |
| 		kvm_inject_page_fault(vcpu, &e);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case VMX_EPT_EXTENT_GLOBAL:
 | |
| 	/*
 | |
| 	 * TODO: track mappings and invalidate
 | |
| 	 * single context requests appropriately
 | |
| 	 */
 | |
| 	case VMX_EPT_EXTENT_CONTEXT:
 | |
| 		kvm_mmu_sync_roots(vcpu);
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 | |
| 		nested_vmx_succeed(vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG_ON(1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_invvpid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 vmx_instruction_info;
 | |
| 	unsigned long type, types;
 | |
| 	gva_t gva;
 | |
| 	struct x86_exception e;
 | |
| 	struct {
 | |
| 		u64 vpid;
 | |
| 		u64 gla;
 | |
| 	} operand;
 | |
| 
 | |
| 	if (!(vmx->nested.msrs.secondary_ctls_high &
 | |
| 	      SECONDARY_EXEC_ENABLE_VPID) ||
 | |
| 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
 | |
| 
 | |
| 	types = (vmx->nested.msrs.vpid_caps &
 | |
| 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
 | |
| 
 | |
| 	if (type >= 32 || !(types & (1 << type))) {
 | |
| 		nested_vmx_failValid(vcpu,
 | |
| 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/* according to the intel vmx instruction reference, the memory
 | |
| 	 * operand is read even if it isn't needed (e.g., for type==global)
 | |
| 	 */
 | |
| 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
 | |
| 			vmx_instruction_info, false, &gva))
 | |
| 		return 1;
 | |
| 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
 | |
| 		kvm_inject_page_fault(vcpu, &e);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (operand.vpid >> 16) {
 | |
| 		nested_vmx_failValid(vcpu,
 | |
| 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
 | |
| 		if (!operand.vpid ||
 | |
| 		    is_noncanonical_address(operand.gla, vcpu)) {
 | |
| 			nested_vmx_failValid(vcpu,
 | |
| 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		}
 | |
| 		if (cpu_has_vmx_invvpid_individual_addr() &&
 | |
| 		    vmx->nested.vpid02) {
 | |
| 			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
 | |
| 				vmx->nested.vpid02, operand.gla);
 | |
| 		} else
 | |
| 			__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
 | |
| 		break;
 | |
| 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
 | |
| 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
 | |
| 		if (!operand.vpid) {
 | |
| 			nested_vmx_failValid(vcpu,
 | |
| 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 			return kvm_skip_emulated_instruction(vcpu);
 | |
| 		}
 | |
| 		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
 | |
| 		break;
 | |
| 	case VMX_VPID_EXTENT_ALL_CONTEXT:
 | |
| 		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	nested_vmx_succeed(vcpu);
 | |
| 
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_invpcid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 vmx_instruction_info;
 | |
| 	unsigned long type;
 | |
| 	bool pcid_enabled;
 | |
| 	gva_t gva;
 | |
| 	struct x86_exception e;
 | |
| 	unsigned i;
 | |
| 	unsigned long roots_to_free = 0;
 | |
| 	struct {
 | |
| 		u64 pcid;
 | |
| 		u64 gla;
 | |
| 	} operand;
 | |
| 
 | |
| 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
 | |
| 
 | |
| 	if (type > 3) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* According to the Intel instruction reference, the memory operand
 | |
| 	 * is read even if it isn't needed (e.g., for type==all)
 | |
| 	 */
 | |
| 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
 | |
| 				vmx_instruction_info, false, &gva))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
 | |
| 		kvm_inject_page_fault(vcpu, &e);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (operand.pcid >> 12 != 0) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case INVPCID_TYPE_INDIV_ADDR:
 | |
| 		if ((!pcid_enabled && (operand.pcid != 0)) ||
 | |
| 		    is_noncanonical_address(operand.gla, vcpu)) {
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	case INVPCID_TYPE_SINGLE_CTXT:
 | |
| 		if (!pcid_enabled && (operand.pcid != 0)) {
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
 | |
| 			kvm_mmu_sync_roots(vcpu);
 | |
| 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu.prev_roots[i].cr3)
 | |
| 			    == operand.pcid)
 | |
| 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
 | |
| 
 | |
| 		kvm_mmu_free_roots(vcpu, roots_to_free);
 | |
| 		/*
 | |
| 		 * If neither the current cr3 nor any of the prev_roots use the
 | |
| 		 * given PCID, then nothing needs to be done here because a
 | |
| 		 * resync will happen anyway before switching to any other CR3.
 | |
| 		 */
 | |
| 
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	case INVPCID_TYPE_ALL_NON_GLOBAL:
 | |
| 		/*
 | |
| 		 * Currently, KVM doesn't mark global entries in the shadow
 | |
| 		 * page tables, so a non-global flush just degenerates to a
 | |
| 		 * global flush. If needed, we could optimize this later by
 | |
| 		 * keeping track of global entries in shadow page tables.
 | |
| 		 */
 | |
| 
 | |
| 		/* fall-through */
 | |
| 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
 | |
| 		kvm_mmu_unload(vcpu);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	default:
 | |
| 		BUG(); /* We have already checked above that type <= 3 */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int handle_pml_full(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qualification;
 | |
| 
 | |
| 	trace_kvm_pml_full(vcpu->vcpu_id);
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 
 | |
| 	/*
 | |
| 	 * PML buffer FULL happened while executing iret from NMI,
 | |
| 	 * "blocked by NMI" bit has to be set before next VM entry.
 | |
| 	 */
 | |
| 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
 | |
| 			enable_vnmi &&
 | |
| 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
 | |
| 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 				GUEST_INTR_STATE_NMI);
 | |
| 
 | |
| 	/*
 | |
| 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
 | |
| 	 * here.., and there's no userspace involvement needed for PML.
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_preemption_timer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!to_vmx(vcpu)->req_immediate_exit)
 | |
| 		kvm_lapic_expired_hv_timer(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
 | |
| 
 | |
| 	/* Check for memory type validity */
 | |
| 	switch (address & VMX_EPTP_MT_MASK) {
 | |
| 	case VMX_EPTP_MT_UC:
 | |
| 		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
 | |
| 			return false;
 | |
| 		break;
 | |
| 	case VMX_EPTP_MT_WB:
 | |
| 		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
 | |
| 			return false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* only 4 levels page-walk length are valid */
 | |
| 	if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Reserved bits should not be set */
 | |
| 	if (address >> maxphyaddr || ((address >> 7) & 0x1f))
 | |
| 		return false;
 | |
| 
 | |
| 	/* AD, if set, should be supported */
 | |
| 	if (address & VMX_EPTP_AD_ENABLE_BIT) {
 | |
| 		if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
 | |
| 				     struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
 | |
| 	u64 address;
 | |
| 	bool accessed_dirty;
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
 | |
| 	    !nested_cpu_has_ept(vmcs12))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (index >= VMFUNC_EPTP_ENTRIES)
 | |
| 		return 1;
 | |
| 
 | |
| 
 | |
| 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
 | |
| 				     &address, index * 8, 8))
 | |
| 		return 1;
 | |
| 
 | |
| 	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the (L2) guest does a vmfunc to the currently
 | |
| 	 * active ept pointer, we don't have to do anything else
 | |
| 	 */
 | |
| 	if (vmcs12->ept_pointer != address) {
 | |
| 		if (!valid_ept_address(vcpu, address))
 | |
| 			return 1;
 | |
| 
 | |
| 		kvm_mmu_unload(vcpu);
 | |
| 		mmu->ept_ad = accessed_dirty;
 | |
| 		mmu->base_role.ad_disabled = !accessed_dirty;
 | |
| 		vmcs12->ept_pointer = address;
 | |
| 		/*
 | |
| 		 * TODO: Check what's the correct approach in case
 | |
| 		 * mmu reload fails. Currently, we just let the next
 | |
| 		 * reload potentially fail
 | |
| 		 */
 | |
| 		kvm_mmu_reload(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_vmfunc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
 | |
| 
 | |
| 	/*
 | |
| 	 * VMFUNC is only supported for nested guests, but we always enable the
 | |
| 	 * secondary control for simplicity; for non-nested mode, fake that we
 | |
| 	 * didn't by injecting #UD.
 | |
| 	 */
 | |
| 	if (!is_guest_mode(vcpu)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	vmcs12 = get_vmcs12(vcpu);
 | |
| 	if ((vmcs12->vm_function_control & (1 << function)) == 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	switch (function) {
 | |
| 	case 0:
 | |
| 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
 | |
| 			goto fail;
 | |
| 		break;
 | |
| 	default:
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| fail:
 | |
| 	nested_vmx_vmexit(vcpu, vmx->exit_reason,
 | |
| 			  vmcs_read32(VM_EXIT_INTR_INFO),
 | |
| 			  vmcs_readl(EXIT_QUALIFICATION));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_encls(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * SGX virtualization is not yet supported.  There is no software
 | |
| 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
 | |
| 	 * to prevent the guest from executing ENCLS.
 | |
| 	 */
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The exit handlers return 1 if the exit was handled fully and guest execution
 | |
|  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
 | |
|  * to be done to userspace and return 0.
 | |
|  */
 | |
| static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
 | |
| 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
 | |
| 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
 | |
| 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
 | |
| 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
 | |
| 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
 | |
| 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
 | |
| 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
 | |
| 	[EXIT_REASON_CPUID]                   = handle_cpuid,
 | |
| 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
 | |
| 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
 | |
| 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
 | |
| 	[EXIT_REASON_HLT]                     = handle_halt,
 | |
| 	[EXIT_REASON_INVD]		      = handle_invd,
 | |
| 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
 | |
| 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
 | |
| 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
 | |
| 	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
 | |
| 	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
 | |
| 	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
 | |
| 	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
 | |
| 	[EXIT_REASON_VMREAD]                  = handle_vmread,
 | |
| 	[EXIT_REASON_VMRESUME]                = handle_vmresume,
 | |
| 	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
 | |
| 	[EXIT_REASON_VMOFF]                   = handle_vmoff,
 | |
| 	[EXIT_REASON_VMON]                    = handle_vmon,
 | |
| 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
 | |
| 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
 | |
| 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
 | |
| 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
 | |
| 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
 | |
| 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
 | |
| 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
 | |
| 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
 | |
| 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
 | |
| 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
 | |
| 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
 | |
| 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
 | |
| 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
 | |
| 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
 | |
| 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
 | |
| 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
 | |
| 	[EXIT_REASON_INVEPT]                  = handle_invept,
 | |
| 	[EXIT_REASON_INVVPID]                 = handle_invvpid,
 | |
| 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
 | |
| 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
 | |
| 	[EXIT_REASON_XSAVES]                  = handle_xsaves,
 | |
| 	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
 | |
| 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
 | |
| 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
 | |
| 	[EXIT_REASON_VMFUNC]                  = handle_vmfunc,
 | |
| 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
 | |
| 	[EXIT_REASON_ENCLS]		      = handle_encls,
 | |
| };
 | |
| 
 | |
| static const int kvm_vmx_max_exit_handlers =
 | |
| 	ARRAY_SIZE(kvm_vmx_exit_handlers);
 | |
| 
 | |
| static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	unsigned long exit_qualification;
 | |
| 	gpa_t bitmap, last_bitmap;
 | |
| 	unsigned int port;
 | |
| 	int size;
 | |
| 	u8 b;
 | |
| 
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
 | |
| 
 | |
| 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 
 | |
| 	port = exit_qualification >> 16;
 | |
| 	size = (exit_qualification & 7) + 1;
 | |
| 
 | |
| 	last_bitmap = (gpa_t)-1;
 | |
| 	b = -1;
 | |
| 
 | |
| 	while (size > 0) {
 | |
| 		if (port < 0x8000)
 | |
| 			bitmap = vmcs12->io_bitmap_a;
 | |
| 		else if (port < 0x10000)
 | |
| 			bitmap = vmcs12->io_bitmap_b;
 | |
| 		else
 | |
| 			return true;
 | |
| 		bitmap += (port & 0x7fff) / 8;
 | |
| 
 | |
| 		if (last_bitmap != bitmap)
 | |
| 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
 | |
| 				return true;
 | |
| 		if (b & (1 << (port & 7)))
 | |
| 			return true;
 | |
| 
 | |
| 		port++;
 | |
| 		size--;
 | |
| 		last_bitmap = bitmap;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
 | |
|  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
 | |
|  * disinterest in the current event (read or write a specific MSR) by using an
 | |
|  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
 | |
|  */
 | |
| static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
 | |
| 	struct vmcs12 *vmcs12, u32 exit_reason)
 | |
| {
 | |
| 	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
 | |
| 	gpa_t bitmap;
 | |
| 
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
 | |
| 	 * for the four combinations of read/write and low/high MSR numbers.
 | |
| 	 * First we need to figure out which of the four to use:
 | |
| 	 */
 | |
| 	bitmap = vmcs12->msr_bitmap;
 | |
| 	if (exit_reason == EXIT_REASON_MSR_WRITE)
 | |
| 		bitmap += 2048;
 | |
| 	if (msr_index >= 0xc0000000) {
 | |
| 		msr_index -= 0xc0000000;
 | |
| 		bitmap += 1024;
 | |
| 	}
 | |
| 
 | |
| 	/* Then read the msr_index'th bit from this bitmap: */
 | |
| 	if (msr_index < 1024*8) {
 | |
| 		unsigned char b;
 | |
| 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
 | |
| 			return true;
 | |
| 		return 1 & (b >> (msr_index & 7));
 | |
| 	} else
 | |
| 		return true; /* let L1 handle the wrong parameter */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
 | |
|  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
 | |
|  * intercept (via guest_host_mask etc.) the current event.
 | |
|  */
 | |
| static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
 | |
| 	struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	int cr = exit_qualification & 15;
 | |
| 	int reg;
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	switch ((exit_qualification >> 4) & 3) {
 | |
| 	case 0: /* mov to cr */
 | |
| 		reg = (exit_qualification >> 8) & 15;
 | |
| 		val = kvm_register_readl(vcpu, reg);
 | |
| 		switch (cr) {
 | |
| 		case 0:
 | |
| 			if (vmcs12->cr0_guest_host_mask &
 | |
| 			    (val ^ vmcs12->cr0_read_shadow))
 | |
| 				return true;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			if ((vmcs12->cr3_target_count >= 1 &&
 | |
| 					vmcs12->cr3_target_value0 == val) ||
 | |
| 				(vmcs12->cr3_target_count >= 2 &&
 | |
| 					vmcs12->cr3_target_value1 == val) ||
 | |
| 				(vmcs12->cr3_target_count >= 3 &&
 | |
| 					vmcs12->cr3_target_value2 == val) ||
 | |
| 				(vmcs12->cr3_target_count >= 4 &&
 | |
| 					vmcs12->cr3_target_value3 == val))
 | |
| 				return false;
 | |
| 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
 | |
| 				return true;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			if (vmcs12->cr4_guest_host_mask &
 | |
| 			    (vmcs12->cr4_read_shadow ^ val))
 | |
| 				return true;
 | |
| 			break;
 | |
| 		case 8:
 | |
| 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
 | |
| 				return true;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 2: /* clts */
 | |
| 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
 | |
| 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
 | |
| 			return true;
 | |
| 		break;
 | |
| 	case 1: /* mov from cr */
 | |
| 		switch (cr) {
 | |
| 		case 3:
 | |
| 			if (vmcs12->cpu_based_vm_exec_control &
 | |
| 			    CPU_BASED_CR3_STORE_EXITING)
 | |
| 				return true;
 | |
| 			break;
 | |
| 		case 8:
 | |
| 			if (vmcs12->cpu_based_vm_exec_control &
 | |
| 			    CPU_BASED_CR8_STORE_EXITING)
 | |
| 				return true;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 3: /* lmsw */
 | |
| 		/*
 | |
| 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
 | |
| 		 * cr0. Other attempted changes are ignored, with no exit.
 | |
| 		 */
 | |
| 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
 | |
| 		if (vmcs12->cr0_guest_host_mask & 0xe &
 | |
| 		    (val ^ vmcs12->cr0_read_shadow))
 | |
| 			return true;
 | |
| 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
 | |
| 		    !(vmcs12->cr0_read_shadow & 0x1) &&
 | |
| 		    (val & 0x1))
 | |
| 			return true;
 | |
| 		break;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
 | |
| 	struct vmcs12 *vmcs12, gpa_t bitmap)
 | |
| {
 | |
| 	u32 vmx_instruction_info;
 | |
| 	unsigned long field;
 | |
| 	u8 b;
 | |
| 
 | |
| 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Decode instruction info and find the field to access */
 | |
| 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
 | |
| 
 | |
| 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
 | |
| 	if (field >> 15)
 | |
| 		return true;
 | |
| 
 | |
| 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
 | |
| 		return true;
 | |
| 
 | |
| 	return 1 & (b >> (field & 7));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
 | |
|  * should handle it ourselves in L0 (and then continue L2). Only call this
 | |
|  * when in is_guest_mode (L2).
 | |
|  */
 | |
| static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
 | |
| {
 | |
| 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	if (vmx->nested.nested_run_pending)
 | |
| 		return false;
 | |
| 
 | |
| 	if (unlikely(vmx->fail)) {
 | |
| 		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
 | |
| 				    vmcs_read32(VM_INSTRUCTION_ERROR));
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The host physical addresses of some pages of guest memory
 | |
| 	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
 | |
| 	 * Page). The CPU may write to these pages via their host
 | |
| 	 * physical address while L2 is running, bypassing any
 | |
| 	 * address-translation-based dirty tracking (e.g. EPT write
 | |
| 	 * protection).
 | |
| 	 *
 | |
| 	 * Mark them dirty on every exit from L2 to prevent them from
 | |
| 	 * getting out of sync with dirty tracking.
 | |
| 	 */
 | |
| 	nested_mark_vmcs12_pages_dirty(vcpu);
 | |
| 
 | |
| 	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
 | |
| 				vmcs_readl(EXIT_QUALIFICATION),
 | |
| 				vmx->idt_vectoring_info,
 | |
| 				intr_info,
 | |
| 				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
 | |
| 				KVM_ISA_VMX);
 | |
| 
 | |
| 	switch (exit_reason) {
 | |
| 	case EXIT_REASON_EXCEPTION_NMI:
 | |
| 		if (is_nmi(intr_info))
 | |
| 			return false;
 | |
| 		else if (is_page_fault(intr_info))
 | |
| 			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
 | |
| 		else if (is_no_device(intr_info) &&
 | |
| 			 !(vmcs12->guest_cr0 & X86_CR0_TS))
 | |
| 			return false;
 | |
| 		else if (is_debug(intr_info) &&
 | |
| 			 vcpu->guest_debug &
 | |
| 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
 | |
| 			return false;
 | |
| 		else if (is_breakpoint(intr_info) &&
 | |
| 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
 | |
| 			return false;
 | |
| 		return vmcs12->exception_bitmap &
 | |
| 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
 | |
| 	case EXIT_REASON_EXTERNAL_INTERRUPT:
 | |
| 		return false;
 | |
| 	case EXIT_REASON_TRIPLE_FAULT:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_PENDING_INTERRUPT:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
 | |
| 	case EXIT_REASON_NMI_WINDOW:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
 | |
| 	case EXIT_REASON_TASK_SWITCH:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_CPUID:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_HLT:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
 | |
| 	case EXIT_REASON_INVD:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_INVLPG:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
 | |
| 	case EXIT_REASON_RDPMC:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
 | |
| 	case EXIT_REASON_RDRAND:
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
 | |
| 	case EXIT_REASON_RDSEED:
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
 | |
| 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
 | |
| 	case EXIT_REASON_VMREAD:
 | |
| 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
 | |
| 			vmcs12->vmread_bitmap);
 | |
| 	case EXIT_REASON_VMWRITE:
 | |
| 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
 | |
| 			vmcs12->vmwrite_bitmap);
 | |
| 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
 | |
| 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
 | |
| 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
 | |
| 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
 | |
| 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
 | |
| 		/*
 | |
| 		 * VMX instructions trap unconditionally. This allows L1 to
 | |
| 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
 | |
| 		 */
 | |
| 		return true;
 | |
| 	case EXIT_REASON_CR_ACCESS:
 | |
| 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
 | |
| 	case EXIT_REASON_DR_ACCESS:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
 | |
| 	case EXIT_REASON_IO_INSTRUCTION:
 | |
| 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
 | |
| 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
 | |
| 	case EXIT_REASON_MSR_READ:
 | |
| 	case EXIT_REASON_MSR_WRITE:
 | |
| 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
 | |
| 	case EXIT_REASON_INVALID_STATE:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_MWAIT_INSTRUCTION:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
 | |
| 	case EXIT_REASON_MONITOR_TRAP_FLAG:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
 | |
| 	case EXIT_REASON_MONITOR_INSTRUCTION:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
 | |
| 	case EXIT_REASON_PAUSE_INSTRUCTION:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
 | |
| 			nested_cpu_has2(vmcs12,
 | |
| 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
 | |
| 	case EXIT_REASON_MCE_DURING_VMENTRY:
 | |
| 		return false;
 | |
| 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
 | |
| 	case EXIT_REASON_APIC_ACCESS:
 | |
| 	case EXIT_REASON_APIC_WRITE:
 | |
| 	case EXIT_REASON_EOI_INDUCED:
 | |
| 		/*
 | |
| 		 * The controls for "virtualize APIC accesses," "APIC-
 | |
| 		 * register virtualization," and "virtual-interrupt
 | |
| 		 * delivery" only come from vmcs12.
