3233 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3233 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  arch/sparc64/mm/init.c
 | |
|  *
 | |
|  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
 | |
|  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
 | |
|  */
 | |
|  
 | |
| #include <linux/extable.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/gfp.h>
 | |
| 
 | |
| #include <asm/head.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/oplib.h>
 | |
| #include <asm/iommu.h>
 | |
| #include <asm/io.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/starfire.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/spitfire.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/tsb.h>
 | |
| #include <asm/hypervisor.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/mdesc.h>
 | |
| #include <asm/cpudata.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/irq.h>
 | |
| 
 | |
| #include "init_64.h"
 | |
| 
 | |
| unsigned long kern_linear_pte_xor[4] __read_mostly;
 | |
| static unsigned long page_cache4v_flag;
 | |
| 
 | |
| /* A bitmap, two bits for every 256MB of physical memory.  These two
 | |
|  * bits determine what page size we use for kernel linear
 | |
|  * translations.  They form an index into kern_linear_pte_xor[].  The
 | |
|  * value in the indexed slot is XOR'd with the TLB miss virtual
 | |
|  * address to form the resulting TTE.  The mapping is:
 | |
|  *
 | |
|  *	0	==>	4MB
 | |
|  *	1	==>	256MB
 | |
|  *	2	==>	2GB
 | |
|  *	3	==>	16GB
 | |
|  *
 | |
|  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
 | |
|  * support 2GB pages, and hopefully future cpus will support the 16GB
 | |
|  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
 | |
|  * if these larger page sizes are not supported by the cpu.
 | |
|  *
 | |
|  * It would be nice to determine this from the machine description
 | |
|  * 'cpu' properties, but we need to have this table setup before the
 | |
|  * MDESC is initialized.
 | |
|  */
 | |
| 
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
 | |
|  * Space is allocated for this right after the trap table in
 | |
|  * arch/sparc64/kernel/head.S
 | |
|  */
 | |
| extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
 | |
| #endif
 | |
| extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 | |
| 
 | |
| static unsigned long cpu_pgsz_mask;
 | |
| 
 | |
| #define MAX_BANKS	1024
 | |
| 
 | |
| static struct linux_prom64_registers pavail[MAX_BANKS];
 | |
| static int pavail_ents;
 | |
| 
 | |
| u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
 | |
| 
 | |
| static int cmp_p64(const void *a, const void *b)
 | |
| {
 | |
| 	const struct linux_prom64_registers *x = a, *y = b;
 | |
| 
 | |
| 	if (x->phys_addr > y->phys_addr)
 | |
| 		return 1;
 | |
| 	if (x->phys_addr < y->phys_addr)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init read_obp_memory(const char *property,
 | |
| 				   struct linux_prom64_registers *regs,
 | |
| 				   int *num_ents)
 | |
| {
 | |
| 	phandle node = prom_finddevice("/memory");
 | |
| 	int prop_size = prom_getproplen(node, property);
 | |
| 	int ents, ret, i;
 | |
| 
 | |
| 	ents = prop_size / sizeof(struct linux_prom64_registers);
 | |
| 	if (ents > MAX_BANKS) {
 | |
| 		prom_printf("The machine has more %s property entries than "
 | |
| 			    "this kernel can support (%d).\n",
 | |
| 			    property, MAX_BANKS);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 | |
| 	if (ret == -1) {
 | |
| 		prom_printf("Couldn't get %s property from /memory.\n",
 | |
| 				property);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	/* Sanitize what we got from the firmware, by page aligning
 | |
| 	 * everything.
 | |
| 	 */
 | |
| 	for (i = 0; i < ents; i++) {
 | |
| 		unsigned long base, size;
 | |
| 
 | |
| 		base = regs[i].phys_addr;
 | |
| 		size = regs[i].reg_size;
 | |
| 
 | |
| 		size &= PAGE_MASK;
 | |
| 		if (base & ~PAGE_MASK) {
 | |
| 			unsigned long new_base = PAGE_ALIGN(base);
 | |
| 
 | |
| 			size -= new_base - base;
 | |
| 			if ((long) size < 0L)
 | |
| 				size = 0UL;
 | |
| 			base = new_base;
 | |
| 		}
 | |
| 		if (size == 0UL) {
 | |
| 			/* If it is empty, simply get rid of it.
 | |
| 			 * This simplifies the logic of the other
 | |
| 			 * functions that process these arrays.
 | |
| 			 */
 | |
| 			memmove(®s[i], ®s[i + 1],
 | |
| 				(ents - i - 1) * sizeof(regs[0]));
 | |
| 			i--;
 | |
| 			ents--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		regs[i].phys_addr = base;
 | |
| 		regs[i].reg_size = size;
 | |
| 	}
 | |
| 
 | |
| 	*num_ents = ents;
 | |
| 
 | |
| 	sort(regs, ents, sizeof(struct linux_prom64_registers),
 | |
| 	     cmp_p64, NULL);
 | |
| }
 | |
| 
 | |
| /* Kernel physical address base and size in bytes.  */
 | |
| unsigned long kern_base __read_mostly;
 | |
| unsigned long kern_size __read_mostly;
 | |
| 
 | |
| /* Initial ramdisk setup */
 | |
| extern unsigned long sparc_ramdisk_image64;
 | |
| extern unsigned int sparc_ramdisk_image;
 | |
| extern unsigned int sparc_ramdisk_size;
 | |
| 
 | |
| struct page *mem_map_zero __read_mostly;
 | |
| EXPORT_SYMBOL(mem_map_zero);
 | |
| 
 | |
| unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 | |
| 
 | |
| unsigned long sparc64_kern_pri_context __read_mostly;
 | |
| unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 | |
| unsigned long sparc64_kern_sec_context __read_mostly;
 | |
| 
 | |
| int num_kernel_image_mappings;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| atomic_t dcpage_flushes = ATOMIC_INIT(0);
 | |
| #ifdef CONFIG_SMP
 | |
| atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| inline void flush_dcache_page_impl(struct page *page)
 | |
| {
 | |
| 	BUG_ON(tlb_type == hypervisor);
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| 	atomic_inc(&dcpage_flushes);
 | |
| #endif
 | |
| 
 | |
| #ifdef DCACHE_ALIASING_POSSIBLE
 | |
| 	__flush_dcache_page(page_address(page),
 | |
| 			    ((tlb_type == spitfire) &&
 | |
| 			     page_mapping_file(page) != NULL));
 | |
| #else
 | |
| 	if (page_mapping_file(page) != NULL &&
 | |
| 	    tlb_type == spitfire)
 | |
| 		__flush_icache_page(__pa(page_address(page)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define PG_dcache_dirty		PG_arch_1
 | |
| #define PG_dcache_cpu_shift	32UL
 | |
| #define PG_dcache_cpu_mask	\
 | |
| 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 | |
| 
 | |
| #define dcache_dirty_cpu(page) \
 | |
| 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 | |
| 
 | |
| static inline void set_dcache_dirty(struct page *page, int this_cpu)
 | |
| {
 | |
| 	unsigned long mask = this_cpu;
 | |
| 	unsigned long non_cpu_bits;
 | |
| 
 | |
| 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 | |
| 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 | |
| 
 | |
| 	__asm__ __volatile__("1:\n\t"
 | |
| 			     "ldx	[%2], %%g7\n\t"
 | |
| 			     "and	%%g7, %1, %%g1\n\t"
 | |
| 			     "or	%%g1, %0, %%g1\n\t"
 | |
| 			     "casx	[%2], %%g7, %%g1\n\t"
 | |
| 			     "cmp	%%g7, %%g1\n\t"
 | |
| 			     "bne,pn	%%xcc, 1b\n\t"
 | |
| 			     " nop"
 | |
| 			     : /* no outputs */
 | |
| 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 | |
| 			     : "g1", "g7");
 | |
| }
 | |
| 
 | |
| static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 | |
| {
 | |
| 	unsigned long mask = (1UL << PG_dcache_dirty);
 | |
| 
 | |
| 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 | |
| 			     "1:\n\t"
 | |
| 			     "ldx	[%2], %%g7\n\t"
 | |
| 			     "srlx	%%g7, %4, %%g1\n\t"
 | |
| 			     "and	%%g1, %3, %%g1\n\t"
 | |
| 			     "cmp	%%g1, %0\n\t"
 | |
| 			     "bne,pn	%%icc, 2f\n\t"
 | |
| 			     " andn	%%g7, %1, %%g1\n\t"
 | |
| 			     "casx	[%2], %%g7, %%g1\n\t"
 | |
| 			     "cmp	%%g7, %%g1\n\t"
 | |
| 			     "bne,pn	%%xcc, 1b\n\t"
 | |
| 			     " nop\n"
 | |
| 			     "2:"
 | |
| 			     : /* no outputs */
 | |
| 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 | |
| 			       "i" (PG_dcache_cpu_mask),
 | |
| 			       "i" (PG_dcache_cpu_shift)
 | |
| 			     : "g1", "g7");
 | |
| }
 | |
| 
 | |
| static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 | |
| {
 | |
| 	unsigned long tsb_addr = (unsigned long) ent;
 | |
| 
 | |
| 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 | |
| 		tsb_addr = __pa(tsb_addr);
 | |
| 
 | |
| 	__tsb_insert(tsb_addr, tag, pte);
 | |
| }
 | |
| 
 | |
| unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 | |
| 
 | |
| static void flush_dcache(unsigned long pfn)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	if (page) {
 | |
| 		unsigned long pg_flags;
 | |
| 
 | |
| 		pg_flags = page->flags;
 | |
| 		if (pg_flags & (1UL << PG_dcache_dirty)) {
 | |
| 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 | |
| 				   PG_dcache_cpu_mask);
 | |
| 			int this_cpu = get_cpu();
 | |
| 
 | |
| 			/* This is just to optimize away some function calls
 | |
| 			 * in the SMP case.
 | |
| 			 */
 | |
| 			if (cpu == this_cpu)
 | |
| 				flush_dcache_page_impl(page);
 | |
| 			else
 | |
| 				smp_flush_dcache_page_impl(page, cpu);
 | |
| 
 | |
| 			clear_dcache_dirty_cpu(page, cpu);
 | |
| 
 | |
| 			put_cpu();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* mm->context.lock must be held */
 | |
| static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 | |
| 				    unsigned long tsb_hash_shift, unsigned long address,
 | |
| 				    unsigned long tte)
 | |
| {
 | |
| 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 | |
| 	unsigned long tag;
 | |
| 
 | |
| 	if (unlikely(!tsb))
 | |
| 		return;
 | |
| 
 | |
| 	tsb += ((address >> tsb_hash_shift) &
 | |
| 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 | |
| 	tag = (address >> 22UL);
 | |
| 	tsb_insert(tsb, tag, tte);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| static void __init add_huge_page_size(unsigned long size)
 | |
| {
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	if (size_to_hstate(size))
 | |
| 		return;
 | |
| 
 | |
| 	order = ilog2(size) - PAGE_SHIFT;
 | |
| 	hugetlb_add_hstate(order);
 | |
| }
 | |
| 
 | |
| static int __init hugetlbpage_init(void)
 | |
| {
 | |
| 	add_huge_page_size(1UL << HPAGE_64K_SHIFT);
 | |
| 	add_huge_page_size(1UL << HPAGE_SHIFT);
 | |
| 	add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
 | |
| 	add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| arch_initcall(hugetlbpage_init);
 | |
| 
 | |
| static void __init pud_huge_patch(void)
 | |
| {
 | |
| 	struct pud_huge_patch_entry *p;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	p = &__pud_huge_patch;
 | |
| 	addr = p->addr;
 | |
| 	*(unsigned int *)addr = p->insn;
 | |
| 
 | |
| 	__asm__ __volatile__("flush %0" : : "r" (addr));
 | |
| }
 | |
| 
 | |
| static int __init setup_hugepagesz(char *string)
 | |
| {
 | |
| 	unsigned long long hugepage_size;
 | |
| 	unsigned int hugepage_shift;
 | |
| 	unsigned short hv_pgsz_idx;
 | |
| 	unsigned int hv_pgsz_mask;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	hugepage_size = memparse(string, &string);
 | |
| 	hugepage_shift = ilog2(hugepage_size);
 | |
| 
 | |
| 	switch (hugepage_shift) {
 | |
| 	case HPAGE_16GB_SHIFT:
 | |
| 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
 | |
| 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
 | |
| 		pud_huge_patch();
 | |
| 		break;
 | |
| 	case HPAGE_2GB_SHIFT:
 | |
| 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
 | |
| 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
 | |
| 		break;
 | |
| 	case HPAGE_256MB_SHIFT:
 | |
| 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
 | |
| 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
 | |
| 		break;
 | |
| 	case HPAGE_SHIFT:
 | |
| 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
 | |
| 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
 | |
| 		break;
 | |
| 	case HPAGE_64K_SHIFT:
 | |
| 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
 | |
| 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
 | |
| 		break;
 | |
| 	default:
 | |
| 		hv_pgsz_mask = 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
 | |
| 		hugetlb_bad_size();
 | |
| 		pr_err("hugepagesz=%llu not supported by MMU.\n",
 | |
| 			hugepage_size);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	add_huge_page_size(hugepage_size);
 | |
| 	rc = 1;
 | |
| 
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| __setup("hugepagesz=", setup_hugepagesz);
 | |
| #endif	/* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	unsigned long flags;
 | |
| 	bool is_huge_tsb;
 | |
| 	pte_t pte = *ptep;
 | |
| 
 | |
| 	if (tlb_type != hypervisor) {
 | |
| 		unsigned long pfn = pte_pfn(pte);
 | |
| 
 | |
| 		if (pfn_valid(pfn))
 | |
| 			flush_dcache(pfn);
 | |
| 	}
 | |
| 
 | |
| 	mm = vma->vm_mm;
 | |
| 
 | |
| 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 | |
| 	if (!pte_accessible(mm, pte))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&mm->context.lock, flags);
 | |
| 
 | |
| 	is_huge_tsb = false;
 | |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
 | |
| 		unsigned long hugepage_size = PAGE_SIZE;
 | |
| 
 | |
| 		if (is_vm_hugetlb_page(vma))
 | |
| 			hugepage_size = huge_page_size(hstate_vma(vma));
 | |
| 
 | |
| 		if (hugepage_size >= PUD_SIZE) {
 | |
| 			unsigned long mask = 0x1ffc00000UL;
 | |
| 
 | |
| 			/* Transfer bits [32:22] from address to resolve
 | |
| 			 * at 4M granularity.
