504 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			504 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/arch/unicore32/mm/fault.c
 | |
|  *
 | |
|  * Code specific to PKUnity SoC and UniCore ISA
 | |
|  *
 | |
|  * Copyright (C) 2001-2010 GUAN Xue-tao
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/extable.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| /*
 | |
|  * Fault status register encodings.  We steal bit 31 for our own purposes.
 | |
|  */
 | |
| #define FSR_LNX_PF		(1 << 31)
 | |
| 
 | |
| static inline int fsr_fs(unsigned int fsr)
 | |
| {
 | |
| 	/* xyabcde will be abcde+xy */
 | |
| 	return (fsr & 31) + ((fsr & (3 << 5)) >> 5);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is useful to dump out the page tables associated with
 | |
|  * 'addr' in mm 'mm'.
 | |
|  */
 | |
| void show_pte(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	if (!mm)
 | |
| 		mm = &init_mm;
 | |
| 
 | |
| 	printk(KERN_ALERT "pgd = %p\n", mm->pgd);
 | |
| 	pgd = pgd_offset(mm, addr);
 | |
| 	printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
 | |
| 
 | |
| 	do {
 | |
| 		pmd_t *pmd;
 | |
| 		pte_t *pte;
 | |
| 
 | |
| 		if (pgd_none(*pgd))
 | |
| 			break;
 | |
| 
 | |
| 		if (pgd_bad(*pgd)) {
 | |
| 			printk("(bad)");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pmd = pmd_offset((pud_t *) pgd, addr);
 | |
| 		if (PTRS_PER_PMD != 1)
 | |
| 			printk(", *pmd=%08lx", pmd_val(*pmd));
 | |
| 
 | |
| 		if (pmd_none(*pmd))
 | |
| 			break;
 | |
| 
 | |
| 		if (pmd_bad(*pmd)) {
 | |
| 			printk("(bad)");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* We must not map this if we have highmem enabled */
 | |
| 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
 | |
| 			break;
 | |
| 
 | |
| 		pte = pte_offset_map(pmd, addr);
 | |
| 		printk(", *pte=%08lx", pte_val(*pte));
 | |
| 		pte_unmap(pte);
 | |
| 	} while (0);
 | |
| 
 | |
| 	printk("\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Oops.  The kernel tried to access some page that wasn't present.
 | |
|  */
 | |
| static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
 | |
| 		unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	/*
 | |
| 	 * Are we prepared to handle this kernel fault?
 | |
| 	 */
 | |
| 	if (fixup_exception(regs))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * No handler, we'll have to terminate things with extreme prejudice.
 | |
| 	 */
 | |
| 	bust_spinlocks(1);
 | |
| 	printk(KERN_ALERT
 | |
| 	       "Unable to handle kernel %s at virtual address %08lx\n",
 | |
| 	       (addr < PAGE_SIZE) ? "NULL pointer dereference" :
 | |
| 	       "paging request", addr);
 | |
| 
 | |
| 	show_pte(mm, addr);
 | |
| 	die("Oops", regs, fsr);
 | |
| 	bust_spinlocks(0);
 | |
| 	do_exit(SIGKILL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Something tried to access memory that isn't in our memory map..
 | |
|  * User mode accesses just cause a SIGSEGV
 | |
|  */
 | |
| static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
 | |
| 		unsigned int fsr, unsigned int sig, int code,
 | |
| 		struct pt_regs *regs)
 | |
| {
 | |
| 	struct siginfo si;
 | |
| 
 | |
| 	tsk->thread.address = addr;
 | |
| 	tsk->thread.error_code = fsr;
 | |
| 	tsk->thread.trap_no = 14;
 | |
| 	clear_siginfo(&si);
 | |
| 	si.si_signo = sig;
 | |
| 	si.si_errno = 0;
 | |
| 	si.si_code = code;
 | |
| 	si.si_addr = (void __user *)addr;
 | |
| 	force_sig_info(sig, &si, tsk);
 | |
| }
 | |
| 
 | |
| void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct mm_struct *mm = tsk->active_mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are in kernel mode at this point, we
 | |
| 	 * have no context to handle this fault with.
