1120 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1120 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright(c) 2016 Intel Corporation.
 | |
|  *
 | |
|  * This file is provided under a dual BSD/GPLv2 license.  When using or
 | |
|  * redistributing this file, you may do so under either license.
 | |
|  *
 | |
|  * GPL LICENSE SUMMARY
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of version 2 of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * BSD LICENSE
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  *  - Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  - Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *  - Neither the name of Intel Corporation nor the names of its
 | |
|  *    contributors may be used to endorse or promote products derived
 | |
|  *    from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <rdma/ib_umem.h>
 | |
| #include <rdma/rdma_vt.h>
 | |
| #include "vt.h"
 | |
| #include "mr.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| /**
 | |
|  * rvt_driver_mr_init - Init MR resources per driver
 | |
|  * @rdi: rvt dev struct
 | |
|  *
 | |
|  * Do any intilization needed when a driver registers with rdmavt.
 | |
|  *
 | |
|  * Return: 0 on success or errno on failure
 | |
|  */
 | |
| int rvt_driver_mr_init(struct rvt_dev_info *rdi)
 | |
| {
 | |
| 	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
 | |
| 	unsigned lk_tab_size;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * The top hfi1_lkey_table_size bits are used to index the
 | |
| 	 * table.  The lower 8 bits can be owned by the user (copied from
 | |
| 	 * the LKEY).  The remaining bits act as a generation number or tag.
 | |
| 	 */
 | |
| 	if (!lkey_table_size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_init(&rdi->lkey_table.lock);
 | |
| 
 | |
| 	/* ensure generation is at least 4 bits */
 | |
| 	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
 | |
| 		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
 | |
| 			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
 | |
| 		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
 | |
| 		lkey_table_size = rdi->dparms.lkey_table_size;
 | |
| 	}
 | |
| 	rdi->lkey_table.max = 1 << lkey_table_size;
 | |
| 	rdi->lkey_table.shift = 32 - lkey_table_size;
 | |
| 	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
 | |
| 	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
 | |
| 			       vmalloc_node(lk_tab_size, rdi->dparms.node);
 | |
| 	if (!rdi->lkey_table.table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	RCU_INIT_POINTER(rdi->dma_mr, NULL);
 | |
| 	for (i = 0; i < rdi->lkey_table.max; i++)
 | |
| 		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
 | |
| 
 | |
| 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
 | |
| 	rdi->dparms.props.max_fmr = rdi->lkey_table.max;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *rvt_mr_exit: clean up MR
 | |
|  *@rdi: rvt dev structure
 | |
|  *
 | |
|  * called when drivers have unregistered or perhaps failed to register with us
 | |
|  */
 | |
| void rvt_mr_exit(struct rvt_dev_info *rdi)
 | |
| {
 | |
| 	if (rdi->dma_mr)
 | |
| 		rvt_pr_err(rdi, "DMA MR not null!\n");
 | |
| 
 | |
| 	vfree(rdi->lkey_table.table);
 | |
| }
 | |
| 
 | |
| static void rvt_deinit_mregion(struct rvt_mregion *mr)
 | |
| {
 | |
| 	int i = mr->mapsz;
 | |
| 
 | |
| 	mr->mapsz = 0;
 | |
| 	while (i)
 | |
| 		kfree(mr->map[--i]);
 | |
| 	percpu_ref_exit(&mr->refcount);
 | |
| }
 | |
| 
 | |
| static void __rvt_mregion_complete(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
 | |
| 					      refcount);
 | |
| 
 | |
| 	complete(&mr->comp);
 | |
| }
 | |
| 
 | |
| static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
 | |
| 			    int count, unsigned int percpu_flags)
 | |
| {
 | |
| 	int m, i = 0;
 | |
| 	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
 | |
| 
 | |
| 	mr->mapsz = 0;
 | |
| 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
 | |
| 	for (; i < m; i++) {
 | |
| 		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
 | |
| 					  dev->dparms.node);
 | |
| 		if (!mr->map[i])
 | |
| 			goto bail;
 | |
| 		mr->mapsz++;
 | |
| 	}
 | |
| 	init_completion(&mr->comp);
 | |
| 	/* count returning the ptr to user */
 | |
| 	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
 | |
| 			    percpu_flags, GFP_KERNEL))
 | |
| 		goto bail;
 | |
| 
 | |
| 	atomic_set(&mr->lkey_invalid, 0);
 | |
| 	mr->pd = pd;
 | |
| 	mr->max_segs = count;
 | |
| 	return 0;
 | |
| bail:
 | |
| 	rvt_deinit_mregion(mr);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_alloc_lkey - allocate an lkey
 | |
|  * @mr: memory region that this lkey protects
 | |
|  * @dma_region: 0->normal key, 1->restricted DMA key
 | |
|  *
 | |
|  * Returns 0 if successful, otherwise returns -errno.