 | |
| 			 */
 | |
| 			pte_val(pte) &= ~mask;
 | |
| 			pte_val(pte) |= (address & mask);
 | |
| 		} else if (hugepage_size >= PMD_SIZE) {
 | |
| 			/* We are fabricating 8MB pages using 4MB
 | |
| 			 * real hw pages.
 | |
| 			 */
 | |
| 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
 | |
| 		}
 | |
| 
 | |
| 		if (hugepage_size >= PMD_SIZE) {
 | |
| 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
 | |
| 				REAL_HPAGE_SHIFT, address, pte_val(pte));
 | |
| 			is_huge_tsb = true;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	if (!is_huge_tsb)
 | |
| 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 | |
| 					address, pte_val(pte));
 | |
| 
 | |
| 	spin_unlock_irqrestore(&mm->context.lock, flags);
 | |
| }
 | |
| 
 | |
| void flush_dcache_page(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 	int this_cpu;
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		return;
 | |
| 
 | |
| 	/* Do not bother with the expensive D-cache flush if it
 | |
| 	 * is merely the zero page.  The 'bigcore' testcase in GDB
 | |
| 	 * causes this case to run millions of times.
 | |
| 	 */
 | |
| 	if (page == ZERO_PAGE(0))
 | |
| 		return;
 | |
| 
 | |
| 	this_cpu = get_cpu();
 | |
| 
 | |
| 	mapping = page_mapping_file(page);
 | |
| 	if (mapping && !mapping_mapped(mapping)) {
 | |
| 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 | |
| 		if (dirty) {
 | |
| 			int dirty_cpu = dcache_dirty_cpu(page);
 | |
| 
 | |
| 			if (dirty_cpu == this_cpu)
 | |
| 				goto out;
 | |
| 			smp_flush_dcache_page_impl(page, dirty_cpu);
 | |
| 		}
 | |
| 		set_dcache_dirty(page, this_cpu);
 | |
| 	} else {
 | |
| 		/* We could delay the flush for the !page_mapping
 | |
| 		 * case too.  But that case is for exec env/arg
 | |
| 		 * pages and those are %99 certainly going to get
 | |
| 		 * faulted into the tlb (and thus flushed) anyways.
 | |
| 		 */
 | |
| 		flush_dcache_page_impl(page);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	put_cpu();
 | |
| }
 | |
| EXPORT_SYMBOL(flush_dcache_page);
 | |
| 
 | |
| void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 | |
| 	if (tlb_type == spitfire) {
 | |
| 		unsigned long kaddr;
 | |
| 
 | |
| 		/* This code only runs on Spitfire cpus so this is
 | |
| 		 * why we can assume _PAGE_PADDR_4U.
 | |
| 		 */
 | |
| 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 | |
| 			unsigned long paddr, mask = _PAGE_PADDR_4U;
 | |
| 
 | |
| 			if (kaddr >= PAGE_OFFSET)
 | |
| 				paddr = kaddr & mask;
 | |
| 			else {
 | |
| 				pgd_t *pgdp = pgd_offset_k(kaddr);
 | |
| 				pud_t *pudp = pud_offset(pgdp, kaddr);
 | |
| 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 | |
| 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 | |
| 
 | |
| 				paddr = pte_val(*ptep) & mask;
 | |
| 			}
 | |
| 			__flush_icache_page(paddr);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(flush_icache_range);
 | |
| 
 | |
| void mmu_info(struct seq_file *m)
 | |
| {
 | |
| 	static const char *pgsz_strings[] = {
 | |
| 		"8K", "64K", "512K", "4MB", "32MB",
 | |
| 		"256MB", "2GB", "16GB",
 | |
| 	};
 | |
| 	int i, printed;
 | |
| 
 | |
| 	if (tlb_type == cheetah)
 | |
| 		seq_printf(m, "MMU Type\t: Cheetah\n");
 | |
| 	else if (tlb_type == cheetah_plus)
 | |
| 		seq_printf(m, "MMU Type\t: Cheetah+\n");
 | |
| 	else if (tlb_type == spitfire)
 | |
| 		seq_printf(m, "MMU Type\t: Spitfire\n");
 | |
| 	else if (tlb_type == hypervisor)
 | |
| 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 | |
| 	else
 | |
| 		seq_printf(m, "MMU Type\t: ???\n");
 | |
| 
 | |
| 	seq_printf(m, "MMU PGSZs\t: ");
 | |
| 	printed = 0;
 | |
| 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 | |
| 		if (cpu_pgsz_mask & (1UL << i)) {
 | |
| 			seq_printf(m, "%s%s",
 | |
| 				   printed ? "," : "", pgsz_strings[i]);
 | |
| 			printed++;
 | |
| 		}
 | |
| 	}
 | |
| 	seq_putc(m, '\n');
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_DCFLUSH
 | |
| 	seq_printf(m, "DCPageFlushes\t: %d\n",
 | |
| 		   atomic_read(&dcpage_flushes));
 | |
| #ifdef CONFIG_SMP
 | |
| 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 | |
| 		   atomic_read(&dcpage_flushes_xcall));
 | |
| #endif /* CONFIG_SMP */
 | |
| #endif /* CONFIG_DEBUG_DCFLUSH */
 | |
| }
 | |
| 
 | |
| struct linux_prom_translation prom_trans[512] __read_mostly;
 | |
| unsigned int prom_trans_ents __read_mostly;
 | |
| 
 | |
| unsigned long kern_locked_tte_data;
 | |
| 
 | |
| /* The obp translations are saved based on 8k pagesize, since obp can
 | |
|  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 | |
|  * HI_OBP_ADDRESS range are handled in ktlb.S.
 | |
|  */
 | |
| static inline int in_obp_range(unsigned long vaddr)
 | |
| {
 | |
| 	return (vaddr >= LOW_OBP_ADDRESS &&
 | |
| 		vaddr < HI_OBP_ADDRESS);
 | |
| }
 | |
| 
 | |
| static int cmp_ptrans(const void *a, const void *b)
 | |
| {
 | |
| 	const struct linux_prom_translation *x = a, *y = b;
 | |
| 
 | |
| 	if (x->virt > y->virt)
 | |
| 		return 1;
 | |
| 	if (x->virt < y->virt)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Read OBP translations property into 'prom_trans[]'.  */
 | |
| static void __init read_obp_translations(void)
 | |
| {
 | |
| 	int n, node, ents, first, last, i;
 | |
| 
 | |
| 	node = prom_finddevice("/virtual-memory");
 | |
| 	n = prom_getproplen(node, "translations");
 | |
| 	if (unlikely(n == 0 || n == -1)) {
 | |
| 		prom_printf("prom_mappings: Couldn't get size.\n");
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 	if (unlikely(n > sizeof(prom_trans))) {
 | |
| 		prom_printf("prom_mappings: Size %d is too big.\n", n);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	if ((n = prom_getproperty(node, "translations",
 | |
| 				  (char *)&prom_trans[0],
 | |
| 				  sizeof(prom_trans))) == -1) {
 | |
| 		prom_printf("prom_mappings: Couldn't get property.\n");
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	n = n / sizeof(struct linux_prom_translation);
 | |
| 
 | |
| 	ents = n;
 | |
| 
 | |
| 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 | |
| 	     cmp_ptrans, NULL);
 | |
| 
 | |
| 	/* Now kick out all the non-OBP entries.  */
 | |
| 	for (i = 0; i < ents; i++) {
 | |
| 		if (in_obp_range(prom_trans[i].virt))
 | |
| 			break;
 | |
| 	}
 | |
| 	first = i;
 | |
| 	for (; i < ents; i++) {
 | |
| 		if (!in_obp_range(prom_trans[i].virt))
 | |
| 			break;
 | |
| 	}
 | |
| 	last = i;
 | |
| 
 | |
| 	for (i = 0; i < (last - first); i++) {
 | |
| 		struct linux_prom_translation *src = &prom_trans[i + first];
 | |
| 		struct linux_prom_translation *dest = &prom_trans[i];
 | |
| 
 | |
| 		*dest = *src;
 | |
| 	}
 | |
| 	for (; i < ents; i++) {
 | |
| 		struct linux_prom_translation *dest = &prom_trans[i];
 | |
| 		dest->virt = dest->size = dest->data = 0x0UL;
 | |
| 	}
 | |
| 
 | |
| 	prom_trans_ents = last - first;
 | |
| 
 | |
| 	if (tlb_type == spitfire) {
 | |
| 		/* Clear diag TTE bits. */
 | |
| 		for (i = 0; i < prom_trans_ents; i++)
 | |
| 			prom_trans[i].data &= ~0x0003fe0000000000UL;
 | |
| 	}
 | |
| 
 | |
| 	/* Force execute bit on.  */
 | |
| 	for (i = 0; i < prom_trans_ents; i++)
 | |
| 		prom_trans[i].data |= (tlb_type == hypervisor ?
 | |
| 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 | |
| }
 | |
| 
 | |
| static void __init hypervisor_tlb_lock(unsigned long vaddr,
 | |
| 				       unsigned long pte,
 | |
| 				       unsigned long mmu)
 | |
| {
 | |
| 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 | |
| 
 | |
| 	if (ret != 0) {
 | |
| 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 | |
| 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long kern_large_tte(unsigned long paddr);
 | |
| 
 | |
| static void __init remap_kernel(void)
 | |
| {
 | |
| 	unsigned long phys_page, tte_vaddr, tte_data;
 | |
| 	int i, tlb_ent = sparc64_highest_locked_tlbent();
 | |
| 
 | |
| 	tte_vaddr = (unsigned long) KERNBASE;
 | |
| 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 | |
| 	tte_data = kern_large_tte(phys_page);
 | |
| 
 | |
| 	kern_locked_tte_data = tte_data;
 | |
| 
 | |
| 	/* Now lock us into the TLBs via Hypervisor or OBP. */
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		for (i = 0; i < num_kernel_image_mappings; i++) {
 | |
| 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 | |
| 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 | |
| 			tte_vaddr += 0x400000;
 | |
| 			tte_data += 0x400000;
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < num_kernel_image_mappings; i++) {
 | |
| 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 | |
| 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 | |
| 			tte_vaddr += 0x400000;
 | |
| 			tte_data += 0x400000;
 | |
| 		}
 | |
| 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 | |
| 	}
 | |
| 	if (tlb_type == cheetah_plus) {
 | |
| 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 | |
| 					    CTX_CHEETAH_PLUS_NUC);
 | |
| 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 | |
| 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __init inherit_prom_mappings(void)
 | |
| {
 | |
| 	/* Now fixup OBP's idea about where we really are mapped. */
 | |
| 	printk("Remapping the kernel... ");
 | |
| 	remap_kernel();
 | |
| 	printk("done.\n");
 | |
| }
 | |
| 
 | |
| void prom_world(int enter)
 | |
| {
 | |
| 	if (!enter)
 | |
| 		set_fs(get_fs());
 | |
| 
 | |
| 	__asm__ __volatile__("flushw");
 | |
| }
 | |
| 
 | |
| void __flush_dcache_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long va;
 | |
| 
 | |
| 	if (tlb_type == spitfire) {
 | |
| 		int n = 0;
 | |
| 
 | |
| 		for (va = start; va < end; va += 32) {
 | |
| 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 | |
| 			if (++n >= 512)
 | |
| 				break;
 | |
| 		}
 | |
| 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 | |
| 		start = __pa(start);
 | |
| 		end = __pa(end);
 | |
| 		for (va = start; va < end; va += 32)
 | |
| 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 | |
| 					     "membar #Sync"
 | |
| 					     : /* no outputs */
 | |
| 					     : "r" (va),
 | |
| 					       "i" (ASI_DCACHE_INVALIDATE));
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__flush_dcache_range);
 | |
| 
 | |
| /* get_new_mmu_context() uses "cache + 1".  */
 | |
| DEFINE_SPINLOCK(ctx_alloc_lock);
 | |
| unsigned long tlb_context_cache = CTX_FIRST_VERSION;
 | |
| #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 | |
| #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 | |
| DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 | |
| DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
 | |
| 
 | |
| static void mmu_context_wrap(void)
 | |
| {
 | |
| 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
 | |
| 	unsigned long new_ver, new_ctx, old_ctx;
 | |
| 	struct mm_struct *mm;
 | |
| 	int cpu;
 | |
| 
 | |
| 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
 | |
| 
 | |
| 	/* Reserve kernel context */
 | |
| 	set_bit(0, mmu_context_bmap);
 | |
| 
 | |
| 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
 | |
| 	if (unlikely(new_ver == 0))
 | |
| 		new_ver = CTX_FIRST_VERSION;
 | |
| 	tlb_context_cache = new_ver;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
 | |
| 	 * are going to go through get_new_mmu_context() path.