 | |
| 		 */
 | |
| 		return true;
 | |
| 	case EXIT_REASON_EPT_VIOLATION:
 | |
| 		/*
 | |
| 		 * L0 always deals with the EPT violation. If nested EPT is
 | |
| 		 * used, and the nested mmu code discovers that the address is
 | |
| 		 * missing in the guest EPT table (EPT12), the EPT violation
 | |
| 		 * will be injected with nested_ept_inject_page_fault()
 | |
| 		 */
 | |
| 		return false;
 | |
| 	case EXIT_REASON_EPT_MISCONFIG:
 | |
| 		/*
 | |
| 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
 | |
| 		 * table (shadow on EPT) or a merged EPT table that L0 built
 | |
| 		 * (EPT on EPT). So any problems with the structure of the
 | |
| 		 * table is L0's fault.
 | |
| 		 */
 | |
| 		return false;
 | |
| 	case EXIT_REASON_INVPCID:
 | |
| 		return
 | |
| 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
 | |
| 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
 | |
| 	case EXIT_REASON_WBINVD:
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
 | |
| 	case EXIT_REASON_XSETBV:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
 | |
| 		/*
 | |
| 		 * This should never happen, since it is not possible to
 | |
| 		 * set XSS to a non-zero value---neither in L1 nor in L2.
 | |
| 		 * If if it were, XSS would have to be checked against
 | |
| 		 * the XSS exit bitmap in vmcs12.
 | |
| 		 */
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
 | |
| 	case EXIT_REASON_PREEMPTION_TIMER:
 | |
| 		return false;
 | |
| 	case EXIT_REASON_PML_FULL:
 | |
| 		/* We emulate PML support to L1. */
 | |
| 		return false;
 | |
| 	case EXIT_REASON_VMFUNC:
 | |
| 		/* VM functions are emulated through L2->L0 vmexits. */
 | |
| 		return false;
 | |
| 	case EXIT_REASON_ENCLS:
 | |
| 		/* SGX is never exposed to L1 */
 | |
| 		return false;
 | |
| 	default:
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
 | |
| {
 | |
| 	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, the exit interruption info in exit_intr_info
 | |
| 	 * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
 | |
| 	 * we need to query the in-kernel LAPIC.
 | |
| 	 */
 | |
| 	WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
 | |
| 	if ((exit_intr_info &
 | |
| 	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
 | |
| 	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
 | |
| 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 		vmcs12->vm_exit_intr_error_code =
 | |
| 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
 | |
| 	}
 | |
| 
 | |
| 	nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
 | |
| 			  vmcs_readl(EXIT_QUALIFICATION));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
 | |
| {
 | |
| 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
 | |
| 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
 | |
| }
 | |
| 
 | |
| static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	if (vmx->pml_pg) {
 | |
| 		__free_page(vmx->pml_pg);
 | |
| 		vmx->pml_pg = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u64 *pml_buf;
 | |
| 	u16 pml_idx;
 | |
| 
 | |
| 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
 | |
| 
 | |
| 	/* Do nothing if PML buffer is empty */
 | |
| 	if (pml_idx == (PML_ENTITY_NUM - 1))
 | |
| 		return;
 | |
| 
 | |
| 	/* PML index always points to next available PML buffer entity */
 | |
| 	if (pml_idx >= PML_ENTITY_NUM)
 | |
| 		pml_idx = 0;
 | |
| 	else
 | |
| 		pml_idx++;
 | |
| 
 | |
| 	pml_buf = page_address(vmx->pml_pg);
 | |
| 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
 | |
| 		u64 gpa;
 | |
| 
 | |
| 		gpa = pml_buf[pml_idx];
 | |
| 		WARN_ON(gpa & (PAGE_SIZE - 1));
 | |
| 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	/* reset PML index */
 | |
| 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
 | |
|  * Called before reporting dirty_bitmap to userspace.
 | |
|  */
 | |
| static void kvm_flush_pml_buffers(struct kvm *kvm)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	/*
 | |
| 	 * We only need to kick vcpu out of guest mode here, as PML buffer
 | |
| 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
 | |
| 	 * vcpus running in guest are possible to have unflushed GPAs in PML
 | |
| 	 * buffer.
 | |
| 	 */
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_vcpu_kick(vcpu);
 | |
| }
 | |
| 
 | |
| static void vmx_dump_sel(char *name, uint32_t sel)
 | |
| {
 | |
| 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
 | |
| 	       name, vmcs_read16(sel),
 | |
| 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
 | |
| 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
 | |
| 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
 | |
| }
 | |
| 
 | |
| static void vmx_dump_dtsel(char *name, uint32_t limit)
 | |
| {
 | |
| 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
 | |
| 	       name, vmcs_read32(limit),
 | |
| 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
 | |
| }
 | |
| 
 | |
| static void dump_vmcs(void)
 | |
| {
 | |
| 	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
 | |
| 	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
 | |
| 	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
 | |
| 	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
 | |
| 	u32 secondary_exec_control = 0;
 | |
| 	unsigned long cr4 = vmcs_readl(GUEST_CR4);
 | |
| 	u64 efer = vmcs_read64(GUEST_IA32_EFER);
 | |
| 	int i, n;
 | |
| 
 | |
| 	if (cpu_has_secondary_exec_ctrls())
 | |
| 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
 | |
| 
 | |
| 	pr_err("*** Guest State ***\n");
 | |
| 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
 | |
| 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
 | |
| 	       vmcs_readl(CR0_GUEST_HOST_MASK));
 | |
| 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
 | |
| 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
 | |
| 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
 | |
| 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
 | |
| 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
 | |
| 	{
 | |
| 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
 | |
| 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
 | |
| 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
 | |
| 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
 | |
| 	}
 | |
| 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
 | |
| 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
 | |
| 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
 | |
| 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
 | |
| 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
 | |
| 	       vmcs_readl(GUEST_SYSENTER_ESP),
 | |
| 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
 | |
| 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
 | |
| 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
 | |
| 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
 | |
| 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
 | |
| 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
 | |
| 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
 | |
| 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
 | |
| 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
 | |
| 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
 | |
| 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
 | |
| 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
 | |
| 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
 | |
| 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
 | |
| 		       efer, vmcs_read64(GUEST_IA32_PAT));
 | |
| 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
 | |
| 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
 | |
| 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
 | |
| 	if (cpu_has_load_perf_global_ctrl &&
 | |
| 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
 | |
| 		pr_err("PerfGlobCtl = 0x%016llx\n",
 | |
| 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
 | |
| 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
 | |
| 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
 | |
| 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
 | |
| 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
 | |
| 	       vmcs_read32(GUEST_ACTIVITY_STATE));
 | |
| 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
 | |
| 		pr_err("InterruptStatus = %04x\n",
 | |
| 		       vmcs_read16(GUEST_INTR_STATUS));
 | |
| 
 | |
| 	pr_err("*** Host State ***\n");
 | |
| 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
 | |
| 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
 | |
| 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
 | |
| 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
 | |
| 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
 | |
| 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
 | |
| 	       vmcs_read16(HOST_TR_SELECTOR));
 | |
| 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
 | |
| 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
 | |
| 	       vmcs_readl(HOST_TR_BASE));
 | |
| 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
 | |
| 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
 | |
| 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
 | |
| 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
 | |
| 	       vmcs_readl(HOST_CR4));
 | |
| 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
 | |
| 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
 | |
| 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
 | |
| 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
 | |
| 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
 | |
| 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
 | |
| 		       vmcs_read64(HOST_IA32_EFER),
 | |
| 		       vmcs_read64(HOST_IA32_PAT));
 | |
| 	if (cpu_has_load_perf_global_ctrl &&
 | |
| 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
 | |
| 		pr_err("PerfGlobCtl = 0x%016llx\n",
 | |
| 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
 | |
| 
 | |
| 	pr_err("*** Control State ***\n");
 | |
| 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
 | |
| 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
 | |
| 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
 | |
| 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
 | |
| 	       vmcs_read32(EXCEPTION_BITMAP),
 | |
| 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
 | |
| 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
 | |
| 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
 | |
| 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
 | |
| 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
 | |
| 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
 | |
| 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
 | |
| 	       vmcs_read32(VM_EXIT_INTR_INFO),
 | |
| 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
 | |
| 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
 | |
| 	pr_err("        reason=%08x qualification=%016lx\n",
 | |
| 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
 | |
| 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
 | |
| 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
 | |
| 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
 | |
| 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
 | |
| 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
 | |
| 		pr_err("TSC Multiplier = 0x%016llx\n",
 | |
| 		       vmcs_read64(TSC_MULTIPLIER));
 | |
| 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
 | |
| 		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
 | |
| 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
 | |
| 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
 | |
| 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
 | |
| 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
 | |
| 	n = vmcs_read32(CR3_TARGET_COUNT);
 | |
| 	for (i = 0; i + 1 < n; i += 4)
 | |
| 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
 | |
| 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
 | |
| 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
 | |
| 	if (i < n)
 | |
| 		pr_err("CR3 target%u=%016lx\n",
 | |
| 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
 | |
| 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
 | |
| 		pr_err("PLE Gap=%08x Window=%08x\n",
 | |
| 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
 | |
| 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
 | |
| 		pr_err("Virtual processor ID = 0x%04x\n",
 | |
| 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The guest has exited.  See if we can fix it or if we need userspace
 | |
|  * assistance.
 | |
|  */
 | |
| static int vmx_handle_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 exit_reason = vmx->exit_reason;
 | |
| 	u32 vectoring_info = vmx->idt_vectoring_info;
 | |
| 
 | |
| 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
 | |
| 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
 | |
| 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
 | |
| 	 * mode as if vcpus is in root mode, the PML buffer must has been
 | |
| 	 * flushed already.
 | |
| 	 */
 | |
| 	if (enable_pml)
 | |
| 		vmx_flush_pml_buffer(vcpu);
 | |
| 
 | |
| 	/* If guest state is invalid, start emulating */
 | |
| 	if (vmx->emulation_required)
 | |
| 		return handle_invalid_guest_state(vcpu);
 | |
| 
 | |
| 	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
 | |
| 		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
 | |
| 
 | |
| 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
 | |
| 		dump_vmcs();
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 | |
| 		vcpu->run->fail_entry.hardware_entry_failure_reason
 | |
| 			= exit_reason;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vmx->fail)) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 | |
| 		vcpu->run->fail_entry.hardware_entry_failure_reason
 | |
| 			= vmcs_read32(VM_INSTRUCTION_ERROR);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note:
 | |
| 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
 | |
| 	 * delivery event since it indicates guest is accessing MMIO.
 | |
| 	 * The vm-exit can be triggered again after return to guest that
 | |
| 	 * will cause infinite loop.
 | |
| 	 */
 | |
| 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
 | |
| 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
 | |
| 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
 | |
| 			exit_reason != EXIT_REASON_PML_FULL &&
 | |
| 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
 | |
| 		vcpu->run->internal.ndata = 3;
 | |
| 		vcpu->run->internal.data[0] = vectoring_info;
 | |
| 		vcpu->run->internal.data[1] = exit_reason;
 | |
| 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
 | |
| 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
 | |
| 			vcpu->run->internal.ndata++;
 | |
| 			vcpu->run->internal.data[3] =
 | |
| 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!enable_vnmi &&
 | |
| 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
 | |
| 		if (vmx_interrupt_allowed(vcpu)) {
 | |
| 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
 | |
| 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
 | |
| 			   vcpu->arch.nmi_pending) {
 | |
| 			/*
 | |
| 			 * This CPU don't support us in finding the end of an
 | |
| 			 * NMI-blocked window if the guest runs with IRQs
 | |
| 			 * disabled. So we pull the trigger after 1 s of
 | |
| 			 * futile waiting, but inform the user about this.
 | |
| 			 */
 | |
| 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
 | |
| 			       "state on VCPU %d after 1 s timeout\n",
 | |
| 			       __func__, vcpu->vcpu_id);
 | |
| 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (exit_reason < kvm_vmx_max_exit_handlers
 | |
| 	    && kvm_vmx_exit_handlers[exit_reason])
 | |
| 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
 | |
| 	else {
 | |
| 		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
 | |
| 				exit_reason);
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Software based L1D cache flush which is used when microcode providing
 | |
|  * the cache control MSR is not loaded.
 | |
|  *
 | |
|  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
 | |
|  * flush it is required to read in 64 KiB because the replacement algorithm
 | |
|  * is not exactly LRU. This could be sized at runtime via topology
 | |
|  * information but as all relevant affected CPUs have 32KiB L1D cache size
 | |
|  * there is no point in doing so.
 | |
|  */
 | |
| static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
 | |
| 
 | |
| 	/*
 | |
| 	 * This code is only executed when the the flush mode is 'cond' or
 | |
| 	 * 'always'
 | |
| 	 */
 | |
| 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
 | |
| 		bool flush_l1d;
 | |
| 
 | |
| 		/*
 | |
| 		 * Clear the per-vcpu flush bit, it gets set again
 | |
| 		 * either from vcpu_run() or from one of the unsafe
 | |
| 		 * VMEXIT handlers.
 | |
| 		 */
 | |
| 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
 | |
| 		vcpu->arch.l1tf_flush_l1d = false;
 | |
| 
 | |
| 		/*
 | |
| 		 * Clear the per-cpu flush bit, it gets set again from
 | |
| 		 * the interrupt handlers.
 | |
| 		 */
 | |
| 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
 | |
| 		kvm_clear_cpu_l1tf_flush_l1d();
 | |
| 
 | |
| 		if (!flush_l1d)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->stat.l1d_flush++;
 | |
| 
 | |
| 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
 | |
| 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	asm volatile(
 | |
| 		/* First ensure the pages are in the TLB */
 | |
| 		"xorl	%%eax, %%eax\n"
 | |
| 		".Lpopulate_tlb:\n\t"
 | |
| 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
 | |
| 		"addl	$4096, %%eax\n\t"
 | |
| 		"cmpl	%%eax, %[size]\n\t"
 | |
| 		"jne	.Lpopulate_tlb\n\t"
 | |
| 		"xorl	%%eax, %%eax\n\t"
 | |
| 		"cpuid\n\t"
 | |
| 		/* Now fill the cache */
 | |
| 		"xorl	%%eax, %%eax\n"
 | |
| 		".Lfill_cache:\n"
 | |
| 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
 | |
| 		"addl	$64, %%eax\n\t"
 | |
| 		"cmpl	%%eax, %[size]\n\t"
 | |
| 		"jne	.Lfill_cache\n\t"
 | |
| 		"lfence\n"
 | |
| 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
 | |
| 		    [size] "r" (size)
 | |
| 		: "eax", "ebx", "ecx", "edx");
 | |
| }
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	if (is_guest_mode(vcpu) &&
 | |
| 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
 | |
| 		return;
 | |
| 
 | |
| 	if (irr == -1 || tpr < irr) {
 | |
| 		vmcs_write32(TPR_THRESHOLD, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write32(TPR_THRESHOLD, irr);
 | |
| }
 | |
| 
 | |
| static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 sec_exec_control;
 | |
| 
 | |
| 	if (!lapic_in_kernel(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	if (!flexpriority_enabled &&
 | |
| 	    !cpu_has_vmx_virtualize_x2apic_mode())
 | |
| 		return;
 | |
| 
 | |
| 	/* Postpone execution until vmcs01 is the current VMCS. */
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
 | |
| 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
 | |
| 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
 | |
| 
 | |
| 	switch (kvm_get_apic_mode(vcpu)) {
 | |
| 	case LAPIC_MODE_INVALID:
 | |
| 		WARN_ONCE(true, "Invalid local APIC state");
 | |
| 	case LAPIC_MODE_DISABLED:
 | |
| 		break;
 | |
| 	case LAPIC_MODE_XAPIC:
 | |
| 		if (flexpriority_enabled) {
 | |
| 			sec_exec_control |=
 | |
| 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 | |
| 			vmx_flush_tlb(vcpu, true);
 | |
| 		}
 | |
| 		break;
 | |
| 	case LAPIC_MODE_X2APIC:
 | |
| 		if (cpu_has_vmx_virtualize_x2apic_mode())
 | |
| 			sec_exec_control |=
 | |
| 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
 | |
| 		break;
 | |
| 	}
 | |
| 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
 | |
| 
 | |
| 	vmx_update_msr_bitmap(vcpu);
 | |
| }
 | |
| 
 | |
| static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
 | |
| {
 | |
| 	if (!is_guest_mode(vcpu)) {
 | |
| 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
 | |
| 		vmx_flush_tlb(vcpu, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
 | |
| {
 | |
| 	u16 status;
 | |
| 	u8 old;
 | |
| 
 | |
| 	if (max_isr == -1)
 | |
| 		max_isr = 0;
 | |
| 
 | |
| 	status = vmcs_read16(GUEST_INTR_STATUS);
 | |
| 	old = status >> 8;
 | |
| 	if (max_isr != old) {
 | |
| 		status &= 0xff;
 | |
| 		status |= max_isr << 8;
 | |
| 		vmcs_write16(GUEST_INTR_STATUS, status);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_set_rvi(int vector)
 | |
| {
 | |
| 	u16 status;
 | |
| 	u8 old;
 | |
| 
 | |
| 	if (vector == -1)
 | |
| 		vector = 0;
 | |
| 
 | |
| 	status = vmcs_read16(GUEST_INTR_STATUS);
 | |
| 	old = (u8)status & 0xff;
 | |
| 	if ((u8)vector != old) {
 | |
| 		status &= ~0xff;
 | |
| 		status |= (u8)vector;
 | |
| 		vmcs_write16(GUEST_INTR_STATUS, status);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
 | |
| {
 | |
| 	/*
 | |
| 	 * When running L2, updating RVI is only relevant when
 | |
| 	 * vmcs12 virtual-interrupt-delivery enabled.
 | |
| 	 * However, it can be enabled only when L1 also
 | |
| 	 * intercepts external-interrupts and in that case
 | |
| 	 * we should not update vmcs02 RVI but instead intercept
 | |
| 	 * interrupt. Therefore, do nothing when running L2.
 | |
| 	 */
 | |
| 	if (!is_guest_mode(vcpu))
 | |
| 		vmx_set_rvi(max_irr);
 | |
| }
 | |
| 
 | |
| static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int max_irr;
 | |
| 	bool max_irr_updated;
 | |
| 
 | |
| 	WARN_ON(!vcpu->arch.apicv_active);
 | |
| 	if (pi_test_on(&vmx->pi_desc)) {
 | |
| 		pi_clear_on(&vmx->pi_desc);
 | |
| 		/*
 | |
| 		 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
 | |
| 		 * But on x86 this is just a compiler barrier anyway.
 | |
| 		 */
 | |
| 		smp_mb__after_atomic();
 | |
| 		max_irr_updated =
 | |
| 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we are running L2 and L1 has a new pending interrupt
 | |
| 		 * which can be injected, we should re-evaluate
 | |
| 		 * what should be done with this new L1 interrupt.
 | |
| 		 * If L1 intercepts external-interrupts, we should
 | |
| 		 * exit from L2 to L1. Otherwise, interrupt should be
 | |
| 		 * delivered directly to L2.
 | |
| 		 */
 | |
| 		if (is_guest_mode(vcpu) && max_irr_updated) {
 | |
| 			if (nested_exit_on_intr(vcpu))
 | |
| 				kvm_vcpu_exiting_guest_mode(vcpu);
 | |
| 			else
 | |
| 				kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 		}
 | |
| 	} else {
 | |
| 		max_irr = kvm_lapic_find_highest_irr(vcpu);
 | |
| 	}
 | |
| 	vmx_hwapic_irr_update(vcpu, max_irr);
 | |
| 	return max_irr;
 | |
| }
 | |
| 
 | |
| static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u8 rvi = vmx_get_rvi();
 | |
| 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
 | |
| 
 | |
| 	return ((rvi & 0xf0) > (vppr & 0xf0));
 | |
| }
 | |
| 
 | |
| static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return pi_test_on(vcpu_to_pi_desc(vcpu));
 | |
| }
 | |
| 
 | |
| static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
 | |
| {
 | |
| 	if (!kvm_vcpu_apicv_active(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
 | |
| 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
 | |
| 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
 | |
| 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
 | |
| }
 | |
| 
 | |
| static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	pi_clear_on(&vmx->pi_desc);
 | |
| 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
 | |
| }
 | |
| 
 | |
| static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	if (vmx->exit_reason != EXIT_REASON_EXCEPTION_NMI)
 | |
| 		return;
 | |
| 
 | |
| 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
 | |
| 
 | |
| 	/* if exit due to PF check for async PF */
 | |
| 	if (is_page_fault(vmx->exit_intr_info))
 | |
| 		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
 | |
| 
 | |
| 	/* Handle machine checks before interrupts are enabled */
 | |
| 	if (is_machine_check(vmx->exit_intr_info))
 | |
| 		kvm_machine_check();
 | |
| 
 | |
| 	/* We need to handle NMIs before interrupts are enabled */
 | |
| 	if (is_nmi(vmx->exit_intr_info)) {
 | |
| 		kvm_before_interrupt(&vmx->vcpu);
 | |
| 		asm("int $2");
 | |
| 		kvm_after_interrupt(&vmx->vcpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
 | |
| 
 | |
| 	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
 | |
| 			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
 | |
| 		unsigned int vector;
 | |
| 		unsigned long entry;
 | |
| 		gate_desc *desc;
 | |
| 		struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| #ifdef CONFIG_X86_64
 | |
| 		unsigned long tmp;
 | |
| #endif
 | |
| 
 | |
| 		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
 | |
| 		desc = (gate_desc *)vmx->host_idt_base + vector;
 | |
| 		entry = gate_offset(desc);
 | |
| 		asm volatile(
 | |
| #ifdef CONFIG_X86_64
 | |
| 			"mov %%" _ASM_SP ", %[sp]\n\t"
 | |
| 			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
 | |
| 			"push $%c[ss]\n\t"
 | |
| 			"push %[sp]\n\t"
 | |
| #endif
 | |
| 			"pushf\n\t"
 | |
| 			__ASM_SIZE(push) " $%c[cs]\n\t"
 | |
| 			CALL_NOSPEC
 | |
| 			:
 | |
| #ifdef CONFIG_X86_64
 | |
| 			[sp]"=&r"(tmp),
 | |
| #endif
 | |
| 			ASM_CALL_CONSTRAINT
 | |
| 			:
 | |
| 			THUNK_TARGET(entry),
 | |
| 			[ss]"i"(__KERNEL_DS),
 | |
| 			[cs]"i"(__KERNEL_CS)
 | |
| 			);
 | |
| 	}
 | |
| }
 | |
| STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
 | |
| 
 | |
| static bool vmx_has_emulated_msr(int index)
 | |
| {
 | |
| 	switch (index) {
 | |
| 	case MSR_IA32_SMBASE:
 | |
| 		/*
 | |
| 		 * We cannot do SMM unless we can run the guest in big
 | |
| 		 * real mode.
