702 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			702 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| 
 | |
|    fp_arith.c: floating-point math routines for the Linux-m68k
 | |
|    floating point emulator.
 | |
| 
 | |
|    Copyright (c) 1998-1999 David Huggins-Daines.
 | |
| 
 | |
|    Somewhat based on the AlphaLinux floating point emulator, by David
 | |
|    Mosberger-Tang.
 | |
| 
 | |
|    You may copy, modify, and redistribute this file under the terms of
 | |
|    the GNU General Public License, version 2, or any later version, at
 | |
|    your convenience.
 | |
|  */
 | |
| 
 | |
| #include "fp_emu.h"
 | |
| #include "multi_arith.h"
 | |
| #include "fp_arith.h"
 | |
| 
 | |
| const struct fp_ext fp_QNaN =
 | |
| {
 | |
| 	.exp = 0x7fff,
 | |
| 	.mant = { .m64 = ~0 }
 | |
| };
 | |
| 
 | |
| const struct fp_ext fp_Inf =
 | |
| {
 | |
| 	.exp = 0x7fff,
 | |
| };
 | |
| 
 | |
| /* let's start with the easy ones */
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fabs(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	dprint(PINSTR, "fabs\n");
 | |
| 
 | |
| 	fp_monadic_check(dest, src);
 | |
| 
 | |
| 	dest->sign = 0;
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fneg(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	dprint(PINSTR, "fneg\n");
 | |
| 
 | |
| 	fp_monadic_check(dest, src);
 | |
| 
 | |
| 	dest->sign = !dest->sign;
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| /* Now, the slightly harder ones */
 | |
| 
 | |
| /* fp_fadd: Implements the kernel of the FADD, FSADD, FDADD, FSUB,
 | |
|    FDSUB, and FCMP instructions. */
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fadd(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	int diff;
 | |
| 
 | |
| 	dprint(PINSTR, "fadd\n");
 | |
| 
 | |
| 	fp_dyadic_check(dest, src);
 | |
| 
 | |
| 	if (IS_INF(dest)) {
 | |
| 		/* infinity - infinity == NaN */
 | |
| 		if (IS_INF(src) && (src->sign != dest->sign))
 | |
| 			fp_set_nan(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 	if (IS_INF(src)) {
 | |
| 		fp_copy_ext(dest, src);
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ZERO(dest)) {
 | |
| 		if (IS_ZERO(src)) {
 | |
| 			if (src->sign != dest->sign) {
 | |
| 				if (FPDATA->rnd == FPCR_ROUND_RM)
 | |
| 					dest->sign = 1;
 | |
| 				else
 | |
| 					dest->sign = 0;
 | |
| 			}
 | |
| 		} else
 | |
| 			fp_copy_ext(dest, src);
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	dest->lowmant = src->lowmant = 0;
 | |
| 
 | |
| 	if ((diff = dest->exp - src->exp) > 0)
 | |
| 		fp_denormalize(src, diff);
 | |
| 	else if ((diff = -diff) > 0)
 | |
| 		fp_denormalize(dest, diff);
 | |
| 
 | |
| 	if (dest->sign == src->sign) {
 | |
| 		if (fp_addmant(dest, src))
 | |
| 			if (!fp_addcarry(dest))
 | |
| 				return dest;
 | |
| 	} else {
 | |
| 		if (dest->mant.m64 < src->mant.m64) {
 | |
| 			fp_submant(dest, src, dest);
 | |
| 			dest->sign = !dest->sign;
 | |
| 		} else
 | |
| 			fp_submant(dest, dest, src);
 | |
| 	}
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| /* fp_fsub: Implements the kernel of the FSUB, FSSUB, and FDSUB
 | |
|    instructions.