 | |
| 	 */
 | |
| 	mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Updated versions to current on those CPUs that had valid secondary
 | |
| 	 * contexts
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		/*
 | |
| 		 * If a new mm is stored after we took this mm from the array,
 | |
| 		 * it will go into get_new_mmu_context() path, because we
 | |
| 		 * already bumped the version in tlb_context_cache.
 | |
| 		 */
 | |
| 		mm = per_cpu(per_cpu_secondary_mm, cpu);
 | |
| 
 | |
| 		if (unlikely(!mm || mm == &init_mm))
 | |
| 			continue;
 | |
| 
 | |
| 		old_ctx = mm->context.sparc64_ctx_val;
 | |
| 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
 | |
| 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
 | |
| 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
 | |
| 			mm->context.sparc64_ctx_val = new_ctx;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Caller does TLB context flushing on local CPU if necessary.
 | |
|  * The caller also ensures that CTX_VALID(mm->context) is false.
 | |
|  *
 | |
|  * We must be careful about boundary cases so that we never
 | |
|  * let the user have CTX 0 (nucleus) or we ever use a CTX
 | |
|  * version of zero (and thus NO_CONTEXT would not be caught
 | |
|  * by version mis-match tests in mmu_context.h).
 | |
|  *
 | |
|  * Always invoked with interrupts disabled.
 | |
|  */
 | |
| void get_new_mmu_context(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long ctx, new_ctx;
 | |
| 	unsigned long orig_pgsz_bits;
 | |
| 
 | |
| 	spin_lock(&ctx_alloc_lock);
 | |
| retry:
 | |
| 	/* wrap might have happened, test again if our context became valid */
 | |
| 	if (unlikely(CTX_VALID(mm->context)))
 | |
| 		goto out;
 | |
| 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 | |
| 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 | |
| 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 | |
| 	if (new_ctx >= (1 << CTX_NR_BITS)) {
 | |
| 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 | |
| 		if (new_ctx >= ctx) {
 | |
| 			mmu_context_wrap();
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 	if (mm->context.sparc64_ctx_val)
 | |
| 		cpumask_clear(mm_cpumask(mm));
 | |
| 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 | |
| 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 | |
| 	tlb_context_cache = new_ctx;
 | |
| 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 | |
| out:
 | |
| 	spin_unlock(&ctx_alloc_lock);
 | |
| }
 | |
| 
 | |
| static int numa_enabled = 1;
 | |
| static int numa_debug;
 | |
| 
 | |
| static int __init early_numa(char *p)
 | |
| {
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (strstr(p, "off"))
 | |
| 		numa_enabled = 0;
 | |
| 
 | |
| 	if (strstr(p, "debug"))
 | |
| 		numa_debug = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("numa", early_numa);
 | |
| 
 | |
| #define numadbg(f, a...) \
 | |
| do {	if (numa_debug) \
 | |
| 		printk(KERN_INFO f, ## a); \
 | |
| } while (0)
 | |
| 
 | |
| static void __init find_ramdisk(unsigned long phys_base)
 | |
| {
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 | |
| 		unsigned long ramdisk_image;
 | |
| 
 | |
| 		/* Older versions of the bootloader only supported a
 | |
| 		 * 32-bit physical address for the ramdisk image
 | |
| 		 * location, stored at sparc_ramdisk_image.  Newer
 | |
| 		 * SILO versions set sparc_ramdisk_image to zero and
 | |
| 		 * provide a full 64-bit physical address at
 | |
| 		 * sparc_ramdisk_image64.
 | |
| 		 */
 | |
| 		ramdisk_image = sparc_ramdisk_image;
 | |
| 		if (!ramdisk_image)
 | |
| 			ramdisk_image = sparc_ramdisk_image64;
 | |
| 
 | |
| 		/* Another bootloader quirk.  The bootloader normalizes
 | |
| 		 * the physical address to KERNBASE, so we have to
 | |
| 		 * factor that back out and add in the lowest valid
 | |
| 		 * physical page address to get the true physical address.
 | |
| 		 */
 | |
| 		ramdisk_image -= KERNBASE;
 | |
| 		ramdisk_image += phys_base;
 | |
| 
 | |
| 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 | |
| 			ramdisk_image, sparc_ramdisk_size);
 | |
| 
 | |
| 		initrd_start = ramdisk_image;
 | |
| 		initrd_end = ramdisk_image + sparc_ramdisk_size;
 | |
| 
 | |
| 		memblock_reserve(initrd_start, sparc_ramdisk_size);
 | |
| 
 | |
| 		initrd_start += PAGE_OFFSET;
 | |
| 		initrd_end += PAGE_OFFSET;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct node_mem_mask {
 | |
| 	unsigned long mask;
 | |
| 	unsigned long match;
 | |
| };
 | |
| static struct node_mem_mask node_masks[MAX_NUMNODES];
 | |
| static int num_node_masks;
 | |
| 
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| 
 | |
| struct mdesc_mlgroup {
 | |
| 	u64	node;
 | |
| 	u64	latency;
 | |
| 	u64	match;
 | |
| 	u64	mask;
 | |
| };
 | |
| 
 | |
| static struct mdesc_mlgroup *mlgroups;
 | |
| static int num_mlgroups;
 | |
| 
 | |
| int numa_cpu_lookup_table[NR_CPUS];
 | |
| cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 | |
| 
 | |
| struct mdesc_mblock {
 | |
| 	u64	base;
 | |
| 	u64	size;
 | |
| 	u64	offset; /* RA-to-PA */
 | |
| };
 | |
| static struct mdesc_mblock *mblocks;
 | |
| static int num_mblocks;
 | |
| 
 | |
| static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
 | |
| {
 | |
| 	struct mdesc_mblock *m = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < num_mblocks; i++) {
 | |
| 		m = &mblocks[i];
 | |
| 
 | |
| 		if (addr >= m->base &&
 | |
| 		    addr < (m->base + m->size)) {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return m;
 | |
| }
 | |
| 
 | |
| static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
 | |
| {
 | |
| 	int prev_nid, new_nid;
 | |
| 
 | |
| 	prev_nid = -1;
 | |
| 	for ( ; start < end; start += PAGE_SIZE) {
 | |
| 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
 | |
| 			struct node_mem_mask *p = &node_masks[new_nid];
 | |
| 
 | |
| 			if ((start & p->mask) == p->match) {
 | |
| 				if (prev_nid == -1)
 | |
| 					prev_nid = new_nid;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (new_nid == num_node_masks) {
 | |
| 			prev_nid = 0;
 | |
| 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
 | |
| 				  start);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (prev_nid != new_nid)
 | |
| 			break;
 | |
| 	}
 | |
| 	*nid = prev_nid;
 | |
| 
 | |
| 	return start > end ? end : start;
 | |
| }
 | |
| 
 | |
| static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
 | |
| {
 | |
| 	u64 ret_end, pa_start, m_mask, m_match, m_end;
 | |
| 	struct mdesc_mblock *mblock;
 | |
| 	int _nid, i;
 | |
| 
 | |
| 	if (tlb_type != hypervisor)
 | |
| 		return memblock_nid_range_sun4u(start, end, nid);
 | |
| 
 | |
| 	mblock = addr_to_mblock(start);
 | |
| 	if (!mblock) {
 | |
| 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
 | |
| 			  start);
 | |
| 
 | |
| 		_nid = 0;
 | |
| 		ret_end = end;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	pa_start = start + mblock->offset;
 | |
| 	m_match = 0;
 | |
| 	m_mask = 0;
 | |
| 
 | |
| 	for (_nid = 0; _nid < num_node_masks; _nid++) {
 | |
| 		struct node_mem_mask *const m = &node_masks[_nid];
 | |
| 
 | |
| 		if ((pa_start & m->mask) == m->match) {
 | |
| 			m_match = m->match;
 | |
| 			m_mask = m->mask;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (num_node_masks == _nid) {
 | |
| 		/* We could not find NUMA group, so default to 0, but lets
 | |
| 		 * search for latency group, so we could calculate the correct
 | |
| 		 * end address that we return
 | |
| 		 */
 | |
| 		_nid = 0;
 | |
| 
 | |
| 		for (i = 0; i < num_mlgroups; i++) {
 | |
| 			struct mdesc_mlgroup *const m = &mlgroups[i];
 | |
| 
 | |
| 			if ((pa_start & m->mask) == m->match) {
 | |
| 				m_match = m->match;
 | |
| 				m_mask = m->mask;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (i == num_mlgroups) {
 | |
| 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
 | |
| 				  start);
 | |
| 
 | |
| 			ret_end = end;
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Each latency group has match and mask, and each memory block has an
 | |
| 	 * offset.  An address belongs to a latency group if its address matches
 | |
| 	 * the following formula: ((addr + offset) & mask) == match
 | |
| 	 * It is, however, slow to check every single page if it matches a
 | |
| 	 * particular latency group. As optimization we calculate end value by
 | |
| 	 * using bit arithmetics.
 | |
| 	 */
 | |
| 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
 | |
| 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
 | |
| 	ret_end = m_end > end ? end : m_end;
 | |
| 
 | |
| done:
 | |
| 	*nid = _nid;
 | |
| 	return ret_end;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* This must be invoked after performing all of the necessary
 | |
|  * memblock_set_node() calls for 'nid'.  We need to be able to get
 | |
|  * correct data from get_pfn_range_for_nid().