 | |
|  *
 | |
|  * Increments mr reference count as required.
 | |
|  *
 | |
|  * Sets the lkey field mr for non-dma regions.
 | |
|  *
 | |
|  */
 | |
| static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 r;
 | |
| 	u32 n;
 | |
| 	int ret = 0;
 | |
| 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
 | |
| 	struct rvt_lkey_table *rkt = &dev->lkey_table;
 | |
| 
 | |
| 	rvt_get_mr(mr);
 | |
| 	spin_lock_irqsave(&rkt->lock, flags);
 | |
| 
 | |
| 	/* special case for dma_mr lkey == 0 */
 | |
| 	if (dma_region) {
 | |
| 		struct rvt_mregion *tmr;
 | |
| 
 | |
| 		tmr = rcu_access_pointer(dev->dma_mr);
 | |
| 		if (!tmr) {
 | |
| 			mr->lkey_published = 1;
 | |
| 			/* Insure published written first */
 | |
| 			rcu_assign_pointer(dev->dma_mr, mr);
 | |
| 			rvt_get_mr(mr);
 | |
| 		}
 | |
| 		goto success;
 | |
| 	}
 | |
| 
 | |
| 	/* Find the next available LKEY */
 | |
| 	r = rkt->next;
 | |
| 	n = r;
 | |
| 	for (;;) {
 | |
| 		if (!rcu_access_pointer(rkt->table[r]))
 | |
| 			break;
 | |
| 		r = (r + 1) & (rkt->max - 1);
 | |
| 		if (r == n)
 | |
| 			goto bail;
 | |
| 	}
 | |
| 	rkt->next = (r + 1) & (rkt->max - 1);
 | |
| 	/*
 | |
| 	 * Make sure lkey is never zero which is reserved to indicate an
 | |
| 	 * unrestricted LKEY.
 | |
| 	 */
 | |
| 	rkt->gen++;
 | |
| 	/*
 | |
| 	 * bits are capped to ensure enough bits for generation number
 | |
| 	 */
 | |
| 	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
 | |
| 		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
 | |
| 		 << 8);
 | |
| 	if (mr->lkey == 0) {
 | |
| 		mr->lkey |= 1 << 8;
 | |
| 		rkt->gen++;
 | |
| 	}
 | |
| 	mr->lkey_published = 1;
 | |
| 	/* Insure published written first */
 | |
| 	rcu_assign_pointer(rkt->table[r], mr);
 | |
| success:
 | |
| 	spin_unlock_irqrestore(&rkt->lock, flags);
 | |
| out:
 | |
| 	return ret;
 | |
| bail:
 | |
| 	rvt_put_mr(mr);
 | |
| 	spin_unlock_irqrestore(&rkt->lock, flags);
 | |
| 	ret = -ENOMEM;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_free_lkey - free an lkey
 | |
|  * @mr: mr to free from tables
 | |
|  */
 | |
| static void rvt_free_lkey(struct rvt_mregion *mr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 lkey = mr->lkey;
 | |
| 	u32 r;
 | |
| 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
 | |
| 	struct rvt_lkey_table *rkt = &dev->lkey_table;
 | |
| 	int freed = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&rkt->lock, flags);
 | |
| 	if (!lkey) {
 | |
| 		if (mr->lkey_published) {
 | |
| 			mr->lkey_published = 0;
 | |
| 			/* insure published is written before pointer */
 | |
| 			rcu_assign_pointer(dev->dma_mr, NULL);
 | |
| 			rvt_put_mr(mr);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (!mr->lkey_published)
 | |
| 			goto out;
 | |
| 		r = lkey >> (32 - dev->dparms.lkey_table_size);
 | |
| 		mr->lkey_published = 0;
 | |
| 		/* insure published is written before pointer */
 | |
| 		rcu_assign_pointer(rkt->table[r], NULL);
 | |
| 	}
 | |
| 	freed++;
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&rkt->lock, flags);
 | |
| 	if (freed)
 | |
| 		percpu_ref_kill(&mr->refcount);
 | |
| }
 | |
| 
 | |
| static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
 | |
| {
 | |
| 	struct rvt_mr *mr;
 | |
| 	int rval = -ENOMEM;
 | |
| 	int m;
 | |
| 
 | |
| 	/* Allocate struct plus pointers to first level page tables. */
 | |
| 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
 | |
| 	mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
 | |
| 	if (!mr)
 | |
| 		goto bail;
 | |
| 
 | |
| 	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
 | |
| 	if (rval)
 | |
| 		goto bail;
 | |
| 	/*
 | |
| 	 * ib_reg_phys_mr() will initialize mr->ibmr except for
 | |
| 	 * lkey and rkey.