 | |
| 		 */
 | |
| 		return enable_unrestricted_guest || emulate_invalid_guest_state;
 | |
| 	case MSR_AMD64_VIRT_SPEC_CTRL:
 | |
| 		/* This is AMD only.  */
 | |
| 		return false;
 | |
| 	default:
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool vmx_mpx_supported(void)
 | |
| {
 | |
| 	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
 | |
| 		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
 | |
| }
 | |
| 
 | |
| static bool vmx_xsaves_supported(void)
 | |
| {
 | |
| 	return vmcs_config.cpu_based_2nd_exec_ctrl &
 | |
| 		SECONDARY_EXEC_XSAVES;
 | |
| }
 | |
| 
 | |
| static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	u32 exit_intr_info;
 | |
| 	bool unblock_nmi;
 | |
| 	u8 vector;
 | |
| 	bool idtv_info_valid;
 | |
| 
 | |
| 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
 | |
| 
 | |
| 	if (enable_vnmi) {
 | |
| 		if (vmx->loaded_vmcs->nmi_known_unmasked)
 | |
| 			return;
 | |
| 		/*
 | |
| 		 * Can't use vmx->exit_intr_info since we're not sure what
 | |
| 		 * the exit reason is.
 | |
| 		 */
 | |
| 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
 | |
| 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
 | |
| 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
 | |
| 		/*
 | |
| 		 * SDM 3: 27.7.1.2 (September 2008)
 | |
| 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
 | |
| 		 * a guest IRET fault.
 | |
| 		 * SDM 3: 23.2.2 (September 2008)
 | |
| 		 * Bit 12 is undefined in any of the following cases:
 | |
| 		 *  If the VM exit sets the valid bit in the IDT-vectoring
 | |
| 		 *   information field.
 | |
| 		 *  If the VM exit is due to a double fault.
 | |
| 		 */
 | |
| 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
 | |
| 		    vector != DF_VECTOR && !idtv_info_valid)
 | |
| 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 				      GUEST_INTR_STATE_NMI);
 | |
| 		else
 | |
| 			vmx->loaded_vmcs->nmi_known_unmasked =
 | |
| 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
 | |
| 				  & GUEST_INTR_STATE_NMI);
 | |
| 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
 | |
| 		vmx->loaded_vmcs->vnmi_blocked_time +=
 | |
| 			ktime_to_ns(ktime_sub(ktime_get(),
 | |
| 					      vmx->loaded_vmcs->entry_time));
 | |
| }
 | |
| 
 | |
| static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
 | |
| 				      u32 idt_vectoring_info,
 | |
| 				      int instr_len_field,
 | |
| 				      int error_code_field)
 | |
| {
 | |
| 	u8 vector;
 | |
| 	int type;
 | |
| 	bool idtv_info_valid;
 | |
| 
 | |
| 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
 | |
| 
 | |
| 	vcpu->arch.nmi_injected = false;
 | |
| 	kvm_clear_exception_queue(vcpu);
 | |
| 	kvm_clear_interrupt_queue(vcpu);
 | |
| 
 | |
| 	if (!idtv_info_valid)
 | |
| 		return;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
 | |
| 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case INTR_TYPE_NMI_INTR:
 | |
| 		vcpu->arch.nmi_injected = true;
 | |
| 		/*
 | |
| 		 * SDM 3: 27.7.1.2 (September 2008)
 | |
| 		 * Clear bit "block by NMI" before VM entry if a NMI
 | |
| 		 * delivery faulted.
 | |
| 		 */
 | |
| 		vmx_set_nmi_mask(vcpu, false);
 | |
| 		break;
 | |
| 	case INTR_TYPE_SOFT_EXCEPTION:
 | |
| 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
 | |
| 		/* fall through */
 | |
| 	case INTR_TYPE_HARD_EXCEPTION:
 | |
| 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
 | |
| 			u32 err = vmcs_read32(error_code_field);
 | |
| 			kvm_requeue_exception_e(vcpu, vector, err);
 | |
| 		} else
 | |
| 			kvm_requeue_exception(vcpu, vector);
 | |
| 		break;
 | |
| 	case INTR_TYPE_SOFT_INTR:
 | |
| 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
 | |
| 		/* fall through */
 | |
| 	case INTR_TYPE_EXT_INTR:
 | |
| 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
 | |
| 				  VM_EXIT_INSTRUCTION_LEN,
 | |
| 				  IDT_VECTORING_ERROR_CODE);
 | |
| }
 | |
| 
 | |
| static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	__vmx_complete_interrupts(vcpu,
 | |
| 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
 | |
| 				  VM_ENTRY_INSTRUCTION_LEN,
 | |
| 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
 | |
| 
 | |
| 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
 | |
| }
 | |
| 
 | |
| static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	int i, nr_msrs;
 | |
| 	struct perf_guest_switch_msr *msrs;
 | |
| 
 | |
| 	msrs = perf_guest_get_msrs(&nr_msrs);
 | |
| 
 | |
| 	if (!msrs)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < nr_msrs; i++)
 | |
| 		if (msrs[i].host == msrs[i].guest)
 | |
| 			clear_atomic_switch_msr(vmx, msrs[i].msr);
 | |
| 		else
 | |
| 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
 | |
| 					msrs[i].host, false);
 | |
| }
 | |
| 
 | |
| static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
 | |
| {
 | |
| 	vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
 | |
| 	if (!vmx->loaded_vmcs->hv_timer_armed)
 | |
| 		vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
 | |
| 			      PIN_BASED_VMX_PREEMPTION_TIMER);
 | |
| 	vmx->loaded_vmcs->hv_timer_armed = true;
 | |
| }
 | |
| 
 | |
| static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u64 tscl;
 | |
| 	u32 delta_tsc;
 | |
| 
 | |
| 	if (vmx->req_immediate_exit) {
 | |
| 		vmx_arm_hv_timer(vmx, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->hv_deadline_tsc != -1) {
 | |
| 		tscl = rdtsc();
 | |
| 		if (vmx->hv_deadline_tsc > tscl)
 | |
| 			/* set_hv_timer ensures the delta fits in 32-bits */
 | |
| 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
 | |
| 				cpu_preemption_timer_multi);
 | |
| 		else
 | |
| 			delta_tsc = 0;
 | |
| 
 | |
| 		vmx_arm_hv_timer(vmx, delta_tsc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->loaded_vmcs->hv_timer_armed)
 | |
| 		vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
 | |
| 				PIN_BASED_VMX_PREEMPTION_TIMER);
 | |
| 	vmx->loaded_vmcs->hv_timer_armed = false;
 | |
| }
 | |
| 
 | |
| static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long cr3, cr4, evmcs_rsp;
 | |
| 
 | |
| 	/* Record the guest's net vcpu time for enforced NMI injections. */
 | |
| 	if (unlikely(!enable_vnmi &&
 | |
| 		     vmx->loaded_vmcs->soft_vnmi_blocked))
 | |
| 		vmx->loaded_vmcs->entry_time = ktime_get();
 | |
| 
 | |
| 	/* Don't enter VMX if guest state is invalid, let the exit handler
 | |
| 	   start emulation until we arrive back to a valid state */
 | |
| 	if (vmx->emulation_required)
 | |
| 		return;
 | |
| 
 | |
| 	if (vmx->ple_window_dirty) {
 | |
| 		vmx->ple_window_dirty = false;
 | |
| 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->nested.sync_shadow_vmcs) {
 | |
| 		copy_vmcs12_to_shadow(vmx);
 | |
| 		vmx->nested.sync_shadow_vmcs = false;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
 | |
| 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
 | |
| 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
 | |
| 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
 | |
| 
 | |
| 	cr3 = __get_current_cr3_fast();
 | |
| 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
 | |
| 		vmcs_writel(HOST_CR3, cr3);
 | |
| 		vmx->loaded_vmcs->host_state.cr3 = cr3;
 | |
| 	}
 | |
| 
 | |
| 	cr4 = cr4_read_shadow();
 | |
| 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
 | |
| 		vmcs_writel(HOST_CR4, cr4);
 | |
| 		vmx->loaded_vmcs->host_state.cr4 = cr4;
 | |
| 	}
 | |
| 
 | |
| 	/* When single-stepping over STI and MOV SS, we must clear the
 | |
| 	 * corresponding interruptibility bits in the guest state. Otherwise
 | |
| 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
 | |
| 	 * exceptions being set, but that's not correct for the guest debugging
 | |
| 	 * case. */
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 | |
| 		vmx_set_interrupt_shadow(vcpu, 0);
 | |
| 
 | |
| 	kvm_load_guest_xcr0(vcpu);
 | |
| 
 | |
| 	if (static_cpu_has(X86_FEATURE_PKU) &&
 | |
| 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
 | |
| 	    vcpu->arch.pkru != vmx->host_pkru)
 | |
| 		__write_pkru(vcpu->arch.pkru);
 | |
| 
 | |
| 	atomic_switch_perf_msrs(vmx);
 | |
| 
 | |
| 	vmx_update_hv_timer(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
 | |
| 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
 | |
| 	 * is no need to worry about the conditional branch over the wrmsr
 | |
| 	 * being speculatively taken.
 | |
| 	 */
 | |
| 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
 | |
| 
 | |
| 	vmx->__launched = vmx->loaded_vmcs->launched;
 | |
| 
 | |
| 	evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
 | |
| 		(unsigned long)¤t_evmcs->host_rsp : 0;
 | |
| 
 | |
| 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
 | |
| 	if (static_branch_unlikely(&vmx_l1d_should_flush))
 | |
| 		vmx_l1d_flush(vcpu);
 | |
| 	else if (static_branch_unlikely(&mds_user_clear))
 | |
| 		mds_clear_cpu_buffers();
 | |
| 
 | |
| 	asm(
 | |
| 		/* Store host registers */
 | |
| 		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
 | |
| 		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
 | |
| 		"push %%" _ASM_CX " \n\t"
 | |
| 		"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
 | |
| 		"je 1f \n\t"
 | |
| 		"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
 | |
| 		/* Avoid VMWRITE when Enlightened VMCS is in use */
 | |
| 		"test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
 | |
| 		"jz 2f \n\t"
 | |
| 		"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
 | |
| 		"jmp 1f \n\t"
 | |
| 		"2: \n\t"
 | |
| 		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
 | |
| 		"1: \n\t"
 | |
| 		/* Reload cr2 if changed */
 | |
| 		"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
 | |
| 		"mov %%cr2, %%" _ASM_DX " \n\t"
 | |
| 		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
 | |
| 		"je 3f \n\t"
 | |
| 		"mov %%" _ASM_AX", %%cr2 \n\t"
 | |
| 		"3: \n\t"
 | |
| 		/* Check if vmlaunch of vmresume is needed */
 | |
| 		"cmpb $0, %c[launched](%0) \n\t"
 | |
| 		/* Load guest registers.  Don't clobber flags. */
 | |
| 		"mov %c[rax](%0), %%" _ASM_AX " \n\t"
 | |
| 		"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
 | |
| 		"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
 | |
| 		"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
 | |
| 		"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
 | |
| 		"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
 | |
| #ifdef CONFIG_X86_64
 | |
| 		"mov %c[r8](%0),  %%r8  \n\t"
 | |
| 		"mov %c[r9](%0),  %%r9  \n\t"
 | |
| 		"mov %c[r10](%0), %%r10 \n\t"
 | |
| 		"mov %c[r11](%0), %%r11 \n\t"
 | |
| 		"mov %c[r12](%0), %%r12 \n\t"
 | |
| 		"mov %c[r13](%0), %%r13 \n\t"
 | |
| 		"mov %c[r14](%0), %%r14 \n\t"
 | |
| 		"mov %c[r15](%0), %%r15 \n\t"
 | |
| #endif
 | |
| 		"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
 | |
| 
 | |
| 		/* Enter guest mode */
 | |
| 		"jne 1f \n\t"
 | |
| 		__ex(ASM_VMX_VMLAUNCH) "\n\t"
 | |
| 		"jmp 2f \n\t"
 | |
| 		"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
 | |
| 		"2: "
 | |
| 		/* Save guest registers, load host registers, keep flags */
 | |
| 		"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
 | |
| 		"pop %0 \n\t"
 | |
| 		"setbe %c[fail](%0)\n\t"
 | |
| 		"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
 | |
| 		"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
 | |
| 		__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
 | |
| 		"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
 | |
| 		"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
 | |
| 		"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
 | |
| 		"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
 | |
| #ifdef CONFIG_X86_64
 | |
| 		"mov %%r8,  %c[r8](%0) \n\t"
 | |
| 		"mov %%r9,  %c[r9](%0) \n\t"
 | |
| 		"mov %%r10, %c[r10](%0) \n\t"
 | |
| 		"mov %%r11, %c[r11](%0) \n\t"
 | |
| 		"mov %%r12, %c[r12](%0) \n\t"
 | |
| 		"mov %%r13, %c[r13](%0) \n\t"
 | |
| 		"mov %%r14, %c[r14](%0) \n\t"
 | |
| 		"mov %%r15, %c[r15](%0) \n\t"
 | |
| 		"xor %%r8d,  %%r8d \n\t"
 | |
| 		"xor %%r9d,  %%r9d \n\t"
 | |
| 		"xor %%r10d, %%r10d \n\t"
 | |
| 		"xor %%r11d, %%r11d \n\t"
 | |
| 		"xor %%r12d, %%r12d \n\t"
 | |
| 		"xor %%r13d, %%r13d \n\t"
 | |
| 		"xor %%r14d, %%r14d \n\t"
 | |
| 		"xor %%r15d, %%r15d \n\t"
 | |
| #endif
 | |
| 		"mov %%cr2, %%" _ASM_AX "   \n\t"
 | |
| 		"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
 | |
| 
 | |
| 		"xor %%eax, %%eax \n\t"
 | |
| 		"xor %%ebx, %%ebx \n\t"
 | |
| 		"xor %%esi, %%esi \n\t"
 | |
| 		"xor %%edi, %%edi \n\t"
 | |
| 		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
 | |
| 		".pushsection .rodata \n\t"
 | |
| 		".global vmx_return \n\t"
 | |
| 		"vmx_return: " _ASM_PTR " 2b \n\t"
 | |
| 		".popsection"
 | |
| 	      : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
 | |
| 		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
 | |
| 		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
 | |
| 		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
 | |
| 		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
 | |
| 		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
 | |
| 		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
 | |
| 		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
 | |
| 		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
 | |
| 		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
 | |
| 		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
 | |
| #ifdef CONFIG_X86_64
 | |
| 		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
 | |
| 		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
 | |
| 		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
 | |
| 		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
 | |
| 		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
 | |
| 		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
 | |
| 		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
 | |
| 		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
 | |
| #endif
 | |
| 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
 | |
| 		[wordsize]"i"(sizeof(ulong))
 | |
| 	      : "cc", "memory"
 | |
| #ifdef CONFIG_X86_64
 | |
| 		, "rax", "rbx", "rdi"
 | |
| 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
 | |
| #else
 | |
| 		, "eax", "ebx", "edi"
 | |
| #endif
 | |
| 	      );
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not use IBRS in the kernel. If this vCPU has used the
 | |
| 	 * SPEC_CTRL MSR it may have left it on; save the value and
 | |
| 	 * turn it off. This is much more efficient than blindly adding
 | |
| 	 * it to the atomic save/restore list. Especially as the former
 | |
| 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
 | |
| 	 *
 | |
| 	 * For non-nested case:
 | |
| 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
 | |
| 	 * save it.
 | |
| 	 *
 | |
| 	 * For nested case:
 | |
| 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
 | |
| 	 * save it.
 | |
| 	 */
 | |
| 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
 | |
| 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
 | |
| 
 | |
| 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
 | |
| 
 | |
| 	/* Eliminate branch target predictions from guest mode */
 | |
| 	vmexit_fill_RSB();
 | |
| 
 | |
| 	/* All fields are clean at this point */
 | |
| 	if (static_branch_unlikely(&enable_evmcs))
 | |
| 		current_evmcs->hv_clean_fields |=
 | |
| 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
 | |
| 
 | |
| 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
 | |
| 	if (vmx->host_debugctlmsr)
 | |
| 		update_debugctlmsr(vmx->host_debugctlmsr);
 | |
| 
 | |
| #ifndef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * The sysexit path does not restore ds/es, so we must set them to
 | |
| 	 * a reasonable value ourselves.
 | |
| 	 *
 | |
| 	 * We can't defer this to vmx_prepare_switch_to_host() since that
 | |
| 	 * function may be executed in interrupt context, which saves and
 | |
| 	 * restore segments around it, nullifying its effect.
 | |
| 	 */
 | |
| 	loadsegment(ds, __USER_DS);
 | |
| 	loadsegment(es, __USER_DS);
 | |
| #endif
 | |
| 
 | |
| 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
 | |
| 				  | (1 << VCPU_EXREG_RFLAGS)
 | |
| 				  | (1 << VCPU_EXREG_PDPTR)
 | |
| 				  | (1 << VCPU_EXREG_SEGMENTS)
 | |
| 				  | (1 << VCPU_EXREG_CR3));
 | |
| 	vcpu->arch.regs_dirty = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * eager fpu is enabled if PKEY is supported and CR4 is switched
 | |
| 	 * back on host, so it is safe to read guest PKRU from current
 | |
| 	 * XSAVE.
 | |
| 	 */
 | |
| 	if (static_cpu_has(X86_FEATURE_PKU) &&
 | |
| 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
 | |
| 		vcpu->arch.pkru = __read_pkru();
 | |
| 		if (vcpu->arch.pkru != vmx->host_pkru)
 | |
| 			__write_pkru(vmx->host_pkru);
 | |
| 	}
 | |
| 
 | |
| 	kvm_put_guest_xcr0(vcpu);
 | |
| 
 | |
| 	vmx->nested.nested_run_pending = 0;
 | |
| 	vmx->idt_vectoring_info = 0;
 | |
| 
 | |
| 	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
 | |
| 	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
 | |
| 		kvm_machine_check();
 | |
| 
 | |
| 	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
 | |
| 		return;
 | |
| 
 | |
| 	vmx->loaded_vmcs->launched = 1;
 | |
| 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
 | |
| 
 | |
| 	vmx_complete_atomic_exit(vmx);
 | |
| 	vmx_recover_nmi_blocking(vmx);
 | |
| 	vmx_complete_interrupts(vmx);
 | |
| }
 | |
| STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
 | |
| 
 | |
| static struct kvm *vmx_vm_alloc(void)
 | |
| {
 | |
| 	struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
 | |
| 	return &kvm_vmx->kvm;
 | |
| }
 | |
| 
 | |
| static void vmx_vm_free(struct kvm *kvm)
 | |
| {
 | |
| 	vfree(to_kvm_vmx(kvm));
 | |
| }
 | |
| 
 | |
| static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (vmx->loaded_vmcs == vmcs)
 | |
| 		return;
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	vmx_vcpu_put(vcpu);
 | |
| 	vmx->loaded_vmcs = vmcs;
 | |
| 	vmx_vcpu_load(vcpu, cpu);
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure that the current vmcs of the logical processor is the
 | |
|  * vmcs01 of the vcpu before calling free_nested().