 | |
|  */
 | |
| static void __init allocate_node_data(int nid)
 | |
| {
 | |
| 	struct pglist_data *p;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	unsigned long paddr;
 | |
| 
 | |
| 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 | |
| 	if (!paddr) {
 | |
| 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 	NODE_DATA(nid) = __va(paddr);
 | |
| 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 | |
| 
 | |
| 	NODE_DATA(nid)->node_id = nid;
 | |
| #endif
 | |
| 
 | |
| 	p = NODE_DATA(nid);
 | |
| 
 | |
| 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | |
| 	p->node_start_pfn = start_pfn;
 | |
| 	p->node_spanned_pages = end_pfn - start_pfn;
 | |
| }
 | |
| 
 | |
| static void init_node_masks_nonnuma(void)
 | |
| {
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	int i;
 | |
| #endif
 | |
| 
 | |
| 	numadbg("Initializing tables for non-numa.\n");
 | |
| 
 | |
| 	node_masks[0].mask = 0;
 | |
| 	node_masks[0].match = 0;
 | |
| 	num_node_masks = 1;
 | |
| 
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	for (i = 0; i < NR_CPUS; i++)
 | |
| 		numa_cpu_lookup_table[i] = 0;
 | |
| 
 | |
| 	cpumask_setall(&numa_cpumask_lookup_table[0]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| struct pglist_data *node_data[MAX_NUMNODES];
 | |
| 
 | |
| EXPORT_SYMBOL(numa_cpu_lookup_table);
 | |
| EXPORT_SYMBOL(numa_cpumask_lookup_table);
 | |
| EXPORT_SYMBOL(node_data);
 | |
| 
 | |
| static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 | |
| 				   u32 cfg_handle)
 | |
| {
 | |
| 	u64 arc;
 | |
| 
 | |
| 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 | |
| 		u64 target = mdesc_arc_target(md, arc);
 | |
| 		const u64 *val;
 | |
| 
 | |
| 		val = mdesc_get_property(md, target,
 | |
| 					 "cfg-handle", NULL);
 | |
| 		if (val && *val == cfg_handle)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 | |
| 				    u32 cfg_handle)
 | |
| {
 | |
| 	u64 arc, candidate, best_latency = ~(u64)0;
 | |
| 
 | |
| 	candidate = MDESC_NODE_NULL;
 | |
| 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 | |
| 		u64 target = mdesc_arc_target(md, arc);
 | |
| 		const char *name = mdesc_node_name(md, target);
 | |
| 		const u64 *val;
 | |
| 
 | |
| 		if (strcmp(name, "pio-latency-group"))
 | |
| 			continue;
 | |
| 
 | |
| 		val = mdesc_get_property(md, target, "latency", NULL);
 | |
| 		if (!val)
 | |
| 			continue;
 | |
| 
 | |
| 		if (*val < best_latency) {
 | |
| 			candidate = target;
 | |
| 			best_latency = *val;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (candidate == MDESC_NODE_NULL)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 | |
| }
 | |
| 
 | |
| int of_node_to_nid(struct device_node *dp)
 | |
| {
 | |
| 	const struct linux_prom64_registers *regs;
 | |
| 	struct mdesc_handle *md;
 | |
| 	u32 cfg_handle;
 | |
| 	int count, nid;
 | |
| 	u64 grp;
 | |
| 
 | |
| 	/* This is the right thing to do on currently supported
 | |
| 	 * SUN4U NUMA platforms as well, as the PCI controller does
 | |
| 	 * not sit behind any particular memory controller.
 | |
| 	 */
 | |
| 	if (!mlgroups)
 | |
| 		return -1;
 | |
| 
 | |
| 	regs = of_get_property(dp, "reg", NULL);
 | |
| 	if (!regs)
 | |
| 		return -1;
 | |
| 
 | |
| 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 | |
| 
 | |
| 	md = mdesc_grab();
 | |
| 
 | |
| 	count = 0;
 | |
| 	nid = -1;
 | |
| 	mdesc_for_each_node_by_name(md, grp, "group") {
 | |
| 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 | |
| 			nid = count;
 | |
| 			break;
 | |
| 		}
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	mdesc_release(md);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| static void __init add_node_ranges(void)
 | |
| {
 | |
| 	struct memblock_region *reg;
 | |
| 	unsigned long prev_max;
 | |
| 
 | |
| memblock_resized:
 | |
| 	prev_max = memblock.memory.max;
 | |
| 
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		unsigned long size = reg->size;
 | |
| 		unsigned long start, end;
 | |
| 
 | |
| 		start = reg->base;
 | |
| 		end = start + size;
 | |
| 		while (start < end) {
 | |
| 			unsigned long this_end;
 | |
| 			int nid;
 | |
| 
 | |
| 			this_end = memblock_nid_range(start, end, &nid);
 | |
| 
 | |
| 			numadbg("Setting memblock NUMA node nid[%d] "
 | |
| 				"start[%lx] end[%lx]\n",
 | |
| 				nid, start, this_end);
 | |
| 
 | |
| 			memblock_set_node(start, this_end - start,
 | |
| 					  &memblock.memory, nid);
 | |
| 			if (memblock.memory.max != prev_max)
 | |
| 				goto memblock_resized;
 | |
| 			start = this_end;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init grab_mlgroups(struct mdesc_handle *md)
 | |
| {
 | |
| 	unsigned long paddr;
 | |
| 	int count = 0;
 | |
| 	u64 node;
 | |
| 
 | |
| 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
 | |
| 		count++;
 | |
| 	if (!count)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
 | |
| 			  SMP_CACHE_BYTES);
 | |
| 	if (!paddr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mlgroups = __va(paddr);
 | |
| 	num_mlgroups = count;
 | |
| 
 | |
| 	count = 0;
 | |
| 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
 | |
| 		struct mdesc_mlgroup *m = &mlgroups[count++];
 | |
| 		const u64 *val;
 | |
| 
 | |
| 		m->node = node;
 | |
| 
 | |
| 		val = mdesc_get_property(md, node, "latency", NULL);
 | |
| 		m->latency = *val;
 | |
| 		val = mdesc_get_property(md, node, "address-match", NULL);
 | |
| 		m->match = *val;
 | |
| 		val = mdesc_get_property(md, node, "address-mask", NULL);
 | |
| 		m->mask = *val;
 | |
| 
 | |
| 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
 | |
| 			"match[%llx] mask[%llx]\n",
 | |
| 			count - 1, m->node, m->latency, m->match, m->mask);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init grab_mblocks(struct mdesc_handle *md)
 | |
| {
 | |
| 	unsigned long paddr;
 | |
| 	int count = 0;
 | |
| 	u64 node;
 | |
| 
 | |
| 	mdesc_for_each_node_by_name(md, node, "mblock")
 | |
| 		count++;
 | |
| 	if (!count)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
 | |
| 			  SMP_CACHE_BYTES);
 | |
| 	if (!paddr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mblocks = __va(paddr);
 | |
| 	num_mblocks = count;
 | |
| 
 | |
| 	count = 0;
 | |
| 	mdesc_for_each_node_by_name(md, node, "mblock") {
 | |
| 		struct mdesc_mblock *m = &mblocks[count++];
 | |
| 		const u64 *val;
 | |
| 
 | |
| 		val = mdesc_get_property(md, node, "base", NULL);
 | |
| 		m->base = *val;
 | |
| 		val = mdesc_get_property(md, node, "size", NULL);
 | |
| 		m->size = *val;
 | |
| 		val = mdesc_get_property(md, node,
 | |
| 					 "address-congruence-offset", NULL);
 | |
| 
 | |
| 		/* The address-congruence-offset property is optional.
 | |
| 		 * Explicity zero it be identifty this.
 | |
| 		 */
 | |
| 		if (val)
 | |
| 			m->offset = *val;
 | |
| 		else
 | |
| 			m->offset = 0UL;
 | |
| 
 | |
| 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
 | |
| 			count - 1, m->base, m->size, m->offset);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
 | |
| 					       u64 grp, cpumask_t *mask)
 | |
| {
 | |
| 	u64 arc;
 | |
| 
 | |
| 	cpumask_clear(mask);
 | |
| 
 | |
| 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
 | |
| 		u64 target = mdesc_arc_target(md, arc);
 | |
| 		const char *name = mdesc_node_name(md, target);
 | |
| 		const u64 *id;
 | |
| 
 | |
| 		if (strcmp(name, "cpu"))
 | |
| 			continue;
 | |
| 		id = mdesc_get_property(md, target, "id", NULL);
 | |
| 		if (*id < nr_cpu_ids)
 | |
| 			cpumask_set_cpu(*id, mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < num_mlgroups; i++) {
 | |
| 		struct mdesc_mlgroup *m = &mlgroups[i];
 | |
| 		if (m->node == node)
 | |
| 			return m;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int __node_distance(int from, int to)
 | |
| {
 | |
| 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
 | |
| 		pr_warn("Returning default NUMA distance value for %d->%d\n",
 | |
| 			from, to);
 | |
| 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
 | |
| 	}
 | |
| 	return numa_latency[from][to];
 | |
| }
 | |
| EXPORT_SYMBOL(__node_distance);
 | |
| 
 | |
| static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		struct node_mem_mask *n = &node_masks[i];
 | |
| 
 | |
| 		if ((grp->mask == n->mask) && (grp->match == n->match))
 | |
| 			break;
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
 | |
| 						 u64 grp, int index)
 | |
| {
 | |
| 	u64 arc;
 | |
| 
 | |
| 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 | |
| 		int tnode;
 | |
| 		u64 target = mdesc_arc_target(md, arc);
 | |
| 		struct mdesc_mlgroup *m = find_mlgroup(target);
 | |
| 
 | |
| 		if (!m)
 | |
| 			continue;
 | |
| 		tnode = find_best_numa_node_for_mlgroup(m);
 | |
| 		if (tnode == MAX_NUMNODES)
 | |
| 			continue;
 | |
| 		numa_latency[index][tnode] = m->latency;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
 | |
| 				      int index)
 | |
| {
 | |
| 	struct mdesc_mlgroup *candidate = NULL;
 | |
| 	u64 arc, best_latency = ~(u64)0;
 | |
| 	struct node_mem_mask *n;
 | |
| 
 | |
| 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 | |
| 		u64 target = mdesc_arc_target(md, arc);
 | |
| 		struct mdesc_mlgroup *m = find_mlgroup(target);
 | |
| 		if (!m)
 | |
| 			continue;
 | |
| 		if (m->latency < best_latency) {
 | |
| 			candidate = m;
 | |
| 			best_latency = m->latency;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!candidate)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (num_node_masks != index) {
 | |
| 		printk(KERN_ERR "Inconsistent NUMA state, "
 | |
| 		       "index[%d] != num_node_masks[%d]\n",
 | |
| 		       index, num_node_masks);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	n = &node_masks[num_node_masks++];
 | |
| 
 | |
| 	n->mask = candidate->mask;
 | |
| 	n->match = candidate->match;
 | |
| 
 | |
| 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
 | |
| 		index, n->mask, n->match, candidate->latency);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
 | |
| 					 int index)
 | |
| {
 | |
| 	cpumask_t mask;
 | |
| 	int cpu;
 | |
| 
 | |
| 	numa_parse_mdesc_group_cpus(md, grp, &mask);
 | |
| 
 | |
| 	for_each_cpu(cpu, &mask)
 | |
| 		numa_cpu_lookup_table[cpu] = index;
 | |
| 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
 | |
| 
 | |
| 	if (numa_debug) {
 | |
| 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
 | |
| 		for_each_cpu(cpu, &mask)
 | |
| 			printk("%d ", cpu);
 | |
| 		printk("]\n");
 | |
| 	}
 | |
| 
 | |
| 	return numa_attach_mlgroup(md, grp, index);
 | |
| }
 | |
| 
 | |
| static int __init numa_parse_mdesc(void)
 | |
| {
 | |
| 	struct mdesc_handle *md = mdesc_grab();
 | |
| 	int i, j, err, count;
 | |
| 	u64 node;
 | |
| 
 | |
| 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
 | |
| 	if (node == MDESC_NODE_NULL) {
 | |
| 		mdesc_release(md);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	err = grab_mblocks(md);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = grab_mlgroups(md);
 | |
| 	if (err < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	count = 0;
 | |
| 	mdesc_for_each_node_by_name(md, node, "group") {
 | |
| 		err = numa_parse_mdesc_group(md, node, count);
 | |
| 		if (err < 0)
 | |
| 			break;
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	count = 0;
 | |
| 	mdesc_for_each_node_by_name(md, node, "group") {
 | |
| 		find_numa_latencies_for_group(md, node, count);
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		u64 self_latency = numa_latency[i][i];
 | |
| 
 | |
| 		for (j = 0; j < MAX_NUMNODES; j++) {
 | |
| 			numa_latency[i][j] =
 | |
| 				(numa_latency[i][j] * LOCAL_DISTANCE) /
 | |
| 				self_latency;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	add_node_ranges();
 | |
| 
 | |
| 	for (i = 0; i < num_node_masks; i++) {
 | |
| 		allocate_node_data(i);
 | |
| 		node_set_online(i);
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| out:
 | |
| 	mdesc_release(md);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __init numa_parse_jbus(void)
 | |
| {
 | |
| 	unsigned long cpu, index;
 | |
| 
 | |
| 	/* NUMA node id is encoded in bits 36 and higher, and there is
 | |
| 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
 | |
| 	 */
 | |
| 	index = 0;
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		numa_cpu_lookup_table[cpu] = index;
 | |
| 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
 | |
| 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
 | |
| 		node_masks[index].match = cpu << 36UL;
 | |
| 
 | |
| 		index++;
 | |
| 	}
 | |
| 	num_node_masks = index;
 | |
| 
 | |
| 	add_node_ranges();
 | |
| 
 | |
| 	for (index = 0; index < num_node_masks; index++) {
 | |
| 		allocate_node_data(index);
 | |
| 		node_set_online(index);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init numa_parse_sun4u(void)
 | |
| {
 | |
| 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 | |
| 		unsigned long ver;
 | |
| 
 | |
| 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 | |
| 		if ((ver >> 32UL) == __JALAPENO_ID ||
 | |
| 		    (ver >> 32UL) == __SERRANO_ID)
 | |
| 			return numa_parse_jbus();
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int __init bootmem_init_numa(void)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int err = -1;
 | |
| 
 | |
| 	numadbg("bootmem_init_numa()\n");
 | |
| 
 | |
| 	/* Some sane defaults for numa latency values */
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		for (j = 0; j < MAX_NUMNODES; j++)
 | |
| 			numa_latency[i][j] = (i == j) ?