 | |
| 	 */
 | |
| 	rval = rvt_alloc_lkey(&mr->mr, 0);
 | |
| 	if (rval)
 | |
| 		goto bail_mregion;
 | |
| 	mr->ibmr.lkey = mr->mr.lkey;
 | |
| 	mr->ibmr.rkey = mr->mr.lkey;
 | |
| done:
 | |
| 	return mr;
 | |
| 
 | |
| bail_mregion:
 | |
| 	rvt_deinit_mregion(&mr->mr);
 | |
| bail:
 | |
| 	kfree(mr);
 | |
| 	mr = ERR_PTR(rval);
 | |
| 	goto done;
 | |
| }
 | |
| 
 | |
| static void __rvt_free_mr(struct rvt_mr *mr)
 | |
| {
 | |
| 	rvt_free_lkey(&mr->mr);
 | |
| 	rvt_deinit_mregion(&mr->mr);
 | |
| 	kfree(mr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_get_dma_mr - get a DMA memory region
 | |
|  * @pd: protection domain for this memory region
 | |
|  * @acc: access flags
 | |
|  *
 | |
|  * Return: the memory region on success, otherwise returns an errno.
 | |
|  * Note that all DMA addresses should be created via the functions in
 | |
|  * struct dma_virt_ops.
 | |
|  */
 | |
| struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
 | |
| {
 | |
| 	struct rvt_mr *mr;
 | |
| 	struct ib_mr *ret;
 | |
| 	int rval;
 | |
| 
 | |
| 	if (ibpd_to_rvtpd(pd)->user)
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 
 | |
| 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 | |
| 	if (!mr) {
 | |
| 		ret = ERR_PTR(-ENOMEM);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
 | |
| 	if (rval) {
 | |
| 		ret = ERR_PTR(rval);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	rval = rvt_alloc_lkey(&mr->mr, 1);
 | |
| 	if (rval) {
 | |
| 		ret = ERR_PTR(rval);
 | |
| 		goto bail_mregion;
 | |
| 	}
 | |
| 
 | |
| 	mr->mr.access_flags = acc;
 | |
| 	ret = &mr->ibmr;
 | |
| done:
 | |
| 	return ret;
 | |
| 
 | |
| bail_mregion:
 | |
| 	rvt_deinit_mregion(&mr->mr);
 | |
| bail:
 | |
| 	kfree(mr);
 | |
| 	goto done;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_reg_user_mr - register a userspace memory region
 | |
|  * @pd: protection domain for this memory region
 | |
|  * @start: starting userspace address
 | |
|  * @length: length of region to register
 | |
|  * @mr_access_flags: access flags for this memory region
 | |
|  * @udata: unused by the driver
 | |
|  *
 | |
|  * Return: the memory region on success, otherwise returns an errno.
 | |
|  */
 | |
| struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
 | |
| 			      u64 virt_addr, int mr_access_flags,
 | |
| 			      struct ib_udata *udata)
 | |
| {
 | |
| 	struct rvt_mr *mr;
 | |
| 	struct ib_umem *umem;
 | |
| 	struct scatterlist *sg;
 | |
| 	int n, m, entry;
 | |
| 	struct ib_mr *ret;
 | |
| 
 | |
| 	if (length == 0)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	umem = ib_umem_get(pd->uobject->context, start, length,
 | |
| 			   mr_access_flags, 0);
 | |
| 	if (IS_ERR(umem))
 | |
| 		return (void *)umem;
 | |
| 
 | |
| 	n = umem->nmap;
 | |
| 
 | |
| 	mr = __rvt_alloc_mr(n, pd);
 | |
| 	if (IS_ERR(mr)) {
 | |
| 		ret = (struct ib_mr *)mr;
 | |
| 		goto bail_umem;
 | |
| 	}
 | |
| 
 | |
| 	mr->mr.user_base = start;
 | |
| 	mr->mr.iova = virt_addr;
 | |
| 	mr->mr.length = length;
 | |
| 	mr->mr.offset = ib_umem_offset(umem);
 | |
| 	mr->mr.access_flags = mr_access_flags;
 | |
| 	mr->umem = umem;
 | |
| 
 | |
| 	mr->mr.page_shift = umem->page_shift;
 | |
| 	m = 0;
 | |
| 	n = 0;
 | |
| 	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
 | |
| 		void *vaddr;
 | |
| 
 | |
| 		vaddr = page_address(sg_page(sg));
 | |
| 		if (!vaddr) {
 | |
| 			ret = ERR_PTR(-EINVAL);
 | |
| 			goto bail_inval;
 | |
| 		}
 | |
| 		mr->mr.map[m]->segs[n].vaddr = vaddr;
 | |
| 		mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
 | |
| 		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
 | |
| 				      BIT(umem->page_shift));
 | |
| 		n++;
 | |
| 		if (n == RVT_SEGSZ) {
 | |
| 			m++;
 | |
| 			n = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return &mr->ibmr;
 | |
| 
 | |
| bail_inval:
 | |
| 	__rvt_free_mr(mr);
 | |
| 
 | |
| bail_umem:
 | |
| 	ib_umem_release(umem);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_dereg_clean_qp_cb - callback from iterator
 | |
|  * @qp - the qp
 | |
|  * @v - the mregion (as u64)
 | |
|  *
 | |
|  * This routine fields the callback for all QPs and
 | |
|  * for QPs in the same PD as the MR will call the
 | |
|  * rvt_qp_mr_clean() to potentially cleanup references.
