3384 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3384 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * raid1.c : Multiple Devices driver for Linux
 | |
|  *
 | |
|  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
 | |
|  *
 | |
|  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 | |
|  *
 | |
|  * RAID-1 management functions.
 | |
|  *
 | |
|  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
 | |
|  *
 | |
|  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
 | |
|  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
 | |
|  *
 | |
|  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
 | |
|  * bitmapped intelligence in resync:
 | |
|  *
 | |
|  *      - bitmap marked during normal i/o
 | |
|  *      - bitmap used to skip nondirty blocks during sync
 | |
|  *
 | |
|  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
 | |
|  * - persistent bitmap code
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * (for example /usr/src/linux/COPYING); if not, write to the Free
 | |
|  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/ratelimit.h>
 | |
| 
 | |
| #include <trace/events/block.h>
 | |
| 
 | |
| #include "md.h"
 | |
| #include "raid1.h"
 | |
| #include "md-bitmap.h"
 | |
| 
 | |
| #define UNSUPPORTED_MDDEV_FLAGS		\
 | |
| 	((1L << MD_HAS_JOURNAL) |	\
 | |
| 	 (1L << MD_JOURNAL_CLEAN) |	\
 | |
| 	 (1L << MD_HAS_PPL) |		\
 | |
| 	 (1L << MD_HAS_MULTIPLE_PPLS))
 | |
| 
 | |
| /*
 | |
|  * Number of guaranteed r1bios in case of extreme VM load:
 | |
|  */
 | |
| #define	NR_RAID1_BIOS 256
 | |
| 
 | |
| /* when we get a read error on a read-only array, we redirect to another
 | |
|  * device without failing the first device, or trying to over-write to
 | |
|  * correct the read error.  To keep track of bad blocks on a per-bio
 | |
|  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
 | |
|  */
 | |
| #define IO_BLOCKED ((struct bio *)1)
 | |
| /* When we successfully write to a known bad-block, we need to remove the
 | |
|  * bad-block marking which must be done from process context.  So we record
 | |
|  * the success by setting devs[n].bio to IO_MADE_GOOD
 | |
|  */
 | |
| #define IO_MADE_GOOD ((struct bio *)2)
 | |
| 
 | |
| #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
 | |
| 
 | |
| /* When there are this many requests queue to be written by
 | |
|  * the raid1 thread, we become 'congested' to provide back-pressure
 | |
|  * for writeback.
 | |
|  */
 | |
| static int max_queued_requests = 1024;
 | |
| 
 | |
| static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
 | |
| static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
 | |
| 
 | |
| #define raid1_log(md, fmt, args...)				\
 | |
| 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
 | |
| 
 | |
| #include "raid1-10.c"
 | |
| 
 | |
| /*
 | |
|  * for resync bio, r1bio pointer can be retrieved from the per-bio
 | |
|  * 'struct resync_pages'.
 | |
|  */
 | |
| static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 | |
| {
 | |
| 	return get_resync_pages(bio)->raid_bio;
 | |
| }
 | |
| 
 | |
| static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 | |
| {
 | |
| 	struct pool_info *pi = data;
 | |
| 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 | |
| 
 | |
| 	/* allocate a r1bio with room for raid_disks entries in the bios array */
 | |
| 	return kzalloc(size, gfp_flags);
 | |
| }
 | |
| 
 | |
| static void r1bio_pool_free(void *r1_bio, void *data)
 | |
| {
 | |
| 	kfree(r1_bio);
 | |
| }
 | |
| 
 | |
| #define RESYNC_DEPTH 32
 | |
| #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 | |
| #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 | |
| #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 | |
| #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 | |
| #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 | |
| 
 | |
| static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 | |
| {
 | |
| 	struct pool_info *pi = data;
 | |
| 	struct r1bio *r1_bio;
 | |
| 	struct bio *bio;
 | |
| 	int need_pages;
 | |
| 	int j;
 | |
| 	struct resync_pages *rps;
 | |
| 
 | |
| 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 | |
| 	if (!r1_bio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 | |
| 			    gfp_flags);
 | |
| 	if (!rps)
 | |
| 		goto out_free_r1bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate bios : 1 for reading, n-1 for writing
 | |
| 	 */
 | |
| 	for (j = pi->raid_disks ; j-- ; ) {
 | |
| 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 | |
| 		if (!bio)
 | |
| 			goto out_free_bio;
 | |
| 		r1_bio->bios[j] = bio;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Allocate RESYNC_PAGES data pages and attach them to
 | |
| 	 * the first bio.
 | |
| 	 * If this is a user-requested check/repair, allocate
 | |
| 	 * RESYNC_PAGES for each bio.
 | |
| 	 */
 | |
| 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 | |
| 		need_pages = pi->raid_disks;
 | |
| 	else
 | |
| 		need_pages = 1;
 | |
| 	for (j = 0; j < pi->raid_disks; j++) {
 | |
| 		struct resync_pages *rp = &rps[j];
 | |
| 
 | |
| 		bio = r1_bio->bios[j];
 | |
| 
 | |
| 		if (j < need_pages) {
 | |
| 			if (resync_alloc_pages(rp, gfp_flags))
 | |
| 				goto out_free_pages;
 | |
| 		} else {
 | |
| 			memcpy(rp, &rps[0], sizeof(*rp));
 | |
| 			resync_get_all_pages(rp);
 | |
| 		}
 | |
| 
 | |
| 		rp->raid_bio = r1_bio;
 | |
| 		bio->bi_private = rp;
 | |
| 	}
 | |
| 
 | |
| 	r1_bio->master_bio = NULL;
 | |
| 
 | |
| 	return r1_bio;
 | |
| 
 | |
| out_free_pages:
 | |
| 	while (--j >= 0)
 | |
| 		resync_free_pages(&rps[j]);
 | |
| 
 | |
| out_free_bio:
 | |
| 	while (++j < pi->raid_disks)
 | |
| 		bio_put(r1_bio->bios[j]);
 | |
| 	kfree(rps);
 | |
| 
 | |
| out_free_r1bio:
 | |
| 	r1bio_pool_free(r1_bio, data);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void r1buf_pool_free(void *__r1_bio, void *data)
 | |
| {
 | |
| 	struct pool_info *pi = data;
 | |
| 	int i;
 | |
| 	struct r1bio *r1bio = __r1_bio;
 | |
| 	struct resync_pages *rp = NULL;
 | |
| 
 | |
| 	for (i = pi->raid_disks; i--; ) {
 | |
| 		rp = get_resync_pages(r1bio->bios[i]);
 | |
| 		resync_free_pages(rp);
 | |
| 		bio_put(r1bio->bios[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* resync pages array stored in the 1st bio's .bi_private */
 | |
| 	kfree(rp);
 | |
| 
 | |
| 	r1bio_pool_free(r1bio, data);
 | |
| }
 | |
| 
 | |
| static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		struct bio **bio = r1_bio->bios + i;
 | |
| 		if (!BIO_SPECIAL(*bio))
 | |
| 			bio_put(*bio);
 | |
| 		*bio = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_r1bio(struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 
 | |
| 	put_all_bios(conf, r1_bio);
 | |
| 	mempool_free(r1_bio, &conf->r1bio_pool);
 | |
| }
 | |
| 
 | |
| static void put_buf(struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 	sector_t sect = r1_bio->sector;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		struct bio *bio = r1_bio->bios[i];
 | |
| 		if (bio->bi_end_io)
 | |
| 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 | |
| 	}
 | |
| 
 | |
| 	mempool_free(r1_bio, &conf->r1buf_pool);
 | |
| 
 | |
| 	lower_barrier(conf, sect);
 | |
| }
 | |
| 
 | |
| static void reschedule_retry(struct r1bio *r1_bio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = sector_to_idx(r1_bio->sector);
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	list_add(&r1_bio->retry_list, &conf->retry_list);
 | |
| 	atomic_inc(&conf->nr_queued[idx]);
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 	md_wakeup_thread(mddev->thread);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * raid_end_bio_io() is called when we have finished servicing a mirrored
 | |
|  * operation and are ready to return a success/failure code to the buffer
 | |
|  * cache layer.
 | |
|  */
 | |
| static void call_bio_endio(struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct bio *bio = r1_bio->master_bio;
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 
 | |
| 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 | |
| 		bio->bi_status = BLK_STS_IOERR;
 | |
| 
 | |
| 	bio_endio(bio);
 | |
| 	/*
 | |
| 	 * Wake up any possible resync thread that waits for the device
 | |
| 	 * to go idle.
 | |
| 	 */
 | |
| 	allow_barrier(conf, r1_bio->sector);
 | |
| }
 | |
| 
 | |
| static void raid_end_bio_io(struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct bio *bio = r1_bio->master_bio;
 | |
| 
 | |
| 	/* if nobody has done the final endio yet, do it now */
 | |
| 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 | |
| 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 | |
| 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 | |
| 			 (unsigned long long) bio->bi_iter.bi_sector,
 | |
| 			 (unsigned long long) bio_end_sector(bio) - 1);
 | |
| 
 | |
| 		call_bio_endio(r1_bio);
 | |
| 	}
 | |
| 	free_r1bio(r1_bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update disk head position estimator based on IRQ completion info.
 | |
|  */
 | |
| static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 
 | |
| 	conf->mirrors[disk].head_position =
 | |
| 		r1_bio->sector + (r1_bio->sectors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the disk number which triggered given bio
 | |
|  */
 | |
| static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 | |
| {
 | |
| 	int mirror;
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 	int raid_disks = conf->raid_disks;
 | |
| 
 | |
| 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 | |
| 		if (r1_bio->bios[mirror] == bio)
 | |
| 			break;
 | |
| 
 | |
| 	BUG_ON(mirror == raid_disks * 2);
 | |
| 	update_head_pos(mirror, r1_bio);
 | |
| 
 | |
| 	return mirror;
 | |
| }
 | |
| 
 | |
| static void raid1_end_read_request(struct bio *bio)
 | |
| {
 | |
| 	int uptodate = !bio->bi_status;
 | |
| 	struct r1bio *r1_bio = bio->bi_private;
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 | |
| 
 | |
| 	/*
 | |
| 	 * this branch is our 'one mirror IO has finished' event handler:
 | |
| 	 */
 | |
| 	update_head_pos(r1_bio->read_disk, r1_bio);
 | |
| 
 | |
| 	if (uptodate)
 | |
| 		set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 	else if (test_bit(FailFast, &rdev->flags) &&
 | |
| 		 test_bit(R1BIO_FailFast, &r1_bio->state))
 | |
| 		/* This was a fail-fast read so we definitely
 | |
| 		 * want to retry */
 | |
| 		;
 | |
| 	else {
 | |
| 		/* If all other devices have failed, we want to return
 | |
| 		 * the error upwards rather than fail the last device.
 | |
| 		 * Here we redefine "uptodate" to mean "Don't want to retry"
 | |
| 		 */
 | |
| 		unsigned long flags;
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (r1_bio->mddev->degraded == conf->raid_disks ||
 | |
| 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 | |
| 		     test_bit(In_sync, &rdev->flags)))
 | |
| 			uptodate = 1;
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (uptodate) {
 | |
| 		raid_end_bio_io(r1_bio);
 | |
| 		rdev_dec_pending(rdev, conf->mddev);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * oops, read error:
 | |
| 		 */
 | |
| 		char b[BDEVNAME_SIZE];
 | |
| 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 | |
| 				   mdname(conf->mddev),
 | |
| 				   bdevname(rdev->bdev, b),
 | |
| 				   (unsigned long long)r1_bio->sector);
 | |
| 		set_bit(R1BIO_ReadError, &r1_bio->state);
 | |
| 		reschedule_retry(r1_bio);
 | |
| 		/* don't drop the reference on read_disk yet */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void close_write(struct r1bio *r1_bio)
 | |
| {
 | |
| 	/* it really is the end of this request */
 | |
| 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 | |
| 		bio_free_pages(r1_bio->behind_master_bio);
 | |
| 		bio_put(r1_bio->behind_master_bio);
 | |
| 		r1_bio->behind_master_bio = NULL;
 | |
| 	}
 | |
| 	/* clear the bitmap if all writes complete successfully */
 | |
| 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 | |
| 			   r1_bio->sectors,
 | |
| 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 | |
| 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 | |
| 	md_write_end(r1_bio->mddev);
 | |
| }
 | |
| 
 | |
| static void r1_bio_write_done(struct r1bio *r1_bio)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&r1_bio->remaining))
 | |
| 		return;
 | |
| 
 | |
| 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 		reschedule_retry(r1_bio);
 | |
| 	else {
 | |
| 		close_write(r1_bio);
 | |
| 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 | |
| 			reschedule_retry(r1_bio);
 | |
| 		else
 | |
| 			raid_end_bio_io(r1_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid1_end_write_request(struct bio *bio)
 | |
| {
 | |
| 	struct r1bio *r1_bio = bio->bi_private;
 | |
| 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 | |
| 	struct r1conf *conf = r1_bio->mddev->private;
 | |
| 	struct bio *to_put = NULL;
 | |
| 	int mirror = find_bio_disk(r1_bio, bio);
 | |
| 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 | |
| 	bool discard_error;
 | |
| 
 | |
| 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 | |
| 
 | |
| 	/*
 | |
| 	 * 'one mirror IO has finished' event handler:
 | |
| 	 */
 | |
| 	if (bio->bi_status && !discard_error) {
 | |
| 		set_bit(WriteErrorSeen,	&rdev->flags);
 | |
| 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 			set_bit(MD_RECOVERY_NEEDED, &
 | |
| 				conf->mddev->recovery);
 | |
| 
 | |
| 		if (test_bit(FailFast, &rdev->flags) &&
 | |
| 		    (bio->bi_opf & MD_FAILFAST) &&
 | |
| 		    /* We never try FailFast to WriteMostly devices */
 | |
| 		    !test_bit(WriteMostly, &rdev->flags)) {
 | |
| 			md_error(r1_bio->mddev, rdev);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * When the device is faulty, it is not necessary to
 | |
| 		 * handle write error.
 | |
| 		 * For failfast, this is the only remaining device,
 | |
| 		 * We need to retry the write without FailFast.
 | |
| 		 */
 | |
| 		if (!test_bit(Faulty, &rdev->flags))
 | |
| 			set_bit(R1BIO_WriteError, &r1_bio->state);
 | |
| 		else {
 | |
| 			/* Finished with this branch */
 | |
| 			r1_bio->bios[mirror] = NULL;
 | |
| 			to_put = bio;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Set R1BIO_Uptodate in our master bio, so that we
 | |
| 		 * will return a good error code for to the higher
 | |
| 		 * levels even if IO on some other mirrored buffer
 | |
| 		 * fails.
 | |
| 		 *
 | |
| 		 * The 'master' represents the composite IO operation
 | |
| 		 * to user-side. So if something waits for IO, then it
 | |
| 		 * will wait for the 'master' bio.
 | |
| 		 */
 | |
| 		sector_t first_bad;
 | |
| 		int bad_sectors;
 | |
| 
 | |
| 		r1_bio->bios[mirror] = NULL;
 | |
| 		to_put = bio;
 | |
| 		/*
 | |
| 		 * Do not set R1BIO_Uptodate if the current device is
 | |
| 		 * rebuilding or Faulty. This is because we cannot use
 | |
| 		 * such device for properly reading the data back (we could
 | |
| 		 * potentially use it, if the current write would have felt
 | |
| 		 * before rdev->recovery_offset, but for simplicity we don't
 | |
| 		 * check this here.