 | |
|  */
 | |
| static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
 | |
| {
 | |
|        struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
|        vcpu_load(vcpu);
 | |
|        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 | |
|        free_nested(vmx);
 | |
|        vcpu_put(vcpu);
 | |
| }
 | |
| 
 | |
| static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (enable_pml)
 | |
| 		vmx_destroy_pml_buffer(vmx);
 | |
| 	free_vpid(vmx->vpid);
 | |
| 	leave_guest_mode(vcpu);
 | |
| 	vmx_free_vcpu_nested(vcpu);
 | |
| 	free_loaded_vmcs(vmx->loaded_vmcs);
 | |
| 	kfree(vmx->guest_msrs);
 | |
| 	kvm_vcpu_uninit(vcpu);
 | |
| 	kmem_cache_free(kvm_vcpu_cache, vmx);
 | |
| }
 | |
| 
 | |
| static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
 | |
| {
 | |
| 	int err;
 | |
| 	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 | |
| 	unsigned long *msr_bitmap;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!vmx)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	vmx->vpid = allocate_vpid();
 | |
| 
 | |
| 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
 | |
| 	if (err)
 | |
| 		goto free_vcpu;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * If PML is turned on, failure on enabling PML just results in failure
 | |
| 	 * of creating the vcpu, therefore we can simplify PML logic (by
 | |
| 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
 | |
| 	 * for the guest, etc.
 | |
| 	 */
 | |
| 	if (enable_pml) {
 | |
| 		vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 		if (!vmx->pml_pg)
 | |
| 			goto uninit_vcpu;
 | |
| 	}
 | |
| 
 | |
| 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
 | |
| 		     > PAGE_SIZE);
 | |
| 
 | |
| 	if (!vmx->guest_msrs)
 | |
| 		goto free_pml;
 | |
| 
 | |
| 	err = alloc_loaded_vmcs(&vmx->vmcs01);
 | |
| 	if (err < 0)
 | |
| 		goto free_msrs;
 | |
| 
 | |
| 	msr_bitmap = vmx->vmcs01.msr_bitmap;
 | |
| 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
 | |
| 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
 | |
| 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
 | |
| 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
 | |
| 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
 | |
| 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
 | |
| 	vmx->msr_bitmap_mode = 0;
 | |
| 
 | |
| 	vmx->loaded_vmcs = &vmx->vmcs01;
 | |
| 	cpu = get_cpu();
 | |
| 	vmx_vcpu_load(&vmx->vcpu, cpu);
 | |
| 	vmx->vcpu.cpu = cpu;
 | |
| 	vmx_vcpu_setup(vmx);
 | |
| 	vmx_vcpu_put(&vmx->vcpu);
 | |
| 	put_cpu();
 | |
| 	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
 | |
| 		err = alloc_apic_access_page(kvm);
 | |
| 		if (err)
 | |
| 			goto free_vmcs;
 | |
| 	}
 | |
| 
 | |
| 	if (enable_ept && !enable_unrestricted_guest) {
 | |
| 		err = init_rmode_identity_map(kvm);
 | |
| 		if (err)
 | |
| 			goto free_vmcs;
 | |
| 	}
 | |
| 
 | |
| 	if (nested)
 | |
| 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
 | |
| 					   kvm_vcpu_apicv_active(&vmx->vcpu));
 | |
| 
 | |
| 	vmx->nested.posted_intr_nv = -1;
 | |
| 	vmx->nested.current_vmptr = -1ull;
 | |
| 
 | |
| 	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
 | |
| 	 * or POSTED_INTR_WAKEUP_VECTOR.
 | |
| 	 */
 | |
| 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
 | |
| 	vmx->pi_desc.sn = 1;
 | |
| 
 | |
| 	return &vmx->vcpu;
 | |
| 
 | |
| free_vmcs:
 | |
| 	free_loaded_vmcs(vmx->loaded_vmcs);
 | |
| free_msrs:
 | |
| 	kfree(vmx->guest_msrs);
 | |
| free_pml:
 | |
| 	vmx_destroy_pml_buffer(vmx);
 | |
| uninit_vcpu:
 | |
| 	kvm_vcpu_uninit(&vmx->vcpu);
 | |
| free_vcpu:
 | |
| 	free_vpid(vmx->vpid);
 | |
| 	kmem_cache_free(kvm_vcpu_cache, vmx);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
 | |
| #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
 | |
| 
 | |
| static int vmx_vm_init(struct kvm *kvm)
 | |
| {
 | |
| 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
 | |
| 
 | |
| 	if (!ple_gap)
 | |
| 		kvm->arch.pause_in_guest = true;
 | |
| 
 | |
| 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
 | |
| 		switch (l1tf_mitigation) {
 | |
| 		case L1TF_MITIGATION_OFF:
 | |
| 		case L1TF_MITIGATION_FLUSH_NOWARN:
 | |
| 			/* 'I explicitly don't care' is set */
 | |
| 			break;
 | |
| 		case L1TF_MITIGATION_FLUSH:
 | |
| 		case L1TF_MITIGATION_FLUSH_NOSMT:
 | |
| 		case L1TF_MITIGATION_FULL:
 | |
| 			/*
 | |
| 			 * Warn upon starting the first VM in a potentially
 | |
| 			 * insecure environment.
 | |
| 			 */
 | |
| 			if (sched_smt_active())
 | |
| 				pr_warn_once(L1TF_MSG_SMT);
 | |
| 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
 | |
| 				pr_warn_once(L1TF_MSG_L1D);
 | |
| 			break;
 | |
| 		case L1TF_MITIGATION_FULL_FORCE:
 | |
| 			/* Flush is enforced */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init vmx_check_processor_compat(void *rtn)
 | |
| {
 | |
| 	struct vmcs_config vmcs_conf;
 | |
| 
 | |
| 	*(int *)rtn = 0;
 | |
| 	if (setup_vmcs_config(&vmcs_conf) < 0)
 | |
| 		*(int *)rtn = -EIO;
 | |
| 	nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
 | |
| 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
 | |
| 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
 | |
| 				smp_processor_id());
 | |
| 		*(int *)rtn = -EIO;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
 | |
| {
 | |
| 	u8 cache;
 | |
| 	u64 ipat = 0;
 | |
| 
 | |
| 	/* For VT-d and EPT combination
 | |
| 	 * 1. MMIO: always map as UC
 | |
| 	 * 2. EPT with VT-d:
 | |
| 	 *   a. VT-d without snooping control feature: can't guarantee the
 | |
| 	 *	result, try to trust guest.
 | |
| 	 *   b. VT-d with snooping control feature: snooping control feature of
 | |
| 	 *	VT-d engine can guarantee the cache correctness. Just set it
 | |
| 	 *	to WB to keep consistent with host. So the same as item 3.
 | |
| 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
 | |
| 	 *    consistent with host MTRR
 | |
| 	 */
 | |
| 	if (is_mmio) {
 | |
| 		cache = MTRR_TYPE_UNCACHABLE;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
 | |
| 		ipat = VMX_EPT_IPAT_BIT;
 | |
| 		cache = MTRR_TYPE_WRBACK;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
 | |
| 		ipat = VMX_EPT_IPAT_BIT;
 | |
| 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 | |
| 			cache = MTRR_TYPE_WRBACK;
 | |
| 		else
 | |
| 			cache = MTRR_TYPE_UNCACHABLE;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
 | |
| 
 | |
| exit:
 | |
| 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
 | |
| }
 | |
| 
 | |
| static int vmx_get_lpage_level(void)
 | |
| {
 | |
| 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
 | |
| 		return PT_DIRECTORY_LEVEL;
 | |
| 	else
 | |
| 		/* For shadow and EPT supported 1GB page */
 | |
| 		return PT_PDPE_LEVEL;
 | |
| }
 | |
| 
 | |
| static void vmcs_set_secondary_exec_control(u32 new_ctl)
 | |
| {
 | |
| 	/*
 | |
| 	 * These bits in the secondary execution controls field
 | |
| 	 * are dynamic, the others are mostly based on the hypervisor
 | |
| 	 * architecture and the guest's CPUID.  Do not touch the
 | |
| 	 * dynamic bits.
 | |
| 	 */
 | |
| 	u32 mask =
 | |
| 		SECONDARY_EXEC_SHADOW_VMCS |
 | |
| 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
 | |
| 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
 | |
| 		SECONDARY_EXEC_DESC;
 | |
| 
 | |
| 	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
 | |
| 
 | |
| 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
 | |
| 		     (new_ctl & ~mask) | (cur_ctl & mask));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
 | |
|  * (indicating "allowed-1") if they are supported in the guest's CPUID.
 | |
|  */
 | |
| static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct kvm_cpuid_entry2 *entry;
 | |
| 
 | |
| 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
 | |
| 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
 | |
| 
 | |
| #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
 | |
| 	if (entry && (entry->_reg & (_cpuid_mask)))			\
 | |
| 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
 | |
| } while (0)
 | |
| 
 | |
| 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 | |
| 	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
 | |
| 	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
 | |
| 	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
 | |
| 	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
 | |
| 	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
 | |
| 	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
 | |
| 	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
 | |
| 	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
 | |
| 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
 | |
| 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
 | |
| 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
 | |
| 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
 | |
| 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
 | |
| 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
 | |
| 
 | |
| 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
 | |
| 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
 | |
| 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
 | |
| 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
 | |
| 	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
 | |
| 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
 | |
| 
 | |
| #undef cr4_fixed1_update
 | |
| }
 | |
| 
 | |
| static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (kvm_mpx_supported()) {
 | |
| 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
 | |
| 
 | |
| 		if (mpx_enabled) {
 | |
| 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
 | |
| 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
 | |
| 		} else {
 | |
| 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
 | |
| 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (cpu_has_secondary_exec_ctrls()) {
 | |
| 		vmx_compute_secondary_exec_control(vmx);
 | |
| 		vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
 | |
| 	}
 | |
| 
 | |
| 	if (nested_vmx_allowed(vcpu))
 | |
| 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
 | |
| 			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
 | |
| 	else
 | |
| 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
 | |
| 			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
 | |
| 
 | |
| 	if (nested_vmx_allowed(vcpu)) {
 | |
| 		nested_vmx_cr_fixed1_bits_update(vcpu);
 | |
| 		nested_vmx_entry_exit_ctls_update(vcpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
 | |
| {
 | |
| 	if (func == 1 && nested)
 | |
| 		entry->ecx |= bit(X86_FEATURE_VMX);
 | |
| }
 | |
| 
 | |
| static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
 | |
| 		struct x86_exception *fault)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 exit_reason;
 | |
| 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
 | |
| 
 | |
| 	if (vmx->nested.pml_full) {
 | |
| 		exit_reason = EXIT_REASON_PML_FULL;
 | |
| 		vmx->nested.pml_full = false;
 | |
| 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
 | |
| 	} else if (fault->error_code & PFERR_RSVD_MASK)
 | |
| 		exit_reason = EXIT_REASON_EPT_MISCONFIG;
 | |
| 	else
 | |
| 		exit_reason = EXIT_REASON_EPT_VIOLATION;
 | |
| 
 | |
| 	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
 | |
| 	vmcs12->guest_physical_address = fault->address;
 | |
| }
 | |
| 
 | |
| static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
 | |
| }
 | |
| 
 | |
| /* Callbacks for nested_ept_init_mmu_context: */
 | |
| 
 | |
| static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* return the page table to be shadowed - in our case, EPT12 */
 | |
| 	return get_vmcs12(vcpu)->ept_pointer;
 | |
| }
 | |
| 
 | |
| static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	WARN_ON(mmu_is_nested(vcpu));
 | |
| 	if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
 | |
| 		return 1;
 | |
| 
 | |
| 	kvm_init_shadow_ept_mmu(vcpu,
 | |
| 			to_vmx(vcpu)->nested.msrs.ept_caps &
 | |
| 			VMX_EPT_EXECUTE_ONLY_BIT,
 | |
| 			nested_ept_ad_enabled(vcpu),
 | |
| 			nested_ept_get_cr3(vcpu));
 | |
| 	vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
 | |
| 	vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
 | |
| 	vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
 | |
| 
 | |
| 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
 | |
| 					    u16 error_code)
 | |
| {
 | |
| 	bool inequality, bit;
 | |
| 
 | |
| 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
 | |
| 	inequality =
 | |
| 		(error_code & vmcs12->page_fault_error_code_mask) !=
 | |
| 		 vmcs12->page_fault_error_code_match;
 | |
| 	return inequality ^ bit;
 | |
| }
 | |
| 
 | |
| static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
 | |
| 		struct x86_exception *fault)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	WARN_ON(!is_guest_mode(vcpu));
 | |
| 
 | |
| 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
 | |
| 		!to_vmx(vcpu)->nested.nested_run_pending) {
 | |
| 		vmcs12->vm_exit_intr_error_code = fault->error_code;
 | |
| 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
 | |
| 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
 | |
| 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
 | |
| 				  fault->address);
 | |
| 	} else {
 | |
| 		kvm_inject_page_fault(vcpu, fault);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
 | |
| 						 struct vmcs12 *vmcs12);
 | |
| 
 | |
| static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct page *page;
 | |
| 	u64 hpa;
 | |
| 
 | |
| 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
 | |
| 		/*
 | |
| 		 * Translate L1 physical address to host physical
 | |
| 		 * address for vmcs02. Keep the page pinned, so this
 | |
| 		 * physical address remains valid. We keep a reference
 | |
| 		 * to it so we can release it later.
 | |
| 		 */
 | |
| 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
 | |
| 			kvm_release_page_dirty(vmx->nested.apic_access_page);
 | |
| 			vmx->nested.apic_access_page = NULL;
 | |
| 		}
 | |
| 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
 | |
| 		/*
 | |
| 		 * If translation failed, no matter: This feature asks
 | |
| 		 * to exit when accessing the given address, and if it
 | |
| 		 * can never be accessed, this feature won't do
 | |
| 		 * anything anyway.
 | |
| 		 */
 | |
| 		if (!is_error_page(page)) {
 | |
| 			vmx->nested.apic_access_page = page;
 | |
| 			hpa = page_to_phys(vmx->nested.apic_access_page);
 | |
| 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
 | |
| 		} else {
 | |
| 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
 | |
| 					SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
 | |
| 		if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
 | |
| 			kvm_release_page_dirty(vmx->nested.virtual_apic_page);
 | |
| 			vmx->nested.virtual_apic_page = NULL;
 | |
| 		}
 | |
| 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
 | |
| 
 | |
| 		/*
 | |
| 		 * If translation failed, VM entry will fail because
 | |
| 		 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
 | |
| 		 * Failing the vm entry is _not_ what the processor
 | |
| 		 * does but it's basically the only possibility we
 | |
| 		 * have.  We could still enter the guest if CR8 load
 | |
| 		 * exits are enabled, CR8 store exits are enabled, and
 | |
| 		 * virtualize APIC access is disabled; in this case
 | |
| 		 * the processor would never use the TPR shadow and we
 | |
| 		 * could simply clear the bit from the execution
 | |
| 		 * control.  But such a configuration is useless, so
 | |
| 		 * let's keep the code simple.
 | |
| 		 */
 | |
| 		if (!is_error_page(page)) {
 | |
| 			vmx->nested.virtual_apic_page = page;
 | |
| 			hpa = page_to_phys(vmx->nested.virtual_apic_page);
 | |
| 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nested_cpu_has_posted_intr(vmcs12)) {
 | |
| 		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
 | |
| 			kunmap(vmx->nested.pi_desc_page);
 | |
| 			kvm_release_page_dirty(vmx->nested.pi_desc_page);
 | |
| 			vmx->nested.pi_desc_page = NULL;
 | |
| 			vmx->nested.pi_desc = NULL;
 | |
| 			vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
 | |
| 		}
 | |
| 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
 | |
| 		if (is_error_page(page))
 | |
| 			return;
 | |
| 		vmx->nested.pi_desc_page = page;
 | |
| 		vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
 | |
| 		vmx->nested.pi_desc =
 | |
| 			(struct pi_desc *)((void *)vmx->nested.pi_desc +
 | |
| 			(unsigned long)(vmcs12->posted_intr_desc_addr &
 | |
| 			(PAGE_SIZE - 1)));
 | |
| 		vmcs_write64(POSTED_INTR_DESC_ADDR,
 | |
| 			page_to_phys(vmx->nested.pi_desc_page) +
 | |
| 			(unsigned long)(vmcs12->posted_intr_desc_addr &
 | |
| 			(PAGE_SIZE - 1)));
 | |
| 	}
 | |
| 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
 | |
| 		vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 			      CPU_BASED_USE_MSR_BITMAPS);
 | |
| 	else
 | |
| 		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
 | |
| 				CPU_BASED_USE_MSR_BITMAPS);
 | |
| }
 | |
| 
 | |
| static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * A timer value of zero is architecturally guaranteed to cause
 | |
| 	 * a VMExit prior to executing any instructions in the guest.
 | |
| 	 */
 | |
| 	if (preemption_timeout == 0) {
 | |
| 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.virtual_tsc_khz == 0)
 | |
| 		return;
 | |
| 
 | |
| 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
 | |
| 	preemption_timeout *= 1000000;
 | |
| 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
 | |
| 	hrtimer_start(&vmx->nested.preemption_timer,
 | |
| 		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
 | |
| 					       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
 | |
| 	    !page_address_valid(vcpu, vmcs12->io_bitmap_b))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
 | |
| 						struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
 | |
| 						struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
 | |
| 	int msr;
 | |
| 
 | |
| 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 | |
| 		unsigned word = msr / BITS_PER_LONG;
 | |
| 
 | |
| 		msr_bitmap[word] = ~0;
 | |
| 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Merge L0's and L1's MSR bitmap, return false to indicate that
 | |
|  * we do not use the hardware.
 | |
|  */
 | |
| static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
 | |
| 						 struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	int msr;
 | |
| 	struct page *page;
 | |
| 	unsigned long *msr_bitmap_l1;
 | |
| 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
 | |
| 	/*
 | |
| 	 * pred_cmd & spec_ctrl are trying to verify two things:
 | |
| 	 *
 | |
| 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
 | |
| 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
 | |
| 	 *    from the L12 MSR bitmap that is too permissive.
 | |
| 	 * 2. That L1 or L2s have actually used the MSR. This avoids
 | |
| 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
 | |
| 	 *    works properly because we only update the L01 MSR bitmap lazily.
 | |
| 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
 | |
| 	 *    updated to reflect this when L1 (or its L2s) actually write to
 | |
| 	 *    the MSR.
 | |
| 	 */
 | |
| 	bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
 | |
| 	bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
 | |
| 
 | |
| 	/* Nothing to do if the MSR bitmap is not in use.  */
 | |
| 	if (!cpu_has_vmx_msr_bitmap() ||
 | |
| 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 | |
| 	    !pred_cmd && !spec_ctrl)
 | |
| 		return false;
 | |
| 
 | |
| 	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
 | |
| 	if (is_error_page(page))
 | |
| 		return false;
 | |
| 
 | |
| 	msr_bitmap_l1 = (unsigned long *)kmap(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
 | |
| 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
 | |
| 	 * the x2APIC MSR range and selectively disable them below.
 | |
| 	 */
 | |
| 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
 | |
| 
 | |
| 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
 | |
| 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
 | |
| 			/*
 | |
| 			 * L0 need not intercept reads for MSRs between 0x800
 | |
| 			 * and 0x8ff, it just lets the processor take the value
 | |
| 			 * from the virtual-APIC page; take those 256 bits
 | |
| 			 * directly from the L1 bitmap.
 | |
| 			 */
 | |
| 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 | |
| 				unsigned word = msr / BITS_PER_LONG;
 | |
| 
 | |
| 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		nested_vmx_disable_intercept_for_msr(
 | |
| 			msr_bitmap_l1, msr_bitmap_l0,
 | |
| 			X2APIC_MSR(APIC_TASKPRI),
 | |
| 			MSR_TYPE_R | MSR_TYPE_W);
 | |
| 
 | |
| 		if (nested_cpu_has_vid(vmcs12)) {
 | |
| 			nested_vmx_disable_intercept_for_msr(
 | |
| 				msr_bitmap_l1, msr_bitmap_l0,
 | |
| 				X2APIC_MSR(APIC_EOI),
 | |
| 				MSR_TYPE_W);
 | |
| 			nested_vmx_disable_intercept_for_msr(
 | |
| 				msr_bitmap_l1, msr_bitmap_l0,
 | |
| 				X2APIC_MSR(APIC_SELF_IPI),
 | |
| 				MSR_TYPE_W);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (spec_ctrl)
 | |
| 		nested_vmx_disable_intercept_for_msr(
 | |
| 					msr_bitmap_l1, msr_bitmap_l0,
 | |
| 					MSR_IA32_SPEC_CTRL,
 | |
| 					MSR_TYPE_R | MSR_TYPE_W);
 | |
| 
 | |
| 	if (pred_cmd)
 | |
| 		nested_vmx_disable_intercept_for_msr(
 | |
| 					msr_bitmap_l1, msr_bitmap_l0,
 | |
| 					MSR_IA32_PRED_CMD,
 | |
| 					MSR_TYPE_W);
 | |
| 
 | |
| 	kunmap(page);
 | |
| 	kvm_release_page_clean(page);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vmcs12 *shadow;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 | |
| 	    vmcs12->vmcs_link_pointer == -1ull)
 | |
| 		return;
 | |
| 
 | |
| 	shadow = get_shadow_vmcs12(vcpu);
 | |
| 	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
 | |
| 
 | |
| 	memcpy(shadow, kmap(page), VMCS12_SIZE);
 | |
| 
 | |
| 	kunmap(page);
 | |
| 	kvm_release_page_clean(page);
 | |
| }
 | |
| 
 | |
| static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
 | |
| 					      struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 | |
| 	    vmcs12->vmcs_link_pointer == -1ull)
 | |
| 		return;
 | |
| 
 | |
| 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
 | |
| 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
 | |
| 					  struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
 | |
| 	    !page_address_valid(vcpu, vmcs12->apic_access_addr))
 | |
| 		return -EINVAL;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
 | |
| 					   struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 | |
| 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
 | |
| 	    !nested_cpu_has_vid(vmcs12) &&
 | |
| 	    !nested_cpu_has_posted_intr(vmcs12))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If virtualize x2apic mode is enabled,
 | |
| 	 * virtualize apic access must be disabled.