 | |
| 
 | |
|    Remember that the arguments are in assembler-syntax order! */
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fsub(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	dprint(PINSTR, "fsub ");
 | |
| 
 | |
| 	src->sign = !src->sign;
 | |
| 	return fp_fadd(dest, src);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fcmp(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	dprint(PINSTR, "fcmp ");
 | |
| 
 | |
| 	FPDATA->temp[1] = *dest;
 | |
| 	src->sign = !src->sign;
 | |
| 	return fp_fadd(&FPDATA->temp[1], src);
 | |
| }
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_ftst(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	dprint(PINSTR, "ftst\n");
 | |
| 
 | |
| 	(void)dest;
 | |
| 
 | |
| 	return src;
 | |
| }
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fmul(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	union fp_mant128 temp;
 | |
| 	int exp;
 | |
| 
 | |
| 	dprint(PINSTR, "fmul\n");
 | |
| 
 | |
| 	fp_dyadic_check(dest, src);
 | |
| 
 | |
| 	/* calculate the correct sign now, as it's necessary for infinities */
 | |
| 	dest->sign = src->sign ^ dest->sign;
 | |
| 
 | |
| 	/* Handle infinities */
 | |
| 	if (IS_INF(dest)) {
 | |
| 		if (IS_ZERO(src))
 | |
| 			fp_set_nan(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 	if (IS_INF(src)) {
 | |
| 		if (IS_ZERO(dest))
 | |
| 			fp_set_nan(dest);
 | |
| 		else
 | |
| 			fp_copy_ext(dest, src);
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	/* Of course, as we all know, zero * anything = zero.  You may
 | |
| 	   not have known that it might be a positive or negative
 | |
| 	   zero... */
 | |
| 	if (IS_ZERO(dest) || IS_ZERO(src)) {
 | |
| 		dest->exp = 0;
 | |
| 		dest->mant.m64 = 0;
 | |
| 		dest->lowmant = 0;
 | |
| 
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	exp = dest->exp + src->exp - 0x3ffe;
 | |
| 
 | |
| 	/* shift up the mantissa for denormalized numbers,
 | |
| 	   so that the highest bit is set, this makes the
 | |
| 	   shift of the result below easier */
 | |
| 	if ((long)dest->mant.m32[0] >= 0)
 | |
| 		exp -= fp_overnormalize(dest);
 | |
| 	if ((long)src->mant.m32[0] >= 0)
 | |
| 		exp -= fp_overnormalize(src);
 | |
| 
 | |
| 	/* now, do a 64-bit multiply with expansion */
 | |
| 	fp_multiplymant(&temp, dest, src);
 | |
| 
 | |
| 	/* normalize it back to 64 bits and stuff it back into the
 | |
| 	   destination struct */
 | |
| 	if ((long)temp.m32[0] > 0) {
 | |
| 		exp--;
 | |
| 		fp_putmant128(dest, &temp, 1);
 | |
| 	} else
 | |
| 		fp_putmant128(dest, &temp, 0);
 | |
| 
 | |
| 	if (exp >= 0x7fff) {
 | |
| 		fp_set_ovrflw(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 	dest->exp = exp;
 | |
| 	if (exp < 0) {
 | |
| 		fp_set_sr(FPSR_EXC_UNFL);
 | |
| 		fp_denormalize(dest, -exp);
 | |
| 	}
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| /* fp_fdiv: Implements the "kernel" of the FDIV, FSDIV, FDDIV and
 | |
|    FSGLDIV instructions.