 | |
| 		 */
 | |
| 		if (test_bit(In_sync, &rdev->flags) &&
 | |
| 		    !test_bit(Faulty, &rdev->flags))
 | |
| 			set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 
 | |
| 		/* Maybe we can clear some bad blocks. */
 | |
| 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 | |
| 				&first_bad, &bad_sectors) && !discard_error) {
 | |
| 			r1_bio->bios[mirror] = IO_MADE_GOOD;
 | |
| 			set_bit(R1BIO_MadeGood, &r1_bio->state);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (behind) {
 | |
| 		if (test_bit(WriteMostly, &rdev->flags))
 | |
| 			atomic_dec(&r1_bio->behind_remaining);
 | |
| 
 | |
| 		/*
 | |
| 		 * In behind mode, we ACK the master bio once the I/O
 | |
| 		 * has safely reached all non-writemostly
 | |
| 		 * disks. Setting the Returned bit ensures that this
 | |
| 		 * gets done only once -- we don't ever want to return
 | |
| 		 * -EIO here, instead we'll wait
 | |
| 		 */
 | |
| 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 | |
| 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 | |
| 			/* Maybe we can return now */
 | |
| 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 | |
| 				struct bio *mbio = r1_bio->master_bio;
 | |
| 				pr_debug("raid1: behind end write sectors"
 | |
| 					 " %llu-%llu\n",
 | |
| 					 (unsigned long long) mbio->bi_iter.bi_sector,
 | |
| 					 (unsigned long long) bio_end_sector(mbio) - 1);
 | |
| 				call_bio_endio(r1_bio);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (r1_bio->bios[mirror] == NULL)
 | |
| 		rdev_dec_pending(rdev, conf->mddev);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's see if all mirrored write operations have finished
 | |
| 	 * already.
 | |
| 	 */
 | |
| 	r1_bio_write_done(r1_bio);
 | |
| 
 | |
| 	if (to_put)
 | |
| 		bio_put(to_put);
 | |
| }
 | |
| 
 | |
| static sector_t align_to_barrier_unit_end(sector_t start_sector,
 | |
| 					  sector_t sectors)
 | |
| {
 | |
| 	sector_t len;
 | |
| 
 | |
| 	WARN_ON(sectors == 0);
 | |
| 	/*
 | |
| 	 * len is the number of sectors from start_sector to end of the
 | |
| 	 * barrier unit which start_sector belongs to.
 | |
| 	 */
 | |
| 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 | |
| 	      start_sector;
 | |
| 
 | |
| 	if (len > sectors)
 | |
| 		len = sectors;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine returns the disk from which the requested read should
 | |
|  * be done. There is a per-array 'next expected sequential IO' sector
 | |
|  * number - if this matches on the next IO then we use the last disk.
 | |
|  * There is also a per-disk 'last know head position' sector that is
 | |
|  * maintained from IRQ contexts, both the normal and the resync IO
 | |
|  * completion handlers update this position correctly. If there is no
 | |
|  * perfect sequential match then we pick the disk whose head is closest.
 | |
|  *
 | |
|  * If there are 2 mirrors in the same 2 devices, performance degrades
 | |
|  * because position is mirror, not device based.
 | |
|  *
 | |
|  * The rdev for the device selected will have nr_pending incremented.
 | |
|  */
 | |
| static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 | |
| {
 | |
| 	const sector_t this_sector = r1_bio->sector;
 | |
| 	int sectors;
 | |
| 	int best_good_sectors;
 | |
| 	int best_disk, best_dist_disk, best_pending_disk;
 | |
| 	int has_nonrot_disk;
 | |
| 	int disk;
 | |
| 	sector_t best_dist;
 | |
| 	unsigned int min_pending;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int choose_first;
 | |
| 	int choose_next_idle;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * Check if we can balance. We can balance on the whole
 | |
| 	 * device if no resync is going on, or below the resync window.
 | |
| 	 * We take the first readable disk when above the resync window.
 | |
| 	 */
 | |
|  retry:
 | |
| 	sectors = r1_bio->sectors;
 | |
| 	best_disk = -1;
 | |
| 	best_dist_disk = -1;
 | |
| 	best_dist = MaxSector;
 | |
| 	best_pending_disk = -1;
 | |
| 	min_pending = UINT_MAX;
 | |
| 	best_good_sectors = 0;
 | |
| 	has_nonrot_disk = 0;
 | |
| 	choose_next_idle = 0;
 | |
| 	clear_bit(R1BIO_FailFast, &r1_bio->state);
 | |
| 
 | |
| 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 | |
| 	    (mddev_is_clustered(conf->mddev) &&
 | |
| 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 | |
| 		    this_sector + sectors)))
 | |
| 		choose_first = 1;
 | |
| 	else
 | |
| 		choose_first = 0;
 | |
| 
 | |
| 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 | |
| 		sector_t dist;
 | |
| 		sector_t first_bad;
 | |
| 		int bad_sectors;
 | |
| 		unsigned int pending;
 | |
| 		bool nonrot;
 | |
| 
 | |
| 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 | |
| 		if (r1_bio->bios[disk] == IO_BLOCKED
 | |
| 		    || rdev == NULL
 | |
| 		    || test_bit(Faulty, &rdev->flags))
 | |
| 			continue;
 | |
| 		if (!test_bit(In_sync, &rdev->flags) &&
 | |
| 		    rdev->recovery_offset < this_sector + sectors)
 | |
| 			continue;
 | |
| 		if (test_bit(WriteMostly, &rdev->flags)) {
 | |
| 			/* Don't balance among write-mostly, just
 | |
| 			 * use the first as a last resort */
 | |
| 			if (best_dist_disk < 0) {
 | |
| 				if (is_badblock(rdev, this_sector, sectors,
 | |
| 						&first_bad, &bad_sectors)) {
 | |
| 					if (first_bad <= this_sector)
 | |
| 						/* Cannot use this */
 | |
| 						continue;
 | |
| 					best_good_sectors = first_bad - this_sector;
 | |
| 				} else
 | |
| 					best_good_sectors = sectors;
 | |
| 				best_dist_disk = disk;
 | |
| 				best_pending_disk = disk;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* This is a reasonable device to use.  It might
 | |
| 		 * even be best.
 | |
| 		 */
 | |
| 		if (is_badblock(rdev, this_sector, sectors,
 | |
| 				&first_bad, &bad_sectors)) {
 | |
| 			if (best_dist < MaxSector)
 | |
| 				/* already have a better device */
 | |
| 				continue;
 | |
| 			if (first_bad <= this_sector) {
 | |
| 				/* cannot read here. If this is the 'primary'
 | |
| 				 * device, then we must not read beyond
 | |
| 				 * bad_sectors from another device..
 | |
| 				 */
 | |
| 				bad_sectors -= (this_sector - first_bad);
 | |
| 				if (choose_first && sectors > bad_sectors)
 | |
| 					sectors = bad_sectors;
 | |
| 				if (best_good_sectors > sectors)
 | |
| 					best_good_sectors = sectors;
 | |
| 
 | |
| 			} else {
 | |
| 				sector_t good_sectors = first_bad - this_sector;
 | |
| 				if (good_sectors > best_good_sectors) {
 | |
| 					best_good_sectors = good_sectors;
 | |
| 					best_disk = disk;
 | |
| 				}
 | |
| 				if (choose_first)
 | |
| 					break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		} else {
 | |
| 			if ((sectors > best_good_sectors) && (best_disk >= 0))
 | |
| 				best_disk = -1;
 | |
| 			best_good_sectors = sectors;
 | |
| 		}
 | |
| 
 | |
| 		if (best_disk >= 0)
 | |
| 			/* At least two disks to choose from so failfast is OK */
 | |
| 			set_bit(R1BIO_FailFast, &r1_bio->state);
 | |
| 
 | |
| 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 | |
| 		has_nonrot_disk |= nonrot;
 | |
| 		pending = atomic_read(&rdev->nr_pending);
 | |
| 		dist = abs(this_sector - conf->mirrors[disk].head_position);
 | |
| 		if (choose_first) {
 | |
| 			best_disk = disk;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Don't change to another disk for sequential reads */
 | |
| 		if (conf->mirrors[disk].next_seq_sect == this_sector
 | |
| 		    || dist == 0) {
 | |
| 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 | |
| 			struct raid1_info *mirror = &conf->mirrors[disk];
 | |
| 
 | |
| 			best_disk = disk;
 | |
| 			/*
 | |
| 			 * If buffered sequential IO size exceeds optimal
 | |
| 			 * iosize, check if there is idle disk. If yes, choose
 | |
| 			 * the idle disk. read_balance could already choose an
 | |
| 			 * idle disk before noticing it's a sequential IO in
 | |
| 			 * this disk. This doesn't matter because this disk
 | |
| 			 * will idle, next time it will be utilized after the
 | |
| 			 * first disk has IO size exceeds optimal iosize. In
 | |
| 			 * this way, iosize of the first disk will be optimal
 | |
| 			 * iosize at least. iosize of the second disk might be
 | |
| 			 * small, but not a big deal since when the second disk
 | |
| 			 * starts IO, the first disk is likely still busy.
 | |
| 			 */
 | |
| 			if (nonrot && opt_iosize > 0 &&
 | |
| 			    mirror->seq_start != MaxSector &&
 | |
| 			    mirror->next_seq_sect > opt_iosize &&
 | |
| 			    mirror->next_seq_sect - opt_iosize >=
 | |
| 			    mirror->seq_start) {
 | |
| 				choose_next_idle = 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (choose_next_idle)
 | |
| 			continue;
 | |
| 
 | |
| 		if (min_pending > pending) {
 | |
| 			min_pending = pending;
 | |
| 			best_pending_disk = disk;
 | |
| 		}
 | |
| 
 | |
| 		if (dist < best_dist) {
 | |
| 			best_dist = dist;
 | |
| 			best_dist_disk = disk;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If all disks are rotational, choose the closest disk. If any disk is
 | |
| 	 * non-rotational, choose the disk with less pending request even the
 | |
| 	 * disk is rotational, which might/might not be optimal for raids with
 | |
| 	 * mixed ratation/non-rotational disks depending on workload.
 | |
| 	 */
 | |
| 	if (best_disk == -1) {
 | |
| 		if (has_nonrot_disk || min_pending == 0)
 | |
| 			best_disk = best_pending_disk;
 | |
| 		else
 | |
| 			best_disk = best_dist_disk;
 | |
| 	}
 | |
| 
 | |
| 	if (best_disk >= 0) {
 | |
| 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 | |
| 		if (!rdev)
 | |
| 			goto retry;
 | |
| 		atomic_inc(&rdev->nr_pending);
 | |
| 		sectors = best_good_sectors;
 | |
| 
 | |
| 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 | |
| 			conf->mirrors[best_disk].seq_start = this_sector;
 | |
| 
 | |
| 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	*max_sectors = sectors;
 | |
| 
 | |
| 	return best_disk;
 | |
| }
 | |
| 
 | |
| static int raid1_congested(struct mddev *mddev, int bits)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	if ((bits & (1 << WB_async_congested)) &&
 | |
| 	    conf->pending_count >= max_queued_requests)
 | |
| 		return 1;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | |
| 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 | |
| 			struct request_queue *q = bdev_get_queue(rdev->bdev);
 | |
| 
 | |
| 			BUG_ON(!q);
 | |
| 
 | |
| 			/* Note the '|| 1' - when read_balance prefers
 | |
| 			 * non-congested targets, it can be removed
 | |
| 			 */
 | |
| 			if ((bits & (1 << WB_async_congested)) || 1)
 | |
| 				ret |= bdi_congested(q->backing_dev_info, bits);
 | |
| 			else
 | |
| 				ret &= bdi_congested(q->backing_dev_info, bits);
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 | |
| {
 | |
| 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 | |
| 	md_bitmap_unplug(conf->mddev->bitmap);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 
 | |
| 	while (bio) { /* submit pending writes */
 | |
| 		struct bio *next = bio->bi_next;
 | |
| 		struct md_rdev *rdev = (void *)bio->bi_disk;
 | |
| 		bio->bi_next = NULL;
 | |
| 		bio_set_dev(bio, rdev->bdev);
 | |
| 		if (test_bit(Faulty, &rdev->flags)) {
 | |
| 			bio_io_error(bio);
 | |
| 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 | |
| 				    !blk_queue_discard(bio->bi_disk->queue)))
 | |
| 			/* Just ignore it */
 | |
| 			bio_endio(bio);
 | |
| 		else
 | |
| 			generic_make_request(bio);
 | |
| 		bio = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void flush_pending_writes(struct r1conf *conf)
 | |
| {
 | |
| 	/* Any writes that have been queued but are awaiting
 | |
| 	 * bitmap updates get flushed here.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 
 | |
| 	if (conf->pending_bio_list.head) {
 | |
| 		struct blk_plug plug;
 | |
| 		struct bio *bio;
 | |
| 
 | |
| 		bio = bio_list_get(&conf->pending_bio_list);
 | |
| 		conf->pending_count = 0;
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * As this is called in a wait_event() loop (see freeze_array),
 | |
| 		 * current->state might be TASK_UNINTERRUPTIBLE which will
 | |
| 		 * cause a warning when we prepare to wait again.  As it is
 | |
| 		 * rare that this path is taken, it is perfectly safe to force
 | |
| 		 * us to go around the wait_event() loop again, so the warning
 | |
| 		 * is a false-positive.  Silence the warning by resetting
 | |
| 		 * thread state
 | |
| 		 */
 | |
| 		__set_current_state(TASK_RUNNING);
 | |
| 		blk_start_plug(&plug);
 | |
| 		flush_bio_list(conf, bio);
 | |
| 		blk_finish_plug(&plug);
 | |
| 	} else
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| }
 | |
| 
 | |
| /* Barriers....
 | |
|  * Sometimes we need to suspend IO while we do something else,
 | |
|  * either some resync/recovery, or reconfigure the array.
 | |
|  * To do this we raise a 'barrier'.
 | |
|  * The 'barrier' is a counter that can be raised multiple times
 | |
|  * to count how many activities are happening which preclude
 | |
|  * normal IO.
 | |
|  * We can only raise the barrier if there is no pending IO.
 | |
|  * i.e. if nr_pending == 0.
 | |
|  * We choose only to raise the barrier if no-one is waiting for the
 | |
|  * barrier to go down.  This means that as soon as an IO request
 | |
|  * is ready, no other operations which require a barrier will start
 | |
|  * until the IO request has had a chance.
 | |
|  *
 | |
|  * So: regular IO calls 'wait_barrier'.  When that returns there
 | |
|  *    is no backgroup IO happening,  It must arrange to call
 | |
|  *    allow_barrier when it has finished its IO.
 | |
|  * backgroup IO calls must call raise_barrier.  Once that returns
 | |
|  *    there is no normal IO happeing.  It must arrange to call
 | |
|  *    lower_barrier when the particular background IO completes.
 | |
|  */
 | |
| static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 
 | |
| 	/* Wait until no block IO is waiting */
 | |
| 	wait_event_lock_irq(conf->wait_barrier,
 | |
| 			    !atomic_read(&conf->nr_waiting[idx]),
 | |
| 			    conf->resync_lock);
 | |
| 
 | |
| 	/* block any new IO from starting */
 | |
| 	atomic_inc(&conf->barrier[idx]);
 | |
| 	/*
 | |
| 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 | |
| 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 | |
| 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 | |
| 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 | |
| 	 * be fetched before conf->barrier[idx] is increased. Otherwise
 | |
| 	 * there will be a race between raise_barrier() and _wait_barrier().