 | |
| 				LOCAL_DISTANCE : REMOTE_DISTANCE;
 | |
| 	}
 | |
| 
 | |
| 	if (numa_enabled) {
 | |
| 		if (tlb_type == hypervisor)
 | |
| 			err = numa_parse_mdesc();
 | |
| 		else
 | |
| 			err = numa_parse_sun4u();
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static int bootmem_init_numa(void)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void __init bootmem_init_nonnuma(void)
 | |
| {
 | |
| 	unsigned long top_of_ram = memblock_end_of_DRAM();
 | |
| 	unsigned long total_ram = memblock_phys_mem_size();
 | |
| 
 | |
| 	numadbg("bootmem_init_nonnuma()\n");
 | |
| 
 | |
| 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 | |
| 	       top_of_ram, total_ram);
 | |
| 	printk(KERN_INFO "Memory hole size: %ldMB\n",
 | |
| 	       (top_of_ram - total_ram) >> 20);
 | |
| 
 | |
| 	init_node_masks_nonnuma();
 | |
| 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
 | |
| 	allocate_node_data(0);
 | |
| 	node_set_online(0);
 | |
| }
 | |
| 
 | |
| static unsigned long __init bootmem_init(unsigned long phys_base)
 | |
| {
 | |
| 	unsigned long end_pfn;
 | |
| 
 | |
| 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 	max_pfn = max_low_pfn = end_pfn;
 | |
| 	min_low_pfn = (phys_base >> PAGE_SHIFT);
 | |
| 
 | |
| 	if (bootmem_init_numa() < 0)
 | |
| 		bootmem_init_nonnuma();
 | |
| 
 | |
| 	/* Dump memblock with node info. */
 | |
| 	memblock_dump_all();
 | |
| 
 | |
| 	/* XXX cpu notifier XXX */
 | |
| 
 | |
| 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
 | |
| 	sparse_init();
 | |
| 
 | |
| 	return end_pfn;
 | |
| }
 | |
| 
 | |
| static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
 | |
| static int pall_ents __initdata;
 | |
| 
 | |
| static unsigned long max_phys_bits = 40;
 | |
| 
 | |
| bool kern_addr_valid(unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if ((long)addr < 0L) {
 | |
| 		unsigned long pa = __pa(addr);
 | |
| 
 | |
| 		if ((pa >> max_phys_bits) != 0UL)
 | |
| 			return false;
 | |
| 
 | |
| 		return pfn_valid(pa >> PAGE_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	if (addr >= (unsigned long) KERNBASE &&
 | |
| 	    addr < (unsigned long)&_end)
 | |
| 		return true;
 | |
| 
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return 0;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	if (pud_none(*pud))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pud_large(*pud))
 | |
| 		return pfn_valid(pud_pfn(*pud));
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_large(*pmd))
 | |
| 		return pfn_valid(pmd_pfn(*pmd));
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	if (pte_none(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pfn_valid(pte_pfn(*pte));
 | |
| }
 | |
| EXPORT_SYMBOL(kern_addr_valid);
 | |
| 
 | |
| static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
 | |
| 					      unsigned long vend,
 | |
| 					      pud_t *pud)
 | |
| {
 | |
| 	const unsigned long mask16gb = (1UL << 34) - 1UL;
 | |
| 	u64 pte_val = vstart;
 | |
| 
 | |
| 	/* Each PUD is 8GB */
 | |
| 	if ((vstart & mask16gb) ||
 | |
| 	    (vend - vstart <= mask16gb)) {
 | |
| 		pte_val ^= kern_linear_pte_xor[2];
 | |
| 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
 | |
| 
 | |
| 		return vstart + PUD_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	pte_val ^= kern_linear_pte_xor[3];
 | |
| 	pte_val |= _PAGE_PUD_HUGE;
 | |
| 
 | |
| 	vend = vstart + mask16gb + 1UL;
 | |
| 	while (vstart < vend) {
 | |
| 		pud_val(*pud) = pte_val;
 | |
| 
 | |
| 		pte_val += PUD_SIZE;
 | |
| 		vstart += PUD_SIZE;
 | |
| 		pud++;
 | |
| 	}
 | |
| 	return vstart;
 | |
| }
 | |
| 
 | |
| static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
 | |
| 				   bool guard)
 | |
| {
 | |
| 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
 | |
| 					      unsigned long vend,
 | |
| 					      pmd_t *pmd)
 | |
| {
 | |
| 	const unsigned long mask256mb = (1UL << 28) - 1UL;
 | |
| 	const unsigned long mask2gb = (1UL << 31) - 1UL;
 | |
| 	u64 pte_val = vstart;
 | |
| 
 | |
| 	/* Each PMD is 8MB */
 | |
| 	if ((vstart & mask256mb) ||
 | |
| 	    (vend - vstart <= mask256mb)) {
 | |
| 		pte_val ^= kern_linear_pte_xor[0];
 | |
| 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
 | |
| 
 | |
| 		return vstart + PMD_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if ((vstart & mask2gb) ||
 | |
| 	    (vend - vstart <= mask2gb)) {
 | |
| 		pte_val ^= kern_linear_pte_xor[1];
 | |
| 		pte_val |= _PAGE_PMD_HUGE;
 | |
| 		vend = vstart + mask256mb + 1UL;
 | |
| 	} else {
 | |
| 		pte_val ^= kern_linear_pte_xor[2];
 | |
| 		pte_val |= _PAGE_PMD_HUGE;
 | |
| 		vend = vstart + mask2gb + 1UL;
 | |
| 	}
 | |
| 
 | |
| 	while (vstart < vend) {
 | |
| 		pmd_val(*pmd) = pte_val;
 | |
| 
 | |
| 		pte_val += PMD_SIZE;
 | |
| 		vstart += PMD_SIZE;
 | |
| 		pmd++;
 | |
| 	}
 | |
| 
 | |
| 	return vstart;
 | |
| }
 | |
| 
 | |
| static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
 | |
| 				   bool guard)
 | |
| {
 | |
| 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static unsigned long __ref kernel_map_range(unsigned long pstart,
 | |
| 					    unsigned long pend, pgprot_t prot,
 | |
| 					    bool use_huge)
 | |
| {
 | |
| 	unsigned long vstart = PAGE_OFFSET + pstart;
 | |
| 	unsigned long vend = PAGE_OFFSET + pend;
 | |
| 	unsigned long alloc_bytes = 0UL;
 | |
| 
 | |
| 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
 | |
| 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
 | |
| 			    vstart, vend);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	while (vstart < vend) {
 | |
| 		unsigned long this_end, paddr = __pa(vstart);
 | |
| 		pgd_t *pgd = pgd_offset_k(vstart);
 | |
| 		pud_t *pud;
 | |
| 		pmd_t *pmd;
 | |
| 		pte_t *pte;
 | |
| 
 | |
| 		if (pgd_none(*pgd)) {
 | |
| 			pud_t *new;
 | |
| 
 | |
| 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 | |
| 			alloc_bytes += PAGE_SIZE;
 | |
| 			pgd_populate(&init_mm, pgd, new);
 | |
| 		}
 | |
| 		pud = pud_offset(pgd, vstart);
 | |
| 		if (pud_none(*pud)) {
 | |
| 			pmd_t *new;
 | |
| 
 | |
| 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
 | |
| 				vstart = kernel_map_hugepud(vstart, vend, pud);
 | |
| 				continue;
 | |
| 			}
 | |
| 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 | |
| 			alloc_bytes += PAGE_SIZE;
 | |
| 			pud_populate(&init_mm, pud, new);
 | |
| 		}
 | |
| 
 | |
| 		pmd = pmd_offset(pud, vstart);
 | |
| 		if (pmd_none(*pmd)) {
 | |
| 			pte_t *new;
 | |
| 
 | |
| 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
 | |
| 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
 | |
| 				continue;
 | |
| 			}
 | |
| 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 | |
| 			alloc_bytes += PAGE_SIZE;
 | |
| 			pmd_populate_kernel(&init_mm, pmd, new);
 | |
| 		}
 | |
| 
 | |
| 		pte = pte_offset_kernel(pmd, vstart);
 | |
| 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
 | |
| 		if (this_end > vend)
 | |
| 			this_end = vend;
 | |
| 
 | |
| 		while (vstart < this_end) {
 | |
| 			pte_val(*pte) = (paddr | pgprot_val(prot));
 | |
| 
 | |
| 			vstart += PAGE_SIZE;
 | |
| 			paddr += PAGE_SIZE;
 | |
| 			pte++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return alloc_bytes;
 | |
| }
 | |
| 
 | |
| static void __init flush_all_kernel_tsbs(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
 | |
| 		struct tsb *ent = &swapper_tsb[i];
 | |
| 
 | |
| 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 | |
| 	}
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
 | |
| 		struct tsb *ent = &swapper_4m_tsb[i];
 | |
| 
 | |
| 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| extern unsigned int kvmap_linear_patch[1];
 | |
| 
 | |
| static void __init kernel_physical_mapping_init(void)
 | |
| {
 | |
| 	unsigned long i, mem_alloced = 0UL;
 | |
| 	bool use_huge = true;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	use_huge = false;
 | |
| #endif
 | |
| 	for (i = 0; i < pall_ents; i++) {
 | |
| 		unsigned long phys_start, phys_end;
 | |
| 
 | |
| 		phys_start = pall[i].phys_addr;
 | |
| 		phys_end = phys_start + pall[i].reg_size;
 | |
| 
 | |
| 		mem_alloced += kernel_map_range(phys_start, phys_end,
 | |
| 						PAGE_KERNEL, use_huge);
 | |
| 	}
 | |
| 
 | |
| 	printk("Allocated %ld bytes for kernel page tables.\n",
 | |
| 	       mem_alloced);
 | |
| 
 | |
| 	kvmap_linear_patch[0] = 0x01000000; /* nop */
 | |
| 	flushi(&kvmap_linear_patch[0]);
 | |
| 
 | |
| 	flush_all_kernel_tsbs();
 | |
| 
 | |
| 	__flush_tlb_all();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| void __kernel_map_pages(struct page *page, int numpages, int enable)
 | |
| {
 | |
| 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
 | |
| 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
 | |
| 
 | |
| 	kernel_map_range(phys_start, phys_end,
 | |
| 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
 | |
| 
 | |
| 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
 | |
| 			       PAGE_OFFSET + phys_end);
 | |
| 
 | |
| 	/* we should perform an IPI and flush all tlbs,
 | |
| 	 * but that can deadlock->flush only current cpu.
 | |
| 	 */
 | |
| 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
 | |
| 				 PAGE_OFFSET + phys_end);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| unsigned long __init find_ecache_flush_span(unsigned long size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < pavail_ents; i++) {
 | |
| 		if (pavail[i].reg_size >= size)
 | |
| 			return pavail[i].phys_addr;
 | |
| 	}
 | |
| 
 | |
| 	return ~0UL;
 | |
| }
 | |
| 
 | |
| unsigned long PAGE_OFFSET;
 | |
| EXPORT_SYMBOL(PAGE_OFFSET);
 | |
| 
 | |
| unsigned long VMALLOC_END   = 0x0000010000000000UL;
 | |
| EXPORT_SYMBOL(VMALLOC_END);
 | |
| 
 | |
| unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
 | |
| unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
 | |
| 
 | |
| static void __init setup_page_offset(void)
 | |
| {
 | |
| 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 | |
| 		/* Cheetah/Panther support a full 64-bit virtual
 | |
| 		 * address, so we can use all that our page tables
 | |
| 		 * support.