 | |
| 	 */
 | |
| 	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 | |
| 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If virtual interrupt delivery is enabled,
 | |
| 	 * we must exit on external interrupts.
 | |
| 	 */
 | |
| 	if (nested_cpu_has_vid(vmcs12) &&
 | |
| 	   !nested_exit_on_intr(vcpu))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * bits 15:8 should be zero in posted_intr_nv,
 | |
| 	 * the descriptor address has been already checked
 | |
| 	 * in nested_get_vmcs12_pages.
 | |
| 	 *
 | |
| 	 * bits 5:0 of posted_intr_desc_addr should be zero.
 | |
| 	 */
 | |
| 	if (nested_cpu_has_posted_intr(vmcs12) &&
 | |
| 	   (!nested_cpu_has_vid(vmcs12) ||
 | |
| 	    !nested_exit_intr_ack_set(vcpu) ||
 | |
| 	    (vmcs12->posted_intr_nv & 0xff00) ||
 | |
| 	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
 | |
| 	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* tpr shadow is needed by all apicv features. */
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
 | |
| 				       unsigned long count_field,
 | |
| 				       unsigned long addr_field)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	int maxphyaddr;
 | |
| 	u64 count, addr;
 | |
| 
 | |
| 	if (vmcs12_read_any(vmcs12, count_field, &count) ||
 | |
| 	    vmcs12_read_any(vmcs12, addr_field, &addr)) {
 | |
| 		WARN_ON(1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (count == 0)
 | |
| 		return 0;
 | |
| 	maxphyaddr = cpuid_maxphyaddr(vcpu);
 | |
| 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
 | |
| 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
 | |
| 		pr_debug_ratelimited(
 | |
| 			"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
 | |
| 			addr_field, maxphyaddr, count, addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
 | |
| 						struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (vmcs12->vm_exit_msr_load_count == 0 &&
 | |
| 	    vmcs12->vm_exit_msr_store_count == 0 &&
 | |
| 	    vmcs12->vm_entry_msr_load_count == 0)
 | |
| 		return 0; /* Fast path */
 | |
| 	if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
 | |
| 					VM_EXIT_MSR_LOAD_ADDR) ||
 | |
| 	    nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
 | |
| 					VM_EXIT_MSR_STORE_ADDR) ||
 | |
| 	    nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
 | |
| 					VM_ENTRY_MSR_LOAD_ADDR))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
 | |
| 					 struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	u64 address = vmcs12->pml_address;
 | |
| 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
 | |
| 
 | |
| 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
 | |
| 		if (!nested_cpu_has_ept(vmcs12) ||
 | |
| 		    !IS_ALIGNED(address, 4096)  ||
 | |
| 		    address >> maxphyaddr)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
 | |
| 						 struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
 | |
| 	    !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmx_msr_entry *e)
 | |
| {
 | |
| 	/* x2APIC MSR accesses are not allowed */
 | |
| 	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
 | |
| 		return -EINVAL;
 | |
| 	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
 | |
| 	    e->index == MSR_IA32_UCODE_REV)
 | |
| 		return -EINVAL;
 | |
| 	if (e->reserved != 0)
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
 | |
| 				     struct vmx_msr_entry *e)
 | |
| {
 | |
| 	if (e->index == MSR_FS_BASE ||
 | |
| 	    e->index == MSR_GS_BASE ||
 | |
| 	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
 | |
| 	    nested_vmx_msr_check_common(vcpu, e))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
 | |
| 				      struct vmx_msr_entry *e)
 | |
| {
 | |
| 	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
 | |
| 	    nested_vmx_msr_check_common(vcpu, e))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load guest's/host's msr at nested entry/exit.
 | |
|  * return 0 for success, entry index for failure.
 | |
|  */
 | |
| static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 | |
| {
 | |
| 	u32 i;
 | |
| 	struct vmx_msr_entry e;
 | |
| 	struct msr_data msr;
 | |
| 
 | |
| 	msr.host_initiated = false;
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
 | |
| 					&e, sizeof(e))) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
 | |
| 				__func__, i, gpa + i * sizeof(e));
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		if (nested_vmx_load_msr_check(vcpu, &e)) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s check failed (%u, 0x%x, 0x%x)\n",
 | |
| 				__func__, i, e.index, e.reserved);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		msr.index = e.index;
 | |
| 		msr.data = e.value;
 | |
| 		if (kvm_set_msr(vcpu, &msr)) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
 | |
| 				__func__, i, e.index, e.value);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| fail:
 | |
| 	return i + 1;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 | |
| {
 | |
| 	u32 i;
 | |
| 	struct vmx_msr_entry e;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		struct msr_data msr_info;
 | |
| 		if (kvm_vcpu_read_guest(vcpu,
 | |
| 					gpa + i * sizeof(e),
 | |
| 					&e, 2 * sizeof(u32))) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
 | |
| 				__func__, i, gpa + i * sizeof(e));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (nested_vmx_store_msr_check(vcpu, &e)) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s check failed (%u, 0x%x, 0x%x)\n",
 | |
| 				__func__, i, e.index, e.reserved);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		msr_info.host_initiated = false;
 | |
| 		msr_info.index = e.index;
 | |
| 		if (kvm_get_msr(vcpu, &msr_info)) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s cannot read MSR (%u, 0x%x)\n",
 | |
| 				__func__, i, e.index);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (kvm_vcpu_write_guest(vcpu,
 | |
| 					 gpa + i * sizeof(e) +
 | |
| 					     offsetof(struct vmx_msr_entry, value),
 | |
| 					 &msr_info.data, sizeof(msr_info.data))) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
 | |
| 				__func__, i, e.index, msr_info.data);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
 | |
| {
 | |
| 	unsigned long invalid_mask;
 | |
| 
 | |
| 	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
 | |
| 	return (val & invalid_mask) == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
 | |
|  * emulating VM entry into a guest with EPT enabled.
 | |
|  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
 | |
|  * is assigned to entry_failure_code on failure.
 | |
|  */
 | |
| static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
 | |
| 			       u32 *entry_failure_code)
 | |
| {
 | |
| 	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
 | |
| 		if (!nested_cr3_valid(vcpu, cr3)) {
 | |
| 			*entry_failure_code = ENTRY_FAIL_DEFAULT;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
 | |
| 		 * must not be dereferenced.
 | |
| 		 */
 | |
| 		if (is_pae_paging(vcpu) && !nested_ept) {
 | |
| 			if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
 | |
| 				*entry_failure_code = ENTRY_FAIL_PDPTE;
 | |
| 				return 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!nested_ept)
 | |
| 		kvm_mmu_new_cr3(vcpu, cr3, false);
 | |
| 
 | |
| 	vcpu->arch.cr3 = cr3;
 | |
| 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 | |
| 
 | |
| 	kvm_init_mmu(vcpu, false);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
 | |
| 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
 | |
| 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
 | |
| 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
 | |
| 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
 | |
| 	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
 | |
| 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
 | |
| 	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
 | |
| 	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
 | |
| 	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
 | |
| 	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
 | |
| 	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
 | |
| 	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
 | |
| 	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
 | |
| 	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
 | |
| 	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
 | |
| 	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
 | |
| 	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
 | |
| 	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
 | |
| 	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
 | |
| 	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
 | |
| 	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
 | |
| 	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
 | |
| 	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
 | |
| 	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
 | |
| 	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
 | |
| 	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
 | |
| 	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
 | |
| 	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
 | |
| 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
 | |
| 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
 | |
| 
 | |
| 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
 | |
| 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
 | |
| 		vmcs12->guest_pending_dbg_exceptions);
 | |
| 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
 | |
| 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
 | |
| 
 | |
| 	if (nested_cpu_has_xsaves(vmcs12))
 | |
| 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
 | |
| 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
 | |
| 
 | |
| 	if (cpu_has_vmx_posted_intr())
 | |
| 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Whether page-faults are trapped is determined by a combination of
 | |
| 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
 | |
| 	 * If enable_ept, L0 doesn't care about page faults and we should
 | |
| 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
 | |
| 	 * care about (at least some) page faults, and because it is not easy
 | |
| 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
 | |
| 	 * to exit on each and every L2 page fault. This is done by setting
 | |
| 	 * MASK=MATCH=0 and (see below) EB.PF=1.
 | |
| 	 * Note that below we don't need special code to set EB.PF beyond the
 | |
| 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
 | |
| 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
 | |
| 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
 | |
| 	 */
 | |
| 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
 | |
| 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
 | |
| 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
 | |
| 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
 | |
| 
 | |
| 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
 | |
| 	if (cpu_has_vmx_vmfunc())
 | |
| 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
 | |
| 
 | |
| 	if (cpu_has_vmx_apicv()) {
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
 | |
| 	 * Some constant fields are set here by vmx_set_constant_host_state().
 | |
| 	 * Other fields are different per CPU, and will be set later when
 | |
| 	 * vmx_vcpu_load() is called, and when vmx_prepare_switch_to_guest()
 | |
| 	 * is called.
 | |
| 	 */
 | |
| 	vmx_set_constant_host_state(vmx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the MSR load/store lists to match L0's settings.
 | |
| 	 */
 | |
| 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
 | |
| 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
 | |
| 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
 | |
| 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
 | |
| 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
 | |
| 
 | |
| 	set_cr4_guest_host_mask(vmx);
 | |
| 
 | |
| 	if (kvm_mpx_supported()) {
 | |
| 		if (vmx->nested.nested_run_pending &&
 | |
| 			(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
 | |
| 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
 | |
| 		else
 | |
| 			vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
 | |
| 	}
 | |
| 
 | |
| 	if (enable_vpid) {
 | |
| 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
 | |
| 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
 | |
| 		else
 | |
| 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * L1 may access the L2's PDPTR, so save them to construct vmcs12
 | |
| 	 */
 | |
| 	if (enable_ept) {
 | |
| 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
 | |
| 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
 | |
| 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
 | |
| 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_vmx_msr_bitmap())
 | |
| 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
 | |
|  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
 | |
|  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
 | |
|  * guest in a way that will both be appropriate to L1's requests, and our
 | |
|  * needs. In addition to modifying the active vmcs (which is vmcs02), this
 | |
|  * function also has additional necessary side-effects, like setting various
 | |
|  * vcpu->arch fields.
 | |
|  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
 | |
|  * is assigned to entry_failure_code on failure.
 | |
|  */
 | |
| static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 | |
| 			  u32 *entry_failure_code)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 exec_control, vmcs12_exec_ctrl;
 | |
| 
 | |
| 	if (vmx->nested.dirty_vmcs12) {
 | |
| 		prepare_vmcs02_full(vcpu, vmcs12);
 | |
| 		vmx->nested.dirty_vmcs12 = false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First, the fields that are shadowed.  This must be kept in sync
 | |
| 	 * with vmx_shadow_fields.h.
 | |
| 	 */
 | |
| 
 | |
| 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
 | |
| 	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
 | |
| 	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
 | |
| 	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
 | |
| 	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
 | |
| 
 | |
| 	if (vmx->nested.nested_run_pending &&
 | |
| 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
 | |
| 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
 | |
| 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
 | |
| 	} else {
 | |
| 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
 | |
| 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
 | |
| 	}
 | |
| 	if (vmx->nested.nested_run_pending) {
 | |
| 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
 | |
| 			     vmcs12->vm_entry_intr_info_field);
 | |
| 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
 | |
| 			     vmcs12->vm_entry_exception_error_code);
 | |
| 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
 | |
| 			     vmcs12->vm_entry_instruction_len);
 | |
| 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 			     vmcs12->guest_interruptibility_info);
 | |
| 		vmx->loaded_vmcs->nmi_known_unmasked =
 | |
| 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
 | |
| 	} else {
 | |
| 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
 | |
| 	}
 | |
| 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
 | |
| 
 | |
| 	exec_control = vmcs12->pin_based_vm_exec_control;
 | |
| 
 | |
| 	/* Preemption timer setting is computed directly in vmx_vcpu_run.  */
 | |
| 	exec_control |= vmcs_config.pin_based_exec_ctrl;
 | |
| 	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
 | |
| 	vmx->loaded_vmcs->hv_timer_armed = false;
 | |
| 
 | |
| 	/* Posted interrupts setting is only taken from vmcs12.  */
 | |
| 	if (nested_cpu_has_posted_intr(vmcs12)) {
 | |
| 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
 | |
| 		vmx->nested.pi_pending = false;
 | |
| 	} else {
 | |
| 		exec_control &= ~PIN_BASED_POSTED_INTR;
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
 | |
| 
 | |
| 	vmx->nested.preemption_timer_expired = false;
 | |
| 	if (nested_cpu_has_preemption_timer(vmcs12))
 | |
| 		vmx_start_preemption_timer(vcpu);
 | |
| 
 | |
| 	if (cpu_has_secondary_exec_ctrls()) {
 | |
| 		exec_control = vmx->secondary_exec_control;
 | |
| 
 | |
| 		/* Take the following fields only from vmcs12 */
 | |
| 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
 | |
| 				  SECONDARY_EXEC_ENABLE_INVPCID |
 | |
| 				  SECONDARY_EXEC_RDTSCP |
 | |
| 				  SECONDARY_EXEC_XSAVES |
 | |
| 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
 | |
| 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
 | |
| 				  SECONDARY_EXEC_ENABLE_VMFUNC);
 | |
| 		if (nested_cpu_has(vmcs12,
 | |
| 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
 | |
| 			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
 | |
| 				~SECONDARY_EXEC_ENABLE_PML;
 | |
| 			exec_control |= vmcs12_exec_ctrl;
 | |
| 		}
 | |
| 
 | |
| 		/* VMCS shadowing for L2 is emulated for now */
 | |
| 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
 | |
| 
 | |
| 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
 | |
| 			vmcs_write16(GUEST_INTR_STATUS,
 | |
| 				vmcs12->guest_intr_status);
 | |
| 
 | |
| 		/*
 | |
| 		 * Write an illegal value to APIC_ACCESS_ADDR. Later,
 | |
| 		 * nested_get_vmcs12_pages will either fix it up or
 | |
| 		 * remove the VM execution control.
 | |
| 		 */
 | |
| 		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
 | |
| 			vmcs_write64(APIC_ACCESS_ADDR, -1ull);
 | |
| 
 | |
| 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
 | |
| 			vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
 | |
| 
 | |
| 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
 | |
| 	 * entry, but only if the current (host) sp changed from the value
 | |
| 	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
 | |
| 	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
 | |
| 	 * here we just force the write to happen on entry.
 | |
| 	 */
 | |
| 	vmx->host_rsp = 0;
 | |
| 
 | |
| 	exec_control = vmx_exec_control(vmx); /* L0's desires */
 | |
| 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
 | |
| 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
 | |
| 	exec_control &= ~CPU_BASED_TPR_SHADOW;
 | |
| 	exec_control |= vmcs12->cpu_based_vm_exec_control;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
 | |
| 	 * nested_get_vmcs12_pages can't fix it up, the illegal value
 | |
| 	 * will result in a VM entry failure.
 | |
| 	 */
 | |
| 	if (exec_control & CPU_BASED_TPR_SHADOW) {
 | |
| 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
 | |
| 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
 | |
| 	} else {
 | |
| #ifdef CONFIG_X86_64
 | |
| 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
 | |
| 				CPU_BASED_CR8_STORE_EXITING;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
 | |
| 	 * for I/O port accesses.
 | |
| 	 */
 | |
| 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
 | |
| 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
 | |
| 
 | |
| 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
 | |
| 
 | |
| 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
 | |
| 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
 | |
| 	 * trap. Note that CR0.TS also needs updating - we do this later.
 | |
| 	 */
 | |
| 	update_exception_bitmap(vcpu);
 | |
| 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
 | |
| 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
 | |
| 
 | |
| 	/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
 | |
| 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
 | |
| 	 * bits are further modified by vmx_set_efer() below.
 | |
| 	 */
 | |
| 	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
 | |
| 
 | |
| 	/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
 | |
| 	 * emulated by vmx_set_efer(), below.
 | |
| 	 */
 | |
| 	vm_entry_controls_init(vmx, 
 | |
| 		(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
 | |
| 			~VM_ENTRY_IA32E_MODE) |
 | |
| 		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
 | |
| 
 | |
| 	if (vmx->nested.nested_run_pending &&
 | |
| 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
 | |
| 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
 | |
| 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
 | |
| 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
 | |
| 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
 | |
| 
 | |
| 	if (kvm_has_tsc_control)
 | |
| 		decache_tsc_multiplier(vmx);
 | |
| 
 | |
| 	if (enable_vpid) {
 | |
| 		/*
 | |
| 		 * There is no direct mapping between vpid02 and vpid12, the
 | |
| 		 * vpid02 is per-vCPU for L0 and reused while the value of
 | |
| 		 * vpid12 is changed w/ one invvpid during nested vmentry.
 | |
| 		 * The vpid12 is allocated by L1 for L2, so it will not
 | |
| 		 * influence global bitmap(for vpid01 and vpid02 allocation)
 | |
| 		 * even if spawn a lot of nested vCPUs.
 | |
| 		 */
 | |
| 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
 | |
| 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
 | |
| 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
 | |
| 				__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
 | |
| 			}
 | |
| 		} else {
 | |
| 			vmx_flush_tlb(vcpu, true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (enable_pml) {
 | |
| 		/*
 | |
| 		 * Conceptually we want to copy the PML address and index from
 | |
| 		 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
 | |
| 		 * since we always flush the log on each vmexit, this happens
 | |
| 		 * to be equivalent to simply resetting the fields in vmcs02.
 | |
| 		 */
 | |
| 		ASSERT(vmx->pml_pg);
 | |
| 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
 | |
| 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
 | |
| 	}
 | |
| 
 | |
| 	if (nested_cpu_has_ept(vmcs12)) {
 | |
| 		if (nested_ept_init_mmu_context(vcpu)) {
 | |
| 			*entry_failure_code = ENTRY_FAIL_DEFAULT;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else if (nested_cpu_has2(vmcs12,
 | |
| 				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
 | |
| 		vmx_flush_tlb(vcpu, true);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
 | |
| 	 * bits which we consider mandatory enabled.
 | |
| 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
 | |
| 	 * the specifications by L1; It's not enough to take
 | |
| 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
 | |
| 	 * have more bits than L1 expected.
 | |
| 	 */
 | |
| 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
 | |
| 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
 | |
| 
 | |
| 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
 | |
| 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
 | |
| 
 | |
| 	if (vmx->nested.nested_run_pending &&
 | |
| 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
 | |
| 		vcpu->arch.efer = vmcs12->guest_ia32_efer;
 | |
| 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
 | |
| 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
 | |
| 	else
 | |
| 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
 | |
| 	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
 | |
| 	vmx_set_efer(vcpu, vcpu->arch.efer);
 | |
| 
 | |
| 	/*
 | |
| 	 * Guest state is invalid and unrestricted guest is disabled,
 | |
| 	 * which means L1 attempted VMEntry to L2 with invalid state.
 | |
| 	 * Fail the VMEntry.
 | |
| 	 */
 | |
| 	if (vmx->emulation_required) {
 | |
| 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Shadow page tables on either EPT or shadow page tables. */
 | |
| 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
 | |
| 				entry_failure_code))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!enable_ept)
 | |
| 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
 | |
| 
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has_nmi_exiting(vmcs12) &&
 | |
| 	    nested_cpu_has_virtual_nmis(vmcs12))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!nested_cpu_has_virtual_nmis(vmcs12) &&
 | |
| 	    nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
 | |
| 	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_vmx_check_pml_controls(vcpu, vmcs12))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
 | |
| 				vmx->nested.msrs.procbased_ctls_low,
 | |
| 				vmx->nested.msrs.procbased_ctls_high) ||
 | |
| 	    (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
 | |
| 	     !vmx_control_verify(vmcs12->secondary_vm_exec_control,
 | |
| 				 vmx->nested.msrs.secondary_ctls_low,
 | |
| 				 vmx->nested.msrs.secondary_ctls_high)) ||
 | |
| 	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
 | |
| 				vmx->nested.msrs.pinbased_ctls_low,
 | |
| 				vmx->nested.msrs.pinbased_ctls_high) ||
 | |
| 	    !vmx_control_verify(vmcs12->vm_exit_controls,
 | |
| 				vmx->nested.msrs.exit_ctls_low,
 | |
| 				vmx->nested.msrs.exit_ctls_high) ||
 | |
| 	    !vmx_control_verify(vmcs12->vm_entry_controls,
 | |
| 				vmx->nested.msrs.entry_ctls_low,
 | |
| 				vmx->nested.msrs.entry_ctls_high))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_vmx_check_nmi_controls(vmcs12))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (nested_cpu_has_vmfunc(vmcs12)) {
 | |
| 		if (vmcs12->vm_function_control &
 | |
| 		    ~vmx->nested.msrs.vmfunc_controls)
 | |
| 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 		if (nested_cpu_has_eptp_switching(vmcs12)) {
 | |
| 			if (!nested_cpu_has_ept(vmcs12) ||
 | |
| 			    !page_address_valid(vcpu, vmcs12->eptp_list_address))
 | |
| 				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
 | |
| 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 	if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
 | |
| 	    !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
 | |
| 	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
 | |
| 		return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
 | |
| 
 | |
| 	/*
 | |
| 	 * From the Intel SDM, volume 3:
 | |
| 	 * Fields relevant to VM-entry event injection must be set properly.