 | |
| 
 | |
|    Note that the order of the operands is counter-intuitive: instead
 | |
|    of src / dest, the result is actually dest / src. */
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fdiv(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	union fp_mant128 temp;
 | |
| 	int exp;
 | |
| 
 | |
| 	dprint(PINSTR, "fdiv\n");
 | |
| 
 | |
| 	fp_dyadic_check(dest, src);
 | |
| 
 | |
| 	/* calculate the correct sign now, as it's necessary for infinities */
 | |
| 	dest->sign = src->sign ^ dest->sign;
 | |
| 
 | |
| 	/* Handle infinities */
 | |
| 	if (IS_INF(dest)) {
 | |
| 		/* infinity / infinity = NaN (quiet, as always) */
 | |
| 		if (IS_INF(src))
 | |
| 			fp_set_nan(dest);
 | |
| 		/* infinity / anything else = infinity (with approprate sign) */
 | |
| 		return dest;
 | |
| 	}
 | |
| 	if (IS_INF(src)) {
 | |
| 		/* anything / infinity = zero (with appropriate sign) */
 | |
| 		dest->exp = 0;
 | |
| 		dest->mant.m64 = 0;
 | |
| 		dest->lowmant = 0;
 | |
| 
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	/* zeroes */
 | |
| 	if (IS_ZERO(dest)) {
 | |
| 		/* zero / zero = NaN */
 | |
| 		if (IS_ZERO(src))
 | |
| 			fp_set_nan(dest);
 | |
| 		/* zero / anything else = zero */
 | |
| 		return dest;
 | |
| 	}
 | |
| 	if (IS_ZERO(src)) {
 | |
| 		/* anything / zero = infinity (with appropriate sign) */
 | |
| 		fp_set_sr(FPSR_EXC_DZ);
 | |
| 		dest->exp = 0x7fff;
 | |
| 		dest->mant.m64 = 0;
 | |
| 
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	exp = dest->exp - src->exp + 0x3fff;
 | |
| 
 | |
| 	/* shift up the mantissa for denormalized numbers,
 | |
| 	   so that the highest bit is set, this makes lots
 | |
| 	   of things below easier */
 | |
| 	if ((long)dest->mant.m32[0] >= 0)
 | |
| 		exp -= fp_overnormalize(dest);
 | |
| 	if ((long)src->mant.m32[0] >= 0)
 | |
| 		exp -= fp_overnormalize(src);
 | |
| 
 | |
| 	/* now, do the 64-bit divide */
 | |
| 	fp_dividemant(&temp, dest, src);
 | |
| 
 | |
| 	/* normalize it back to 64 bits and stuff it back into the
 | |
| 	   destination struct */
 | |
| 	if (!temp.m32[0]) {
 | |
| 		exp--;
 | |
| 		fp_putmant128(dest, &temp, 32);
 | |
| 	} else
 | |
| 		fp_putmant128(dest, &temp, 31);
 | |
| 
 | |
| 	if (exp >= 0x7fff) {
 | |
| 		fp_set_ovrflw(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 	dest->exp = exp;
 | |
| 	if (exp < 0) {
 | |
| 		fp_set_sr(FPSR_EXC_UNFL);
 | |
| 		fp_denormalize(dest, -exp);
 | |
| 	}
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fsglmul(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	int exp;
 | |
| 
 | |
| 	dprint(PINSTR, "fsglmul\n");
 | |
| 
 | |
| 	fp_dyadic_check(dest, src);
 | |
| 
 | |
| 	/* calculate the correct sign now, as it's necessary for infinities */
 | |
| 	dest->sign = src->sign ^ dest->sign;
 | |
| 
 | |
| 	/* Handle infinities */
 | |
| 	if (IS_INF(dest)) {
 | |
| 		if (IS_ZERO(src))
 | |
| 			fp_set_nan(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 	if (IS_INF(src)) {
 | |
| 		if (IS_ZERO(dest))
 | |
| 			fp_set_nan(dest);
 | |
| 		else
 | |
| 			fp_copy_ext(dest, src);
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	/* Of course, as we all know, zero * anything = zero.  You may
 | |
| 	   not have known that it might be a positive or negative
 | |
| 	   zero... */
 | |
| 	if (IS_ZERO(dest) || IS_ZERO(src)) {
 | |
| 		dest->exp = 0;
 | |
| 		dest->mant.m64 = 0;
 | |
| 		dest->lowmant = 0;
 | |
| 
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	exp = dest->exp + src->exp - 0x3ffe;
 | |
| 
 | |
| 	/* do a 32-bit multiply */
 | |
| 	fp_mul64(dest->mant.m32[0], dest->mant.m32[1],
 | |
| 		 dest->mant.m32[0] & 0xffffff00,
 | |
| 		 src->mant.m32[0] & 0xffffff00);
 | |
| 
 | |
| 	if (exp >= 0x7fff) {
 | |
| 		fp_set_ovrflw(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 	dest->exp = exp;
 | |
| 	if (exp < 0) {
 | |
| 		fp_set_sr(FPSR_EXC_UNFL);