 | |
|  */
 | |
| static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
 | |
| {
 | |
| 	struct rvt_mregion *mr = (struct rvt_mregion *)v;
 | |
| 
 | |
| 	/* skip PDs that are not ours */
 | |
| 	if (mr->pd != qp->ibqp.pd)
 | |
| 		return;
 | |
| 	rvt_qp_mr_clean(qp, mr->lkey);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_dereg_clean_qps - find QPs for reference cleanup
 | |
|  * @mr - the MR that is being deregistered
 | |
|  *
 | |
|  * This routine iterates RC QPs looking for references
 | |
|  * to the lkey noted in mr.
 | |
|  */
 | |
| static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
 | |
| {
 | |
| 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
 | |
| 
 | |
| 	rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_check_refs - check references
 | |
|  * @mr - the megion
 | |
|  * @t - the caller identification
 | |
|  *
 | |
|  * This routine checks MRs holding a reference during
 | |
|  * when being de-registered.
 | |
|  *
 | |
|  * If the count is non-zero, the code calls a clean routine then
 | |
|  * waits for the timeout for the count to zero.
 | |
|  */
 | |
| static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
 | |
| {
 | |
| 	unsigned long timeout;
 | |
| 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
 | |
| 
 | |
| 	if (mr->lkey) {
 | |
| 		/* avoid dma mr */
 | |
| 		rvt_dereg_clean_qps(mr);
 | |
| 		/* @mr was indexed on rcu protected @lkey_table */
 | |
| 		synchronize_rcu();
 | |
| 	}
 | |
| 
 | |
| 	timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
 | |
| 	if (!timeout) {
 | |
| 		rvt_pr_err(rdi,
 | |
| 			   "%s timeout mr %p pd %p lkey %x refcount %ld\n",
 | |
| 			   t, mr, mr->pd, mr->lkey,
 | |
| 			   atomic_long_read(&mr->refcount.count));
 | |
| 		rvt_get_mr(mr);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_mr_has_lkey - is MR
 | |
|  * @mr - the mregion
 | |
|  * @lkey - the lkey
 | |
|  */
 | |
| bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
 | |
| {
 | |
| 	return mr && lkey == mr->lkey;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_ss_has_lkey - is mr in sge tests
 | |
|  * @ss - the sge state
 | |
|  * @lkey
 | |
|  *
 | |
|  * This code tests for an MR in the indicated
 | |
|  * sge state.
 | |
|  */
 | |
| bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
 | |
| {
 | |
| 	int i;
 | |
| 	bool rval = false;
 | |
| 
 | |
| 	if (!ss->num_sge)
 | |
| 		return rval;
 | |
| 	/* first one */
 | |
| 	rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
 | |
| 	/* any others */
 | |
| 	for (i = 0; !rval && i < ss->num_sge - 1; i++)
 | |
| 		rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_dereg_mr - unregister and free a memory region
 | |
|  * @ibmr: the memory region to free
 | |
|  *
 | |
|  *
 | |
|  * Note that this is called to free MRs created by rvt_get_dma_mr()
 | |
|  * or rvt_reg_user_mr().
 | |
|  *
 | |
|  * Returns 0 on success.
 | |
|  */
 | |
| int rvt_dereg_mr(struct ib_mr *ibmr)
 | |
| {
 | |
| 	struct rvt_mr *mr = to_imr(ibmr);
 | |
| 	int ret;
 | |
| 
 | |
| 	rvt_free_lkey(&mr->mr);
 | |
| 
 | |
| 	rvt_put_mr(&mr->mr); /* will set completion if last */
 | |
| 	ret = rvt_check_refs(&mr->mr, __func__);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	rvt_deinit_mregion(&mr->mr);
 | |
| 	if (mr->umem)
 | |
| 		ib_umem_release(mr->umem);
 | |
| 	kfree(mr);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_alloc_mr - Allocate a memory region usable with the
 | |
|  * @pd: protection domain for this memory region
 | |
|  * @mr_type: mem region type
 | |
|  * @max_num_sg: Max number of segments allowed
 | |
|  *
 | |
|  * Return: the memory region on success, otherwise return an errno.