 | |
| 	 */
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	/* For these conditions we must wait:
 | |
| 	 * A: while the array is in frozen state
 | |
| 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 | |
| 	 *    existing in corresponding I/O barrier bucket.
 | |
| 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 | |
| 	 *    max resync count which allowed on current I/O barrier bucket.
 | |
| 	 */
 | |
| 	wait_event_lock_irq(conf->wait_barrier,
 | |
| 			    (!conf->array_frozen &&
 | |
| 			     !atomic_read(&conf->nr_pending[idx]) &&
 | |
| 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 | |
| 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 | |
| 			    conf->resync_lock);
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 | |
| 		atomic_dec(&conf->barrier[idx]);
 | |
| 		spin_unlock_irq(&conf->resync_lock);
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&conf->nr_sync_pending);
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 
 | |
| 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 | |
| 
 | |
| 	atomic_dec(&conf->barrier[idx]);
 | |
| 	atomic_dec(&conf->nr_sync_pending);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static void _wait_barrier(struct r1conf *conf, int idx)
 | |
| {
 | |
| 	/*
 | |
| 	 * We need to increase conf->nr_pending[idx] very early here,
 | |
| 	 * then raise_barrier() can be blocked when it waits for
 | |
| 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 | |
| 	 * conf->resync_lock when there is no barrier raised in same
 | |
| 	 * barrier unit bucket. Also if the array is frozen, I/O
 | |
| 	 * should be blocked until array is unfrozen.
 | |
| 	 */
 | |
| 	atomic_inc(&conf->nr_pending[idx]);
 | |
| 	/*
 | |
| 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 | |
| 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 | |
| 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 | |
| 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 | |
| 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 | |
| 	 * will be a race between _wait_barrier() and raise_barrier().
 | |
| 	 */
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't worry about checking two atomic_t variables at same time
 | |
| 	 * here. If during we check conf->barrier[idx], the array is
 | |
| 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 | |
| 	 * 0, it is safe to return and make the I/O continue. Because the
 | |
| 	 * array is frozen, all I/O returned here will eventually complete
 | |
| 	 * or be queued, no race will happen. See code comment in
 | |
| 	 * frozen_array().
 | |
| 	 */
 | |
| 	if (!READ_ONCE(conf->array_frozen) &&
 | |
| 	    !atomic_read(&conf->barrier[idx]))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * After holding conf->resync_lock, conf->nr_pending[idx]
 | |
| 	 * should be decreased before waiting for barrier to drop.
 | |
| 	 * Otherwise, we may encounter a race condition because
 | |
| 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 | |
| 	 * to be 0 at same time.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	atomic_inc(&conf->nr_waiting[idx]);
 | |
| 	atomic_dec(&conf->nr_pending[idx]);
 | |
| 	/*
 | |
| 	 * In case freeze_array() is waiting for
 | |
| 	 * get_unqueued_pending() == extra
 | |
| 	 */
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 	/* Wait for the barrier in same barrier unit bucket to drop. */
 | |
| 	wait_event_lock_irq(conf->wait_barrier,
 | |
| 			    !conf->array_frozen &&
 | |
| 			     !atomic_read(&conf->barrier[idx]),
 | |
| 			    conf->resync_lock);
 | |
| 	atomic_inc(&conf->nr_pending[idx]);
 | |
| 	atomic_dec(&conf->nr_waiting[idx]);
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| }
 | |
| 
 | |
| static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Very similar to _wait_barrier(). The difference is, for read
 | |
| 	 * I/O we don't need wait for sync I/O, but if the whole array
 | |
| 	 * is frozen, the read I/O still has to wait until the array is
 | |
| 	 * unfrozen. Since there is no ordering requirement with
 | |
| 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
 | |
| 	 */
 | |
| 	atomic_inc(&conf->nr_pending[idx]);
 | |
| 
 | |
| 	if (!READ_ONCE(conf->array_frozen))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	atomic_inc(&conf->nr_waiting[idx]);
 | |
| 	atomic_dec(&conf->nr_pending[idx]);
 | |
| 	/*
 | |
| 	 * In case freeze_array() is waiting for
 | |
| 	 * get_unqueued_pending() == extra
 | |
| 	 */
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| 	/* Wait for array to be unfrozen */
 | |
| 	wait_event_lock_irq(conf->wait_barrier,
 | |
| 			    !conf->array_frozen,
 | |
| 			    conf->resync_lock);
 | |
| 	atomic_inc(&conf->nr_pending[idx]);
 | |
| 	atomic_dec(&conf->nr_waiting[idx]);
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| }
 | |
| 
 | |
| static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 
 | |
| 	_wait_barrier(conf, idx);
 | |
| }
 | |
| 
 | |
| static void _allow_barrier(struct r1conf *conf, int idx)
 | |
| {
 | |
| 	atomic_dec(&conf->nr_pending[idx]);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
 | |
| {
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 
 | |
| 	_allow_barrier(conf, idx);
 | |
| }
 | |
| 
 | |
| /* conf->resync_lock should be held */
 | |
| static int get_unqueued_pending(struct r1conf *conf)
 | |
| {
 | |
| 	int idx, ret;
 | |
| 
 | |
| 	ret = atomic_read(&conf->nr_sync_pending);
 | |
| 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
 | |
| 		ret += atomic_read(&conf->nr_pending[idx]) -
 | |
| 			atomic_read(&conf->nr_queued[idx]);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void freeze_array(struct r1conf *conf, int extra)
 | |
| {
 | |
| 	/* Stop sync I/O and normal I/O and wait for everything to
 | |
| 	 * go quiet.
 | |
| 	 * This is called in two situations:
 | |
| 	 * 1) management command handlers (reshape, remove disk, quiesce).
 | |
| 	 * 2) one normal I/O request failed.
 | |
| 
 | |
| 	 * After array_frozen is set to 1, new sync IO will be blocked at
 | |
| 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
 | |
| 	 * or wait_read_barrier(). The flying I/Os will either complete or be
 | |
| 	 * queued. When everything goes quite, there are only queued I/Os left.
 | |
| 
 | |
| 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
 | |
| 	 * barrier bucket index which this I/O request hits. When all sync and
 | |
| 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
 | |
| 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
 | |
| 	 * in handle_read_error(), we may call freeze_array() before trying to
 | |
| 	 * fix the read error. In this case, the error read I/O is not queued,
 | |
| 	 * so get_unqueued_pending() == 1.
 | |
| 	 *
 | |
| 	 * Therefore before this function returns, we need to wait until
 | |
| 	 * get_unqueued_pendings(conf) gets equal to extra. For
 | |
| 	 * normal I/O context, extra is 1, in rested situations extra is 0.
 | |
| 	 */
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	conf->array_frozen = 1;
 | |
| 	raid1_log(conf->mddev, "wait freeze");
 | |
| 	wait_event_lock_irq_cmd(
 | |
| 		conf->wait_barrier,
 | |
| 		get_unqueued_pending(conf) == extra,
 | |
| 		conf->resync_lock,
 | |
| 		flush_pending_writes(conf));
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| }
 | |
| static void unfreeze_array(struct r1conf *conf)
 | |
| {
 | |
| 	/* reverse the effect of the freeze */
 | |
| 	spin_lock_irq(&conf->resync_lock);
 | |
| 	conf->array_frozen = 0;
 | |
| 	spin_unlock_irq(&conf->resync_lock);
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static void alloc_behind_master_bio(struct r1bio *r1_bio,
 | |
| 					   struct bio *bio)
 | |
| {
 | |
| 	int size = bio->bi_iter.bi_size;
 | |
| 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	int i = 0;
 | |
| 	struct bio *behind_bio = NULL;
 | |
| 
 | |
| 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
 | |
| 	if (!behind_bio)
 | |
| 		return;
 | |
| 
 | |
| 	/* discard op, we don't support writezero/writesame yet */
 | |
| 	if (!bio_has_data(bio)) {
 | |
| 		behind_bio->bi_iter.bi_size = size;
 | |
| 		goto skip_copy;
 | |
| 	}
 | |
| 
 | |
| 	behind_bio->bi_write_hint = bio->bi_write_hint;
 | |
| 
 | |
| 	while (i < vcnt && size) {
 | |
| 		struct page *page;
 | |
| 		int len = min_t(int, PAGE_SIZE, size);
 | |
| 
 | |
| 		page = alloc_page(GFP_NOIO);
 | |
| 		if (unlikely(!page))
 | |
| 			goto free_pages;
 | |
| 
 | |
| 		bio_add_page(behind_bio, page, len, 0);
 | |
| 
 | |
| 		size -= len;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	bio_copy_data(behind_bio, bio);
 | |
| skip_copy:
 | |
| 	r1_bio->behind_master_bio = behind_bio;
 | |
| 	set_bit(R1BIO_BehindIO, &r1_bio->state);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| free_pages:
 | |
| 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
 | |
| 		 bio->bi_iter.bi_size);
 | |
| 	bio_free_pages(behind_bio);
 | |
| 	bio_put(behind_bio);
 | |
| }
 | |
| 
 | |
| struct raid1_plug_cb {
 | |
| 	struct blk_plug_cb	cb;
 | |
| 	struct bio_list		pending;
 | |
| 	int			pending_cnt;
 | |
| };
 | |
| 
 | |
| static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
 | |
| {
 | |
| 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
 | |
| 						  cb);
 | |
| 	struct mddev *mddev = plug->cb.data;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	if (from_schedule || current->bio_list) {
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 | |
| 		conf->pending_count += plug->pending_cnt;
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		kfree(plug);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* we aren't scheduling, so we can do the write-out directly. */
 | |
| 	bio = bio_list_get(&plug->pending);
 | |
| 	flush_bio_list(conf, bio);
 | |
| 	kfree(plug);
 | |
| }
 | |
| 
 | |
| static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	r1_bio->master_bio = bio;
 | |
| 	r1_bio->sectors = bio_sectors(bio);
 | |
| 	r1_bio->state = 0;
 | |
| 	r1_bio->mddev = mddev;
 | |
| 	r1_bio->sector = bio->bi_iter.bi_sector;
 | |
| }
 | |
| 
 | |
| static inline struct r1bio *
 | |
| alloc_r1bio(struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct r1bio *r1_bio;
 | |
| 
 | |
| 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
 | |
| 	/* Ensure no bio records IO_BLOCKED */
 | |
| 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
 | |
| 	init_r1bio(r1_bio, mddev, bio);
 | |
| 	return r1_bio;
 | |
| }
 | |
| 
 | |
| static void raid1_read_request(struct mddev *mddev, struct bio *bio,
 | |
| 			       int max_read_sectors, struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct raid1_info *mirror;
 | |
| 	struct bio *read_bio;
 | |
| 	struct bitmap *bitmap = mddev->bitmap;
 | |
| 	const int op = bio_op(bio);
 | |
| 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
 | |
| 	int max_sectors;
 | |
| 	int rdisk;
 | |
| 	bool print_msg = !!r1_bio;
 | |
| 	char b[BDEVNAME_SIZE];
 | |
| 
 | |
| 	/*
 | |
| 	 * If r1_bio is set, we are blocking the raid1d thread
 | |
| 	 * so there is a tiny risk of deadlock.  So ask for
 | |
| 	 * emergency memory if needed.
 | |
| 	 */
 | |
| 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
 | |
| 
 | |
| 	if (print_msg) {
 | |
| 		/* Need to get the block device name carefully */
 | |
| 		struct md_rdev *rdev;
 | |
| 		rcu_read_lock();
 | |
| 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
 | |
| 		if (rdev)
 | |
| 			bdevname(rdev->bdev, b);
 | |
| 		else
 | |
| 			strcpy(b, "???");
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Still need barrier for READ in case that whole
 | |
| 	 * array is frozen.
 | |
| 	 */
 | |
| 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
 | |
| 
 | |
| 	if (!r1_bio)
 | |
| 		r1_bio = alloc_r1bio(mddev, bio);
 | |
| 	else
 | |
| 		init_r1bio(r1_bio, mddev, bio);
 | |
| 	r1_bio->sectors = max_read_sectors;
 | |
| 
 | |
| 	/*
 | |
| 	 * make_request() can abort the operation when read-ahead is being
 | |
| 	 * used and no empty request is available.
 | |
| 	 */
 | |
| 	rdisk = read_balance(conf, r1_bio, &max_sectors);
 | |
| 
 | |
| 	if (rdisk < 0) {
 | |
| 		/* couldn't find anywhere to read from */
 | |
| 		if (print_msg) {
 | |
| 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
 | |
| 					    mdname(mddev),
 | |
| 					    b,
 | |
| 					    (unsigned long long)r1_bio->sector);
 | |
| 		}
 | |
| 		raid_end_bio_io(r1_bio);
 | |
| 		return;
 | |
| 	}
 | |
| 	mirror = conf->mirrors + rdisk;
 | |
| 
 | |
| 	if (print_msg)
 | |
| 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
 | |
| 				    mdname(mddev),
 | |
| 				    (unsigned long long)r1_bio->sector,
 | |
| 				    bdevname(mirror->rdev->bdev, b));
 | |
| 
 | |
| 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
 | |
| 	    bitmap) {
 | |
| 		/*
 | |
| 		 * Reading from a write-mostly device must take care not to
 | |
| 		 * over-take any writes that are 'behind'
 | |
| 		 */
 | |
| 		raid1_log(mddev, "wait behind writes");
 | |
| 		wait_event(bitmap->behind_wait,
 | |
| 			   atomic_read(&bitmap->behind_writes) == 0);
 | |
| 	}
 | |
| 
 | |
| 	if (max_sectors < bio_sectors(bio)) {
 | |
| 		struct bio *split = bio_split(bio, max_sectors,
 | |
| 					      gfp, &conf->bio_split);
 | |
| 		bio_chain(split, bio);
 | |
| 		generic_make_request(bio);
 | |
| 		bio = split;
 | |
| 		r1_bio->master_bio = bio;
 | |
| 		r1_bio->sectors = max_sectors;
 | |
| 	}
 | |
| 
 | |
| 	r1_bio->read_disk = rdisk;
 | |
| 
 | |
| 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
 | |
| 
 | |
| 	r1_bio->bios[rdisk] = read_bio;
 | |
| 
 | |
| 	read_bio->bi_iter.bi_sector = r1_bio->sector +
 | |
| 		mirror->rdev->data_offset;
 | |
| 	bio_set_dev(read_bio, mirror->rdev->bdev);
 | |
| 	read_bio->bi_end_io = raid1_end_read_request;
 | |
| 	bio_set_op_attrs(read_bio, op, do_sync);
 | |
| 	if (test_bit(FailFast, &mirror->rdev->flags) &&
 | |
| 	    test_bit(R1BIO_FailFast, &r1_bio->state))
 | |
| 	        read_bio->bi_opf |= MD_FAILFAST;
 | |
| 	read_bio->bi_private = r1_bio;
 | |
| 
 | |
| 	if (mddev->gendisk)
 | |
| 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
 | |
| 				disk_devt(mddev->gendisk), r1_bio->sector);
 | |
| 
 | |
| 	generic_make_request(read_bio);
 | |
| }
 | |
| 
 | |
| static void raid1_write_request(struct mddev *mddev, struct bio *bio,
 | |
| 				int max_write_sectors)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct r1bio *r1_bio;
 | |
| 	int i, disks;
 | |
| 	struct bitmap *bitmap = mddev->bitmap;
 | |
| 	unsigned long flags;
 | |
| 	struct md_rdev *blocked_rdev;
 | |
| 	struct blk_plug_cb *cb;
 | |
| 	struct raid1_plug_cb *plug = NULL;
 | |
| 	int first_clone;
 | |
| 	int max_sectors;
 | |
| 
 | |
| 	if (mddev_is_clustered(mddev) &&
 | |
| 	     md_cluster_ops->area_resyncing(mddev, WRITE,
 | |
| 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
 | |
| 
 | |
| 		DEFINE_WAIT(w);
 | |
| 		for (;;) {
 | |
| 			prepare_to_wait(&conf->wait_barrier,
 | |
| 					&w, TASK_IDLE);
 | |
| 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
 | |
| 							bio->bi_iter.bi_sector,
 | |
| 							bio_end_sector(bio)))
 | |
| 				break;
 | |
| 			schedule();
 | |
| 		}
 | |
| 		finish_wait(&conf->wait_barrier, &w);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Register the new request and wait if the reconstruction
 | |
| 	 * thread has put up a bar for new requests.