 | |
| 		 */
 | |
| 		sparc64_va_hole_top =    0xfff0000000000000UL;
 | |
| 		sparc64_va_hole_bottom = 0x0010000000000000UL;
 | |
| 
 | |
| 		max_phys_bits = 42;
 | |
| 	} else if (tlb_type == hypervisor) {
 | |
| 		switch (sun4v_chip_type) {
 | |
| 		case SUN4V_CHIP_NIAGARA1:
 | |
| 		case SUN4V_CHIP_NIAGARA2:
 | |
| 			/* T1 and T2 support 48-bit virtual addresses.  */
 | |
| 			sparc64_va_hole_top =    0xffff800000000000UL;
 | |
| 			sparc64_va_hole_bottom = 0x0000800000000000UL;
 | |
| 
 | |
| 			max_phys_bits = 39;
 | |
| 			break;
 | |
| 		case SUN4V_CHIP_NIAGARA3:
 | |
| 			/* T3 supports 48-bit virtual addresses.  */
 | |
| 			sparc64_va_hole_top =    0xffff800000000000UL;
 | |
| 			sparc64_va_hole_bottom = 0x0000800000000000UL;
 | |
| 
 | |
| 			max_phys_bits = 43;
 | |
| 			break;
 | |
| 		case SUN4V_CHIP_NIAGARA4:
 | |
| 		case SUN4V_CHIP_NIAGARA5:
 | |
| 		case SUN4V_CHIP_SPARC64X:
 | |
| 		case SUN4V_CHIP_SPARC_M6:
 | |
| 			/* T4 and later support 52-bit virtual addresses.  */
 | |
| 			sparc64_va_hole_top =    0xfff8000000000000UL;
 | |
| 			sparc64_va_hole_bottom = 0x0008000000000000UL;
 | |
| 			max_phys_bits = 47;
 | |
| 			break;
 | |
| 		case SUN4V_CHIP_SPARC_M7:
 | |
| 		case SUN4V_CHIP_SPARC_SN:
 | |
| 			/* M7 and later support 52-bit virtual addresses.  */
 | |
| 			sparc64_va_hole_top =    0xfff8000000000000UL;
 | |
| 			sparc64_va_hole_bottom = 0x0008000000000000UL;
 | |
| 			max_phys_bits = 49;
 | |
| 			break;
 | |
| 		case SUN4V_CHIP_SPARC_M8:
 | |
| 		default:
 | |
| 			/* M8 and later support 54-bit virtual addresses.
 | |
| 			 * However, restricting M8 and above VA bits to 53
 | |
| 			 * as 4-level page table cannot support more than
 | |
| 			 * 53 VA bits.
 | |
| 			 */
 | |
| 			sparc64_va_hole_top =    0xfff0000000000000UL;
 | |
| 			sparc64_va_hole_bottom = 0x0010000000000000UL;
 | |
| 			max_phys_bits = 51;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
 | |
| 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
 | |
| 			    max_phys_bits);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 
 | |
| 	PAGE_OFFSET = sparc64_va_hole_top;
 | |
| 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
 | |
| 		       (sparc64_va_hole_bottom >> 2));
 | |
| 
 | |
| 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
 | |
| 		PAGE_OFFSET, max_phys_bits);
 | |
| 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
 | |
| 		VMALLOC_START, VMALLOC_END);
 | |
| 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
 | |
| 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
 | |
| }
 | |
| 
 | |
| static void __init tsb_phys_patch(void)
 | |
| {
 | |
| 	struct tsb_ldquad_phys_patch_entry *pquad;
 | |
| 	struct tsb_phys_patch_entry *p;
 | |
| 
 | |
| 	pquad = &__tsb_ldquad_phys_patch;
 | |
| 	while (pquad < &__tsb_ldquad_phys_patch_end) {
 | |
| 		unsigned long addr = pquad->addr;
 | |
| 
 | |
| 		if (tlb_type == hypervisor)
 | |
| 			*(unsigned int *) addr = pquad->sun4v_insn;
 | |
| 		else
 | |
| 			*(unsigned int *) addr = pquad->sun4u_insn;
 | |
| 		wmb();
 | |
| 		__asm__ __volatile__("flush	%0"
 | |
| 				     : /* no outputs */
 | |
| 				     : "r" (addr));
 | |
| 
 | |
| 		pquad++;
 | |
| 	}
 | |
| 
 | |
| 	p = &__tsb_phys_patch;
 | |
| 	while (p < &__tsb_phys_patch_end) {
 | |
| 		unsigned long addr = p->addr;
 | |
| 
 | |
| 		*(unsigned int *) addr = p->insn;
 | |
| 		wmb();
 | |
| 		__asm__ __volatile__("flush	%0"
 | |
| 				     : /* no outputs */
 | |
| 				     : "r" (addr));
 | |
| 
 | |
| 		p++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Don't mark as init, we give this to the Hypervisor.  */
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| #define NUM_KTSB_DESCR	2
 | |
| #else
 | |
| #define NUM_KTSB_DESCR	1
 | |
| #endif
 | |
| static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
 | |
| 
 | |
| /* The swapper TSBs are loaded with a base sequence of:
 | |
|  *
 | |
|  *	sethi	%uhi(SYMBOL), REG1
 | |
|  *	sethi	%hi(SYMBOL), REG2
 | |
|  *	or	REG1, %ulo(SYMBOL), REG1
 | |
|  *	or	REG2, %lo(SYMBOL), REG2
 | |
|  *	sllx	REG1, 32, REG1
 | |
|  *	or	REG1, REG2, REG1
 | |
|  *
 | |
|  * When we use physical addressing for the TSB accesses, we patch the
 | |
|  * first four instructions in the above sequence.
 | |
|  */
 | |
| 
 | |
| static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
 | |
| {
 | |
| 	unsigned long high_bits, low_bits;
 | |
| 
 | |
| 	high_bits = (pa >> 32) & 0xffffffff;
 | |
| 	low_bits = (pa >> 0) & 0xffffffff;
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
 | |
| 
 | |
| 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
 | |
| 		__asm__ __volatile__("flush	%0" : : "r" (ia));
 | |
| 
 | |
| 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
 | |
| 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
 | |
| 
 | |
| 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
 | |
| 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
 | |
| 
 | |
| 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
 | |
| 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
 | |
| 
 | |
| 		start++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ktsb_phys_patch(void)
 | |
| {
 | |
| 	extern unsigned int __swapper_tsb_phys_patch;
 | |
| 	extern unsigned int __swapper_tsb_phys_patch_end;
 | |
| 	unsigned long ktsb_pa;
 | |
| 
 | |
| 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
 | |
| 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
 | |
| 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	{
 | |
| 	extern unsigned int __swapper_4m_tsb_phys_patch;
 | |
| 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
 | |
| 	ktsb_pa = (kern_base +
 | |
| 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
 | |
| 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
 | |
| 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init sun4v_ktsb_init(void)
 | |
| {
 | |
| 	unsigned long ktsb_pa;
 | |
| 
 | |
| 	/* First KTSB for PAGE_SIZE mappings.  */
 | |
| 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
 | |
| 
 | |
| 	switch (PAGE_SIZE) {
 | |
| 	case 8 * 1024:
 | |
| 	default:
 | |
| 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
 | |
| 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
 | |
| 		break;
 | |
| 
 | |
| 	case 64 * 1024:
 | |
| 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
 | |
| 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
 | |
| 		break;
 | |
| 
 | |
| 	case 512 * 1024:
 | |
| 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
 | |
| 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
 | |
| 		break;
 | |
| 
 | |
| 	case 4 * 1024 * 1024:
 | |
| 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
 | |
| 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ktsb_descr[0].assoc = 1;
 | |
| 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
 | |
| 	ktsb_descr[0].ctx_idx = 0;
 | |
| 	ktsb_descr[0].tsb_base = ktsb_pa;
 | |
| 	ktsb_descr[0].resv = 0;
 | |
| 
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
 | |
| 	ktsb_pa = (kern_base +
 | |
| 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
 | |
| 
 | |
| 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
 | |
| 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
 | |
| 				    HV_PGSZ_MASK_256MB |
 | |
| 				    HV_PGSZ_MASK_2GB |
 | |
| 				    HV_PGSZ_MASK_16GB) &
 | |
| 				   cpu_pgsz_mask);
 | |
| 	ktsb_descr[1].assoc = 1;
 | |
| 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
 | |
| 	ktsb_descr[1].ctx_idx = 0;
 | |
| 	ktsb_descr[1].tsb_base = ktsb_pa;
 | |
| 	ktsb_descr[1].resv = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void sun4v_ktsb_register(void)
 | |
| {
 | |
| 	unsigned long pa, ret;
 | |
| 
 | |
| 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
 | |
| 
 | |
| 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
 | |
| 	if (ret != 0) {
 | |
| 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
 | |
| 			    "errors with %lx\n", pa, ret);
 | |
| 		prom_halt();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init sun4u_linear_pte_xor_finalize(void)
 | |
| {
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	/* This is where we would add Panther support for
 | |
| 	 * 32MB and 256MB pages.
 | |
| 	 */
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init sun4v_linear_pte_xor_finalize(void)
 | |
| {
 | |
| 	unsigned long pagecv_flag;
 | |
| 
 | |
| 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
 | |
| 	 * enables MCD error. Do not set bit 9 on M7 processor.
 | |
| 	 */
 | |
| 	switch (sun4v_chip_type) {
 | |
| 	case SUN4V_CHIP_SPARC_M7:
 | |
| 	case SUN4V_CHIP_SPARC_M8:
 | |
| 	case SUN4V_CHIP_SPARC_SN:
 | |
| 		pagecv_flag = 0x00;
 | |
| 		break;
 | |
| 	default:
 | |
| 		pagecv_flag = _PAGE_CV_4V;
 | |
| 		break;
 | |
| 	}
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
 | |
| 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
 | |
| 			PAGE_OFFSET;
 | |
| 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
 | |
| 					   _PAGE_P_4V | _PAGE_W_4V);
 | |
| 	} else {
 | |
| 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
 | |
| 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
 | |
| 			PAGE_OFFSET;
 | |
| 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
 | |
| 					   _PAGE_P_4V | _PAGE_W_4V);
 | |
| 	} else {
 | |
| 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
 | |
| 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
 | |
| 			PAGE_OFFSET;
 | |
| 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
 | |
| 					   _PAGE_P_4V | _PAGE_W_4V);
 | |
| 	} else {
 | |
| 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* paging_init() sets up the page tables */
 | |
| 
 | |
| static unsigned long last_valid_pfn;
 | |
| 
 | |
| static void sun4u_pgprot_init(void);
 | |
| static void sun4v_pgprot_init(void);
 | |
| 
 | |
| static phys_addr_t __init available_memory(void)
 | |
| {
 | |
| 	phys_addr_t available = 0ULL;
 | |
| 	phys_addr_t pa_start, pa_end;
 | |
| 	u64 i;
 | |
| 
 | |
| 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
 | |
| 				&pa_end, NULL)
 | |
| 		available = available + (pa_end  - pa_start);
 | |
| 
 | |
| 	return available;
 | |
| }
 | |
| 
 | |
| #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
 | |
| #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
 | |
| #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
 | |
| #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
 | |
| #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
 | |
| #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
 | |
| 
 | |
| /* We need to exclude reserved regions. This exclusion will include
 | |
|  * vmlinux and initrd. To be more precise the initrd size could be used to
 | |
|  * compute a new lower limit because it is freed later during initialization.
 | |
|  */
 | |
| static void __init reduce_memory(phys_addr_t limit_ram)
 | |
| {
 | |
| 	phys_addr_t avail_ram = available_memory();
 | |
| 	phys_addr_t pa_start, pa_end;
 | |
| 	u64 i;
 | |
| 
 | |
| 	if (limit_ram >= avail_ram)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
 | |
| 				&pa_end, NULL) {
 | |
| 		phys_addr_t region_size = pa_end - pa_start;
 | |
| 		phys_addr_t clip_start = pa_start;
 | |
| 
 | |
| 		avail_ram = avail_ram - region_size;
 | |
| 		/* Are we consuming too much? */
 | |
| 		if (avail_ram < limit_ram) {
 | |
| 			phys_addr_t give_back = limit_ram - avail_ram;
 | |
| 
 | |
| 			region_size = region_size - give_back;
 | |
| 			clip_start = clip_start + give_back;
 | |
| 		}
 | |
| 
 | |
| 		memblock_remove(clip_start, region_size);
 | |
| 
 | |
| 		if (avail_ram <= limit_ram)
 | |
| 			break;
 | |
| 		i = 0UL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	unsigned long end_pfn, shift, phys_base;
 | |
| 	unsigned long real_end, i;
 | |
| 
 | |
| 	setup_page_offset();
 | |
| 
 | |
| 	/* These build time checkes make sure that the dcache_dirty_cpu()
 | |
| 	 * page->flags usage will work.
 | |
| 	 *
 | |
| 	 * When a page gets marked as dcache-dirty, we store the
 | |
| 	 * cpu number starting at bit 32 in the page->flags.  Also,
 | |
| 	 * functions like clear_dcache_dirty_cpu use the cpu mask
 | |
| 	 * in 13-bit signed-immediate instruction fields.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Page flags must not reach into upper 32 bits that are used
 | |
| 	 * for the cpu number
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
 | |
| 
 | |
| 	/*
 | |
| 	 * The bit fields placed in the high range must not reach below
 | |
| 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
 | |
| 	 * at the 32 bit boundary.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
 | |
| 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
 | |
| 
 | |
| 	BUILD_BUG_ON(NR_CPUS > 4096);
 | |
| 
 | |
| 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 | |
| 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
 | |
| 
 | |
| 	/* Invalidate both kernel TSBs.  */
 | |
| 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
 | |
| #endif
 | |
| 
 | |
| 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
 | |
| 	 * bit on M7 processor. This is a conflicting usage of the same
 | |
| 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
 | |
| 	 * Detection error on all pages and this will lead to problems
 | |
| 	 * later. Kernel does not run with MCD enabled and hence rest
 | |
| 	 * of the required steps to fully configure memory corruption
 | |
| 	 * detection are not taken. We need to ensure TTE.mcde is not
 | |
| 	 * set on M7 processor. Compute the value of cacheability
 | |
| 	 * flag for use later taking this into consideration.