 | |
|  */
 | |
| struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
 | |
| 			   enum ib_mr_type mr_type,
 | |
| 			   u32 max_num_sg)
 | |
| {
 | |
| 	struct rvt_mr *mr;
 | |
| 
 | |
| 	if (mr_type != IB_MR_TYPE_MEM_REG)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	mr = __rvt_alloc_mr(max_num_sg, pd);
 | |
| 	if (IS_ERR(mr))
 | |
| 		return (struct ib_mr *)mr;
 | |
| 
 | |
| 	return &mr->ibmr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_set_page - page assignment function called by ib_sg_to_pages
 | |
|  * @ibmr: memory region
 | |
|  * @addr: dma address of mapped page
 | |
|  *
 | |
|  * Return: 0 on success
 | |
|  */
 | |
| static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
 | |
| {
 | |
| 	struct rvt_mr *mr = to_imr(ibmr);
 | |
| 	u32 ps = 1 << mr->mr.page_shift;
 | |
| 	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
 | |
| 	int m, n;
 | |
| 
 | |
| 	if (unlikely(mapped_segs == mr->mr.max_segs))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	m = mapped_segs / RVT_SEGSZ;
 | |
| 	n = mapped_segs % RVT_SEGSZ;
 | |
| 	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
 | |
| 	mr->mr.map[m]->segs[n].length = ps;
 | |
| 	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
 | |
| 	mr->mr.length += ps;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_map_mr_sg - map sg list and set it the memory region
 | |
|  * @ibmr: memory region
 | |
|  * @sg: dma mapped scatterlist
 | |
|  * @sg_nents: number of entries in sg
 | |
|  * @sg_offset: offset in bytes into sg
 | |
|  *
 | |
|  * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
 | |
|  *
 | |
|  * Return: number of sg elements mapped to the memory region
 | |
|  */
 | |
| int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
 | |
| 		  int sg_nents, unsigned int *sg_offset)
 | |
| {
 | |
| 	struct rvt_mr *mr = to_imr(ibmr);
 | |
| 	int ret;
 | |
| 
 | |
| 	mr->mr.length = 0;
 | |
| 	mr->mr.page_shift = PAGE_SHIFT;
 | |
| 	ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
 | |
| 	mr->mr.user_base = ibmr->iova;
 | |
| 	mr->mr.iova = ibmr->iova;
 | |
| 	mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
 | |
| 	mr->mr.length = (size_t)ibmr->length;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_fast_reg_mr - fast register physical MR
 | |
|  * @qp: the queue pair where the work request comes from
 | |
|  * @ibmr: the memory region to be registered
 | |
|  * @key: updated key for this memory region
 | |
|  * @access: access flags for this memory region
 | |
|  *
 | |
|  * Returns 0 on success.
 | |
|  */
 | |
| int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
 | |
| 		    int access)
 | |
| {
 | |
| 	struct rvt_mr *mr = to_imr(ibmr);
 | |
| 
 | |
| 	if (qp->ibqp.pd != mr->mr.pd)
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	/* not applicable to dma MR or user MR */
 | |
| 	if (!mr->mr.lkey || mr->umem)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ibmr->lkey = key;
 | |
| 	ibmr->rkey = key;
 | |
| 	mr->mr.lkey = key;
 | |
| 	mr->mr.access_flags = access;
 | |
| 	mr->mr.iova = ibmr->iova;
 | |
| 	atomic_set(&mr->mr.lkey_invalid, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(rvt_fast_reg_mr);
 | |
| 
 | |
| /**
 | |
|  * rvt_invalidate_rkey - invalidate an MR rkey
 | |
|  * @qp: queue pair associated with the invalidate op
 | |
|  * @rkey: rkey to invalidate
 | |
|  *
 | |
|  * Returns 0 on success.
 | |
|  */
 | |
| int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
 | |
| {
 | |
| 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
 | |
| 	struct rvt_lkey_table *rkt = &dev->lkey_table;
 | |
| 	struct rvt_mregion *mr;
 | |
| 
 | |
| 	if (rkey == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	mr = rcu_dereference(
 | |
| 		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
 | |
| 	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
 | |
| 		goto bail;
 | |
| 
 | |
| 	atomic_set(&mr->lkey_invalid, 1);
 | |
| 	rcu_read_unlock();
 | |
| 	return 0;
 | |
| 
 | |
| bail:
 | |
| 	rcu_read_unlock();
 | |
| 	return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL(rvt_invalidate_rkey);
 | |
| 
 | |
| /**
 | |
|  * rvt_alloc_fmr - allocate a fast memory region
 | |
|  * @pd: the protection domain for this memory region
 | |
|  * @mr_access_flags: access flags for this memory region
 | |
|  * @fmr_attr: fast memory region attributes
 | |
|  *
 | |
|  * Return: the memory region on success, otherwise returns an errno.