 | |
| 	 * Continue immediately if no resync is active currently.
 | |
| 	 */
 | |
| 	wait_barrier(conf, bio->bi_iter.bi_sector);
 | |
| 
 | |
| 	r1_bio = alloc_r1bio(mddev, bio);
 | |
| 	r1_bio->sectors = max_write_sectors;
 | |
| 
 | |
| 	if (conf->pending_count >= max_queued_requests) {
 | |
| 		md_wakeup_thread(mddev->thread);
 | |
| 		raid1_log(mddev, "wait queued");
 | |
| 		wait_event(conf->wait_barrier,
 | |
| 			   conf->pending_count < max_queued_requests);
 | |
| 	}
 | |
| 	/* first select target devices under rcu_lock and
 | |
| 	 * inc refcount on their rdev.  Record them by setting
 | |
| 	 * bios[x] to bio
 | |
| 	 * If there are known/acknowledged bad blocks on any device on
 | |
| 	 * which we have seen a write error, we want to avoid writing those
 | |
| 	 * blocks.
 | |
| 	 * This potentially requires several writes to write around
 | |
| 	 * the bad blocks.  Each set of writes gets it's own r1bio
 | |
| 	 * with a set of bios attached.
 | |
| 	 */
 | |
| 
 | |
| 	disks = conf->raid_disks * 2;
 | |
|  retry_write:
 | |
| 	blocked_rdev = NULL;
 | |
| 	rcu_read_lock();
 | |
| 	max_sectors = r1_bio->sectors;
 | |
| 	for (i = 0;  i < disks; i++) {
 | |
| 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | |
| 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			blocked_rdev = rdev;
 | |
| 			break;
 | |
| 		}
 | |
| 		r1_bio->bios[i] = NULL;
 | |
| 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 | |
| 			if (i < conf->raid_disks)
 | |
| 				set_bit(R1BIO_Degraded, &r1_bio->state);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		atomic_inc(&rdev->nr_pending);
 | |
| 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
 | |
| 			sector_t first_bad;
 | |
| 			int bad_sectors;
 | |
| 			int is_bad;
 | |
| 
 | |
| 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 | |
| 					     &first_bad, &bad_sectors);
 | |
| 			if (is_bad < 0) {
 | |
| 				/* mustn't write here until the bad block is
 | |
| 				 * acknowledged*/
 | |
| 				set_bit(BlockedBadBlocks, &rdev->flags);
 | |
| 				blocked_rdev = rdev;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (is_bad && first_bad <= r1_bio->sector) {
 | |
| 				/* Cannot write here at all */
 | |
| 				bad_sectors -= (r1_bio->sector - first_bad);
 | |
| 				if (bad_sectors < max_sectors)
 | |
| 					/* mustn't write more than bad_sectors
 | |
| 					 * to other devices yet
 | |
| 					 */
 | |
| 					max_sectors = bad_sectors;
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 				/* We don't set R1BIO_Degraded as that
 | |
| 				 * only applies if the disk is
 | |
| 				 * missing, so it might be re-added,
 | |
| 				 * and we want to know to recover this
 | |
| 				 * chunk.
 | |
| 				 * In this case the device is here,
 | |
| 				 * and the fact that this chunk is not
 | |
| 				 * in-sync is recorded in the bad
 | |
| 				 * block log
 | |
| 				 */
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (is_bad) {
 | |
| 				int good_sectors = first_bad - r1_bio->sector;
 | |
| 				if (good_sectors < max_sectors)
 | |
| 					max_sectors = good_sectors;
 | |
| 			}
 | |
| 		}
 | |
| 		r1_bio->bios[i] = bio;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (unlikely(blocked_rdev)) {
 | |
| 		/* Wait for this device to become unblocked */
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < i; j++)
 | |
| 			if (r1_bio->bios[j])
 | |
| 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
 | |
| 		r1_bio->state = 0;
 | |
| 		allow_barrier(conf, bio->bi_iter.bi_sector);
 | |
| 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
 | |
| 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
 | |
| 		wait_barrier(conf, bio->bi_iter.bi_sector);
 | |
| 		goto retry_write;
 | |
| 	}
 | |
| 
 | |
| 	if (max_sectors < bio_sectors(bio)) {
 | |
| 		struct bio *split = bio_split(bio, max_sectors,
 | |
| 					      GFP_NOIO, &conf->bio_split);
 | |
| 		bio_chain(split, bio);
 | |
| 		generic_make_request(bio);
 | |
| 		bio = split;
 | |
| 		r1_bio->master_bio = bio;
 | |
| 		r1_bio->sectors = max_sectors;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&r1_bio->remaining, 1);
 | |
| 	atomic_set(&r1_bio->behind_remaining, 0);
 | |
| 
 | |
| 	first_clone = 1;
 | |
| 
 | |
| 	for (i = 0; i < disks; i++) {
 | |
| 		struct bio *mbio = NULL;
 | |
| 		if (!r1_bio->bios[i])
 | |
| 			continue;
 | |
| 
 | |
| 
 | |
| 		if (first_clone) {
 | |
| 			/* do behind I/O ?
 | |
| 			 * Not if there are too many, or cannot
 | |
| 			 * allocate memory, or a reader on WriteMostly
 | |
| 			 * is waiting for behind writes to flush */
 | |
| 			if (bitmap &&
 | |
| 			    (atomic_read(&bitmap->behind_writes)
 | |
| 			     < mddev->bitmap_info.max_write_behind) &&
 | |
| 			    !waitqueue_active(&bitmap->behind_wait)) {
 | |
| 				alloc_behind_master_bio(r1_bio, bio);
 | |
| 			}
 | |
| 
 | |
| 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
 | |
| 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
 | |
| 			first_clone = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (r1_bio->behind_master_bio)
 | |
| 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
 | |
| 					      GFP_NOIO, &mddev->bio_set);
 | |
| 		else
 | |
| 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
 | |
| 
 | |
| 		if (r1_bio->behind_master_bio) {
 | |
| 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
 | |
| 				atomic_inc(&r1_bio->behind_remaining);
 | |
| 		}
 | |
| 
 | |
| 		r1_bio->bios[i] = mbio;
 | |
| 
 | |
| 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
 | |
| 				   conf->mirrors[i].rdev->data_offset);
 | |
| 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
 | |
| 		mbio->bi_end_io	= raid1_end_write_request;
 | |
| 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
 | |
| 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
 | |
| 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
 | |
| 		    conf->raid_disks - mddev->degraded > 1)
 | |
| 			mbio->bi_opf |= MD_FAILFAST;
 | |
| 		mbio->bi_private = r1_bio;
 | |
| 
 | |
| 		atomic_inc(&r1_bio->remaining);
 | |
| 
 | |
| 		if (mddev->gendisk)
 | |
| 			trace_block_bio_remap(mbio->bi_disk->queue,
 | |
| 					      mbio, disk_devt(mddev->gendisk),
 | |
| 					      r1_bio->sector);
 | |
| 		/* flush_pending_writes() needs access to the rdev so...*/
 | |
| 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
 | |
| 
 | |
| 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
 | |
| 		if (cb)
 | |
| 			plug = container_of(cb, struct raid1_plug_cb, cb);
 | |
| 		else
 | |
| 			plug = NULL;
 | |
| 		if (plug) {
 | |
| 			bio_list_add(&plug->pending, mbio);
 | |
| 			plug->pending_cnt++;
 | |
| 		} else {
 | |
| 			spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 			bio_list_add(&conf->pending_bio_list, mbio);
 | |
| 			conf->pending_count++;
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			md_wakeup_thread(mddev->thread);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r1_bio_write_done(r1_bio);
 | |
| 
 | |
| 	/* In case raid1d snuck in to freeze_array */
 | |
| 	wake_up(&conf->wait_barrier);
 | |
| }
 | |
| 
 | |
| static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
 | |
| {
 | |
| 	sector_t sectors;
 | |
| 
 | |
| 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
 | |
| 	    && md_flush_request(mddev, bio))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is a limit to the maximum size, but
 | |
| 	 * the read/write handler might find a lower limit
 | |
| 	 * due to bad blocks.  To avoid multiple splits,
 | |
| 	 * we pass the maximum number of sectors down
 | |
| 	 * and let the lower level perform the split.
 | |
| 	 */
 | |
| 	sectors = align_to_barrier_unit_end(
 | |
| 		bio->bi_iter.bi_sector, bio_sectors(bio));
 | |
| 
 | |
| 	if (bio_data_dir(bio) == READ)
 | |
| 		raid1_read_request(mddev, bio, sectors, NULL);
 | |
| 	else {
 | |
| 		if (!md_write_start(mddev,bio))
 | |
| 			return false;
 | |
| 		raid1_write_request(mddev, bio, sectors);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void raid1_status(struct seq_file *seq, struct mddev *mddev)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int i;
 | |
| 
 | |
| 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
 | |
| 		   conf->raid_disks - mddev->degraded);
 | |
| 	rcu_read_lock();
 | |
| 	for (i = 0; i < conf->raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | |
| 		seq_printf(seq, "%s",
 | |
| 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	seq_printf(seq, "]");
 | |
| }
 | |
| 
 | |
| static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	char b[BDEVNAME_SIZE];
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it is not operational, then we have already marked it as dead
 | |
| 	 * else if it is the last working disks, ignore the error, let the
 | |
| 	 * next level up know.
 | |
| 	 * else mark the drive as failed
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	if (test_bit(In_sync, &rdev->flags)
 | |
| 	    && (conf->raid_disks - mddev->degraded) == 1) {
 | |
| 		/*
 | |
| 		 * Don't fail the drive, act as though we were just a
 | |
| 		 * normal single drive.
 | |
| 		 * However don't try a recovery from this drive as
 | |
| 		 * it is very likely to fail.
 | |
| 		 */
 | |
| 		conf->recovery_disabled = mddev->recovery_disabled;
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	set_bit(Blocked, &rdev->flags);
 | |
| 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
 | |
| 		mddev->degraded++;
 | |
| 		set_bit(Faulty, &rdev->flags);
 | |
| 	} else
 | |
| 		set_bit(Faulty, &rdev->flags);
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	/*
 | |
| 	 * if recovery is running, make sure it aborts.
 | |
| 	 */
 | |
| 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 	set_mask_bits(&mddev->sb_flags, 0,
 | |
| 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
 | |
| 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
 | |
| 		"md/raid1:%s: Operation continuing on %d devices.\n",
 | |
| 		mdname(mddev), bdevname(rdev->bdev, b),
 | |
| 		mdname(mddev), conf->raid_disks - mddev->degraded);
 | |
| }
 | |
| 
 | |
| static void print_conf(struct r1conf *conf)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_debug("RAID1 conf printout:\n");
 | |
| 	if (!conf) {
 | |
| 		pr_debug("(!conf)\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
 | |
| 		 conf->raid_disks);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (i = 0; i < conf->raid_disks; i++) {
 | |
| 		char b[BDEVNAME_SIZE];
 | |
| 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | |
| 		if (rdev)
 | |
| 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
 | |
| 				 i, !test_bit(In_sync, &rdev->flags),
 | |
| 				 !test_bit(Faulty, &rdev->flags),
 | |
| 				 bdevname(rdev->bdev,b));
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void close_sync(struct r1conf *conf)
 | |
| {
 | |
| 	int idx;
 | |
| 
 | |
| 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
 | |
| 		_wait_barrier(conf, idx);
 | |
| 		_allow_barrier(conf, idx);
 | |
| 	}
 | |
| 
 | |
| 	mempool_exit(&conf->r1buf_pool);
 | |
| }
 | |
| 
 | |
| static int raid1_spare_active(struct mddev *mddev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int count = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find all failed disks within the RAID1 configuration
 | |
| 	 * and mark them readable.
 | |
| 	 * Called under mddev lock, so rcu protection not needed.
 | |
| 	 * device_lock used to avoid races with raid1_end_read_request
 | |
| 	 * which expects 'In_sync' flags and ->degraded to be consistent.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	for (i = 0; i < conf->raid_disks; i++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
 | |
| 		if (repl
 | |
| 		    && !test_bit(Candidate, &repl->flags)
 | |
| 		    && repl->recovery_offset == MaxSector
 | |
| 		    && !test_bit(Faulty, &repl->flags)
 | |
| 		    && !test_and_set_bit(In_sync, &repl->flags)) {
 | |
| 			/* replacement has just become active */
 | |
| 			if (!rdev ||
 | |
| 			    !test_and_clear_bit(In_sync, &rdev->flags))
 | |
| 				count++;
 | |
| 			if (rdev) {
 | |
| 				/* Replaced device not technically
 | |
| 				 * faulty, but we need to be sure
 | |
| 				 * it gets removed and never re-added
 | |
| 				 */
 | |
| 				set_bit(Faulty, &rdev->flags);
 | |
| 				sysfs_notify_dirent_safe(
 | |
| 					rdev->sysfs_state);
 | |
| 			}
 | |
| 		}
 | |
| 		if (rdev
 | |
| 		    && rdev->recovery_offset == MaxSector
 | |
| 		    && !test_bit(Faulty, &rdev->flags)
 | |
| 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
 | |
| 			count++;
 | |
| 			sysfs_notify_dirent_safe(rdev->sysfs_state);
 | |
| 		}
 | |
| 	}
 | |
| 	mddev->degraded -= count;
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int err = -EEXIST;
 | |
| 	int mirror = 0;
 | |
| 	struct raid1_info *p;
 | |
| 	int first = 0;
 | |
| 	int last = conf->raid_disks - 1;
 | |
| 
 | |
| 	if (mddev->recovery_disabled == conf->recovery_disabled)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (md_integrity_add_rdev(rdev, mddev))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	if (rdev->raid_disk >= 0)
 | |
| 		first = last = rdev->raid_disk;
 | |
| 
 | |
| 	/*
 | |
| 	 * find the disk ... but prefer rdev->saved_raid_disk
 | |
| 	 * if possible.