 | |
| 		fp_denormalize(dest, -exp);
 | |
| 	}
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fsgldiv(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	int exp;
 | |
| 	unsigned long quot, rem;
 | |
| 
 | |
| 	dprint(PINSTR, "fsgldiv\n");
 | |
| 
 | |
| 	fp_dyadic_check(dest, src);
 | |
| 
 | |
| 	/* calculate the correct sign now, as it's necessary for infinities */
 | |
| 	dest->sign = src->sign ^ dest->sign;
 | |
| 
 | |
| 	/* Handle infinities */
 | |
| 	if (IS_INF(dest)) {
 | |
| 		/* infinity / infinity = NaN (quiet, as always) */
 | |
| 		if (IS_INF(src))
 | |
| 			fp_set_nan(dest);
 | |
| 		/* infinity / anything else = infinity (with approprate sign) */
 | |
| 		return dest;
 | |
| 	}
 | |
| 	if (IS_INF(src)) {
 | |
| 		/* anything / infinity = zero (with appropriate sign) */
 | |
| 		dest->exp = 0;
 | |
| 		dest->mant.m64 = 0;
 | |
| 		dest->lowmant = 0;
 | |
| 
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	/* zeroes */
 | |
| 	if (IS_ZERO(dest)) {
 | |
| 		/* zero / zero = NaN */
 | |
| 		if (IS_ZERO(src))
 | |
| 			fp_set_nan(dest);
 | |
| 		/* zero / anything else = zero */
 | |
| 		return dest;
 | |
| 	}
 | |
| 	if (IS_ZERO(src)) {
 | |
| 		/* anything / zero = infinity (with appropriate sign) */
 | |
| 		fp_set_sr(FPSR_EXC_DZ);
 | |
| 		dest->exp = 0x7fff;
 | |
| 		dest->mant.m64 = 0;
 | |
| 
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	exp = dest->exp - src->exp + 0x3fff;
 | |
| 
 | |
| 	dest->mant.m32[0] &= 0xffffff00;
 | |
| 	src->mant.m32[0] &= 0xffffff00;
 | |
| 
 | |
| 	/* do the 32-bit divide */
 | |
| 	if (dest->mant.m32[0] >= src->mant.m32[0]) {
 | |
| 		fp_sub64(dest->mant, src->mant);
 | |
| 		fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]);
 | |
| 		dest->mant.m32[0] = 0x80000000 | (quot >> 1);
 | |
| 		dest->mant.m32[1] = (quot & 1) | rem;	/* only for rounding */
 | |
| 	} else {
 | |
| 		fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]);
 | |
| 		dest->mant.m32[0] = quot;
 | |
| 		dest->mant.m32[1] = rem;		/* only for rounding */
 | |
| 		exp--;
 | |
| 	}
 | |
| 
 | |
| 	if (exp >= 0x7fff) {
 | |
| 		fp_set_ovrflw(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 	dest->exp = exp;
 | |
| 	if (exp < 0) {
 | |
| 		fp_set_sr(FPSR_EXC_UNFL);
 | |
| 		fp_denormalize(dest, -exp);
 | |
| 	}
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| /* fp_roundint: Internal rounding function for use by several of these
 | |
|    emulated instructions.
 | |
| 
 | |
|    This one rounds off the fractional part using the rounding mode
 | |
|    specified. */
 | |
| 
 | |
| static void fp_roundint(struct fp_ext *dest, int mode)
 | |
| {
 | |
| 	union fp_mant64 oldmant;
 | |
| 	unsigned long mask;
 | |
| 
 | |
| 	if (!fp_normalize_ext(dest))
 | |
| 		return;
 | |
| 
 | |
| 	/* infinities and zeroes */
 | |
| 	if (IS_INF(dest) || IS_ZERO(dest))
 | |
| 		return;
 | |
| 
 | |
| 	/* first truncate the lower bits */
 | |
| 	oldmant = dest->mant;
 | |
| 	switch (dest->exp) {
 | |
| 	case 0 ... 0x3ffe:
 | |
| 		dest->mant.m64 = 0;
 | |
| 		break;
 | |
| 	case 0x3fff ... 0x401e:
 | |
| 		dest->mant.m32[0] &= 0xffffffffU << (0x401e - dest->exp);
 | |
| 		dest->mant.m32[1] = 0;
 | |
| 		if (oldmant.m64 == dest->mant.m64)
 | |
| 			return;
 | |
| 		break;
 | |
| 	case 0x401f ... 0x403e:
 | |
| 		dest->mant.m32[1] &= 0xffffffffU << (0x403e - dest->exp);
 | |
| 		if (oldmant.m32[1] == dest->mant.m32[1])
 | |
| 			return;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 	fp_set_sr(FPSR_EXC_INEX2);
 | |
| 
 | |
| 	/* We might want to normalize upwards here... however, since
 | |
| 	   we know that this is only called on the output of fp_fdiv,
 | |
| 	   or with the input to fp_fint or fp_fintrz, and the inputs
 | |
| 	   to all these functions are either normal or denormalized
 | |
| 	   (no subnormals allowed!), there's really no need.