 | |
| 	 */
 | |
| 	if (user_mode(regs))
 | |
| 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
 | |
| 	else
 | |
| 		__do_kernel_fault(mm, addr, fsr, regs);
 | |
| }
 | |
| 
 | |
| #define VM_FAULT_BADMAP		0x010000
 | |
| #define VM_FAULT_BADACCESS	0x020000
 | |
| 
 | |
| /*
 | |
|  * Check that the permissions on the VMA allow for the fault which occurred.
 | |
|  * If we encountered a write fault, we must have write permission, otherwise
 | |
|  * we allow any permission.
 | |
|  */
 | |
| static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
 | |
| 
 | |
| 	if (!(fsr ^ 0x12))	/* write? */
 | |
| 		mask = VM_WRITE;
 | |
| 	if (fsr & FSR_LNX_PF)
 | |
| 		mask = VM_EXEC;
 | |
| 
 | |
| 	return vma->vm_flags & mask ? false : true;
 | |
| }
 | |
| 
 | |
| static vm_fault_t __do_pf(struct mm_struct *mm, unsigned long addr,
 | |
| 		unsigned int fsr, unsigned int flags, struct task_struct *tsk)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	vm_fault_t fault;
 | |
| 
 | |
| 	vma = find_vma(mm, addr);
 | |
| 	fault = VM_FAULT_BADMAP;
 | |
| 	if (unlikely(!vma))
 | |
| 		goto out;
 | |
| 	if (unlikely(vma->vm_start > addr))
 | |
| 		goto check_stack;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, we have a good vm_area for this
 | |
| 	 * memory access, so we can handle it.
 | |
| 	 */
 | |
| good_area:
 | |
| 	if (access_error(fsr, vma)) {
 | |
| 		fault = VM_FAULT_BADACCESS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If for any reason at all we couldn't handle the fault, make
 | |
| 	 * sure we exit gracefully rather than endlessly redo the fault.
 | |
| 	 */
 | |
| 	fault = handle_mm_fault(vma, addr & PAGE_MASK, flags);
 | |
| 	return fault;
 | |
| 
 | |
| check_stack:
 | |
| 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
 | |
| 		goto good_area;
 | |
| out:
 | |
| 	return fault;
 | |
| }
 | |
| 
 | |
| static int do_pf(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	struct mm_struct *mm;
 | |
| 	int sig, code;
 | |
| 	vm_fault_t fault;
 | |
| 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 | |
| 
 | |
| 	tsk = current;
 | |
| 	mm = tsk->mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're in an interrupt or have no user
 | |
| 	 * context, we must not take the fault..
 | |
| 	 */
 | |
| 	if (faulthandler_disabled() || !mm)
 | |
| 		goto no_context;
 | |
| 
 | |
| 	if (user_mode(regs))
 | |
| 		flags |= FAULT_FLAG_USER;
 | |
| 	if (!(fsr ^ 0x12))
 | |
| 		flags |= FAULT_FLAG_WRITE;
 | |
| 
 | |
| 	/*
 | |
| 	 * As per x86, we may deadlock here.  However, since the kernel only
 | |
| 	 * validly references user space from well defined areas of the code,
 | |
| 	 * we can bug out early if this is from code which shouldn't.
 | |
| 	 */
 | |
| 	if (!down_read_trylock(&mm->mmap_sem)) {
 | |
| 		if (!user_mode(regs)
 | |
| 		    && !search_exception_tables(regs->UCreg_pc))
 | |
| 			goto no_context;
 | |
| retry:
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The above down_read_trylock() might have succeeded in
 | |
| 		 * which case, we'll have missed the might_sleep() from
 | |
| 		 * down_read()
 | |
| 		 */
 | |
| 		might_sleep();
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 		if (!user_mode(regs) &&
 | |
| 		    !search_exception_tables(regs->UCreg_pc))
 | |
| 			goto no_context;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	fault = __do_pf(mm, addr, fsr, flags, tsk);
 | |
| 
 | |
| 	/* If we need to retry but a fatal signal is pending, handle the
 | |
| 	 * signal first. We do not need to release the mmap_sem because
 | |
| 	 * it would already be released in __lock_page_or_retry in
 | |
| 	 * mm/filemap.c. */
 | |
| 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(fault & VM_FAULT_ERROR) && (flags & FAULT_FLAG_ALLOW_RETRY)) {
 | |
| 		if (fault & VM_FAULT_MAJOR)
 | |
| 			tsk->maj_flt++;
 | |
| 		else
 | |
| 			tsk->min_flt++;
 | |
| 		if (fault & VM_FAULT_RETRY) {
 | |
| 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 | |
| 			* of starvation. */
 | |
| 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the "normal" case first - VM_FAULT_MAJOR
 | |
| 	 */
 | |
| 	if (likely(!(fault &
 | |
| 	       (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are in kernel mode at this point, we
 | |
| 	 * have no context to handle this fault with.