 | |
|  */
 | |
| struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
 | |
| 			     struct ib_fmr_attr *fmr_attr)
 | |
| {
 | |
| 	struct rvt_fmr *fmr;
 | |
| 	int m;
 | |
| 	struct ib_fmr *ret;
 | |
| 	int rval = -ENOMEM;
 | |
| 
 | |
| 	/* Allocate struct plus pointers to first level page tables. */
 | |
| 	m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
 | |
| 	fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL);
 | |
| 	if (!fmr)
 | |
| 		goto bail;
 | |
| 
 | |
| 	rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
 | |
| 				PERCPU_REF_INIT_ATOMIC);
 | |
| 	if (rval)
 | |
| 		goto bail;
 | |
| 
 | |
| 	/*
 | |
| 	 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
 | |
| 	 * rkey.
 | |
| 	 */
 | |
| 	rval = rvt_alloc_lkey(&fmr->mr, 0);
 | |
| 	if (rval)
 | |
| 		goto bail_mregion;
 | |
| 	fmr->ibfmr.rkey = fmr->mr.lkey;
 | |
| 	fmr->ibfmr.lkey = fmr->mr.lkey;
 | |
| 	/*
 | |
| 	 * Resources are allocated but no valid mapping (RKEY can't be
 | |
| 	 * used).
 | |
| 	 */
 | |
| 	fmr->mr.access_flags = mr_access_flags;
 | |
| 	fmr->mr.max_segs = fmr_attr->max_pages;
 | |
| 	fmr->mr.page_shift = fmr_attr->page_shift;
 | |
| 
 | |
| 	ret = &fmr->ibfmr;
 | |
| done:
 | |
| 	return ret;
 | |
| 
 | |
| bail_mregion:
 | |
| 	rvt_deinit_mregion(&fmr->mr);
 | |
| bail:
 | |
| 	kfree(fmr);
 | |
| 	ret = ERR_PTR(rval);
 | |
| 	goto done;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_map_phys_fmr - set up a fast memory region
 | |
|  * @ibfmr: the fast memory region to set up
 | |
|  * @page_list: the list of pages to associate with the fast memory region
 | |
|  * @list_len: the number of pages to associate with the fast memory region
 | |
|  * @iova: the virtual address of the start of the fast memory region
 | |
|  *
 | |
|  * This may be called from interrupt context.
 | |
|  *
 | |
|  * Return: 0 on success
 | |
|  */
 | |
| 
 | |
| int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
 | |
| 		     int list_len, u64 iova)
 | |
| {
 | |
| 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
 | |
| 	struct rvt_lkey_table *rkt;
 | |
| 	unsigned long flags;
 | |
| 	int m, n;
 | |
| 	unsigned long i;
 | |
| 	u32 ps;
 | |
| 	struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
 | |
| 
 | |
| 	i = atomic_long_read(&fmr->mr.refcount.count);
 | |
| 	if (i > 2)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (list_len > fmr->mr.max_segs)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rkt = &rdi->lkey_table;
 | |
| 	spin_lock_irqsave(&rkt->lock, flags);
 | |
| 	fmr->mr.user_base = iova;
 | |
| 	fmr->mr.iova = iova;
 | |
| 	ps = 1 << fmr->mr.page_shift;
 | |
| 	fmr->mr.length = list_len * ps;
 | |
| 	m = 0;
 | |
| 	n = 0;
 | |
| 	for (i = 0; i < list_len; i++) {
 | |
| 		fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
 | |
| 		fmr->mr.map[m]->segs[n].length = ps;
 | |
| 		trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
 | |
| 		if (++n == RVT_SEGSZ) {
 | |
| 			m++;
 | |
| 			n = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&rkt->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_unmap_fmr - unmap fast memory regions
 | |
|  * @fmr_list: the list of fast memory regions to unmap
 | |
|  *
 | |
|  * Return: 0 on success.
 | |
|  */
 | |
| int rvt_unmap_fmr(struct list_head *fmr_list)
 | |
| {
 | |
| 	struct rvt_fmr *fmr;
 | |
| 	struct rvt_lkey_table *rkt;
 | |
| 	unsigned long flags;
 | |
| 	struct rvt_dev_info *rdi;
 | |
| 
 | |
| 	list_for_each_entry(fmr, fmr_list, ibfmr.list) {
 | |
| 		rdi = ib_to_rvt(fmr->ibfmr.device);
 | |
| 		rkt = &rdi->lkey_table;
 | |
| 		spin_lock_irqsave(&rkt->lock, flags);
 | |
| 		fmr->mr.user_base = 0;
 | |
| 		fmr->mr.iova = 0;
 | |
| 		fmr->mr.length = 0;
 | |
| 		spin_unlock_irqrestore(&rkt->lock, flags);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_dealloc_fmr - deallocate a fast memory region
 | |
|  * @ibfmr: the fast memory region to deallocate
 | |
|  *
 | |
|  * Return: 0 on success.