 | |
| 
 | |
| 	   In the case of fp_fdiv, observe that 0x80000000 / 0xffff =
 | |
| 	   0xffff8000, and the same holds for 128-bit / 64-bit. (i.e. the
 | |
| 	   smallest possible normal dividend and the largest possible normal
 | |
| 	   divisor will still produce a normal quotient, therefore, (normal
 | |
| 	   << 64) / normal is normal in all cases) */
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case FPCR_ROUND_RN:
 | |
| 		switch (dest->exp) {
 | |
| 		case 0 ... 0x3ffd:
 | |
| 			return;
 | |
| 		case 0x3ffe:
 | |
| 			/* As noted above, the input is always normal, so the
 | |
| 			   guard bit (bit 63) is always set.  therefore, the
 | |
| 			   only case in which we will NOT round to 1.0 is when
 | |
| 			   the input is exactly 0.5. */
 | |
| 			if (oldmant.m64 == (1ULL << 63))
 | |
| 				return;
 | |
| 			break;
 | |
| 		case 0x3fff ... 0x401d:
 | |
| 			mask = 1 << (0x401d - dest->exp);
 | |
| 			if (!(oldmant.m32[0] & mask))
 | |
| 				return;
 | |
| 			if (oldmant.m32[0] & (mask << 1))
 | |
| 				break;
 | |
| 			if (!(oldmant.m32[0] << (dest->exp - 0x3ffd)) &&
 | |
| 					!oldmant.m32[1])
 | |
| 				return;
 | |
| 			break;
 | |
| 		case 0x401e:
 | |
| 			if (oldmant.m32[1] & 0x80000000)
 | |
| 				return;
 | |
| 			if (oldmant.m32[0] & 1)
 | |
| 				break;
 | |
| 			if (!(oldmant.m32[1] << 1))
 | |
| 				return;
 | |
| 			break;
 | |
| 		case 0x401f ... 0x403d:
 | |
| 			mask = 1 << (0x403d - dest->exp);
 | |
| 			if (!(oldmant.m32[1] & mask))
 | |
| 				return;
 | |
| 			if (oldmant.m32[1] & (mask << 1))
 | |
| 				break;
 | |
| 			if (!(oldmant.m32[1] << (dest->exp - 0x401d)))
 | |
| 				return;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return;
 | |
| 		}
 | |
| 		break;
 | |
| 	case FPCR_ROUND_RZ:
 | |
| 		return;
 | |
| 	default:
 | |
| 		if (dest->sign ^ (mode - FPCR_ROUND_RM))
 | |
| 			break;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (dest->exp) {
 | |
| 	case 0 ... 0x3ffe:
 | |
| 		dest->exp = 0x3fff;
 | |
| 		dest->mant.m64 = 1ULL << 63;
 | |
| 		break;
 | |
| 	case 0x3fff ... 0x401e:
 | |
| 		mask = 1 << (0x401e - dest->exp);
 | |
| 		if (dest->mant.m32[0] += mask)
 | |
| 			break;
 | |
| 		dest->mant.m32[0] = 0x80000000;
 | |
| 		dest->exp++;
 | |
| 		break;
 | |
| 	case 0x401f ... 0x403e:
 | |
| 		mask = 1 << (0x403e - dest->exp);
 | |
| 		if (dest->mant.m32[1] += mask)
 | |
| 			break;
 | |
| 		if (dest->mant.m32[0] += 1)
 | |
|                         break;
 | |
| 		dest->mant.m32[0] = 0x80000000;
 | |
|                 dest->exp++;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* modrem_kernel: Implementation of the FREM and FMOD instructions
 | |
|    (which are exactly the same, except for the rounding used on the
 | |
|    intermediate value) */
 | |
| 
 | |
| static struct fp_ext *
 | |
| modrem_kernel(struct fp_ext *dest, struct fp_ext *src, int mode)
 | |
| {
 | |
| 	struct fp_ext tmp;
 | |
| 
 | |
| 	fp_dyadic_check(dest, src);
 | |
| 
 | |
| 	/* Infinities and zeros */
 | |
| 	if (IS_INF(dest) || IS_ZERO(src)) {
 | |