 | |
| 	 * These fields are the VM-entry interruption-information field, the
 | |
| 	 * VM-entry exception error code, and the VM-entry instruction length.
 | |
| 	 */
 | |
| 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
 | |
| 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
 | |
| 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
 | |
| 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
 | |
| 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
 | |
| 		bool should_have_error_code;
 | |
| 		bool urg = nested_cpu_has2(vmcs12,
 | |
| 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
 | |
| 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
 | |
| 
 | |
| 		/* VM-entry interruption-info field: interruption type */
 | |
| 		if (intr_type == INTR_TYPE_RESERVED ||
 | |
| 		    (intr_type == INTR_TYPE_OTHER_EVENT &&
 | |
| 		     !nested_cpu_supports_monitor_trap_flag(vcpu)))
 | |
| 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 		/* VM-entry interruption-info field: vector */
 | |
| 		if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
 | |
| 		    (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
 | |
| 		    (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
 | |
| 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 		/* VM-entry interruption-info field: deliver error code */
 | |
| 		should_have_error_code =
 | |
| 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
 | |
| 			x86_exception_has_error_code(vector);
 | |
| 		if (has_error_code != should_have_error_code)
 | |
| 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 		/* VM-entry exception error code */
 | |
| 		if (has_error_code &&
 | |
| 		    vmcs12->vm_entry_exception_error_code & GENMASK(31, 16))
 | |
| 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 		/* VM-entry interruption-info field: reserved bits */
 | |
| 		if (intr_info & INTR_INFO_RESVD_BITS_MASK)
 | |
| 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 
 | |
| 		/* VM-entry instruction length */
 | |
| 		switch (intr_type) {
 | |
| 		case INTR_TYPE_SOFT_EXCEPTION:
 | |
| 		case INTR_TYPE_SOFT_INTR:
 | |
| 		case INTR_TYPE_PRIV_SW_EXCEPTION:
 | |
| 			if ((vmcs12->vm_entry_instruction_len > 15) ||
 | |
| 			    (vmcs12->vm_entry_instruction_len == 0 &&
 | |
| 			     !nested_cpu_has_zero_length_injection(vcpu)))
 | |
| 				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
 | |
| 					  struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	int r;
 | |
| 	struct page *page;
 | |
| 	struct vmcs12 *shadow;
 | |
| 
 | |
| 	if (vmcs12->vmcs_link_pointer == -1ull)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
 | |
| 	if (is_error_page(page))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	r = 0;
 | |
| 	shadow = kmap(page);
 | |
| 	if (shadow->hdr.revision_id != VMCS12_REVISION ||
 | |
| 	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
 | |
| 		r = -EINVAL;
 | |
| 	kunmap(page);
 | |
| 	kvm_release_page_clean(page);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 | |
| 				  u32 *exit_qual)
 | |
| {
 | |
| 	bool ia32e;
 | |
| 
 | |
| 	*exit_qual = ENTRY_FAIL_DEFAULT;
 | |
| 
 | |
| 	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
 | |
| 	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
 | |
| 		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the load IA32_EFER VM-entry control is 1, the following checks
 | |
| 	 * are performed on the field for the IA32_EFER MSR:
 | |
| 	 * - Bits reserved in the IA32_EFER MSR must be 0.
 | |
| 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
 | |
| 	 *   the IA-32e mode guest VM-exit control. It must also be identical
 | |
| 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
 | |
| 	 *   CR0.PG) is 1.
 | |
| 	 */
 | |
| 	if (to_vmx(vcpu)->nested.nested_run_pending &&
 | |
| 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
 | |
| 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
 | |
| 		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
 | |
| 		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
 | |
| 		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
 | |
| 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
 | |
| 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
 | |
| 	 * the values of the LMA and LME bits in the field must each be that of
 | |
| 	 * the host address-space size VM-exit control.
 | |
| 	 */
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
 | |
| 		ia32e = (vmcs12->vm_exit_controls &
 | |
| 			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
 | |
| 		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
 | |
| 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
 | |
| 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
 | |
| 		(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
 | |
| 		(vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
 | |
| 			return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If exit_qual is NULL, this is being called from state restore (either RSM
 | |
|  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
 | |
|  */
 | |
| static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, u32 *exit_qual)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	bool from_vmentry = !!exit_qual;
 | |
| 	u32 dummy_exit_qual;
 | |
| 	bool evaluate_pending_interrupts;
 | |
| 	int r = 0;
 | |
| 
 | |
| 	evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
 | |
| 		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
 | |
| 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
 | |
| 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
 | |
| 
 | |
| 	enter_guest_mode(vcpu);
 | |
| 
 | |
| 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
 | |
| 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
 | |
| 	if (kvm_mpx_supported() &&
 | |
| 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
 | |
| 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
 | |
| 
 | |
| 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
 | |
| 	vmx_segment_cache_clear(vmx);
 | |
| 
 | |
| 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
 | |
| 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
 | |
| 
 | |
| 	r = EXIT_REASON_INVALID_STATE;
 | |
| 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry ? exit_qual : &dummy_exit_qual))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (from_vmentry) {
 | |
| 		nested_get_vmcs12_pages(vcpu);
 | |
| 
 | |
| 		r = EXIT_REASON_MSR_LOAD_FAIL;
 | |
| 		*exit_qual = nested_vmx_load_msr(vcpu,
 | |
| 	     					 vmcs12->vm_entry_msr_load_addr,
 | |
| 					      	 vmcs12->vm_entry_msr_load_count);
 | |
| 		if (*exit_qual)
 | |
| 			goto fail;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The MMU is not initialized to point at the right entities yet and
 | |
| 		 * "get pages" would need to read data from the guest (i.e. we will
 | |
| 		 * need to perform gpa to hpa translation). Request a call
 | |
| 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
 | |
| 		 * have already been set at vmentry time and should not be reset.
 | |
| 		 */
 | |
| 		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If L1 had a pending IRQ/NMI until it executed
 | |
| 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
 | |
| 	 * disallowed (e.g. interrupts disabled), L0 needs to
 | |
| 	 * evaluate if this pending event should cause an exit from L2
 | |
| 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
 | |
| 	 * intercept EXTERNAL_INTERRUPT).
 | |
| 	 *
 | |
| 	 * Usually this would be handled by the processor noticing an
 | |
| 	 * IRQ/NMI window request, or checking RVI during evaluation of
 | |
| 	 * pending virtual interrupts.  However, this setting was done
 | |
| 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
 | |
| 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
 | |
| 	 */
 | |
| 	if (unlikely(evaluate_pending_interrupts))
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
 | |
| 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
 | |
| 	 * returned as far as L1 is concerned. It will only return (and set
 | |
| 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
 | |
| 	 */
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
 | |
| 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
 | |
| 	leave_guest_mode(vcpu);
 | |
| 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
 | |
|  * for running an L2 nested guest.
 | |
|  */
 | |
| static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
 | |
| 	u32 exit_qual;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!nested_vmx_check_vmcs12(vcpu))
 | |
| 		goto out;
 | |
| 
 | |
| 	vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
 | |
| 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
 | |
| 	 * rather than RFLAGS.ZF, and no error number is stored to the
 | |
| 	 * VM-instruction error field.
 | |
| 	 */
 | |
| 	if (vmcs12->hdr.shadow_vmcs) {
 | |
| 		nested_vmx_failInvalid(vcpu);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (enable_shadow_vmcs)
 | |
| 		copy_shadow_to_vmcs12(vmx);
 | |
| 
 | |
| 	/*
 | |
| 	 * The nested entry process starts with enforcing various prerequisites
 | |
| 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
 | |
| 	 * they fail: As the SDM explains, some conditions should cause the
 | |
| 	 * instruction to fail, while others will cause the instruction to seem
 | |
| 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
 | |
| 	 * To speed up the normal (success) code path, we should avoid checking
 | |
| 	 * for misconfigurations which will anyway be caught by the processor
 | |
| 	 * when using the merged vmcs02.
 | |
| 	 */
 | |
| 	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
 | |
| 		nested_vmx_failValid(vcpu,
 | |
| 				     VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (vmcs12->launch_state == launch) {
 | |
| 		nested_vmx_failValid(vcpu,
 | |
| 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
 | |
| 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = check_vmentry_prereqs(vcpu, vmcs12);
 | |
| 	if (ret) {
 | |
| 		nested_vmx_failValid(vcpu, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * After this point, the trap flag no longer triggers a singlestep trap
 | |
| 	 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
 | |
| 	 * This is not 100% correct; for performance reasons, we delegate most
 | |
| 	 * of the checks on host state to the processor.  If those fail,
 | |
| 	 * the singlestep trap is missed.
 | |
| 	 */
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
 | |
| 	if (ret) {
 | |
| 		nested_vmx_entry_failure(vcpu, vmcs12,
 | |
| 					 EXIT_REASON_INVALID_STATE, exit_qual);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We're finally done with prerequisite checking, and can start with
 | |
| 	 * the nested entry.
 | |
| 	 */
 | |
| 
 | |
| 	vmx->nested.nested_run_pending = 1;
 | |
| 	ret = enter_vmx_non_root_mode(vcpu, &exit_qual);
 | |
| 	if (ret) {
 | |
| 		nested_vmx_entry_failure(vcpu, vmcs12, ret, exit_qual);
 | |
| 		vmx->nested.nested_run_pending = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Hide L1D cache contents from the nested guest.  */
 | |
| 	vmx->vcpu.arch.l1tf_flush_l1d = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Must happen outside of enter_vmx_non_root_mode() as it will
 | |
| 	 * also be used as part of restoring nVMX state for
 | |
| 	 * snapshot restore (migration).
 | |
| 	 *
 | |
| 	 * In this flow, it is assumed that vmcs12 cache was
 | |
| 	 * trasferred as part of captured nVMX state and should
 | |
| 	 * therefore not be read from guest memory (which may not
 | |
| 	 * exist on destination host yet).
 | |
| 	 */
 | |
| 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
 | |
| 	 * awakened by event injection or by an NMI-window VM-exit or
 | |
| 	 * by an interrupt-window VM-exit, halt the vcpu.
 | |
| 	 */
 | |
| 	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
 | |
| 	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
 | |
| 	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
 | |
| 	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
 | |
| 	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
 | |
| 		vmx->nested.nested_run_pending = 0;
 | |
| 		return kvm_vcpu_halt(vcpu);
 | |
| 	}
 | |
| 	return 1;
 | |
| 
 | |
| out:
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
 | |
|  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
 | |
|  * This function returns the new value we should put in vmcs12.guest_cr0.
 | |
|  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
 | |
|  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
 | |
|  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
 | |
|  *     didn't trap the bit, because if L1 did, so would L0).
 | |
|  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
 | |
|  *     been modified by L2, and L1 knows it. So just leave the old value of
 | |
|  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
 | |
|  *     isn't relevant, because if L0 traps this bit it can set it to anything.
 | |
|  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
 | |
|  *     changed these bits, and therefore they need to be updated, but L0
 | |
|  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
 | |
|  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
 | |
|  */
 | |
| static inline unsigned long
 | |
| vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return
 | |
| 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
 | |
| 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
 | |
| 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
 | |
| 			vcpu->arch.cr0_guest_owned_bits));
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return
 | |
| 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
 | |
| 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
 | |
| 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
 | |
| 			vcpu->arch.cr4_guest_owned_bits));
 | |
| }
 | |
| 
 | |
| static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	u32 idt_vectoring;
 | |
| 	unsigned int nr;
 | |
| 
 | |
| 	if (vcpu->arch.exception.injected) {
 | |
| 		nr = vcpu->arch.exception.nr;
 | |
| 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
 | |
| 
 | |
| 		if (kvm_exception_is_soft(nr)) {
 | |
| 			vmcs12->vm_exit_instruction_len =
 | |
| 				vcpu->arch.event_exit_inst_len;
 | |
| 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
 | |
| 		} else
 | |
| 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
 | |
| 
 | |
| 		if (vcpu->arch.exception.has_error_code) {
 | |
| 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
 | |
| 			vmcs12->idt_vectoring_error_code =
 | |
| 				vcpu->arch.exception.error_code;
 | |
| 		}
 | |
| 
 | |
| 		vmcs12->idt_vectoring_info_field = idt_vectoring;
 | |
| 	} else if (vcpu->arch.nmi_injected) {
 | |
| 		vmcs12->idt_vectoring_info_field =
 | |
| 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
 | |
| 	} else if (vcpu->arch.interrupt.injected) {
 | |
| 		nr = vcpu->arch.interrupt.nr;
 | |
| 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
 | |
| 
 | |
| 		if (vcpu->arch.interrupt.soft) {
 | |
| 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
 | |
| 			vmcs12->vm_entry_instruction_len =
 | |
| 				vcpu->arch.event_exit_inst_len;
 | |
| 		} else
 | |
| 			idt_vectoring |= INTR_TYPE_EXT_INTR;
 | |
| 
 | |
| 		vmcs12->idt_vectoring_info_field = idt_vectoring;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long exit_qual;
 | |
| 	bool block_nested_events =
 | |
| 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
 | |
| 
 | |
| 	if (vcpu->arch.exception.pending &&
 | |
| 		nested_vmx_check_exception(vcpu, &exit_qual)) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
 | |
| 	    vmx->nested.preemption_timer_expired) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
 | |
| 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
 | |
| 				  INTR_INFO_VALID_MASK, 0);
 | |
| 		/*
 | |
| 		 * The NMI-triggered VM exit counts as injection:
 | |
| 		 * clear this one and block further NMIs.
 | |
| 		 */
 | |
| 		vcpu->arch.nmi_pending = 0;
 | |
| 		vmx_set_nmi_mask(vcpu, true);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
 | |
| 	    nested_exit_on_intr(vcpu)) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	vmx_complete_nested_posted_interrupt(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	to_vmx(vcpu)->req_immediate_exit = true;
 | |
| }
 | |
| 
 | |
| static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ktime_t remaining =
 | |
| 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (ktime_to_ns(remaining) <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
 | |
| 	do_div(value, 1000000);
 | |
| 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the guest state fields of vmcs12 to reflect changes that
 | |
|  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
 | |
|  * VM-entry controls is also updated, since this is really a guest
 | |
|  * state bit.)
 | |
|  */
 | |
| static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
 | |
| 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
 | |
| 
 | |
| 	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
 | |
| 	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
 | |
| 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
 | |
| 
 | |
| 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
 | |
| 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
 | |
| 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
 | |
| 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
 | |
| 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
 | |
| 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
 | |
| 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
 | |
| 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
 | |
| 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
 | |
| 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
 | |
| 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
 | |
| 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
 | |
| 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
 | |
| 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
 | |
| 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
 | |
| 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
 | |
| 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
 | |
| 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
 | |
| 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
 | |
| 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
 | |
| 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
 | |
| 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
 | |
| 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
 | |
| 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
 | |
| 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
 | |
| 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
 | |
| 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
 | |
| 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
 | |
| 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
 | |
| 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
 | |
| 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
 | |
| 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
 | |
| 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
 | |
| 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
 | |
| 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
 | |
| 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
 | |
| 
 | |
| 	vmcs12->guest_interruptibility_info =
 | |
| 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 | |
| 	vmcs12->guest_pending_dbg_exceptions =
 | |
| 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
 | |
| 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
 | |
| 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
 | |
| 	else
 | |
| 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
 | |
| 
 | |
| 	if (nested_cpu_has_preemption_timer(vmcs12)) {
 | |
| 		if (vmcs12->vm_exit_controls &
 | |
| 		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
 | |
| 			vmcs12->vmx_preemption_timer_value =
 | |
| 				vmx_get_preemption_timer_value(vcpu);
 | |
| 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In some cases (usually, nested EPT), L2 is allowed to change its
 | |
| 	 * own CR3 without exiting. If it has changed it, we must keep it.
 | |
| 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
 | |
| 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
 | |
| 	 *
 | |
| 	 * Additionally, restore L2's PDPTR to vmcs12.
 | |
| 	 */
 | |
| 	if (enable_ept) {
 | |
| 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
 | |
| 		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
 | |
| 		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
 | |
| 		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
 | |
| 		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
 | |
| 	}
 | |
| 
 | |
| 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
 | |
| 
 | |
| 	if (nested_cpu_has_vid(vmcs12))
 | |
| 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
 | |
| 
 | |
| 	vmcs12->vm_entry_controls =
 | |
| 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
 | |
| 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
 | |
| 
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
 | |
| 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
 | |
| 		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: These cannot have changed unless we have MSR bitmaps and
 | |
| 	 * the relevant bit asks not to trap the change */
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
 | |
| 		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
 | |
| 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
 | |
| 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
 | |
| 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
 | |
| 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
 | |
| 	if (kvm_mpx_supported())
 | |
| 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
 | |
|  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
 | |
|  * and this function updates it to reflect the changes to the guest state while
 | |
|  * L2 was running (and perhaps made some exits which were handled directly by L0
 | |
|  * without going back to L1), and to reflect the exit reason.
 | |
|  * Note that we do not have to copy here all VMCS fields, just those that
 | |
|  * could have changed by the L2 guest or the exit - i.e., the guest-state and
 | |
|  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
 | |
|  * which already writes to vmcs12 directly.
 | |
|  */
 | |
| static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 | |
| 			   u32 exit_reason, u32 exit_intr_info,
 | |
| 			   unsigned long exit_qualification)
 | |
| {
 | |
| 	/* update guest state fields: */
 | |
| 	sync_vmcs12(vcpu, vmcs12);
 | |
| 
 | |
| 	/* update exit information fields: */
 | |
| 
 | |
| 	vmcs12->vm_exit_reason = exit_reason;
 | |
| 	vmcs12->exit_qualification = exit_qualification;
 | |
| 	vmcs12->vm_exit_intr_info = exit_intr_info;
 | |
| 
 | |
| 	vmcs12->idt_vectoring_info_field = 0;
 | |
| 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 
 | |
| 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
 | |
| 		vmcs12->launch_state = 1;
 | |
| 
 | |
| 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
 | |
| 		 * instead of reading the real value. */
 | |
| 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
 | |
| 
 | |
| 		/*
 | |
| 		 * Transfer the event that L0 or L1 may wanted to inject into
 | |
| 		 * L2 to IDT_VECTORING_INFO_FIELD.
 | |
| 		 */
 | |
| 		vmcs12_save_pending_event(vcpu, vmcs12);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
 | |
| 	 * preserved above and would only end up incorrectly in L1.
 | |
| 	 */
 | |
| 	vcpu->arch.nmi_injected = false;
 | |
| 	kvm_clear_exception_queue(vcpu);
 | |
| 	kvm_clear_interrupt_queue(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A part of what we need to when the nested L2 guest exits and we want to
 | |
|  * run its L1 parent, is to reset L1's guest state to the host state specified
 | |
|  * in vmcs12.
 | |
|  * This function is to be called not only on normal nested exit, but also on
 | |
|  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
 | |
|  * Failures During or After Loading Guest State").
 | |
|  * This function should be called when the active VMCS is L1's (vmcs01).
 | |
|  */
 | |
| static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
 | |
| 				   struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct kvm_segment seg;
 | |
| 	u32 entry_failure_code;
 | |
| 
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
 | |
| 		vcpu->arch.efer = vmcs12->host_ia32_efer;
 | |
| 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
 | |
| 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
 | |
| 	else
 | |
| 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
 | |
| 	vmx_set_efer(vcpu, vcpu->arch.efer);
 | |
| 
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
 | |
| 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
 | |
| 	/*
 | |
| 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
 | |
| 	 * actually changed, because vmx_set_cr0 refers to efer set above.
 | |
| 	 *
 | |
| 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
 | |
| 	 * (KVM doesn't change it);
 | |
| 	 */
 | |
| 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
 | |
| 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
 | |
| 
 | |
| 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
 | |
| 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
 | |
| 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
 | |
| 
 | |
| 	nested_ept_uninit_mmu_context(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
 | |
| 	 * couldn't have changed.
 | |
| 	 */
 | |
| 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
 | |
| 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
 | |
| 
 | |
| 	if (!enable_ept)
 | |
| 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
 | |
| 
 | |
| 	/*
 | |
| 	 * If vmcs01 don't use VPID, CPU flushes TLB on every
 | |
| 	 * VMEntry/VMExit. Thus, no need to flush TLB.
 | |
| 	 *
 | |
| 	 * If vmcs12 uses VPID, TLB entries populated by L2 are
 | |
| 	 * tagged with vmx->nested.vpid02 while L1 entries are tagged
 | |
| 	 * with vmx->vpid. Thus, no need to flush TLB.