 | |
| 	 */
 | |
| 	if (rdev->saved_raid_disk >= 0 &&
 | |
| 	    rdev->saved_raid_disk >= first &&
 | |
| 	    rdev->saved_raid_disk < conf->raid_disks &&
 | |
| 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
 | |
| 		first = last = rdev->saved_raid_disk;
 | |
| 
 | |
| 	for (mirror = first; mirror <= last; mirror++) {
 | |
| 		p = conf->mirrors+mirror;
 | |
| 		if (!p->rdev) {
 | |
| 
 | |
| 			if (mddev->gendisk)
 | |
| 				disk_stack_limits(mddev->gendisk, rdev->bdev,
 | |
| 						  rdev->data_offset << 9);
 | |
| 
 | |
| 			p->head_position = 0;
 | |
| 			rdev->raid_disk = mirror;
 | |
| 			err = 0;
 | |
| 			/* As all devices are equivalent, we don't need a full recovery
 | |
| 			 * if this was recently any drive of the array
 | |
| 			 */
 | |
| 			if (rdev->saved_raid_disk < 0)
 | |
| 				conf->fullsync = 1;
 | |
| 			rcu_assign_pointer(p->rdev, rdev);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (test_bit(WantReplacement, &p->rdev->flags) &&
 | |
| 		    p[conf->raid_disks].rdev == NULL) {
 | |
| 			/* Add this device as a replacement */
 | |
| 			clear_bit(In_sync, &rdev->flags);
 | |
| 			set_bit(Replacement, &rdev->flags);
 | |
| 			rdev->raid_disk = mirror;
 | |
| 			err = 0;
 | |
| 			conf->fullsync = 1;
 | |
| 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
 | |
| 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
 | |
| 	print_conf(conf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int err = 0;
 | |
| 	int number = rdev->raid_disk;
 | |
| 	struct raid1_info *p = conf->mirrors + number;
 | |
| 
 | |
| 	if (rdev != p->rdev)
 | |
| 		p = conf->mirrors + conf->raid_disks + number;
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	if (rdev == p->rdev) {
 | |
| 		if (test_bit(In_sync, &rdev->flags) ||
 | |
| 		    atomic_read(&rdev->nr_pending)) {
 | |
| 			err = -EBUSY;
 | |
| 			goto abort;
 | |
| 		}
 | |
| 		/* Only remove non-faulty devices if recovery
 | |
| 		 * is not possible.
 | |
| 		 */
 | |
| 		if (!test_bit(Faulty, &rdev->flags) &&
 | |
| 		    mddev->recovery_disabled != conf->recovery_disabled &&
 | |
| 		    mddev->degraded < conf->raid_disks) {
 | |
| 			err = -EBUSY;
 | |
| 			goto abort;
 | |
| 		}
 | |
| 		p->rdev = NULL;
 | |
| 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
 | |
| 			synchronize_rcu();
 | |
| 			if (atomic_read(&rdev->nr_pending)) {
 | |
| 				/* lost the race, try later */
 | |
| 				err = -EBUSY;
 | |
| 				p->rdev = rdev;
 | |
| 				goto abort;
 | |
| 			}
 | |
| 		}
 | |
| 		if (conf->mirrors[conf->raid_disks + number].rdev) {
 | |
| 			/* We just removed a device that is being replaced.
 | |
| 			 * Move down the replacement.  We drain all IO before
 | |
| 			 * doing this to avoid confusion.
 | |
| 			 */
 | |
| 			struct md_rdev *repl =
 | |
| 				conf->mirrors[conf->raid_disks + number].rdev;
 | |
| 			freeze_array(conf, 0);
 | |
| 			if (atomic_read(&repl->nr_pending)) {
 | |
| 				/* It means that some queued IO of retry_list
 | |
| 				 * hold repl. Thus, we cannot set replacement
 | |
| 				 * as NULL, avoiding rdev NULL pointer
 | |
| 				 * dereference in sync_request_write and
 | |
| 				 * handle_write_finished.
 | |
| 				 */
 | |
| 				err = -EBUSY;
 | |
| 				unfreeze_array(conf);
 | |
| 				goto abort;
 | |
| 			}
 | |
| 			clear_bit(Replacement, &repl->flags);
 | |
| 			p->rdev = repl;
 | |
| 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
 | |
| 			unfreeze_array(conf);
 | |
| 		}
 | |
| 
 | |
| 		clear_bit(WantReplacement, &rdev->flags);
 | |
| 		err = md_integrity_register(mddev);
 | |
| 	}
 | |
| abort:
 | |
| 
 | |
| 	print_conf(conf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void end_sync_read(struct bio *bio)
 | |
| {
 | |
| 	struct r1bio *r1_bio = get_resync_r1bio(bio);
 | |
| 
 | |
| 	update_head_pos(r1_bio->read_disk, r1_bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * we have read a block, now it needs to be re-written,
 | |
| 	 * or re-read if the read failed.
 | |
| 	 * We don't do much here, just schedule handling by raid1d
 | |
| 	 */
 | |
| 	if (!bio->bi_status)
 | |
| 		set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&r1_bio->remaining))
 | |
| 		reschedule_retry(r1_bio);
 | |
| }
 | |
| 
 | |
| static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
 | |
| {
 | |
| 	sector_t sync_blocks = 0;
 | |
| 	sector_t s = r1_bio->sector;
 | |
| 	long sectors_to_go = r1_bio->sectors;
 | |
| 
 | |
| 	/* make sure these bits don't get cleared. */
 | |
| 	do {
 | |
| 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
 | |
| 		s += sync_blocks;
 | |
| 		sectors_to_go -= sync_blocks;
 | |
| 	} while (sectors_to_go > 0);
 | |
| }
 | |
| 
 | |
| static void end_sync_write(struct bio *bio)
 | |
| {
 | |
| 	int uptodate = !bio->bi_status;
 | |
| 	struct r1bio *r1_bio = get_resync_r1bio(bio);
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	sector_t first_bad;
 | |
| 	int bad_sectors;
 | |
| 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
 | |
| 
 | |
| 	if (!uptodate) {
 | |
| 		abort_sync_write(mddev, r1_bio);
 | |
| 		set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | |
| 			set_bit(MD_RECOVERY_NEEDED, &
 | |
| 				mddev->recovery);
 | |
| 		set_bit(R1BIO_WriteError, &r1_bio->state);
 | |
| 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 | |
| 			       &first_bad, &bad_sectors) &&
 | |
| 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
 | |
| 				r1_bio->sector,
 | |
| 				r1_bio->sectors,
 | |
| 				&first_bad, &bad_sectors)
 | |
| 		)
 | |
| 		set_bit(R1BIO_MadeGood, &r1_bio->state);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&r1_bio->remaining)) {
 | |
| 		int s = r1_bio->sectors;
 | |
| 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | |
| 		    test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 			reschedule_retry(r1_bio);
 | |
| 		else {
 | |
| 			put_buf(r1_bio);
 | |
| 			md_done_sync(mddev, s, uptodate);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
 | |
| 			    int sectors, struct page *page, int rw)
 | |
| {
 | |
| 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
 | |
| 		/* success */
 | |
| 		return 1;
 | |
| 	if (rw == WRITE) {
 | |
| 		set_bit(WriteErrorSeen, &rdev->flags);
 | |
| 		if (!test_and_set_bit(WantReplacement,
 | |
| 				      &rdev->flags))
 | |
| 			set_bit(MD_RECOVERY_NEEDED, &
 | |
| 				rdev->mddev->recovery);
 | |
| 	}
 | |
| 	/* need to record an error - either for the block or the device */
 | |
| 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
 | |
| 		md_error(rdev->mddev, rdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fix_sync_read_error(struct r1bio *r1_bio)
 | |
| {
 | |
| 	/* Try some synchronous reads of other devices to get
 | |
| 	 * good data, much like with normal read errors.  Only
 | |
| 	 * read into the pages we already have so we don't
 | |
| 	 * need to re-issue the read request.
 | |
| 	 * We don't need to freeze the array, because being in an
 | |
| 	 * active sync request, there is no normal IO, and
 | |
| 	 * no overlapping syncs.
 | |
| 	 * We don't need to check is_badblock() again as we
 | |
| 	 * made sure that anything with a bad block in range
 | |
| 	 * will have bi_end_io clear.
 | |
| 	 */
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
 | |
| 	struct page **pages = get_resync_pages(bio)->pages;
 | |
| 	sector_t sect = r1_bio->sector;
 | |
| 	int sectors = r1_bio->sectors;
 | |
| 	int idx = 0;
 | |
| 	struct md_rdev *rdev;
 | |
| 
 | |
| 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
 | |
| 	if (test_bit(FailFast, &rdev->flags)) {
 | |
| 		/* Don't try recovering from here - just fail it
 | |
| 		 * ... unless it is the last working device of course */
 | |
| 		md_error(mddev, rdev);
 | |
| 		if (test_bit(Faulty, &rdev->flags))
 | |
| 			/* Don't try to read from here, but make sure
 | |
| 			 * put_buf does it's thing
 | |
| 			 */
 | |
| 			bio->bi_end_io = end_sync_write;
 | |
| 	}
 | |
| 
 | |
| 	while(sectors) {
 | |
| 		int s = sectors;
 | |
| 		int d = r1_bio->read_disk;
 | |
| 		int success = 0;
 | |
| 		int start;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE>>9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 		do {
 | |
| 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
 | |
| 				/* No rcu protection needed here devices
 | |
| 				 * can only be removed when no resync is
 | |
| 				 * active, and resync is currently active
 | |
| 				 */
 | |
| 				rdev = conf->mirrors[d].rdev;
 | |
| 				if (sync_page_io(rdev, sect, s<<9,
 | |
| 						 pages[idx],
 | |
| 						 REQ_OP_READ, 0, false)) {
 | |
| 					success = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			d++;
 | |
| 			if (d == conf->raid_disks * 2)
 | |
| 				d = 0;
 | |
| 		} while (!success && d != r1_bio->read_disk);
 | |
| 
 | |
| 		if (!success) {
 | |
| 			char b[BDEVNAME_SIZE];
 | |
| 			int abort = 0;
 | |
| 			/* Cannot read from anywhere, this block is lost.
 | |
| 			 * Record a bad block on each device.  If that doesn't
 | |
| 			 * work just disable and interrupt the recovery.
 | |
| 			 * Don't fail devices as that won't really help.
 | |
| 			 */
 | |
| 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
 | |
| 					    mdname(mddev), bio_devname(bio, b),
 | |
| 					    (unsigned long long)r1_bio->sector);
 | |
| 			for (d = 0; d < conf->raid_disks * 2; d++) {
 | |
| 				rdev = conf->mirrors[d].rdev;
 | |
| 				if (!rdev || test_bit(Faulty, &rdev->flags))
 | |
| 					continue;
 | |
| 				if (!rdev_set_badblocks(rdev, sect, s, 0))
 | |
| 					abort = 1;
 | |
| 			}
 | |
| 			if (abort) {
 | |
| 				conf->recovery_disabled =
 | |
| 					mddev->recovery_disabled;
 | |
| 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 				md_done_sync(mddev, r1_bio->sectors, 0);
 | |
| 				put_buf(r1_bio);
 | |
| 				return 0;
 | |
| 			}
 | |
| 			/* Try next page */
 | |
| 			sectors -= s;
 | |
| 			sect += s;
 | |
| 			idx++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		start = d;
 | |
| 		/* write it back and re-read */
 | |
| 		while (d != r1_bio->read_disk) {
 | |
| 			if (d == 0)
 | |
| 				d = conf->raid_disks * 2;
 | |
| 			d--;
 | |
| 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
 | |
| 				continue;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (r1_sync_page_io(rdev, sect, s,
 | |
| 					    pages[idx],
 | |
| 					    WRITE) == 0) {
 | |
| 				r1_bio->bios[d]->bi_end_io = NULL;
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 			}
 | |
| 		}
 | |
| 		d = start;
 | |
| 		while (d != r1_bio->read_disk) {
 | |
| 			if (d == 0)
 | |
| 				d = conf->raid_disks * 2;
 | |
| 			d--;
 | |
| 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
 | |
| 				continue;
 | |
| 			rdev = conf->mirrors[d].rdev;
 | |
| 			if (r1_sync_page_io(rdev, sect, s,
 | |
| 					    pages[idx],
 | |
| 					    READ) != 0)
 | |
| 				atomic_add(s, &rdev->corrected_errors);
 | |
| 		}
 | |
| 		sectors -= s;
 | |
| 		sect += s;
 | |
| 		idx ++;
 | |
| 	}
 | |
| 	set_bit(R1BIO_Uptodate, &r1_bio->state);
 | |
| 	bio->bi_status = 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void process_checks(struct r1bio *r1_bio)
 | |
| {
 | |
| 	/* We have read all readable devices.  If we haven't
 | |
| 	 * got the block, then there is no hope left.
 | |
| 	 * If we have, then we want to do a comparison
 | |
| 	 * and skip the write if everything is the same.
 | |
| 	 * If any blocks failed to read, then we need to
 | |
| 	 * attempt an over-write
 | |
| 	 */
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int primary;
 | |
| 	int i;
 | |
| 	int vcnt;
 | |
| 
 | |
| 	/* Fix variable parts of all bios */
 | |
| 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		blk_status_t status;
 | |
| 		struct bio *b = r1_bio->bios[i];
 | |
| 		struct resync_pages *rp = get_resync_pages(b);
 | |
| 		if (b->bi_end_io != end_sync_read)
 | |
| 			continue;
 | |
| 		/* fixup the bio for reuse, but preserve errno */
 | |
| 		status = b->bi_status;
 | |
| 		bio_reset(b);
 | |
| 		b->bi_status = status;
 | |
| 		b->bi_iter.bi_sector = r1_bio->sector +
 | |
| 			conf->mirrors[i].rdev->data_offset;
 | |
| 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
 | |
| 		b->bi_end_io = end_sync_read;
 | |
| 		rp->raid_bio = r1_bio;
 | |
| 		b->bi_private = rp;
 | |
| 
 | |
| 		/* initialize bvec table again */
 | |
| 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
 | |
| 	}
 | |
| 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
 | |
| 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
 | |
| 		    !r1_bio->bios[primary]->bi_status) {
 | |
| 			r1_bio->bios[primary]->bi_end_io = NULL;
 | |
| 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
 | |
| 			break;
 | |
| 		}
 | |
| 	r1_bio->read_disk = primary;
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		int j;
 | |
| 		struct bio *pbio = r1_bio->bios[primary];
 | |
| 		struct bio *sbio = r1_bio->bios[i];
 | |
| 		blk_status_t status = sbio->bi_status;
 | |
| 		struct page **ppages = get_resync_pages(pbio)->pages;
 | |
| 		struct page **spages = get_resync_pages(sbio)->pages;
 | |
| 		struct bio_vec *bi;
 | |
| 		int page_len[RESYNC_PAGES] = { 0 };
 | |
| 
 | |
| 		if (sbio->bi_end_io != end_sync_read)
 | |
| 			continue;
 | |
| 		/* Now we can 'fixup' the error value */
 | |
| 		sbio->bi_status = 0;
 | |
| 
 | |
| 		bio_for_each_segment_all(bi, sbio, j)
 | |
| 			page_len[j] = bi->bv_len;
 | |
| 
 | |
| 		if (!status) {
 | |
| 			for (j = vcnt; j-- ; ) {
 | |
| 				if (memcmp(page_address(ppages[j]),
 | |
| 					   page_address(spages[j]),
 | |
| 					   page_len[j]))
 | |
| 					break;
 | |
| 			}
 | |
| 		} else
 | |
| 			j = 0;
 | |
| 		if (j >= 0)
 | |
| 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
 | |
| 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
 | |
| 			      && !status)) {
 | |
| 			/* No need to write to this device. */
 | |
| 			sbio->bi_end_io = NULL;
 | |
| 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		bio_copy_data(sbio, pbio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int i;
 | |
| 	int disks = conf->raid_disks * 2;
 | |
| 	struct bio *wbio;
 | |
| 
 | |
| 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 | |
| 		/* ouch - failed to read all of that. */
 | |
| 		if (!fix_sync_read_error(r1_bio))
 | |
| 			return;
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
 | |
| 		process_checks(r1_bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * schedule writes
 | |
| 	 */
 | |
| 	atomic_set(&r1_bio->remaining, 1);
 | |
| 	for (i = 0; i < disks ; i++) {
 | |
| 		wbio = r1_bio->bios[i];
 | |
| 		if (wbio->bi_end_io == NULL ||
 | |
| 		    (wbio->bi_end_io == end_sync_read &&
 | |
| 		     (i == r1_bio->read_disk ||
 | |
| 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
 | |
| 			continue;
 | |
| 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
 | |
| 			abort_sync_write(mddev, r1_bio);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
 | |
| 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
 | |
| 			wbio->bi_opf |= MD_FAILFAST;
 | |
| 
 | |
| 		wbio->bi_end_io = end_sync_write;
 | |
| 		atomic_inc(&r1_bio->remaining);
 | |
| 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
 | |
| 
 | |
| 		generic_make_request(wbio);
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_dec_and_test(&r1_bio->remaining)) {
 | |
| 		/* if we're here, all write(s) have completed, so clean up */
 | |
| 		int s = r1_bio->sectors;
 | |
| 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | |
| 		    test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 			reschedule_retry(r1_bio);
 | |
| 		else {
 | |
| 			put_buf(r1_bio);
 | |
| 			md_done_sync(mddev, s, 1);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a kernel thread which:
 | |
|  *
 | |
|  *	1.	Retries failed read operations on working mirrors.