| 		fp_set_nan(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 	if (IS_ZERO(dest) || IS_INF(src))
 | |
| 		return dest;
 | |
| 
 | |
| 	/* FIXME: there is almost certainly a smarter way to do this */
 | |
| 	fp_copy_ext(&tmp, dest);
 | |
| 	fp_fdiv(&tmp, src);		/* NOTE: src might be modified */
 | |
| 	fp_roundint(&tmp, mode);
 | |
| 	fp_fmul(&tmp, src);
 | |
| 	fp_fsub(dest, &tmp);
 | |
| 
 | |
| 	/* set the quotient byte */
 | |
| 	fp_set_quotient((dest->mant.m64 & 0x7f) | (dest->sign << 7));
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| /* fp_fmod: Implements the kernel of the FMOD instruction.
 | |
| 
 | |
|    Again, the argument order is backwards.  The result, as defined in
 | |
|    the Motorola manuals, is:
 | |
| 
 | |
|    fmod(src,dest) = (dest - (src * floor(dest / src))) */
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fmod(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	dprint(PINSTR, "fmod\n");
 | |
| 	return modrem_kernel(dest, src, FPCR_ROUND_RZ);
 | |
| }
 | |
| 
 | |
| /* fp_frem: Implements the kernel of the FREM instruction.
 | |
| 
 | |
|    frem(src,dest) = (dest - (src * round(dest / src)))
 | |
|  */
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_frem(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	dprint(PINSTR, "frem\n");
 | |
| 	return modrem_kernel(dest, src, FPCR_ROUND_RN);
 | |
| }
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fint(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	dprint(PINSTR, "fint\n");
 | |
| 
 | |
| 	fp_copy_ext(dest, src);
 | |
| 
 | |
| 	fp_roundint(dest, FPDATA->rnd);
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fintrz(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	dprint(PINSTR, "fintrz\n");
 | |
| 
 | |
| 	fp_copy_ext(dest, src);
 | |
| 
 | |
| 	fp_roundint(dest, FPCR_ROUND_RZ);
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| struct fp_ext *
 | |
| fp_fscale(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	int scale, oldround;
 | |
| 
 | |
| 	dprint(PINSTR, "fscale\n");
 | |
| 
 | |
| 	fp_dyadic_check(dest, src);
 | |
| 
 | |
| 	/* Infinities */
 | |
| 	if (IS_INF(src)) {
 | |
| 		fp_set_nan(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 	if (IS_INF(dest))
 | |
| 		return dest;
 | |
| 
 | |
| 	/* zeroes */
 | |
| 	if (IS_ZERO(src) || IS_ZERO(dest))
 | |
| 		return dest;
 | |
| 
 | |
| 	/* Source exponent out of range */
 | |
| 	if (src->exp >= 0x400c) {
 | |
| 		fp_set_ovrflw(dest);
 | |
| 		return dest;
 | |
| 	}
 | |
| 
 | |
| 	/* src must be rounded with round to zero. */
 | |
| 	oldround = FPDATA->rnd;
 | |
| 	FPDATA->rnd = FPCR_ROUND_RZ;
 | |
| 	scale = fp_conv_ext2long(src);
 | |
| 	FPDATA->rnd = oldround;
 | |
| 
 | |
| 	/* new exponent */
 | |
| 	scale += dest->exp;
 | |
| 
 | |
| 	if (scale >= 0x7fff) {
 | |
| 		fp_set_ovrflw(dest);
 | |
| 	} else if (scale <= 0) {
 | |
| 		fp_set_sr(FPSR_EXC_UNFL);
 | |
| 		fp_denormalize(dest, -scale);
 | |
| 	} else
 | |
| 		dest->exp = scale;
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | 