 | |
|  */
 | |
| int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
 | |
| {
 | |
| 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rvt_free_lkey(&fmr->mr);
 | |
| 	rvt_put_mr(&fmr->mr); /* will set completion if last */
 | |
| 	ret = rvt_check_refs(&fmr->mr, __func__);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	rvt_deinit_mregion(&fmr->mr);
 | |
| 	kfree(fmr);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_sge_adjacent - is isge compressible
 | |
|  * @last_sge: last outgoing SGE written
 | |
|  * @sge: SGE to check
 | |
|  *
 | |
|  * If adjacent will update last_sge to add length.
 | |
|  *
 | |
|  * Return: true if isge is adjacent to last sge
 | |
|  */
 | |
| static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
 | |
| 				    struct ib_sge *sge)
 | |
| {
 | |
| 	if (last_sge && sge->lkey == last_sge->mr->lkey &&
 | |
| 	    ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
 | |
| 		if (sge->lkey) {
 | |
| 			if (unlikely((sge->addr - last_sge->mr->user_base +
 | |
| 			      sge->length > last_sge->mr->length)))
 | |
| 				return false; /* overrun, caller will catch */
 | |
| 		} else {
 | |
| 			last_sge->length += sge->length;
 | |
| 		}
 | |
| 		last_sge->sge_length += sge->length;
 | |
| 		trace_rvt_sge_adjacent(last_sge, sge);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rvt_lkey_ok - check IB SGE for validity and initialize
 | |
|  * @rkt: table containing lkey to check SGE against
 | |
|  * @pd: protection domain
 | |
|  * @isge: outgoing internal SGE
 | |
|  * @last_sge: last outgoing SGE written
 | |
|  * @sge: SGE to check
 | |
|  * @acc: access flags
 | |
|  *
 | |
|  * Check the IB SGE for validity and initialize our internal version
 | |
|  * of it.
 | |
|  *
 | |
|  * Increments the reference count when a new sge is stored.
 | |
|  *
 | |
|  * Return: 0 if compressed, 1 if added , otherwise returns -errno.
 | |
|  */
 | |
| int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
 | |
| 		struct rvt_sge *isge, struct rvt_sge *last_sge,
 | |
| 		struct ib_sge *sge, int acc)
 | |
| {
 | |
| 	struct rvt_mregion *mr;
 | |
| 	unsigned n, m;
 | |
| 	size_t off;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use LKEY == zero for kernel virtual addresses
 | |
| 	 * (see rvt_get_dma_mr() and dma_virt_ops).
 | |
| 	 */
 | |
| 	if (sge->lkey == 0) {
 | |
| 		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
 | |
| 
 | |
| 		if (pd->user)
 | |
| 			return -EINVAL;
 | |
| 		if (rvt_sge_adjacent(last_sge, sge))
 | |
| 			return 0;
 | |
| 		rcu_read_lock();
 | |
| 		mr = rcu_dereference(dev->dma_mr);
 | |
| 		if (!mr)
 | |
| 			goto bail;
 | |
| 		rvt_get_mr(mr);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		isge->mr = mr;
 | |
| 		isge->vaddr = (void *)sge->addr;
 | |
| 		isge->length = sge->length;
 | |
| 		isge->sge_length = sge->length;
 | |
| 		isge->m = 0;
 | |
| 		isge->n = 0;
 | |
| 		goto ok;
 | |
| 	}
 | |
| 	if (rvt_sge_adjacent(last_sge, sge))
 | |
| 		return 0;
 | |
| 	rcu_read_lock();
 | |
| 	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
 | |
| 	if (!mr)
 | |
| 		goto bail;
 | |
| 	rvt_get_mr(mr);
 | |
| 	if (!READ_ONCE(mr->lkey_published))
 | |
| 		goto bail_unref;
 | |
| 
 | |
| 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
 | |
| 		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
 | |
| 		goto bail_unref;
 | |
| 
 | |
| 	off = sge->addr - mr->user_base;
 | |
| 	if (unlikely(sge->addr < mr->user_base ||
 | |
| 		     off + sge->length > mr->length ||
 | |
| 		     (mr->access_flags & acc) != acc))
 | |
| 		goto bail_unref;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	off += mr->offset;
 | |
| 	if (mr->page_shift) {
 | |
| 		/*
 | |
| 		 * page sizes are uniform power of 2 so no loop is necessary
 | |
| 		 * entries_spanned_by_off is the number of times the loop below
 | |
| 		 * would have executed.