 | |
|  *	2.	Updates the raid superblock when problems encounter.
 | |
|  *	3.	Performs writes following reads for array synchronising.
 | |
|  */
 | |
| 
 | |
| static void fix_read_error(struct r1conf *conf, int read_disk,
 | |
| 			   sector_t sect, int sectors)
 | |
| {
 | |
| 	struct mddev *mddev = conf->mddev;
 | |
| 	while(sectors) {
 | |
| 		int s = sectors;
 | |
| 		int d = read_disk;
 | |
| 		int success = 0;
 | |
| 		int start;
 | |
| 		struct md_rdev *rdev;
 | |
| 
 | |
| 		if (s > (PAGE_SIZE>>9))
 | |
| 			s = PAGE_SIZE >> 9;
 | |
| 
 | |
| 		do {
 | |
| 			sector_t first_bad;
 | |
| 			int bad_sectors;
 | |
| 
 | |
| 			rcu_read_lock();
 | |
| 			rdev = rcu_dereference(conf->mirrors[d].rdev);
 | |
| 			if (rdev &&
 | |
| 			    (test_bit(In_sync, &rdev->flags) ||
 | |
| 			     (!test_bit(Faulty, &rdev->flags) &&
 | |
| 			      rdev->recovery_offset >= sect + s)) &&
 | |
| 			    is_badblock(rdev, sect, s,
 | |
| 					&first_bad, &bad_sectors) == 0) {
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				rcu_read_unlock();
 | |
| 				if (sync_page_io(rdev, sect, s<<9,
 | |
| 					 conf->tmppage, REQ_OP_READ, 0, false))
 | |
| 					success = 1;
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 				if (success)
 | |
| 					break;
 | |
| 			} else
 | |
| 				rcu_read_unlock();
 | |
| 			d++;
 | |
| 			if (d == conf->raid_disks * 2)
 | |
| 				d = 0;
 | |
| 		} while (!success && d != read_disk);
 | |
| 
 | |
| 		if (!success) {
 | |
| 			/* Cannot read from anywhere - mark it bad */
 | |
| 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
 | |
| 			if (!rdev_set_badblocks(rdev, sect, s, 0))
 | |
| 				md_error(mddev, rdev);
 | |
| 			break;
 | |
| 		}
 | |
| 		/* write it back and re-read */
 | |
| 		start = d;
 | |
| 		while (d != read_disk) {
 | |
| 			if (d==0)
 | |
| 				d = conf->raid_disks * 2;
 | |
| 			d--;
 | |
| 			rcu_read_lock();
 | |
| 			rdev = rcu_dereference(conf->mirrors[d].rdev);
 | |
| 			if (rdev &&
 | |
| 			    !test_bit(Faulty, &rdev->flags)) {
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				rcu_read_unlock();
 | |
| 				r1_sync_page_io(rdev, sect, s,
 | |
| 						conf->tmppage, WRITE);
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 			} else
 | |
| 				rcu_read_unlock();
 | |
| 		}
 | |
| 		d = start;
 | |
| 		while (d != read_disk) {
 | |
| 			char b[BDEVNAME_SIZE];
 | |
| 			if (d==0)
 | |
| 				d = conf->raid_disks * 2;
 | |
| 			d--;
 | |
| 			rcu_read_lock();
 | |
| 			rdev = rcu_dereference(conf->mirrors[d].rdev);
 | |
| 			if (rdev &&
 | |
| 			    !test_bit(Faulty, &rdev->flags)) {
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				rcu_read_unlock();
 | |
| 				if (r1_sync_page_io(rdev, sect, s,
 | |
| 						    conf->tmppage, READ)) {
 | |
| 					atomic_add(s, &rdev->corrected_errors);
 | |
| 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
 | |
| 						mdname(mddev), s,
 | |
| 						(unsigned long long)(sect +
 | |
| 								     rdev->data_offset),
 | |
| 						bdevname(rdev->bdev, b));
 | |
| 				}
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 			} else
 | |
| 				rcu_read_unlock();
 | |
| 		}
 | |
| 		sectors -= s;
 | |
| 		sect += s;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int narrow_write_error(struct r1bio *r1_bio, int i)
 | |
| {
 | |
| 	struct mddev *mddev = r1_bio->mddev;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 
 | |
| 	/* bio has the data to be written to device 'i' where
 | |
| 	 * we just recently had a write error.
 | |
| 	 * We repeatedly clone the bio and trim down to one block,
 | |
| 	 * then try the write.  Where the write fails we record
 | |
| 	 * a bad block.
 | |
| 	 * It is conceivable that the bio doesn't exactly align with
 | |
| 	 * blocks.  We must handle this somehow.
 | |
| 	 *
 | |
| 	 * We currently own a reference on the rdev.
 | |
| 	 */
 | |
| 
 | |
| 	int block_sectors;
 | |
| 	sector_t sector;
 | |
| 	int sectors;
 | |
| 	int sect_to_write = r1_bio->sectors;
 | |
| 	int ok = 1;
 | |
| 
 | |
| 	if (rdev->badblocks.shift < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	block_sectors = roundup(1 << rdev->badblocks.shift,
 | |
| 				bdev_logical_block_size(rdev->bdev) >> 9);
 | |
| 	sector = r1_bio->sector;
 | |
| 	sectors = ((sector + block_sectors)
 | |
| 		   & ~(sector_t)(block_sectors - 1))
 | |
| 		- sector;
 | |
| 
 | |
| 	while (sect_to_write) {
 | |
| 		struct bio *wbio;
 | |
| 		if (sectors > sect_to_write)
 | |
| 			sectors = sect_to_write;
 | |
| 		/* Write at 'sector' for 'sectors'*/
 | |
| 
 | |
| 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 | |
| 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
 | |
| 					      GFP_NOIO,
 | |
| 					      &mddev->bio_set);
 | |
| 		} else {
 | |
| 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
 | |
| 					      &mddev->bio_set);
 | |
| 		}
 | |
| 
 | |
| 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
 | |
| 		wbio->bi_iter.bi_sector = r1_bio->sector;
 | |
| 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
 | |
| 
 | |
| 		bio_trim(wbio, sector - r1_bio->sector, sectors);
 | |
| 		wbio->bi_iter.bi_sector += rdev->data_offset;
 | |
| 		bio_set_dev(wbio, rdev->bdev);
 | |
| 
 | |
| 		if (submit_bio_wait(wbio) < 0)
 | |
| 			/* failure! */
 | |
| 			ok = rdev_set_badblocks(rdev, sector,
 | |
| 						sectors, 0)
 | |
| 				&& ok;
 | |
| 
 | |
| 		bio_put(wbio);
 | |
| 		sect_to_write -= sectors;
 | |
| 		sector += sectors;
 | |
| 		sectors = block_sectors;
 | |
| 	}
 | |
| 	return ok;
 | |
| }
 | |
| 
 | |
| static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	int m;
 | |
| 	int s = r1_bio->sectors;
 | |
| 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[m].rdev;
 | |
| 		struct bio *bio = r1_bio->bios[m];
 | |
| 		if (bio->bi_end_io == NULL)
 | |
| 			continue;
 | |
| 		if (!bio->bi_status &&
 | |
| 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
 | |
| 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
 | |
| 		}
 | |
| 		if (bio->bi_status &&
 | |
| 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
 | |
| 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
 | |
| 				md_error(conf->mddev, rdev);
 | |
| 		}
 | |
| 	}
 | |
| 	put_buf(r1_bio);
 | |
| 	md_done_sync(conf->mddev, s, 1);
 | |
| }
 | |
| 
 | |
| static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	int m, idx;
 | |
| 	bool fail = false;
 | |
| 
 | |
| 	for (m = 0; m < conf->raid_disks * 2 ; m++)
 | |
| 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
 | |
| 			struct md_rdev *rdev = conf->mirrors[m].rdev;
 | |
| 			rdev_clear_badblocks(rdev,
 | |
| 					     r1_bio->sector,
 | |
| 					     r1_bio->sectors, 0);
 | |
| 			rdev_dec_pending(rdev, conf->mddev);
 | |
| 		} else if (r1_bio->bios[m] != NULL) {
 | |
| 			/* This drive got a write error.  We need to
 | |
| 			 * narrow down and record precise write
 | |
| 			 * errors.
 | |
| 			 */
 | |
| 			fail = true;
 | |
| 			if (!narrow_write_error(r1_bio, m)) {
 | |
| 				md_error(conf->mddev,
 | |
| 					 conf->mirrors[m].rdev);
 | |
| 				/* an I/O failed, we can't clear the bitmap */
 | |
| 				set_bit(R1BIO_Degraded, &r1_bio->state);
 | |
| 			}
 | |
| 			rdev_dec_pending(conf->mirrors[m].rdev,
 | |
| 					 conf->mddev);
 | |
| 		}
 | |
| 	if (fail) {
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
 | |
| 		idx = sector_to_idx(r1_bio->sector);
 | |
| 		atomic_inc(&conf->nr_queued[idx]);
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		/*
 | |
| 		 * In case freeze_array() is waiting for condition
 | |
| 		 * get_unqueued_pending() == extra to be true.
 | |
| 		 */
 | |
| 		wake_up(&conf->wait_barrier);
 | |
| 		md_wakeup_thread(conf->mddev->thread);
 | |
| 	} else {
 | |
| 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 			close_write(r1_bio);
 | |
| 		raid_end_bio_io(r1_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 | |
| {
 | |
| 	struct mddev *mddev = conf->mddev;
 | |
| 	struct bio *bio;
 | |
| 	struct md_rdev *rdev;
 | |
| 
 | |
| 	clear_bit(R1BIO_ReadError, &r1_bio->state);
 | |
| 	/* we got a read error. Maybe the drive is bad.  Maybe just
 | |
| 	 * the block and we can fix it.
 | |
| 	 * We freeze all other IO, and try reading the block from
 | |
| 	 * other devices.  When we find one, we re-write
 | |
| 	 * and check it that fixes the read error.
 | |
| 	 * This is all done synchronously while the array is
 | |
| 	 * frozen
 | |
| 	 */
 | |
| 
 | |
| 	bio = r1_bio->bios[r1_bio->read_disk];
 | |
| 	bio_put(bio);
 | |
| 	r1_bio->bios[r1_bio->read_disk] = NULL;
 | |
| 
 | |
| 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
 | |
| 	if (mddev->ro == 0
 | |
| 	    && !test_bit(FailFast, &rdev->flags)) {
 | |
| 		freeze_array(conf, 1);
 | |
| 		fix_read_error(conf, r1_bio->read_disk,
 | |
| 			       r1_bio->sector, r1_bio->sectors);
 | |
| 		unfreeze_array(conf);
 | |
| 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
 | |
| 		md_error(mddev, rdev);
 | |
| 	} else {
 | |
| 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
 | |
| 	}
 | |
| 
 | |
| 	rdev_dec_pending(rdev, conf->mddev);
 | |
| 	allow_barrier(conf, r1_bio->sector);
 | |
| 	bio = r1_bio->master_bio;
 | |
| 
 | |
| 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
 | |
| 	r1_bio->state = 0;
 | |
| 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
 | |
| }
 | |
| 
 | |
| static void raid1d(struct md_thread *thread)
 | |
| {
 | |
| 	struct mddev *mddev = thread->mddev;
 | |
| 	struct r1bio *r1_bio;
 | |
| 	unsigned long flags;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct list_head *head = &conf->retry_list;
 | |
| 	struct blk_plug plug;
 | |
| 	int idx;
 | |
| 
 | |
| 	md_check_recovery(mddev);
 | |
| 
 | |
| 	if (!list_empty_careful(&conf->bio_end_io_list) &&
 | |
| 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
 | |
| 		LIST_HEAD(tmp);
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
 | |
| 			list_splice_init(&conf->bio_end_io_list, &tmp);
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 		while (!list_empty(&tmp)) {
 | |
| 			r1_bio = list_first_entry(&tmp, struct r1bio,
 | |
| 						  retry_list);
 | |
| 			list_del(&r1_bio->retry_list);
 | |
| 			idx = sector_to_idx(r1_bio->sector);
 | |
| 			atomic_dec(&conf->nr_queued[idx]);
 | |
| 			if (mddev->degraded)
 | |
| 				set_bit(R1BIO_Degraded, &r1_bio->state);
 | |
| 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 				close_write(r1_bio);
 | |
| 			raid_end_bio_io(r1_bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	for (;;) {
 | |
| 
 | |
| 		flush_pending_writes(conf);
 | |
| 
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		if (list_empty(head)) {
 | |
| 			spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 			break;
 | |
| 		}
 | |
| 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
 | |
| 		list_del(head->prev);
 | |
| 		idx = sector_to_idx(r1_bio->sector);
 | |
| 		atomic_dec(&conf->nr_queued[idx]);
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 		mddev = r1_bio->mddev;
 | |
| 		conf = mddev->private;
 | |
| 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
 | |
| 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | |
| 			    test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 				handle_sync_write_finished(conf, r1_bio);
 | |
| 			else
 | |
| 				sync_request_write(mddev, r1_bio);
 | |
| 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | |
| 			   test_bit(R1BIO_WriteError, &r1_bio->state))
 | |
| 			handle_write_finished(conf, r1_bio);
 | |
| 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
 | |
| 			handle_read_error(conf, r1_bio);
 | |
| 		else
 | |
| 			WARN_ON_ONCE(1);
 | |
| 
 | |
| 		cond_resched();
 | |
| 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
 | |
| 			md_check_recovery(mddev);
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| }
 | |
| 
 | |
| static int init_resync(struct r1conf *conf)
 | |
| {
 | |
| 	int buffs;
 | |
| 
 | |
| 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
 | |
| 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
 | |
| 
 | |
| 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
 | |
| 			    r1buf_pool_free, conf->poolinfo);
 | |
| }
 | |
| 
 | |
| static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
 | |
| {
 | |
| 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
 | |
| 	struct resync_pages *rps;
 | |
| 	struct bio *bio;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = conf->poolinfo->raid_disks; i--; ) {
 | |
| 		bio = r1bio->bios[i];
 | |
| 		rps = bio->bi_private;
 | |
| 		bio_reset(bio);
 | |
| 		bio->bi_private = rps;
 | |
| 	}
 | |
| 	r1bio->master_bio = NULL;
 | |
| 	return r1bio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * perform a "sync" on one "block"
 | |
|  *
 | |
|  * We need to make sure that no normal I/O request - particularly write
 | |
|  * requests - conflict with active sync requests.