 | |
| 	 *
 | |
| 	 * Therefore, flush TLB only in case vmcs01 uses VPID and
 | |
| 	 * vmcs12 don't use VPID as in this case L1 & L2 TLB entries
 | |
| 	 * are both tagged with vmx->vpid.
 | |
| 	 */
 | |
| 	if (enable_vpid &&
 | |
| 	    !(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02)) {
 | |
| 		vmx_flush_tlb(vcpu, true);
 | |
| 	}
 | |
| 
 | |
| 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
 | |
| 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
 | |
| 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
 | |
| 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
 | |
| 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
 | |
| 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
 | |
| 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
 | |
| 
 | |
| 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
 | |
| 		vmcs_write64(GUEST_BNDCFGS, 0);
 | |
| 
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
 | |
| 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
 | |
| 		vcpu->arch.pat = vmcs12->host_ia32_pat;
 | |
| 	}
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
 | |
| 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
 | |
| 			vmcs12->host_ia32_perf_global_ctrl);
 | |
| 
 | |
| 	/* Set L1 segment info according to Intel SDM
 | |
| 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
 | |
| 	seg = (struct kvm_segment) {
 | |
| 		.base = 0,
 | |
| 		.limit = 0xFFFFFFFF,
 | |
| 		.selector = vmcs12->host_cs_selector,
 | |
| 		.type = 11,
 | |
| 		.present = 1,
 | |
| 		.s = 1,
 | |
| 		.g = 1
 | |
| 	};
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
 | |
| 		seg.l = 1;
 | |
| 	else
 | |
| 		seg.db = 1;
 | |
| 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
 | |
| 	seg = (struct kvm_segment) {
 | |
| 		.base = 0,
 | |
| 		.limit = 0xFFFFFFFF,
 | |
| 		.type = 3,
 | |
| 		.present = 1,
 | |
| 		.s = 1,
 | |
| 		.db = 1,
 | |
| 		.g = 1
 | |
| 	};
 | |
| 	seg.selector = vmcs12->host_ds_selector;
 | |
| 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
 | |
| 	seg.selector = vmcs12->host_es_selector;
 | |
| 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
 | |
| 	seg.selector = vmcs12->host_ss_selector;
 | |
| 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
 | |
| 	seg.selector = vmcs12->host_fs_selector;
 | |
| 	seg.base = vmcs12->host_fs_base;
 | |
| 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
 | |
| 	seg.selector = vmcs12->host_gs_selector;
 | |
| 	seg.base = vmcs12->host_gs_base;
 | |
| 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
 | |
| 	seg = (struct kvm_segment) {
 | |
| 		.base = vmcs12->host_tr_base,
 | |
| 		.limit = 0x67,
 | |
| 		.selector = vmcs12->host_tr_selector,
 | |
| 		.type = 11,
 | |
| 		.present = 1
 | |
| 	};
 | |
| 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
 | |
| 
 | |
| 	kvm_set_dr(vcpu, 7, 0x400);
 | |
| 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
 | |
| 
 | |
| 	if (cpu_has_vmx_msr_bitmap())
 | |
| 		vmx_update_msr_bitmap(vcpu);
 | |
| 
 | |
| 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
 | |
| 				vmcs12->vm_exit_msr_load_count))
 | |
| 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
 | |
| }
 | |
| 
 | |
| static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	struct shared_msr_entry *efer_msr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
 | |
| 		return vmcs_read64(GUEST_IA32_EFER);
 | |
| 
 | |
| 	if (cpu_has_load_ia32_efer)
 | |
| 		return host_efer;
 | |
| 
 | |
| 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
 | |
| 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
 | |
| 			return vmx->msr_autoload.guest.val[i].value;
 | |
| 	}
 | |
| 
 | |
| 	efer_msr = find_msr_entry(vmx, MSR_EFER);
 | |
| 	if (efer_msr)
 | |
| 		return efer_msr->data;
 | |
| 
 | |
| 	return host_efer;
 | |
| }
 | |
| 
 | |
| static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmx_msr_entry g, h;
 | |
| 	struct msr_data msr;
 | |
| 	gpa_t gpa;
 | |
| 	u32 i, j;
 | |
| 
 | |
| 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
 | |
| 
 | |
| 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
 | |
| 		/*
 | |
| 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
 | |
| 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
 | |
| 		 * and vcpu->arch.dr7 is not squirreled away before the
 | |
| 		 * nested VMENTER (not worth adding a variable in nested_vmx).
 | |
| 		 */
 | |
| 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 | |
| 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
 | |
| 		else
 | |
| 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
 | |
| 	 * handle a variety of side effects to KVM's software model.
 | |
| 	 */
 | |
| 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
 | |
| 
 | |
| 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
 | |
| 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
 | |
| 
 | |
| 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
 | |
| 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
 | |
| 
 | |
| 	nested_ept_uninit_mmu_context(vcpu);
 | |
| 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
 | |
| 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
 | |
| 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
 | |
| 	 * VMFail, like everything else we just need to ensure our
 | |
| 	 * software model is up-to-date.
 | |
| 	 */
 | |
| 	ept_save_pdptrs(vcpu);
 | |
| 
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	if (cpu_has_vmx_msr_bitmap())
 | |
| 		vmx_update_msr_bitmap(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * This nasty bit of open coding is a compromise between blindly
 | |
| 	 * loading L1's MSRs using the exit load lists (incorrect emulation
 | |
| 	 * of VMFail), leaving the nested VM's MSRs in the software model
 | |
| 	 * (incorrect behavior) and snapshotting the modified MSRs (too
 | |
| 	 * expensive since the lists are unbound by hardware).  For each
 | |
| 	 * MSR that was (prematurely) loaded from the nested VMEntry load
 | |
| 	 * list, reload it from the exit load list if it exists and differs
 | |
| 	 * from the guest value.  The intent is to stuff host state as
 | |
| 	 * silently as possible, not to fully process the exit load list.
 | |
| 	 */
 | |
| 	msr.host_initiated = false;
 | |
| 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
 | |
| 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
 | |
| 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s read MSR index failed (%u, 0x%08llx)\n",
 | |
| 				__func__, i, gpa);
 | |
| 			goto vmabort;
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
 | |
| 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
 | |
| 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
 | |
| 				pr_debug_ratelimited(
 | |
| 					"%s read MSR failed (%u, 0x%08llx)\n",
 | |
| 					__func__, j, gpa);
 | |
| 				goto vmabort;
 | |
| 			}
 | |
| 			if (h.index != g.index)
 | |
| 				continue;
 | |
| 			if (h.value == g.value)
 | |
| 				break;
 | |
| 
 | |
| 			if (nested_vmx_load_msr_check(vcpu, &h)) {
 | |
| 				pr_debug_ratelimited(
 | |
| 					"%s check failed (%u, 0x%x, 0x%x)\n",
 | |
| 					__func__, j, h.index, h.reserved);
 | |
| 				goto vmabort;
 | |
| 			}
 | |
| 
 | |
| 			msr.index = h.index;
 | |
| 			msr.data = h.value;
 | |
| 			if (kvm_set_msr(vcpu, &msr)) {
 | |
| 				pr_debug_ratelimited(
 | |
| 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
 | |
| 					__func__, j, h.index, h.value);
 | |
| 				goto vmabort;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| vmabort:
 | |
| 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
 | |
|  * and modify vmcs12 to make it see what it would expect to see there if
 | |
|  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
 | |
|  */
 | |
| static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
 | |
| 			      u32 exit_intr_info,
 | |
| 			      unsigned long exit_qualification)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	/* trying to cancel vmlaunch/vmresume is a bug */
 | |
| 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
 | |
| 
 | |
| 	/*
 | |
| 	 * The only expected VM-instruction error is "VM entry with
 | |
| 	 * invalid control field(s)." Anything else indicates a
 | |
| 	 * problem with L0.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
 | |
| 				   VMXERR_ENTRY_INVALID_CONTROL_FIELD));
 | |
| 
 | |
| 	leave_guest_mode(vcpu);
 | |
| 
 | |
| 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
 | |
| 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
 | |
| 
 | |
| 	if (likely(!vmx->fail)) {
 | |
| 		if (exit_reason == -1)
 | |
| 			sync_vmcs12(vcpu, vmcs12);
 | |
| 		else
 | |
| 			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
 | |
| 				       exit_qualification);
 | |
| 
 | |
| 		/*
 | |
| 		 * Must happen outside of sync_vmcs12() as it will
 | |
| 		 * also be used to capture vmcs12 cache as part of
 | |
| 		 * capturing nVMX state for snapshot (migration).
 | |
| 		 *
 | |
| 		 * Otherwise, this flush will dirty guest memory at a
 | |
| 		 * point it is already assumed by user-space to be
 | |
| 		 * immutable.
 | |
| 		 */
 | |
| 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
 | |
| 
 | |
| 		if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
 | |
| 					 vmcs12->vm_exit_msr_store_count))
 | |
| 			nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
 | |
| 	}
 | |
| 
 | |
| 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 | |
| 	vm_entry_controls_reset_shadow(vmx);
 | |
| 	vm_exit_controls_reset_shadow(vmx);
 | |
| 	vmx_segment_cache_clear(vmx);
 | |
| 
 | |
| 	/* Update any VMCS fields that might have changed while L2 ran */
 | |
| 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
 | |
| 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
 | |
| 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
 | |
| 
 | |
| 	if (kvm_has_tsc_control)
 | |
| 		decache_tsc_multiplier(vmx);
 | |
| 
 | |
| 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
 | |
| 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
 | |
| 		vmx_set_virtual_apic_mode(vcpu);
 | |
| 	} else if (!nested_cpu_has_ept(vmcs12) &&
 | |
| 		   nested_cpu_has2(vmcs12,
 | |
| 				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
 | |
| 		vmx_flush_tlb(vcpu, true);
 | |
| 	}
 | |
| 
 | |
| 	/* This is needed for same reason as it was needed in prepare_vmcs02 */
 | |
| 	vmx->host_rsp = 0;
 | |
| 
 | |
| 	/* Unpin physical memory we referred to in vmcs02 */
 | |
| 	if (vmx->nested.apic_access_page) {
 | |
| 		kvm_release_page_dirty(vmx->nested.apic_access_page);
 | |
| 		vmx->nested.apic_access_page = NULL;
 | |
| 	}
 | |
| 	if (vmx->nested.virtual_apic_page) {
 | |
| 		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
 | |
| 		vmx->nested.virtual_apic_page = NULL;
 | |
| 	}
 | |
| 	if (vmx->nested.pi_desc_page) {
 | |
| 		kunmap(vmx->nested.pi_desc_page);
 | |
| 		kvm_release_page_dirty(vmx->nested.pi_desc_page);
 | |
| 		vmx->nested.pi_desc_page = NULL;
 | |
| 		vmx->nested.pi_desc = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are now running in L2, mmu_notifier will force to reload the
 | |
| 	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
 | |
| 	 */
 | |
| 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
 | |
| 
 | |
| 	if (enable_shadow_vmcs && exit_reason != -1)
 | |
| 		vmx->nested.sync_shadow_vmcs = true;
 | |
| 
 | |
| 	/* in case we halted in L2 */
 | |
| 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 
 | |
| 	if (likely(!vmx->fail)) {
 | |
| 		/*
 | |
| 		 * TODO: SDM says that with acknowledge interrupt on
 | |
| 		 * exit, bit 31 of the VM-exit interrupt information
 | |
| 		 * (valid interrupt) is always set to 1 on
 | |
| 		 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
 | |
| 		 * need kvm_cpu_has_interrupt().  See the commit
 | |
| 		 * message for details.
 | |
| 		 */
 | |
| 		if (nested_exit_intr_ack_set(vcpu) &&
 | |
| 		    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
 | |
| 		    kvm_cpu_has_interrupt(vcpu)) {
 | |
| 			int irq = kvm_cpu_get_interrupt(vcpu);
 | |
| 			WARN_ON(irq < 0);
 | |
| 			vmcs12->vm_exit_intr_info = irq |
 | |
| 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
 | |
| 		}
 | |
| 
 | |
| 		if (exit_reason != -1)
 | |
| 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
 | |
| 						       vmcs12->exit_qualification,
 | |
| 						       vmcs12->idt_vectoring_info_field,
 | |
| 						       vmcs12->vm_exit_intr_info,
 | |
| 						       vmcs12->vm_exit_intr_error_code,
 | |
| 						       KVM_ISA_VMX);
 | |
| 
 | |
| 		load_vmcs12_host_state(vcpu, vmcs12);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 	
 | |
| 	/*
 | |
| 	 * After an early L2 VM-entry failure, we're now back
 | |
| 	 * in L1 which thinks it just finished a VMLAUNCH or
 | |
| 	 * VMRESUME instruction, so we need to set the failure
 | |
| 	 * flag and the VM-instruction error field of the VMCS
 | |
| 	 * accordingly.
 | |
| 	 */
 | |
| 	nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore L1's host state to KVM's software model.  We're here
 | |
| 	 * because a consistency check was caught by hardware, which
 | |
| 	 * means some amount of guest state has been propagated to KVM's
 | |
| 	 * model and needs to be unwound to the host's state.
 | |
| 	 */
 | |
| 	nested_vmx_restore_host_state(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * The emulated instruction was already skipped in
 | |
| 	 * nested_vmx_run, but the updated RIP was never
 | |
| 	 * written back to the vmcs01.
 | |
| 	 */
 | |
| 	skip_emulated_instruction(vcpu);
 | |
| 	vmx->fail = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
 | |
|  */
 | |
| static void vmx_leave_nested(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		to_vmx(vcpu)->nested.nested_run_pending = 0;
 | |
| 		nested_vmx_vmexit(vcpu, -1, 0, 0);
 | |
| 	}
 | |
| 	free_nested(to_vmx(vcpu));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * L1's failure to enter L2 is a subset of a normal exit, as explained in
 | |
|  * 23.7 "VM-entry failures during or after loading guest state" (this also
 | |
|  * lists the acceptable exit-reason and exit-qualification parameters).
 | |
|  * It should only be called before L2 actually succeeded to run, and when
 | |
|  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
 | |
|  */
 | |
| static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
 | |
| 			struct vmcs12 *vmcs12,
 | |
| 			u32 reason, unsigned long qualification)
 | |
| {
 | |
| 	load_vmcs12_host_state(vcpu, vmcs12);
 | |
| 	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
 | |
| 	vmcs12->exit_qualification = qualification;
 | |
| 	nested_vmx_succeed(vcpu);
 | |
| 	if (enable_shadow_vmcs)
 | |
| 		to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
 | |
| }
 | |
| 
 | |
| static int vmx_check_intercept(struct kvm_vcpu *vcpu,
 | |
| 			       struct x86_instruction_info *info,
 | |
| 			       enum x86_intercept_stage stage)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
 | |
| 
 | |
| 	/*
 | |
| 	 * RDPID causes #UD if disabled through secondary execution controls.
 | |
| 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
 | |
| 	 */
 | |
| 	if (info->intercept == x86_intercept_rdtscp &&
 | |
| 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
 | |
| 		ctxt->exception.vector = UD_VECTOR;
 | |
| 		ctxt->exception.error_code_valid = false;
 | |
| 		return X86EMUL_PROPAGATE_FAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: check more intercepts... */
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
 | |
| static inline int u64_shl_div_u64(u64 a, unsigned int shift,
 | |
| 				  u64 divisor, u64 *result)
 | |
| {
 | |
| 	u64 low = a << shift, high = a >> (64 - shift);
 | |
| 
 | |
| 	/* To avoid the overflow on divq */
 | |
| 	if (high >= divisor)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Low hold the result, high hold rem which is discarded */
 | |
| 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
 | |
| 	    "rm" (divisor), "0" (low), "1" (high));
 | |
| 	*result = low;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx;
 | |
| 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
 | |
| 
 | |
| 	if (kvm_mwait_in_guest(vcpu->kvm))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	vmx = to_vmx(vcpu);
 | |
| 	tscl = rdtsc();
 | |
| 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
 | |
| 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
 | |
| 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
 | |
| 
 | |
| 	if (delta_tsc > lapic_timer_advance_cycles)
 | |
| 		delta_tsc -= lapic_timer_advance_cycles;
 | |
| 	else
 | |
| 		delta_tsc = 0;
 | |
| 
 | |
| 	/* Convert to host delta tsc if tsc scaling is enabled */
 | |
| 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
 | |
| 			u64_shl_div_u64(delta_tsc,
 | |
| 				kvm_tsc_scaling_ratio_frac_bits,
 | |
| 				vcpu->arch.tsc_scaling_ratio,
 | |
| 				&delta_tsc))
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
 | |
| 	 * we can't use the preemption timer.
 | |
| 	 * It's possible that it fits on later vmentries, but checking
 | |
| 	 * on every vmentry is costly so we just use an hrtimer.
 | |
| 	 */
 | |
| 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	vmx->hv_deadline_tsc = tscl + delta_tsc;
 | |
| 	return delta_tsc == 0;
 | |
| }
 | |
| 
 | |
| static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	to_vmx(vcpu)->hv_deadline_tsc = -1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	if (!kvm_pause_in_guest(vcpu->kvm))
 | |
| 		shrink_ple_window(vcpu);
 | |
| }
 | |
| 
 | |
| static void vmx_slot_enable_log_dirty(struct kvm *kvm,
 | |
| 				     struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
 | |
| 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
 | |
| }
 | |
| 
 | |
| static void vmx_slot_disable_log_dirty(struct kvm *kvm,
 | |
| 				       struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	kvm_mmu_slot_set_dirty(kvm, slot);
 | |
| }
 | |
| 
 | |
| static void vmx_flush_log_dirty(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_flush_pml_buffers(kvm);
 | |
| }
 | |
| 
 | |
| static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	gpa_t gpa;
 | |
| 	struct page *page = NULL;
 | |
| 	u64 *pml_address;
 | |
| 
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		WARN_ON_ONCE(vmx->nested.pml_full);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if PML is enabled for the nested guest.
 | |
| 		 * Whether eptp bit 6 is set is already checked
 | |
| 		 * as part of A/D emulation.
 | |
| 		 */
 | |
| 		vmcs12 = get_vmcs12(vcpu);
 | |
| 		if (!nested_cpu_has_pml(vmcs12))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
 | |
| 			vmx->nested.pml_full = true;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
 | |
| 
 | |
| 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
 | |
| 		if (is_error_page(page))
 | |
| 			return 0;
 | |
| 
 | |
| 		pml_address = kmap(page);
 | |
| 		pml_address[vmcs12->guest_pml_index--] = gpa;
 | |
| 		kunmap(page);
 | |
| 		kvm_release_page_clean(page);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
 | |
| 					   struct kvm_memory_slot *memslot,
 | |
| 					   gfn_t offset, unsigned long mask)
 | |
| {
 | |
| 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
 | |
| }
 | |
| 
 | |
| static void __pi_post_block(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
 | |
| 	struct pi_desc old, new;
 | |
| 	unsigned int dest;
 | |
| 
 | |
| 	do {
 | |
| 		old.control = new.control = pi_desc->control;
 | |
| 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
 | |
| 		     "Wakeup handler not enabled while the VCPU is blocked\n");
 | |
| 
 | |
| 		dest = cpu_physical_id(vcpu->cpu);
 | |
| 
 | |
| 		if (x2apic_enabled())
 | |
| 			new.ndst = dest;
 | |
| 		else
 | |
| 			new.ndst = (dest << 8) & 0xFF00;
 | |
| 
 | |
| 		/* set 'NV' to 'notification vector' */
 | |
| 		new.nv = POSTED_INTR_VECTOR;
 | |
| 	} while (cmpxchg64(&pi_desc->control, old.control,
 | |
| 			   new.control) != old.control);
 | |
| 
 | |
| 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
 | |
| 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
 | |
| 		list_del(&vcpu->blocked_vcpu_list);
 | |
| 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
 | |
| 		vcpu->pre_pcpu = -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine does the following things for vCPU which is going
 | |
|  * to be blocked if VT-d PI is enabled.
 | |
|  * - Store the vCPU to the wakeup list, so when interrupts happen
 | |
|  *   we can find the right vCPU to wake up.
 | |
|  * - Change the Posted-interrupt descriptor as below:
 | |
|  *      'NDST' <-- vcpu->pre_pcpu
 | |
|  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
 | |
|  * - If 'ON' is set during this process, which means at least one
 | |
|  *   interrupt is posted for this vCPU, we cannot block it, in
 | |
|  *   this case, return 1, otherwise, return 0.
 | |
|  *
 | |
|  */
 | |
| static int pi_pre_block(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned int dest;
 | |
| 	struct pi_desc old, new;
 | |
| 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
 | |
| 
 | |
| 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
 | |
| 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
 | |
| 		!kvm_vcpu_apicv_active(vcpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	WARN_ON(irqs_disabled());
 | |
| 	local_irq_disable();
 | |
| 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
 | |
| 		vcpu->pre_pcpu = vcpu->cpu;
 | |
| 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
 | |
| 		list_add_tail(&vcpu->blocked_vcpu_list,
 | |
| 			      &per_cpu(blocked_vcpu_on_cpu,
 | |
| 				       vcpu->pre_pcpu));
 | |
| 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		old.control = new.control = pi_desc->control;
 | |
| 
 | |
| 		WARN((pi_desc->sn == 1),
 | |
| 		     "Warning: SN field of posted-interrupts "
 | |
| 		     "is set before blocking\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * Since vCPU can be preempted during this process,
 | |
| 		 * vcpu->cpu could be different with pre_pcpu, we
 | |
| 		 * need to set pre_pcpu as the destination of wakeup
 | |
| 		 * notification event, then we can find the right vCPU
 | |
| 		 * to wakeup in wakeup handler if interrupts happen
 | |
| 		 * when the vCPU is in blocked state.