 | |
| 	 */
 | |
| 	if (!user_mode(regs))
 | |
| 		goto no_context;
 | |
| 
 | |
| 	if (fault & VM_FAULT_OOM) {
 | |
| 		/*
 | |
| 		 * We ran out of memory, call the OOM killer, and return to
 | |
| 		 * userspace (which will retry the fault, or kill us if we
 | |
| 		 * got oom-killed)
 | |
| 		 */
 | |
| 		pagefault_out_of_memory();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (fault & VM_FAULT_SIGBUS) {
 | |
| 		/*
 | |
| 		 * We had some memory, but were unable to
 | |
| 		 * successfully fix up this page fault.
 | |
| 		 */
 | |
| 		sig = SIGBUS;
 | |
| 		code = BUS_ADRERR;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Something tried to access memory that
 | |
| 		 * isn't in our memory map..
 | |
| 		 */
 | |
| 		sig = SIGSEGV;
 | |
| 		code = fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR;
 | |
| 	}
 | |
| 
 | |
| 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
 | |
| 	return 0;
 | |
| 
 | |
| no_context:
 | |
| 	__do_kernel_fault(mm, addr, fsr, regs);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * First Level Translation Fault Handler
 | |
|  *
 | |
|  * We enter here because the first level page table doesn't contain
 | |
|  * a valid entry for the address.
 | |
|  *
 | |
|  * If the address is in kernel space (>= TASK_SIZE), then we are
 | |
|  * probably faulting in the vmalloc() area.
 | |
|  *
 | |
|  * If the init_task's first level page tables contains the relevant
 | |
|  * entry, we copy the it to this task.  If not, we send the process
 | |
|  * a signal, fixup the exception, or oops the kernel.
 | |
|  *
 | |
|  * NOTE! We MUST NOT take any locks for this case. We may be in an
 | |
|  * interrupt or a critical region, and should only copy the information
 | |
|  * from the master page table, nothing more.
 | |
|  */
 | |
| static int do_ifault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int index;
 | |
| 	pgd_t *pgd, *pgd_k;
 | |
| 	pmd_t *pmd, *pmd_k;
 | |
| 
 | |
| 	if (addr < TASK_SIZE)
 | |
| 		return do_pf(addr, fsr, regs);
 | |
| 
 | |
| 	if (user_mode(regs))
 | |
| 		goto bad_area;
 | |
| 
 | |
| 	index = pgd_index(addr);
 | |
| 
 | |
| 	pgd = cpu_get_pgd() + index;
 | |
| 	pgd_k = init_mm.pgd + index;
 | |
| 
 | |
| 	if (pgd_none(*pgd_k))
 | |
| 		goto bad_area;
 | |
| 
 | |
| 	pmd_k = pmd_offset((pud_t *) pgd_k, addr);
 | |
| 	pmd = pmd_offset((pud_t *) pgd, addr);
 | |
| 
 | |
| 	if (pmd_none(*pmd_k))
 | |
| 		goto bad_area;
 | |
| 
 | |
| 	set_pmd(pmd, *pmd_k);
 | |
| 	flush_pmd_entry(pmd);
 | |
| 	return 0;
 | |
| 
 | |
| bad_area:
 | |
| 	do_bad_area(addr, fsr, regs);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This abort handler always returns "fault".