 | |
|  *
 | |
|  * This is achieved by tracking pending requests and a 'barrier' concept
 | |
|  * that can be installed to exclude normal IO requests.
 | |
|  */
 | |
| 
 | |
| static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
 | |
| 				   int *skipped)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	struct r1bio *r1_bio;
 | |
| 	struct bio *bio;
 | |
| 	sector_t max_sector, nr_sectors;
 | |
| 	int disk = -1;
 | |
| 	int i;
 | |
| 	int wonly = -1;
 | |
| 	int write_targets = 0, read_targets = 0;
 | |
| 	sector_t sync_blocks;
 | |
| 	int still_degraded = 0;
 | |
| 	int good_sectors = RESYNC_SECTORS;
 | |
| 	int min_bad = 0; /* number of sectors that are bad in all devices */
 | |
| 	int idx = sector_to_idx(sector_nr);
 | |
| 	int page_idx = 0;
 | |
| 
 | |
| 	if (!mempool_initialized(&conf->r1buf_pool))
 | |
| 		if (init_resync(conf))
 | |
| 			return 0;
 | |
| 
 | |
| 	max_sector = mddev->dev_sectors;
 | |
| 	if (sector_nr >= max_sector) {
 | |
| 		/* If we aborted, we need to abort the
 | |
| 		 * sync on the 'current' bitmap chunk (there will
 | |
| 		 * only be one in raid1 resync.
 | |
| 		 * We can find the current addess in mddev->curr_resync
 | |
| 		 */
 | |
| 		if (mddev->curr_resync < max_sector) /* aborted */
 | |
| 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
 | |
| 					   &sync_blocks, 1);
 | |
| 		else /* completed sync */
 | |
| 			conf->fullsync = 0;
 | |
| 
 | |
| 		md_bitmap_close_sync(mddev->bitmap);
 | |
| 		close_sync(conf);
 | |
| 
 | |
| 		if (mddev_is_clustered(mddev)) {
 | |
| 			conf->cluster_sync_low = 0;
 | |
| 			conf->cluster_sync_high = 0;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (mddev->bitmap == NULL &&
 | |
| 	    mddev->recovery_cp == MaxSector &&
 | |
| 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
 | |
| 	    conf->fullsync == 0) {
 | |
| 		*skipped = 1;
 | |
| 		return max_sector - sector_nr;
 | |
| 	}
 | |
| 	/* before building a request, check if we can skip these blocks..
 | |
| 	 * This call the bitmap_start_sync doesn't actually record anything
 | |
| 	 */
 | |
| 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
 | |
| 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
 | |
| 		/* We can skip this block, and probably several more */
 | |
| 		*skipped = 1;
 | |
| 		return sync_blocks;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is non-resync activity waiting for a turn, then let it
 | |
| 	 * though before starting on this new sync request.
 | |
| 	 */
 | |
| 	if (atomic_read(&conf->nr_waiting[idx]))
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 
 | |
| 	/* we are incrementing sector_nr below. To be safe, we check against
 | |
| 	 * sector_nr + two times RESYNC_SECTORS
 | |
| 	 */
 | |
| 
 | |
| 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
 | |
| 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
 | |
| 
 | |
| 
 | |
| 	if (raise_barrier(conf, sector_nr))
 | |
| 		return 0;
 | |
| 
 | |
| 	r1_bio = raid1_alloc_init_r1buf(conf);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * If we get a correctably read error during resync or recovery,
 | |
| 	 * we might want to read from a different device.  So we
 | |
| 	 * flag all drives that could conceivably be read from for READ,
 | |
| 	 * and any others (which will be non-In_sync devices) for WRITE.
 | |
| 	 * If a read fails, we try reading from something else for which READ
 | |
| 	 * is OK.
 | |
| 	 */
 | |
| 
 | |
| 	r1_bio->mddev = mddev;
 | |
| 	r1_bio->sector = sector_nr;
 | |
| 	r1_bio->state = 0;
 | |
| 	set_bit(R1BIO_IsSync, &r1_bio->state);
 | |
| 	/* make sure good_sectors won't go across barrier unit boundary */
 | |
| 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
 | |
| 
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 		struct md_rdev *rdev;
 | |
| 		bio = r1_bio->bios[i];
 | |
| 
 | |
| 		rdev = rcu_dereference(conf->mirrors[i].rdev);
 | |
| 		if (rdev == NULL ||
 | |
| 		    test_bit(Faulty, &rdev->flags)) {
 | |
| 			if (i < conf->raid_disks)
 | |
| 				still_degraded = 1;
 | |
| 		} else if (!test_bit(In_sync, &rdev->flags)) {
 | |
| 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 | |
| 			bio->bi_end_io = end_sync_write;
 | |
| 			write_targets ++;
 | |
| 		} else {
 | |
| 			/* may need to read from here */
 | |
| 			sector_t first_bad = MaxSector;
 | |
| 			int bad_sectors;
 | |
| 
 | |
| 			if (is_badblock(rdev, sector_nr, good_sectors,
 | |
| 					&first_bad, &bad_sectors)) {
 | |
| 				if (first_bad > sector_nr)
 | |
| 					good_sectors = first_bad - sector_nr;
 | |
| 				else {
 | |
| 					bad_sectors -= (sector_nr - first_bad);
 | |
| 					if (min_bad == 0 ||
 | |
| 					    min_bad > bad_sectors)
 | |
| 						min_bad = bad_sectors;
 | |
| 				}
 | |
| 			}
 | |
| 			if (sector_nr < first_bad) {
 | |
| 				if (test_bit(WriteMostly, &rdev->flags)) {
 | |
| 					if (wonly < 0)
 | |
| 						wonly = i;
 | |
| 				} else {
 | |
| 					if (disk < 0)
 | |
| 						disk = i;
 | |
| 				}
 | |
| 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
 | |
| 				bio->bi_end_io = end_sync_read;
 | |
| 				read_targets++;
 | |
| 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
 | |
| 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
 | |
| 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
 | |
| 				/*
 | |
| 				 * The device is suitable for reading (InSync),
 | |
| 				 * but has bad block(s) here. Let's try to correct them,
 | |
| 				 * if we are doing resync or repair. Otherwise, leave
 | |
| 				 * this device alone for this sync request.
 | |
| 				 */
 | |
| 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 | |
| 				bio->bi_end_io = end_sync_write;
 | |
| 				write_targets++;
 | |
| 			}
 | |
| 		}
 | |
| 		if (bio->bi_end_io) {
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
 | |
| 			bio_set_dev(bio, rdev->bdev);
 | |
| 			if (test_bit(FailFast, &rdev->flags))
 | |
| 				bio->bi_opf |= MD_FAILFAST;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	if (disk < 0)
 | |
| 		disk = wonly;
 | |
| 	r1_bio->read_disk = disk;
 | |
| 
 | |
| 	if (read_targets == 0 && min_bad > 0) {
 | |
| 		/* These sectors are bad on all InSync devices, so we
 | |
| 		 * need to mark them bad on all write targets
 | |
| 		 */
 | |
| 		int ok = 1;
 | |
| 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
 | |
| 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
 | |
| 				struct md_rdev *rdev = conf->mirrors[i].rdev;
 | |
| 				ok = rdev_set_badblocks(rdev, sector_nr,
 | |
| 							min_bad, 0
 | |
| 					) && ok;
 | |
| 			}
 | |
| 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
 | |
| 		*skipped = 1;
 | |
| 		put_buf(r1_bio);
 | |
| 
 | |
| 		if (!ok) {
 | |
| 			/* Cannot record the badblocks, so need to
 | |
| 			 * abort the resync.
 | |
| 			 * If there are multiple read targets, could just
 | |
| 			 * fail the really bad ones ???
 | |
| 			 */
 | |
| 			conf->recovery_disabled = mddev->recovery_disabled;
 | |
| 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | |
| 			return 0;
 | |
| 		} else
 | |
| 			return min_bad;
 | |
| 
 | |
| 	}
 | |
| 	if (min_bad > 0 && min_bad < good_sectors) {
 | |
| 		/* only resync enough to reach the next bad->good
 | |
| 		 * transition */
 | |
| 		good_sectors = min_bad;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
 | |
| 		/* extra read targets are also write targets */
 | |
| 		write_targets += read_targets-1;
 | |
| 
 | |
| 	if (write_targets == 0 || read_targets == 0) {
 | |
| 		/* There is nowhere to write, so all non-sync
 | |
| 		 * drives must be failed - so we are finished
 | |
| 		 */
 | |
| 		sector_t rv;
 | |
| 		if (min_bad > 0)
 | |
| 			max_sector = sector_nr + min_bad;
 | |
| 		rv = max_sector - sector_nr;
 | |
| 		*skipped = 1;
 | |
| 		put_buf(r1_bio);
 | |
| 		return rv;
 | |
| 	}
 | |
| 
 | |
| 	if (max_sector > mddev->resync_max)
 | |
| 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
 | |
| 	if (max_sector > sector_nr + good_sectors)
 | |
| 		max_sector = sector_nr + good_sectors;
 | |
| 	nr_sectors = 0;
 | |
| 	sync_blocks = 0;
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		int len = PAGE_SIZE;
 | |
| 		if (sector_nr + (len>>9) > max_sector)
 | |
| 			len = (max_sector - sector_nr) << 9;
 | |
| 		if (len == 0)
 | |
| 			break;
 | |
| 		if (sync_blocks == 0) {
 | |
| 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
 | |
| 						  &sync_blocks, still_degraded) &&
 | |
| 			    !conf->fullsync &&
 | |
| 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
 | |
| 				break;
 | |
| 			if ((len >> 9) > sync_blocks)
 | |
| 				len = sync_blocks<<9;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
 | |
| 			struct resync_pages *rp;
 | |
| 
 | |
| 			bio = r1_bio->bios[i];
 | |
| 			rp = get_resync_pages(bio);
 | |
| 			if (bio->bi_end_io) {
 | |
| 				page = resync_fetch_page(rp, page_idx);
 | |
| 
 | |
| 				/*
 | |
| 				 * won't fail because the vec table is big
 | |
| 				 * enough to hold all these pages
 | |
| 				 */
 | |
| 				bio_add_page(bio, page, len, 0);
 | |
| 			}
 | |
| 		}
 | |
| 		nr_sectors += len>>9;
 | |
| 		sector_nr += len>>9;
 | |
| 		sync_blocks -= (len>>9);
 | |
| 	} while (++page_idx < RESYNC_PAGES);
 | |
| 
 | |
| 	r1_bio->sectors = nr_sectors;
 | |
| 
 | |
| 	if (mddev_is_clustered(mddev) &&
 | |
| 			conf->cluster_sync_high < sector_nr + nr_sectors) {
 | |
| 		conf->cluster_sync_low = mddev->curr_resync_completed;
 | |
| 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
 | |
| 		/* Send resync message */
 | |
| 		md_cluster_ops->resync_info_update(mddev,
 | |
| 				conf->cluster_sync_low,
 | |
| 				conf->cluster_sync_high);
 | |
| 	}
 | |
| 
 | |
| 	/* For a user-requested sync, we read all readable devices and do a
 | |
| 	 * compare
 | |
| 	 */
 | |
| 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
 | |
| 		atomic_set(&r1_bio->remaining, read_targets);
 | |
| 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
 | |
| 			bio = r1_bio->bios[i];
 | |
| 			if (bio->bi_end_io == end_sync_read) {
 | |
| 				read_targets--;
 | |
| 				md_sync_acct_bio(bio, nr_sectors);
 | |
| 				if (read_targets == 1)
 | |
| 					bio->bi_opf &= ~MD_FAILFAST;
 | |
| 				generic_make_request(bio);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		atomic_set(&r1_bio->remaining, 1);
 | |
| 		bio = r1_bio->bios[r1_bio->read_disk];
 | |
| 		md_sync_acct_bio(bio, nr_sectors);
 | |
| 		if (read_targets == 1)
 | |
| 			bio->bi_opf &= ~MD_FAILFAST;
 | |
| 		generic_make_request(bio);
 | |
| 
 | |
| 	}
 | |
| 	return nr_sectors;
 | |
| }
 | |
| 
 | |
| static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
 | |
| {
 | |
| 	if (sectors)
 | |
| 		return sectors;
 | |
| 
 | |
| 	return mddev->dev_sectors;
 | |
| }
 | |
| 
 | |
| static struct r1conf *setup_conf(struct mddev *mddev)
 | |
| {
 | |
| 	struct r1conf *conf;
 | |
| 	int i;
 | |
| 	struct raid1_info *disk;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int err = -ENOMEM;
 | |
| 
 | |
| 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
 | |
| 	if (!conf)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
 | |
| 				   sizeof(atomic_t), GFP_KERNEL);
 | |
| 	if (!conf->nr_pending)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
 | |
| 				   sizeof(atomic_t), GFP_KERNEL);
 | |
| 	if (!conf->nr_waiting)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
 | |
| 				  sizeof(atomic_t), GFP_KERNEL);
 | |
| 	if (!conf->nr_queued)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
 | |
| 				sizeof(atomic_t), GFP_KERNEL);
 | |
| 	if (!conf->barrier)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
 | |
| 					    mddev->raid_disks, 2),
 | |
| 				GFP_KERNEL);
 | |
| 	if (!conf->mirrors)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->tmppage = alloc_page(GFP_KERNEL);
 | |
| 	if (!conf->tmppage)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
 | |
| 	if (!conf->poolinfo)
 | |
| 		goto abort;
 | |
| 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
 | |
| 	err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
 | |
| 			   r1bio_pool_free, conf->poolinfo);
 | |
| 	if (err)
 | |
| 		goto abort;
 | |
| 
 | |
| 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
 | |
| 	if (err)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->poolinfo->mddev = mddev;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	spin_lock_init(&conf->device_lock);
 | |
| 	rdev_for_each(rdev, mddev) {
 | |
| 		int disk_idx = rdev->raid_disk;
 | |
| 		if (disk_idx >= mddev->raid_disks
 | |
| 		    || disk_idx < 0)
 | |
| 			continue;
 | |
| 		if (test_bit(Replacement, &rdev->flags))
 | |
| 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