 | |
| 		 */
 | |
| 		dest = cpu_physical_id(vcpu->pre_pcpu);
 | |
| 
 | |
| 		if (x2apic_enabled())
 | |
| 			new.ndst = dest;
 | |
| 		else
 | |
| 			new.ndst = (dest << 8) & 0xFF00;
 | |
| 
 | |
| 		/* set 'NV' to 'wakeup vector' */
 | |
| 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
 | |
| 	} while (cmpxchg64(&pi_desc->control, old.control,
 | |
| 			   new.control) != old.control);
 | |
| 
 | |
| 	/* We should not block the vCPU if an interrupt is posted for it.  */
 | |
| 	if (pi_test_on(pi_desc) == 1)
 | |
| 		__pi_post_block(vcpu);
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 	return (vcpu->pre_pcpu == -1);
 | |
| }
 | |
| 
 | |
| static int vmx_pre_block(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (pi_pre_block(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_lapic_hv_timer_in_use(vcpu))
 | |
| 		kvm_lapic_switch_to_sw_timer(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pi_post_block(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->pre_pcpu == -1)
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(irqs_disabled());
 | |
| 	local_irq_disable();
 | |
| 	__pi_post_block(vcpu);
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| static void vmx_post_block(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_x86_ops->set_hv_timer)
 | |
| 		kvm_lapic_switch_to_hv_timer(vcpu);
 | |
| 
 | |
| 	pi_post_block(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
 | |
|  *
 | |
|  * @kvm: kvm
 | |
|  * @host_irq: host irq of the interrupt
 | |
|  * @guest_irq: gsi of the interrupt
 | |
|  * @set: set or unset PI
 | |
|  * returns 0 on success, < 0 on failure
 | |
|  */
 | |
| static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
 | |
| 			      uint32_t guest_irq, bool set)
 | |
| {
 | |
| 	struct kvm_kernel_irq_routing_entry *e;
 | |
| 	struct kvm_irq_routing_table *irq_rt;
 | |
| 	struct kvm_lapic_irq irq;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	struct vcpu_data vcpu_info;
 | |
| 	int idx, ret = 0;
 | |
| 
 | |
| 	if (!kvm_arch_has_assigned_device(kvm) ||
 | |
| 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
 | |
| 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
 | |
| 		return 0;
 | |
| 
 | |
| 	idx = srcu_read_lock(&kvm->irq_srcu);
 | |
| 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
 | |
| 	if (guest_irq >= irq_rt->nr_rt_entries ||
 | |
| 	    hlist_empty(&irq_rt->map[guest_irq])) {
 | |
| 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
 | |
| 			     guest_irq, irq_rt->nr_rt_entries);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
 | |
| 		if (e->type != KVM_IRQ_ROUTING_MSI)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * VT-d PI cannot support posting multicast/broadcast
 | |
| 		 * interrupts to a vCPU, we still use interrupt remapping
 | |
| 		 * for these kind of interrupts.
 | |
| 		 *
 | |
| 		 * For lowest-priority interrupts, we only support
 | |
| 		 * those with single CPU as the destination, e.g. user
 | |
| 		 * configures the interrupts via /proc/irq or uses
 | |
| 		 * irqbalance to make the interrupts single-CPU.
 | |
| 		 *
 | |
| 		 * We will support full lowest-priority interrupt later.
 | |
| 		 */
 | |
| 
 | |
| 		kvm_set_msi_irq(kvm, e, &irq);
 | |
| 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
 | |
| 			/*
 | |
| 			 * Make sure the IRTE is in remapped mode if
 | |
| 			 * we don't handle it in posted mode.
 | |
| 			 */
 | |
| 			ret = irq_set_vcpu_affinity(host_irq, NULL);
 | |
| 			if (ret < 0) {
 | |
| 				printk(KERN_INFO
 | |
| 				   "failed to back to remapped mode, irq: %u\n",
 | |
| 				   host_irq);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
 | |
| 		vcpu_info.vector = irq.vector;
 | |
| 
 | |
| 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
 | |
| 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
 | |
| 
 | |
| 		if (set)
 | |
| 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
 | |
| 		else
 | |
| 			ret = irq_set_vcpu_affinity(host_irq, NULL);
 | |
| 
 | |
| 		if (ret < 0) {
 | |
| 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
 | |
| 					__func__);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	srcu_read_unlock(&kvm->irq_srcu, idx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void vmx_setup_mce(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
 | |
| 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
 | |
| 			FEATURE_CONTROL_LMCE;
 | |
| 	else
 | |
| 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
 | |
| 			~FEATURE_CONTROL_LMCE;
 | |
| }
 | |
| 
 | |
| static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
 | |
| 	if (to_vmx(vcpu)->nested.nested_run_pending)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
 | |
| 	if (vmx->nested.smm.guest_mode)
 | |
| 		nested_vmx_vmexit(vcpu, -1, 0, 0);
 | |
| 
 | |
| 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
 | |
| 	vmx->nested.vmxon = false;
 | |
| 	vmx_clear_hlt(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (vmx->nested.smm.vmxon) {
 | |
| 		vmx->nested.vmxon = true;
 | |
| 		vmx->nested.smm.vmxon = false;
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->nested.smm.guest_mode) {
 | |
| 		vcpu->arch.hflags &= ~HF_SMM_MASK;
 | |
| 		ret = enter_vmx_non_root_mode(vcpu, NULL);
 | |
| 		vcpu->arch.hflags |= HF_SMM_MASK;
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		vmx->nested.smm.guest_mode = false;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int enable_smi_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_nested_state __user *user_kvm_nested_state,
 | |
| 				u32 user_data_size)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx;
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	struct kvm_nested_state kvm_state = {
 | |
| 		.flags = 0,
 | |
| 		.format = 0,
 | |
| 		.size = sizeof(kvm_state),
 | |
| 		.vmx.vmxon_pa = -1ull,
 | |
| 		.vmx.vmcs_pa = -1ull,
 | |
| 	};
 | |
| 
 | |
| 	if (!vcpu)
 | |
| 		return kvm_state.size + 2 * VMCS12_SIZE;
 | |
| 
 | |
| 	vmx = to_vmx(vcpu);
 | |
| 	vmcs12 = get_vmcs12(vcpu);
 | |
| 	if (nested_vmx_allowed(vcpu) &&
 | |
| 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
 | |
| 		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
 | |
| 		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
 | |
| 
 | |
| 		if (vmx->nested.current_vmptr != -1ull) {
 | |
| 			kvm_state.size += VMCS12_SIZE;
 | |
| 
 | |
| 			if (is_guest_mode(vcpu) &&
 | |
| 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
 | |
| 			    vmcs12->vmcs_link_pointer != -1ull)
 | |
| 				kvm_state.size += VMCS12_SIZE;
 | |
| 		}
 | |
| 
 | |
| 		if (vmx->nested.smm.vmxon)
 | |
| 			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
 | |
| 
 | |
| 		if (vmx->nested.smm.guest_mode)
 | |
| 			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
 | |
| 
 | |
| 		if (is_guest_mode(vcpu)) {
 | |
| 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
 | |
| 
 | |
| 			if (vmx->nested.nested_run_pending)
 | |
| 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (user_data_size < kvm_state.size)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (vmx->nested.current_vmptr == -1ull)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * When running L2, the authoritative vmcs12 state is in the
 | |
| 	 * vmcs02. When running L1, the authoritative vmcs12 state is
 | |
| 	 * in the shadow vmcs linked to vmcs01, unless
 | |
| 	 * sync_shadow_vmcs is set, in which case, the authoritative
 | |
| 	 * vmcs12 state is in the vmcs12 already.
 | |
| 	 */
 | |
| 	if (is_guest_mode(vcpu))
 | |
| 		sync_vmcs12(vcpu, vmcs12);
 | |
| 	else if (enable_shadow_vmcs && !vmx->nested.sync_shadow_vmcs)
 | |
| 		copy_shadow_to_vmcs12(vmx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy over the full allocated size of vmcs12 rather than just the size
 | |
| 	 * of the struct.
 | |
| 	 */
 | |
| 	if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
 | |
| 	    vmcs12->vmcs_link_pointer != -1ull) {
 | |
| 		if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
 | |
| 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return kvm_state.size;
 | |
| }
 | |
| 
 | |
| static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_nested_state __user *user_kvm_nested_state,
 | |
| 				struct kvm_nested_state *kvm_state)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	u32 exit_qual;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (kvm_state->format != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!nested_vmx_allowed(vcpu))
 | |
| 		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
 | |
| 
 | |
| 	if (kvm_state->vmx.vmxon_pa == -1ull) {
 | |
| 		if (kvm_state->vmx.smm.flags)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (kvm_state->vmx.vmcs_pa != -1ull)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		vmx_leave_nested(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
 | |
| 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (kvm_state->vmx.smm.flags &
 | |
| 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
 | |
| 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
 | |
| 	 * must be zero.
 | |
| 	 */
 | |
| 	if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
 | |
| 	    !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vmx_leave_nested(vcpu);
 | |
| 	if (kvm_state->vmx.vmxon_pa == -1ull)
 | |
| 		return 0;
 | |
| 
 | |
| 	vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
 | |
| 	ret = enter_vmx_operation(vcpu);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Empty 'VMXON' state is permitted */
 | |
| 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
 | |
| 	    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
 | |
| 
 | |
| 	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
 | |
| 		vmx->nested.smm.vmxon = true;
 | |
| 		vmx->nested.vmxon = false;
 | |
| 
 | |
| 		if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
 | |
| 			vmx->nested.smm.guest_mode = true;
 | |
| 	}
 | |
| 
 | |
| 	vmcs12 = get_vmcs12(vcpu);
 | |
| 	if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
 | |
| 		return 0;
 | |
| 
 | |
| 	vmx->nested.nested_run_pending =
 | |
| 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
 | |
| 
 | |
| 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
 | |
| 	    vmcs12->vmcs_link_pointer != -1ull) {
 | |
| 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
 | |
| 		if (kvm_state->size < sizeof(*kvm_state) + 2 * sizeof(*vmcs12))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (copy_from_user(shadow_vmcs12,
 | |
| 				   user_kvm_nested_state->data + VMCS12_SIZE,
 | |
| 				   sizeof(*vmcs12)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
 | |
| 		    !shadow_vmcs12->hdr.shadow_vmcs)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (check_vmentry_prereqs(vcpu, vmcs12) ||
 | |
| 	    check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vmx->nested.dirty_vmcs12 = true;
 | |
| 	ret = enter_vmx_non_root_mode(vcpu, NULL);
 | |
| 	if (ret)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
 | |
| 	.cpu_has_kvm_support = cpu_has_kvm_support,
 | |
| 	.disabled_by_bios = vmx_disabled_by_bios,
 | |
| 	.hardware_setup = hardware_setup,
 | |
| 	.hardware_unsetup = hardware_unsetup,
 | |
| 	.check_processor_compatibility = vmx_check_processor_compat,
 | |
| 	.hardware_enable = hardware_enable,
 | |
| 	.hardware_disable = hardware_disable,
 | |
| 	.cpu_has_accelerated_tpr = report_flexpriority,
 | |
| 	.has_emulated_msr = vmx_has_emulated_msr,
 | |
| 
 | |
| 	.vm_init = vmx_vm_init,
 | |
| 	.vm_alloc = vmx_vm_alloc,
 | |
| 	.vm_free = vmx_vm_free,
 | |
| 
 | |
| 	.vcpu_create = vmx_create_vcpu,
 | |
| 	.vcpu_free = vmx_free_vcpu,
 | |
| 	.vcpu_reset = vmx_vcpu_reset,
 | |
| 
 | |
| 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
 | |
| 	.vcpu_load = vmx_vcpu_load,
 | |
| 	.vcpu_put = vmx_vcpu_put,
 | |
| 
 | |
| 	.update_bp_intercept = update_exception_bitmap,
 | |
| 	.get_msr_feature = vmx_get_msr_feature,
 | |
| 	.get_msr = vmx_get_msr,
 | |
| 	.set_msr = vmx_set_msr,
 | |
| 	.get_segment_base = vmx_get_segment_base,
 | |
| 	.get_segment = vmx_get_segment,
 | |
| 	.set_segment = vmx_set_segment,
 | |
| 	.get_cpl = vmx_get_cpl,
 | |
| 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
 | |
| 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
 | |
| 	.decache_cr3 = vmx_decache_cr3,
 | |
| 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
 | |
| 	.set_cr0 = vmx_set_cr0,
 | |
| 	.set_cr3 = vmx_set_cr3,
 | |
| 	.set_cr4 = vmx_set_cr4,
 | |
| 	.set_efer = vmx_set_efer,
 | |
| 	.get_idt = vmx_get_idt,
 | |
| 	.set_idt = vmx_set_idt,
 | |
| 	.get_gdt = vmx_get_gdt,
 | |
| 	.set_gdt = vmx_set_gdt,
 | |
| 	.get_dr6 = vmx_get_dr6,
 | |
| 	.set_dr6 = vmx_set_dr6,
 | |
| 	.set_dr7 = vmx_set_dr7,
 | |
| 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
 | |
| 	.cache_reg = vmx_cache_reg,
 | |
| 	.get_rflags = vmx_get_rflags,
 | |
| 	.set_rflags = vmx_set_rflags,
 | |
| 
 | |
| 	.tlb_flush = vmx_flush_tlb,
 | |
| 	.tlb_flush_gva = vmx_flush_tlb_gva,
 | |
| 
 | |
| 	.run = vmx_vcpu_run,
 | |
| 	.handle_exit = vmx_handle_exit,
 | |
| 	.skip_emulated_instruction = skip_emulated_instruction,
 | |
| 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
 | |
| 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
 | |
| 	.patch_hypercall = vmx_patch_hypercall,
 | |
| 	.set_irq = vmx_inject_irq,
 | |
| 	.set_nmi = vmx_inject_nmi,
 | |
| 	.queue_exception = vmx_queue_exception,
 | |
| 	.cancel_injection = vmx_cancel_injection,
 | |
| 	.interrupt_allowed = vmx_interrupt_allowed,
 | |
| 	.nmi_allowed = vmx_nmi_allowed,
 | |
| 	.get_nmi_mask = vmx_get_nmi_mask,
 | |
| 	.set_nmi_mask = vmx_set_nmi_mask,
 | |
| 	.enable_nmi_window = enable_nmi_window,
 | |
| 	.enable_irq_window = enable_irq_window,
 | |
| 	.update_cr8_intercept = update_cr8_intercept,
 | |
| 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
 | |
| 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
 | |
| 	.get_enable_apicv = vmx_get_enable_apicv,
 | |
| 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
 | |
| 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
 | |
| 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
 | |
| 	.hwapic_irr_update = vmx_hwapic_irr_update,
 | |
| 	.hwapic_isr_update = vmx_hwapic_isr_update,
 | |
| 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
 | |
| 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
 | |
| 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
 | |
| 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
 | |
| 
 | |
| 	.set_tss_addr = vmx_set_tss_addr,
 | |
| 	.set_identity_map_addr = vmx_set_identity_map_addr,
 | |
| 	.get_tdp_level = get_ept_level,
 | |
| 	.get_mt_mask = vmx_get_mt_mask,
 | |
| 
 | |
| 	.get_exit_info = vmx_get_exit_info,
 | |
| 
 | |
| 	.get_lpage_level = vmx_get_lpage_level,
 | |
| 
 | |
| 	.cpuid_update = vmx_cpuid_update,
 | |
| 
 | |
| 	.rdtscp_supported = vmx_rdtscp_supported,
 | |
| 	.invpcid_supported = vmx_invpcid_supported,
 | |
| 
 | |
| 	.set_supported_cpuid = vmx_set_supported_cpuid,
 | |
| 
 | |
| 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
 | |
| 
 | |
| 	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
 | |
| 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
 | |
| 
 | |
| 	.set_tdp_cr3 = vmx_set_cr3,
 | |
| 
 | |
| 	.check_intercept = vmx_check_intercept,
 | |
| 	.handle_external_intr = vmx_handle_external_intr,
 | |
| 	.mpx_supported = vmx_mpx_supported,
 | |
| 	.xsaves_supported = vmx_xsaves_supported,
 | |
| 	.umip_emulated = vmx_umip_emulated,
 | |
| 
 | |
| 	.check_nested_events = vmx_check_nested_events,
 | |
| 	.request_immediate_exit = vmx_request_immediate_exit,
 | |
| 
 | |
| 	.sched_in = vmx_sched_in,
 | |
| 
 | |
| 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
 | |
| 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
 | |
| 	.flush_log_dirty = vmx_flush_log_dirty,
 | |
| 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
 | |
| 	.write_log_dirty = vmx_write_pml_buffer,
 | |
| 
 | |
| 	.pre_block = vmx_pre_block,
 | |
| 	.post_block = vmx_post_block,
 | |
| 
 | |
| 	.pmu_ops = &intel_pmu_ops,
 | |
| 
 | |
| 	.update_pi_irte = vmx_update_pi_irte,
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	.set_hv_timer = vmx_set_hv_timer,
 | |
| 	.cancel_hv_timer = vmx_cancel_hv_timer,
 | |
| #endif
 | |
| 
 | |
| 	.setup_mce = vmx_setup_mce,
 | |
| 
 | |
| 	.get_nested_state = vmx_get_nested_state,
 | |
| 	.set_nested_state = vmx_set_nested_state,
 | |
| 	.get_vmcs12_pages = nested_get_vmcs12_pages,
 | |
| 
 | |
| 	.smi_allowed = vmx_smi_allowed,
 | |
| 	.pre_enter_smm = vmx_pre_enter_smm,
 | |
| 	.pre_leave_smm = vmx_pre_leave_smm,
 | |
| 	.enable_smi_window = enable_smi_window,
 | |
| };
 | |
| 
 | |
| static void vmx_cleanup_l1d_flush(void)
 | |
| {
 | |
| 	if (vmx_l1d_flush_pages) {
 | |
| 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
 | |
| 		vmx_l1d_flush_pages = NULL;
 | |
| 	}
 | |
| 	/* Restore state so sysfs ignores VMX */
 | |
| 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
 | |
| }
 | |
| 
 | |
| static void vmx_exit(void)
 | |
| {
 | |
| #ifdef CONFIG_KEXEC_CORE
 | |
| 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
 | |
| 	synchronize_rcu();
 | |
| #endif
 | |
| 
 | |
| 	kvm_exit();
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HYPERV)
 | |
| 	if (static_branch_unlikely(&enable_evmcs)) {
 | |
| 		int cpu;
 | |
| 		struct hv_vp_assist_page *vp_ap;
 | |
| 		/*
 | |
| 		 * Reset everything to support using non-enlightened VMCS
 | |
| 		 * access later (e.g. when we reload the module with
 | |
| 		 * enlightened_vmcs=0)
 | |
| 		 */
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			vp_ap =	hv_get_vp_assist_page(cpu);
 | |
| 
 | |
| 			if (!vp_ap)
 | |
| 				continue;
 | |
| 
 | |
| 			vp_ap->current_nested_vmcs = 0;
 | |
| 			vp_ap->enlighten_vmentry = 0;
 | |
| 		}
 | |
| 
 | |
| 		static_branch_disable(&enable_evmcs);
 | |
| 	}
 | |
| #endif
 | |
| 	vmx_cleanup_l1d_flush();
 | |
| }
 | |
| module_exit(vmx_exit);
 | |
| 
 | |
| static int __init vmx_init(void)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HYPERV)
 | |
| 	/*
 | |
| 	 * Enlightened VMCS usage should be recommended and the host needs
 | |
| 	 * to support eVMCS v1 or above. We can also disable eVMCS support
 | |
| 	 * with module parameter.
 | |
| 	 */
 | |
| 	if (enlightened_vmcs &&
 | |
| 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
 | |
| 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
 | |
| 	    KVM_EVMCS_VERSION) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		/* Check that we have assist pages on all online CPUs */
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			if (!hv_get_vp_assist_page(cpu)) {
 | |
| 				enlightened_vmcs = false;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (enlightened_vmcs) {
 | |
| 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
 | |
| 			static_branch_enable(&enable_evmcs);
 | |
| 		}
 | |
| 	} else {
 | |
| 		enlightened_vmcs = false;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
 | |
| 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Must be called after kvm_init() so enable_ept is properly set
 | |
| 	 * up. Hand the parameter mitigation value in which was stored in
 | |
| 	 * the pre module init parser. If no parameter was given, it will
 | |
| 	 * contain 'auto' which will be turned into the default 'cond'
 | |
| 	 * mitigation mode.
 | |
| 	 */
 | |
| 	if (boot_cpu_has(X86_BUG_L1TF)) {
 | |
| 		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
 | |
| 		if (r) {
 | |
| 			vmx_exit();
 | |
| 			return r;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_CORE
 | |
| 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
 | |
| 			   crash_vmclear_local_loaded_vmcss);
 | |
| #endif
 | |
| 	vmx_check_vmcs12_offsets();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| module_init(vmx_init);
 | 