 | |
| 		*/
 | |
| 		size_t entries_spanned_by_off;
 | |
| 
 | |
| 		entries_spanned_by_off = off >> mr->page_shift;
 | |
| 		off -= (entries_spanned_by_off << mr->page_shift);
 | |
| 		m = entries_spanned_by_off / RVT_SEGSZ;
 | |
| 		n = entries_spanned_by_off % RVT_SEGSZ;
 | |
| 	} else {
 | |
| 		m = 0;
 | |
| 		n = 0;
 | |
| 		while (off >= mr->map[m]->segs[n].length) {
 | |
| 			off -= mr->map[m]->segs[n].length;
 | |
| 			n++;
 | |
| 			if (n >= RVT_SEGSZ) {
 | |
| 				m++;
 | |
| 				n = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	isge->mr = mr;
 | |
| 	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
 | |
| 	isge->length = mr->map[m]->segs[n].length - off;
 | |
| 	isge->sge_length = sge->length;
 | |
| 	isge->m = m;
 | |
| 	isge->n = n;
 | |
| ok:
 | |
| 	trace_rvt_sge_new(isge, sge);
 | |
| 	return 1;
 | |
| bail_unref:
 | |
| 	rvt_put_mr(mr);
 | |
| bail:
 | |
| 	rcu_read_unlock();
 | |
| 	return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL(rvt_lkey_ok);
 | |
| 
 | |
| /**
 | |
|  * rvt_rkey_ok - check the IB virtual address, length, and RKEY
 | |
|  * @qp: qp for validation
 | |
|  * @sge: SGE state
 | |
|  * @len: length of data
 | |
|  * @vaddr: virtual address to place data
 | |
|  * @rkey: rkey to check
 | |
|  * @acc: access flags
 | |
|  *
 | |
|  * Return: 1 if successful, otherwise 0.
 | |
|  *
 | |
|  * increments the reference count upon success
 | |
|  */
 | |
| int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
 | |
| 		u32 len, u64 vaddr, u32 rkey, int acc)
 | |
| {
 | |
| 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
 | |
| 	struct rvt_lkey_table *rkt = &dev->lkey_table;
 | |
| 	struct rvt_mregion *mr;
 | |
| 	unsigned n, m;
 | |
| 	size_t off;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use RKEY == zero for kernel virtual addresses
 | |
| 	 * (see rvt_get_dma_mr() and dma_virt_ops).
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	if (rkey == 0) {
 | |
| 		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
 | |
| 		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
 | |
| 
 | |
| 		if (pd->user)
 | |
| 			goto bail;
 | |
| 		mr = rcu_dereference(rdi->dma_mr);
 | |
| 		if (!mr)
 | |
| 			goto bail;
 | |
| 		rvt_get_mr(mr);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		sge->mr = mr;
 | |
| 		sge->vaddr = (void *)vaddr;
 | |
| 		sge->length = len;
 | |
| 		sge->sge_length = len;
 | |
| 		sge->m = 0;
 | |
| 		sge->n = 0;
 | |
| 		goto ok;
 | |
| 	}
 | |
| 
 | |
| 	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
 | |
| 	if (!mr)
 | |
| 		goto bail;
 | |
| 	rvt_get_mr(mr);
 | |
| 	/* insure mr read is before test */
 | |
| 	if (!READ_ONCE(mr->lkey_published))
 | |
| 		goto bail_unref;
 | |
| 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
 | |
| 		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
 | |
| 		goto bail_unref;
 | |
| 
 | |
| 	off = vaddr - mr->iova;
 | |
| 	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
 | |
| 		     (mr->access_flags & acc) == 0))
 | |
| 		goto bail_unref;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	off += mr->offset;
 | |
| 	if (mr->page_shift) {
 | |
| 		/*
 | |
| 		 * page sizes are uniform power of 2 so no loop is necessary
 | |
| 		 * entries_spanned_by_off is the number of times the loop below
 | |
| 		 * would have executed.
 | |
| 		*/
 | |
| 		size_t entries_spanned_by_off;
 | |
| 
 | |
| 		entries_spanned_by_off = off >> mr->page_shift;
 | |
| 		off -= (entries_spanned_by_off << mr->page_shift);
 | |
| 		m = entries_spanned_by_off / RVT_SEGSZ;
 | |
| 		n = entries_spanned_by_off % RVT_SEGSZ;
 | |
| 	} else {
 | |
| 		m = 0;
 | |
| 		n = 0;
 | |
| 		while (off >= mr->map[m]->segs[n].length) {
 | |
| 			off -= mr->map[m]->segs[n].length;
 | |
| 			n++;
 | |
| 			if (n >= RVT_SEGSZ) {
 | |
| 				m++;
 | |
| 				n = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	sge->mr = mr;
 | |
| 	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
 | |
| 	sge->length = mr->map[m]->segs[n].length - off;
 | |
| 	sge->sge_length = len;
 | |
| 	sge->m = m;
 | |
| 	sge->n = n;
 | |
| ok:
 | |
| 	return 1;
 | |
| bail_unref:
 | |
| 	rvt_put_mr(mr);
 | |
| bail:
 | |
| 	rcu_read_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(rvt_rkey_ok);
 | 