 | |
| 		else
 | |
| 			disk = conf->mirrors + disk_idx;
 | |
| 
 | |
| 		if (disk->rdev)
 | |
| 			goto abort;
 | |
| 		disk->rdev = rdev;
 | |
| 		disk->head_position = 0;
 | |
| 		disk->seq_start = MaxSector;
 | |
| 	}
 | |
| 	conf->raid_disks = mddev->raid_disks;
 | |
| 	conf->mddev = mddev;
 | |
| 	INIT_LIST_HEAD(&conf->retry_list);
 | |
| 	INIT_LIST_HEAD(&conf->bio_end_io_list);
 | |
| 
 | |
| 	spin_lock_init(&conf->resync_lock);
 | |
| 	init_waitqueue_head(&conf->wait_barrier);
 | |
| 
 | |
| 	bio_list_init(&conf->pending_bio_list);
 | |
| 	conf->pending_count = 0;
 | |
| 	conf->recovery_disabled = mddev->recovery_disabled - 1;
 | |
| 
 | |
| 	err = -EIO;
 | |
| 	for (i = 0; i < conf->raid_disks * 2; i++) {
 | |
| 
 | |
| 		disk = conf->mirrors + i;
 | |
| 
 | |
| 		if (i < conf->raid_disks &&
 | |
| 		    disk[conf->raid_disks].rdev) {
 | |
| 			/* This slot has a replacement. */
 | |
| 			if (!disk->rdev) {
 | |
| 				/* No original, just make the replacement
 | |
| 				 * a recovering spare
 | |
| 				 */
 | |
| 				disk->rdev =
 | |
| 					disk[conf->raid_disks].rdev;
 | |
| 				disk[conf->raid_disks].rdev = NULL;
 | |
| 			} else if (!test_bit(In_sync, &disk->rdev->flags))
 | |
| 				/* Original is not in_sync - bad */
 | |
| 				goto abort;
 | |
| 		}
 | |
| 
 | |
| 		if (!disk->rdev ||
 | |
| 		    !test_bit(In_sync, &disk->rdev->flags)) {
 | |
| 			disk->head_position = 0;
 | |
| 			if (disk->rdev &&
 | |
| 			    (disk->rdev->saved_raid_disk < 0))
 | |
| 				conf->fullsync = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
 | |
| 	if (!conf->thread)
 | |
| 		goto abort;
 | |
| 
 | |
| 	return conf;
 | |
| 
 | |
|  abort:
 | |
| 	if (conf) {
 | |
| 		mempool_exit(&conf->r1bio_pool);
 | |
| 		kfree(conf->mirrors);
 | |
| 		safe_put_page(conf->tmppage);
 | |
| 		kfree(conf->poolinfo);
 | |
| 		kfree(conf->nr_pending);
 | |
| 		kfree(conf->nr_waiting);
 | |
| 		kfree(conf->nr_queued);
 | |
| 		kfree(conf->barrier);
 | |
| 		bioset_exit(&conf->bio_split);
 | |
| 		kfree(conf);
 | |
| 	}
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void raid1_free(struct mddev *mddev, void *priv);
 | |
| static int raid1_run(struct mddev *mddev)
 | |
| {
 | |
| 	struct r1conf *conf;
 | |
| 	int i;
 | |
| 	struct md_rdev *rdev;
 | |
| 	int ret;
 | |
| 	bool discard_supported = false;
 | |
| 
 | |
| 	if (mddev->level != 1) {
 | |
| 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
 | |
| 			mdname(mddev), mddev->level);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (mddev->reshape_position != MaxSector) {
 | |
| 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
 | |
| 			mdname(mddev));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (mddev_init_writes_pending(mddev) < 0)
 | |
| 		return -ENOMEM;
 | |
| 	/*
 | |
| 	 * copy the already verified devices into our private RAID1
 | |
| 	 * bookkeeping area. [whatever we allocate in run(),
 | |
| 	 * should be freed in raid1_free()]
 | |
| 	 */
 | |
| 	if (mddev->private == NULL)
 | |
| 		conf = setup_conf(mddev);
 | |
| 	else
 | |
| 		conf = mddev->private;
 | |
| 
 | |
| 	if (IS_ERR(conf))
 | |
| 		return PTR_ERR(conf);
 | |
| 
 | |
| 	if (mddev->queue) {
 | |
| 		blk_queue_max_write_same_sectors(mddev->queue, 0);
 | |
| 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
 | |
| 	}
 | |
| 
 | |
| 	rdev_for_each(rdev, mddev) {
 | |
| 		if (!mddev->gendisk)
 | |
| 			continue;
 | |
| 		disk_stack_limits(mddev->gendisk, rdev->bdev,
 | |
| 				  rdev->data_offset << 9);
 | |
| 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
 | |
| 			discard_supported = true;
 | |
| 	}
 | |
| 
 | |
| 	mddev->degraded = 0;
 | |
| 	for (i=0; i < conf->raid_disks; i++)
 | |
| 		if (conf->mirrors[i].rdev == NULL ||
 | |
| 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
 | |
| 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
 | |
| 			mddev->degraded++;
 | |
| 	/*
 | |
| 	 * RAID1 needs at least one disk in active
 | |
| 	 */
 | |
| 	if (conf->raid_disks - mddev->degraded < 1) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto abort;
 | |
| 	}
 | |
| 
 | |
| 	if (conf->raid_disks - mddev->degraded == 1)
 | |
| 		mddev->recovery_cp = MaxSector;
 | |
| 
 | |
| 	if (mddev->recovery_cp != MaxSector)
 | |
| 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
 | |
| 			mdname(mddev));
 | |
| 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
 | |
| 		mdname(mddev), mddev->raid_disks - mddev->degraded,
 | |
| 		mddev->raid_disks);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, everything is just fine now
 | |
| 	 */
 | |
| 	mddev->thread = conf->thread;
 | |
| 	conf->thread = NULL;
 | |
| 	mddev->private = conf;
 | |
| 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
 | |
| 
 | |
| 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
 | |
| 
 | |
| 	if (mddev->queue) {
 | |
| 		if (discard_supported)
 | |
| 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
 | |
| 						mddev->queue);
 | |
| 		else
 | |
| 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
 | |
| 						  mddev->queue);
 | |
| 	}
 | |
| 
 | |
| 	ret =  md_integrity_register(mddev);
 | |
| 	if (ret) {
 | |
| 		md_unregister_thread(&mddev->thread);
 | |
| 		goto abort;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| abort:
 | |
| 	raid1_free(mddev, conf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void raid1_free(struct mddev *mddev, void *priv)
 | |
| {
 | |
| 	struct r1conf *conf = priv;
 | |
| 
 | |
| 	mempool_exit(&conf->r1bio_pool);
 | |
| 	kfree(conf->mirrors);
 | |
| 	safe_put_page(conf->tmppage);
 | |
| 	kfree(conf->poolinfo);
 | |
| 	kfree(conf->nr_pending);
 | |
| 	kfree(conf->nr_waiting);
 | |
| 	kfree(conf->nr_queued);
 | |
| 	kfree(conf->barrier);
 | |
| 	bioset_exit(&conf->bio_split);
 | |
| 	kfree(conf);
 | |
| }
 | |
| 
 | |
| static int raid1_resize(struct mddev *mddev, sector_t sectors)
 | |
| {
 | |
| 	/* no resync is happening, and there is enough space
 | |
| 	 * on all devices, so we can resize.
 | |
| 	 * We need to make sure resync covers any new space.
 | |
| 	 * If the array is shrinking we should possibly wait until
 | |
| 	 * any io in the removed space completes, but it hardly seems
 | |
| 	 * worth it.
 | |
| 	 */
 | |
| 	sector_t newsize = raid1_size(mddev, sectors, 0);
 | |
| 	if (mddev->external_size &&
 | |
| 	    mddev->array_sectors > newsize)
 | |
| 		return -EINVAL;
 | |
| 	if (mddev->bitmap) {
 | |
| 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	md_set_array_sectors(mddev, newsize);
 | |
| 	if (sectors > mddev->dev_sectors &&
 | |
| 	    mddev->recovery_cp > mddev->dev_sectors) {
 | |
| 		mddev->recovery_cp = mddev->dev_sectors;
 | |
| 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 	}
 | |
| 	mddev->dev_sectors = sectors;
 | |
| 	mddev->resync_max_sectors = sectors;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int raid1_reshape(struct mddev *mddev)
 | |
| {
 | |
| 	/* We need to:
 | |
| 	 * 1/ resize the r1bio_pool
 | |
| 	 * 2/ resize conf->mirrors
 | |
| 	 *
 | |
| 	 * We allocate a new r1bio_pool if we can.
 | |
| 	 * Then raise a device barrier and wait until all IO stops.
 | |
| 	 * Then resize conf->mirrors and swap in the new r1bio pool.
 | |
| 	 *
 | |
| 	 * At the same time, we "pack" the devices so that all the missing
 | |
| 	 * devices have the higher raid_disk numbers.
 | |
| 	 */
 | |
| 	mempool_t newpool, oldpool;
 | |
| 	struct pool_info *newpoolinfo;
 | |
| 	struct raid1_info *newmirrors;
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 	int cnt, raid_disks;
 | |
| 	unsigned long flags;
 | |
| 	int d, d2;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(&newpool, 0, sizeof(newpool));
 | |
| 	memset(&oldpool, 0, sizeof(oldpool));
 | |
| 
 | |
| 	/* Cannot change chunk_size, layout, or level */
 | |
| 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
 | |
| 	    mddev->layout != mddev->new_layout ||
 | |
| 	    mddev->level != mddev->new_level) {
 | |
| 		mddev->new_chunk_sectors = mddev->chunk_sectors;
 | |
| 		mddev->new_layout = mddev->layout;
 | |
| 		mddev->new_level = mddev->level;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!mddev_is_clustered(mddev))
 | |
| 		md_allow_write(mddev);
 | |
| 
 | |
| 	raid_disks = mddev->raid_disks + mddev->delta_disks;
 | |
| 
 | |
| 	if (raid_disks < conf->raid_disks) {
 | |
| 		cnt=0;
 | |
| 		for (d= 0; d < conf->raid_disks; d++)
 | |
| 			if (conf->mirrors[d].rdev)
 | |
| 				cnt++;
 | |
| 		if (cnt > raid_disks)
 | |
| 			return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
 | |
| 	if (!newpoolinfo)
 | |
| 		return -ENOMEM;
 | |
| 	newpoolinfo->mddev = mddev;
 | |
| 	newpoolinfo->raid_disks = raid_disks * 2;
 | |
| 
 | |
| 	ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
 | |
| 			   r1bio_pool_free, newpoolinfo);
 | |
| 	if (ret) {
 | |
| 		kfree(newpoolinfo);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
 | |
| 					 raid_disks, 2),
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!newmirrors) {
 | |
| 		kfree(newpoolinfo);
 | |
| 		mempool_exit(&newpool);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	freeze_array(conf, 0);
 | |
| 
 | |
| 	/* ok, everything is stopped */
 | |
| 	oldpool = conf->r1bio_pool;
 | |
| 	conf->r1bio_pool = newpool;
 | |
| 
 | |
| 	for (d = d2 = 0; d < conf->raid_disks; d++) {
 | |
| 		struct md_rdev *rdev = conf->mirrors[d].rdev;
 | |
| 		if (rdev && rdev->raid_disk != d2) {
 | |
| 			sysfs_unlink_rdev(mddev, rdev);
 | |
| 			rdev->raid_disk = d2;
 | |
| 			sysfs_unlink_rdev(mddev, rdev);
 | |
| 			if (sysfs_link_rdev(mddev, rdev))
 | |
| 				pr_warn("md/raid1:%s: cannot register rd%d\n",
 | |
| 					mdname(mddev), rdev->raid_disk);
 | |
| 		}
 | |
| 		if (rdev)
 | |
| 			newmirrors[d2++].rdev = rdev;
 | |
| 	}
 | |
| 	kfree(conf->mirrors);
 | |
| 	conf->mirrors = newmirrors;
 | |
| 	kfree(conf->poolinfo);
 | |
| 	conf->poolinfo = newpoolinfo;
 | |
| 
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	mddev->degraded += (raid_disks - conf->raid_disks);
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	conf->raid_disks = mddev->raid_disks = raid_disks;
 | |
| 	mddev->delta_disks = 0;
 | |
| 
 | |
| 	unfreeze_array(conf);
 | |
| 
 | |
| 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
 | |
| 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 	md_wakeup_thread(mddev->thread);
 | |
| 
 | |
| 	mempool_exit(&oldpool);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void raid1_quiesce(struct mddev *mddev, int quiesce)
 | |
| {
 | |
| 	struct r1conf *conf = mddev->private;
 | |
| 
 | |
| 	if (quiesce)
 | |
| 		freeze_array(conf, 0);
 | |
| 	else
 | |
| 		unfreeze_array(conf);
 | |
| }
 | |
| 
 | |
| static void *raid1_takeover(struct mddev *mddev)
 | |
| {
 | |
| 	/* raid1 can take over:
 | |
| 	 *  raid5 with 2 devices, any layout or chunk size
 | |
| 	 */
 | |
| 	if (mddev->level == 5 && mddev->raid_disks == 2) {
 | |
| 		struct r1conf *conf;
 | |
| 		mddev->new_level = 1;
 | |
| 		mddev->new_layout = 0;
 | |
| 		mddev->new_chunk_sectors = 0;
 | |
| 		conf = setup_conf(mddev);
 | |
| 		if (!IS_ERR(conf)) {
 | |
| 			/* Array must appear to be quiesced */
 | |
| 			conf->array_frozen = 1;
 | |
| 			mddev_clear_unsupported_flags(mddev,
 | |
| 				UNSUPPORTED_MDDEV_FLAGS);
 | |
| 		}
 | |
| 		return conf;
 | |
| 	}
 | |
| 	return ERR_PTR(-EINVAL);
 | |
| }
 | |
| 
 | |
| static struct md_personality raid1_personality =
 | |
| {
 | |
| 	.name		= "raid1",
 | |
| 	.level		= 1,
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.make_request	= raid1_make_request,
 | |
| 	.run		= raid1_run,
 | |
| 	.free		= raid1_free,
 | |
| 	.status		= raid1_status,
 | |
| 	.error_handler	= raid1_error,
 | |
| 	.hot_add_disk	= raid1_add_disk,
 | |
| 	.hot_remove_disk= raid1_remove_disk,
 | |
| 	.spare_active	= raid1_spare_active,
 | |
| 	.sync_request	= raid1_sync_request,
 | |
| 	.resize		= raid1_resize,
 | |
| 	.size		= raid1_size,
 | |
| 	.check_reshape	= raid1_reshape,
 | |
| 	.quiesce	= raid1_quiesce,
 | |
| 	.takeover	= raid1_takeover,
 | |
| 	.congested	= raid1_congested,
 | |
| };
 | |
| 
 | |
| static int __init raid_init(void)
 | |
| {
 | |
| 	return register_md_personality(&raid1_personality);
 | |
| }
 | |
| 
 | |
| static void raid_exit(void)
 | |
| {
 | |
| 	unregister_md_personality(&raid1_personality);
 | |
| }
 | |
| 
 | |
| module_init(raid_init);
 | |
| module_exit(raid_exit);
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
 | |
| MODULE_ALIAS("md-personality-3"); /* RAID1 */
 | |
| MODULE_ALIAS("md-raid1");
 | |
| MODULE_ALIAS("md-level-1");
 | |
| 
 | |
| module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
 | 