 | |
| 	 */
 | |
| 	switch (sun4v_chip_type) {
 | |
| 	case SUN4V_CHIP_SPARC_M7:
 | |
| 	case SUN4V_CHIP_SPARC_M8:
 | |
| 	case SUN4V_CHIP_SPARC_SN:
 | |
| 		page_cache4v_flag = _PAGE_CP_4V;
 | |
| 		break;
 | |
| 	default:
 | |
| 		page_cache4v_flag = _PAGE_CACHE_4V;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		sun4v_pgprot_init();
 | |
| 	else
 | |
| 		sun4u_pgprot_init();
 | |
| 
 | |
| 	if (tlb_type == cheetah_plus ||
 | |
| 	    tlb_type == hypervisor) {
 | |
| 		tsb_phys_patch();
 | |
| 		ktsb_phys_patch();
 | |
| 	}
 | |
| 
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		sun4v_patch_tlb_handlers();
 | |
| 
 | |
| 	/* Find available physical memory...
 | |
| 	 *
 | |
| 	 * Read it twice in order to work around a bug in openfirmware.
 | |
| 	 * The call to grab this table itself can cause openfirmware to
 | |
| 	 * allocate memory, which in turn can take away some space from
 | |
| 	 * the list of available memory.  Reading it twice makes sure
 | |
| 	 * we really do get the final value.
 | |
| 	 */
 | |
| 	read_obp_translations();
 | |
| 	read_obp_memory("reg", &pall[0], &pall_ents);
 | |
| 	read_obp_memory("available", &pavail[0], &pavail_ents);
 | |
| 	read_obp_memory("available", &pavail[0], &pavail_ents);
 | |
| 
 | |
| 	phys_base = 0xffffffffffffffffUL;
 | |
| 	for (i = 0; i < pavail_ents; i++) {
 | |
| 		phys_base = min(phys_base, pavail[i].phys_addr);
 | |
| 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
 | |
| 	}
 | |
| 
 | |
| 	memblock_reserve(kern_base, kern_size);
 | |
| 
 | |
| 	find_ramdisk(phys_base);
 | |
| 
 | |
| 	if (cmdline_memory_size)
 | |
| 		reduce_memory(cmdline_memory_size);
 | |
| 
 | |
| 	memblock_allow_resize();
 | |
| 	memblock_dump_all();
 | |
| 
 | |
| 	set_bit(0, mmu_context_bmap);
 | |
| 
 | |
| 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
 | |
| 
 | |
| 	real_end = (unsigned long)_end;
 | |
| 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
 | |
| 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
 | |
| 	       num_kernel_image_mappings);
 | |
| 
 | |
| 	/* Set kernel pgd to upper alias so physical page computations
 | |
| 	 * work.
 | |
| 	 */
 | |
| 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
 | |
| 	
 | |
| 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
 | |
| 
 | |
| 	inherit_prom_mappings();
 | |
| 	
 | |
| 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
 | |
| 	setup_tba();
 | |
| 
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	prom_build_devicetree();
 | |
| 	of_populate_present_mask();
 | |
| #ifndef CONFIG_SMP
 | |
| 	of_fill_in_cpu_data();
 | |
| #endif
 | |
| 
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		sun4v_mdesc_init();
 | |
| 		mdesc_populate_present_mask(cpu_all_mask);
 | |
| #ifndef CONFIG_SMP
 | |
| 		mdesc_fill_in_cpu_data(cpu_all_mask);
 | |
| #endif
 | |
| 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
 | |
| 
 | |
| 		sun4v_linear_pte_xor_finalize();
 | |
| 
 | |
| 		sun4v_ktsb_init();
 | |
| 		sun4v_ktsb_register();
 | |
| 	} else {
 | |
| 		unsigned long impl, ver;
 | |
| 
 | |
| 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
 | |
| 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
 | |
| 
 | |
| 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
 | |
| 		impl = ((ver >> 32) & 0xffff);
 | |
| 		if (impl == PANTHER_IMPL)
 | |
| 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
 | |
| 					  HV_PGSZ_MASK_256MB);
 | |
| 
 | |
| 		sun4u_linear_pte_xor_finalize();
 | |
| 	}
 | |
| 
 | |
| 	/* Flush the TLBs and the 4M TSB so that the updated linear
 | |
| 	 * pte XOR settings are realized for all mappings.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| #ifndef CONFIG_DEBUG_PAGEALLOC
 | |
| 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
 | |
| #endif
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	/* Setup bootmem... */
 | |
| 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
 | |
| 
 | |
| 	kernel_physical_mapping_init();
 | |
| 
 | |
| 	{
 | |
| 		unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 
 | |
| 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| 
 | |
| 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
 | |
| 
 | |
| 		free_area_init_nodes(max_zone_pfns);
 | |
| 	}
 | |
| 
 | |
| 	printk("Booting Linux...\n");
 | |
| }
 | |
| 
 | |
| int page_in_phys_avail(unsigned long paddr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	paddr &= PAGE_MASK;
 | |
| 
 | |
| 	for (i = 0; i < pavail_ents; i++) {
 | |
| 		unsigned long start, end;
 | |
| 
 | |
| 		start = pavail[i].phys_addr;
 | |
| 		end = start + pavail[i].reg_size;
 | |
| 
 | |
| 		if (paddr >= start && paddr < end)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
 | |
| 		return 1;
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	if (paddr >= __pa(initrd_start) &&
 | |
| 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
 | |
| 		return 1;
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init register_page_bootmem_info(void)
 | |
| {
 | |
| #ifdef CONFIG_NEED_MULTIPLE_NODES
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_node(i)
 | |
| 		if (NODE_DATA(i)->node_spanned_pages)
 | |
| 			register_page_bootmem_info_node(NODE_DATA(i));
 | |
| #endif
 | |
| }
 | |
| void __init mem_init(void)
 | |
| {
 | |
| 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
 | |
| 
 | |
| 	free_all_bootmem();
 | |
| 
 | |
| 	/*
 | |
| 	 * Must be done after boot memory is put on freelist, because here we
 | |
| 	 * might set fields in deferred struct pages that have not yet been
 | |
| 	 * initialized, and free_all_bootmem() initializes all the reserved
 | |
| 	 * deferred pages for us.
 | |
| 	 */
 | |
| 	register_page_bootmem_info();
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the zero page, mark it reserved, so that page count
 | |
| 	 * is not manipulated when freeing the page from user ptes.
 | |
| 	 */
 | |
| 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
 | |
| 	if (mem_map_zero == NULL) {
 | |
| 		prom_printf("paging_init: Cannot alloc zero page.\n");
 | |
| 		prom_halt();
 | |
| 	}
 | |
| 	mark_page_reserved(mem_map_zero);
 | |
| 
 | |
| 	mem_init_print_info(NULL);
 | |
| 
 | |
| 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
 | |
| 		cheetah_ecache_flush_init();
 | |
| }
 | |
| 
 | |
| void free_initmem(void)
 | |
| {
 | |
| 	unsigned long addr, initend;
 | |
| 	int do_free = 1;
 | |
| 
 | |
| 	/* If the physical memory maps were trimmed by kernel command
 | |
| 	 * line options, don't even try freeing this initmem stuff up.
 | |
| 	 * The kernel image could have been in the trimmed out region
 | |
| 	 * and if so the freeing below will free invalid page structs.
 | |
| 	 */
 | |
| 	if (cmdline_memory_size)
 | |
| 		do_free = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
 | |
| 	 */
 | |
| 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
 | |
| 	initend = (unsigned long)(__init_end) & PAGE_MASK;
 | |
| 	for (; addr < initend; addr += PAGE_SIZE) {
 | |
| 		unsigned long page;
 | |
| 
 | |
| 		page = (addr +
 | |
| 			((unsigned long) __va(kern_base)) -
 | |
| 			((unsigned long) KERNBASE));
 | |
| 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
 | |
| 
 | |
| 		if (do_free)
 | |
| 			free_reserved_page(virt_to_page(page));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| void free_initrd_mem(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
 | |
| 			   "initrd");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| pgprot_t PAGE_KERNEL __read_mostly;
 | |
| EXPORT_SYMBOL(PAGE_KERNEL);
 | |
| 
 | |
| pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
 | |
| pgprot_t PAGE_COPY __read_mostly;
 | |
| 
 | |
| pgprot_t PAGE_SHARED __read_mostly;
 | |
| EXPORT_SYMBOL(PAGE_SHARED);
 | |
| 
 | |
| unsigned long pg_iobits __read_mostly;
 | |
| 
 | |
| unsigned long _PAGE_IE __read_mostly;
 | |
| EXPORT_SYMBOL(_PAGE_IE);
 | |
| 
 | |
| unsigned long _PAGE_E __read_mostly;
 | |
| EXPORT_SYMBOL(_PAGE_E);
 | |
| 
 | |
| unsigned long _PAGE_CACHE __read_mostly;
 | |
| EXPORT_SYMBOL(_PAGE_CACHE);
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
 | |
| 			       int node, struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long pte_base;
 | |
| 
 | |
| 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
 | |
| 		    _PAGE_CP_4U | _PAGE_CV_4U |
 | |
| 		    _PAGE_P_4U | _PAGE_W_4U);
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
 | |
| 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
 | |
| 
 | |
| 	pte_base |= _PAGE_PMD_HUGE;
 | |
| 
 | |
| 	vstart = vstart & PMD_MASK;
 | |
| 	vend = ALIGN(vend, PMD_SIZE);
 | |
| 	for (; vstart < vend; vstart += PMD_SIZE) {
 | |
| 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
 | |
| 		unsigned long pte;
 | |
| 		pud_t *pud;
 | |
| 		pmd_t *pmd;
 | |
| 
 | |
| 		if (!pgd)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pud = vmemmap_pud_populate(pgd, vstart, node);
 | |
| 		if (!pud)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pmd = pmd_offset(pud, vstart);
 | |
| 		pte = pmd_val(*pmd);
 | |
| 		if (!(pte & _PAGE_VALID)) {
 | |
| 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
 | |
| 
 | |
| 			if (!block)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			pmd_val(*pmd) = pte_base | __pa(block);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void vmemmap_free(unsigned long start, unsigned long end,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| static void prot_init_common(unsigned long page_none,
 | |
| 			     unsigned long page_shared,
 | |
| 			     unsigned long page_copy,
 | |
| 			     unsigned long page_readonly,
 | |
| 			     unsigned long page_exec_bit)
 | |
| {
 | |
| 	PAGE_COPY = __pgprot(page_copy);
 | |
| 	PAGE_SHARED = __pgprot(page_shared);
 | |
| 
 | |
| 	protection_map[0x0] = __pgprot(page_none);
 | |
| 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
 | |
| 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
 | |
| 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
 | |
| 	protection_map[0x4] = __pgprot(page_readonly);
 | |
| 	protection_map[0x5] = __pgprot(page_readonly);
 | |
| 	protection_map[0x6] = __pgprot(page_copy);
 | |
| 	protection_map[0x7] = __pgprot(page_copy);
 | |
| 	protection_map[0x8] = __pgprot(page_none);
 | |
| 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
 | |
| 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
 | |
| 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
 | |
| 	protection_map[0xc] = __pgprot(page_readonly);
 | |
| 	protection_map[0xd] = __pgprot(page_readonly);
 | |
| 	protection_map[0xe] = __pgprot(page_shared);
 | |
| 	protection_map[0xf] = __pgprot(page_shared);
 | |
| }
 | |
| 
 | |
| static void __init sun4u_pgprot_init(void)
 | |
| {
 | |
| 	unsigned long page_none, page_shared, page_copy, page_readonly;
 | |
| 	unsigned long page_exec_bit;
 | |
| 	int i;
 | |
| 
 | |
| 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
 | |
| 				_PAGE_CACHE_4U | _PAGE_P_4U |
 | |
| 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
 | |
| 				_PAGE_EXEC_4U);
 | |
| 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
 | |
| 				       _PAGE_CACHE_4U | _PAGE_P_4U |
 | |
| 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
 | |
| 				       _PAGE_EXEC_4U | _PAGE_L_4U);
 | |
| 
 | |
| 	_PAGE_IE = _PAGE_IE_4U;
 | |
| 	_PAGE_E = _PAGE_E_4U;
 | |
| 	_PAGE_CACHE = _PAGE_CACHE_4U;
 | |
| 
 | |
| 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
 | |
| 		     __ACCESS_BITS_4U | _PAGE_E_4U);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 | |
| #else
 | |
| 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
 | |
| 		PAGE_OFFSET;
 | |
| #endif
 | |
| 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
 | |
| 				   _PAGE_P_4U | _PAGE_W_4U);
 | |
| 
 | |
| 	for (i = 1; i < 4; i++)
 | |
| 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
 | |
| 
 | |