 | |
|  */
 | |
| static int do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int do_good(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int res1, res2;
 | |
| 
 | |
| 	printk("dabt exception but no error!\n");
 | |
| 
 | |
| 	__asm__ __volatile__(
 | |
| 			"mff %0,f0\n"
 | |
| 			"mff %1,f1\n"
 | |
| 			: "=r"(res1), "=r"(res2)
 | |
| 			:
 | |
| 			: "memory");
 | |
| 
 | |
| 	printk(KERN_EMERG "r0 :%08x  r1 :%08x\n", res1, res2);
 | |
| 	panic("shut up\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct fsr_info {
 | |
| 	int (*fn) (unsigned long addr, unsigned int fsr, struct pt_regs *regs);
 | |
| 	int sig;
 | |
| 	int code;
 | |
| 	const char *name;
 | |
| } fsr_info[] = {
 | |
| 	/*
 | |
| 	 * The following are the standard Unicore-I and UniCore-II aborts.
 | |
| 	 */
 | |
| 	{ do_good,	SIGBUS,  0,		"no error"		},
 | |
| 	{ do_bad,	SIGBUS,  BUS_ADRALN,	"alignment exception"	},
 | |
| 	{ do_bad,	SIGBUS,  BUS_OBJERR,	"external exception"	},
 | |
| 	{ do_bad,	SIGBUS,  0,		"burst operation"	},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 00100"		},
 | |
| 	{ do_ifault,	SIGSEGV, SEGV_MAPERR,	"2nd level pt non-exist"},
 | |
| 	{ do_bad,	SIGBUS,  0,		"2nd lvl large pt non-exist" },
 | |
| 	{ do_bad,	SIGBUS,  0,		"invalid pte"		},
 | |
| 	{ do_pf,	SIGSEGV, SEGV_MAPERR,	"page miss"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"middle page miss"	},
 | |
| 	{ do_bad,	SIGBUS,	 0,		"large page miss"	},
 | |
| 	{ do_pf,	SIGSEGV, SEGV_MAPERR,	"super page (section) miss" },
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 01100"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 01101"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 01110"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 01111"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"addr: up 3G or IO"	},
 | |
| 	{ do_pf,	SIGSEGV, SEGV_ACCERR,	"read unreadable addr"	},
 | |
| 	{ do_pf,	SIGSEGV, SEGV_ACCERR,	"write unwriteable addr"},
 | |
| 	{ do_pf,	SIGSEGV, SEGV_ACCERR,	"exec unexecutable addr"},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 10100"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 10101"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 10110"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 10111"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 11000"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 11001"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 11010"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 11011"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 11100"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 11101"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 11110"		},
 | |
| 	{ do_bad,	SIGBUS,  0,		"unknown 11111"		}
 | |
| };
 | |
| 
 | |
| void __init hook_fault_code(int nr,
 | |
| 		int (*fn) (unsigned long, unsigned int, struct pt_regs *),
 | |
| 		int sig, int code, const char *name)
 | |
| {
 | |
| 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
 | |
| 		BUG();
 | |
| 
 | |
| 	fsr_info[nr].fn   = fn;
 | |
| 	fsr_info[nr].sig  = sig;
 | |
| 	fsr_info[nr].code = code;
 | |
| 	fsr_info[nr].name = name;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dispatch a data abort to the relevant handler.
 | |
|  */
 | |
| asmlinkage void do_DataAbort(unsigned long addr, unsigned int fsr,
 | |
| 			struct pt_regs *regs)
 | |
| {
 | |
| 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 | |
| 	struct siginfo info;
 | |
| 
 | |
| 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
 | |
| 		return;
 | |
| 
 | |
| 	printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
 | |
| 	       inf->name, fsr, addr);
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = inf->sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = inf->code;
 | |
| 	info.si_addr = (void __user *)addr;
 | |
| 	uc32_notify_die("", regs, &info, fsr, 0);
 | |
| }
 | |
| 
 | |
| asmlinkage void do_PrefetchAbort(unsigned long addr,
 | |
| 			unsigned int ifsr, struct pt_regs *regs)
 | |
| {
 | |
| 	const struct fsr_info *inf = fsr_info + fsr_fs(ifsr);
 | |
| 	struct siginfo info;
 | |
| 
 | |
| 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
 | |
| 		return;
 | |
| 
 | |
| 	printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
 | |
| 	       inf->name, ifsr, addr);
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo = inf->sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = inf->code;
 | |
| 	info.si_addr = (void __user *)addr;
 | |
| 	uc32_notify_die("", regs, &info, ifsr, 0);
 | |
| }
 | 