| 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
 | |
| 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
 | |
| 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
 | |
| 
 | |
| 
 | |
| 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
 | |
| 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
 | |
| 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
 | |
| 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
 | |
| 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
 | |
| 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
 | |
| 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
 | |
| 
 | |
| 	page_exec_bit = _PAGE_EXEC_4U;
 | |
| 
 | |
| 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
 | |
| 			 page_exec_bit);
 | |
| }
 | |
| 
 | |
| static void __init sun4v_pgprot_init(void)
 | |
| {
 | |
| 	unsigned long page_none, page_shared, page_copy, page_readonly;
 | |
| 	unsigned long page_exec_bit;
 | |
| 	int i;
 | |
| 
 | |
| 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
 | |
| 				page_cache4v_flag | _PAGE_P_4V |
 | |
| 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
 | |
| 				_PAGE_EXEC_4V);
 | |
| 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
 | |
| 
 | |
| 	_PAGE_IE = _PAGE_IE_4V;
 | |
| 	_PAGE_E = _PAGE_E_4V;
 | |
| 	_PAGE_CACHE = page_cache4v_flag;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
 | |
| #else
 | |
| 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
 | |
| 		PAGE_OFFSET;
 | |
| #endif
 | |
| 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
 | |
| 				   _PAGE_W_4V);
 | |
| 
 | |
| 	for (i = 1; i < 4; i++)
 | |
| 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
 | |
| 
 | |
| 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
 | |
| 		     __ACCESS_BITS_4V | _PAGE_E_4V);
 | |
| 
 | |
| 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
 | |
| 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
 | |
| 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
 | |
| 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
 | |
| 
 | |
| 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
 | |
| 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
 | |
| 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
 | |
| 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
 | |
| 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
 | |
| 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
 | |
| 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
 | |
| 
 | |
| 	page_exec_bit = _PAGE_EXEC_4V;
 | |
| 
 | |
| 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
 | |
| 			 page_exec_bit);
 | |
| }
 | |
| 
 | |
| unsigned long pte_sz_bits(unsigned long sz)
 | |
| {
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		switch (sz) {
 | |
| 		case 8 * 1024:
 | |
| 		default:
 | |
| 			return _PAGE_SZ8K_4V;
 | |
| 		case 64 * 1024:
 | |
| 			return _PAGE_SZ64K_4V;
 | |
| 		case 512 * 1024:
 | |
| 			return _PAGE_SZ512K_4V;
 | |
| 		case 4 * 1024 * 1024:
 | |
| 			return _PAGE_SZ4MB_4V;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (sz) {
 | |
| 		case 8 * 1024:
 | |
| 		default:
 | |
| 			return _PAGE_SZ8K_4U;
 | |
| 		case 64 * 1024:
 | |
| 			return _PAGE_SZ64K_4U;
 | |
| 		case 512 * 1024:
 | |
| 			return _PAGE_SZ512K_4U;
 | |
| 		case 4 * 1024 * 1024:
 | |
| 			return _PAGE_SZ4MB_4U;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 
 | |
| 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
 | |
| 	pte_val(pte) |= (((unsigned long)space) << 32);
 | |
| 	pte_val(pte) |= pte_sz_bits(page_size);
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| static unsigned long kern_large_tte(unsigned long paddr)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
 | |
| 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
 | |
| 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
 | |
| 	if (tlb_type == hypervisor)
 | |
| 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
 | |
| 		       page_cache4v_flag | _PAGE_P_4V |
 | |
| 		       _PAGE_EXEC_4V | _PAGE_W_4V);
 | |
| 
 | |
| 	return val | paddr;
 | |
| }
 | |
| 
 | |
| /* If not locked, zap it. */
 | |
| void __flush_tlb_all(void)
 | |
| {
 | |
| 	unsigned long pstate;
 | |
| 	int i;
 | |
| 
 | |
| 	__asm__ __volatile__("flushw\n\t"
 | |
| 			     "rdpr	%%pstate, %0\n\t"
 | |
| 			     "wrpr	%0, %1, %%pstate"
 | |
| 			     : "=r" (pstate)
 | |
| 			     : "i" (PSTATE_IE));
 | |
| 	if (tlb_type == hypervisor) {
 | |
| 		sun4v_mmu_demap_all();
 | |
| 	} else if (tlb_type == spitfire) {
 | |
| 		for (i = 0; i < 64; i++) {
 | |
| 			/* Spitfire Errata #32 workaround */
 | |
| 			/* NOTE: Always runs on spitfire, so no
 | |
| 			 *       cheetah+ page size encodings.
 | |
| 			 */
 | |
| 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
 | |
| 					     "flush	%%g6"
 | |
| 					     : /* No outputs */
 | |
| 					     : "r" (0),
 | |
| 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
 | |
| 
 | |
| 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
 | |
| 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 | |
| 						     "membar #Sync"
 | |
| 						     : /* no outputs */
 | |
| 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
 | |
| 				spitfire_put_dtlb_data(i, 0x0UL);
 | |
| 			}
 | |
| 
 | |
| 			/* Spitfire Errata #32 workaround */
 | |
| 			/* NOTE: Always runs on spitfire, so no
 | |
| 			 *       cheetah+ page size encodings.
 | |
| 			 */
 | |
| 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
 | |
| 					     "flush	%%g6"
 | |
| 					     : /* No outputs */
 | |
| 					     : "r" (0),
 | |
| 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
 | |
| 
 | |
| 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
 | |
| 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 | |
| 						     "membar #Sync"
 | |
| 						     : /* no outputs */
 | |
| 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
 | |
| 				spitfire_put_itlb_data(i, 0x0UL);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 | |
| 		cheetah_flush_dtlb_all();
 | |
| 		cheetah_flush_itlb_all();
 | |
| 	}
 | |
| 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
 | |
| 			     : : "r" (pstate));
 | |
| }
 | |
| 
 | |
| pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
 | |
| 			    unsigned long address)
 | |
| {
 | |
| 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 	pte_t *pte = NULL;
 | |
| 
 | |
| 	if (page)
 | |
| 		pte = (pte_t *) page_address(page);
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| pgtable_t pte_alloc_one(struct mm_struct *mm,
 | |
| 			unsigned long address)
 | |
| {
 | |
| 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 	if (!pgtable_page_ctor(page)) {
 | |
| 		free_unref_page(page);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (pte_t *) page_address(page);
 | |
| }
 | |
| 
 | |
| void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
 | |
| {
 | |
| 	free_page((unsigned long)pte);
 | |
| }
 | |
| 
 | |
| static void __pte_free(pgtable_t pte)
 | |
| {
 | |
| 	struct page *page = virt_to_page(pte);
 | |
| 
 | |
| 	pgtable_page_dtor(page);
 | |
| 	__free_page(page);
 | |
| }
 | |
| 
 | |
| void pte_free(struct mm_struct *mm, pgtable_t pte)
 | |
| {
 | |
| 	__pte_free(pte);
 | |
| }
 | |
| 
 | |
| void pgtable_free(void *table, bool is_page)
 | |
| {
 | |
| 	if (is_page)
 | |
| 		__pte_free(table);
 | |
| 	else
 | |
| 		kmem_cache_free(pgtable_cache, table);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			  pmd_t *pmd)
 | |
| {
 | |
| 	unsigned long pte, flags;
 | |
| 	struct mm_struct *mm;
 | |
| 	pmd_t entry = *pmd;
 | |
| 
 | |
| 	if (!pmd_large(entry) || !pmd_young(entry))
 | |
| 		return;
 | |
| 
 | |
| 	pte = pmd_val(entry);
 | |
| 
 | |
| 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
 | |
| 	if (!(pte & _PAGE_VALID))
 | |
| 		return;
 | |
| 
 | |
| 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
 | |
| 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
 | |
| 
 | |
| 	mm = vma->vm_mm;
 | |
| 
 | |
| 	spin_lock_irqsave(&mm->context.lock, flags);
 | |
| 
 | |
| 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
 | |
| 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
 | |
| 					addr, pte);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&mm->context.lock, flags);
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| static void context_reload(void *__data)
 | |
| {
 | |
| 	struct mm_struct *mm = __data;
 | |
| 
 | |
| 	if (mm == current->mm)
 | |
| 		load_secondary_context(mm);
 | |
| }
 | |
| 
 | |
| void hugetlb_setup(struct pt_regs *regs)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct tsb_config *tp;
 | |
| 
 | |
| 	if (faulthandler_disabled() || !mm) {
 | |
| 		const struct exception_table_entry *entry;
 | |
| 
 | |
| 		entry = search_exception_tables(regs->tpc);
 | |
| 		if (entry) {
 | |
| 			regs->tpc = entry->fixup;
 | |
| 			regs->tnpc = regs->tpc + 4;
 | |
| 			return;
 | |
| 		}
 | |
| 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
 | |
| 		die_if_kernel("HugeTSB in atomic", regs);
 | |
| 	}
 | |
| 
 | |
| 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
 | |
| 	if (likely(tp->tsb == NULL))
 | |
| 		tsb_grow(mm, MM_TSB_HUGE, 0);
 | |
| 
 | |
| 	tsb_context_switch(mm);
 | |
| 	smp_tsb_sync(mm);
 | |
| 
 | |
| 	/* On UltraSPARC-III+ and later, configure the second half of
 | |
| 	 * the Data-TLB for huge pages.
 | |
| 	 */
 | |
| 	if (tlb_type == cheetah_plus) {
 | |
| 		bool need_context_reload = false;
 | |
| 		unsigned long ctx;
 | |
| 
 | |
| 		spin_lock_irq(&ctx_alloc_lock);
 | |
| 		ctx = mm->context.sparc64_ctx_val;
 | |
| 		ctx &= ~CTX_PGSZ_MASK;
 | |
| 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
 | |
| 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
 | |
| 
 | |
| 		if (ctx != mm->context.sparc64_ctx_val) {
 | |
| 			/* When changing the page size fields, we
 | |
| 			 * must perform a context flush so that no
 | |
| 			 * stale entries match.  This flush must
 | |
| 			 * occur with the original context register
 | |
| 			 * settings.
 | |
| 			 */
 | |
| 			do_flush_tlb_mm(mm);
 | |
| 
 | |
| 			/* Reload the context register of all processors
 | |
| 			 * also executing in this address space.
 | |
| 			 */
 | |
| 			mm->context.sparc64_ctx_val = ctx;
 | |
| 			need_context_reload = true;
 | |
| 		}
 | |
| 		spin_unlock_irq(&ctx_alloc_lock);
 | |
| 
 | |
| 		if (need_context_reload)
 | |
| 			on_each_cpu(context_reload, mm, 0);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct resource code_resource = {
 | |
| 	.name	= "Kernel code",
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 | |
| };
 | |
| 
 | |
| static struct resource data_resource = {
 | |
| 	.name	= "Kernel data",
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 | |
| };
 | |
| 
 | |
| static struct resource bss_resource = {
 | |
| 	.name	= "Kernel bss",
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 | |
| };
 | |
| 
 | |
| static inline resource_size_t compute_kern_paddr(void *addr)
 | |
| {
 | |
| 	return (resource_size_t) (addr - KERNBASE + kern_base);
 | |
| }
 | |
| 
 | |
| static void __init kernel_lds_init(void)
 | |
| {
 | |
| 	code_resource.start = compute_kern_paddr(_text);
 | |
| 	code_resource.end   = compute_kern_paddr(_etext - 1);
 | |
| 	data_resource.start = compute_kern_paddr(_etext);
 | |
| 	data_resource.end   = compute_kern_paddr(_edata - 1);
 | |
| 	bss_resource.start  = compute_kern_paddr(__bss_start);
 | |
| 	bss_resource.end    = compute_kern_paddr(_end - 1);
 | |
| }
 | |
| 
 | |
| static int __init report_memory(void)
 | |
| {
 | |
| 	int i;
 | |
| 	struct resource *res;
 | |
| 
 | |
| 	kernel_lds_init();
 | |
| 
 | |
| 	for (i = 0; i < pavail_ents; i++) {
 | |
| 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 | |
| 
 | |
| 		if (!res) {
 | |
| 			pr_warn("Failed to allocate source.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		res->name = "System RAM";
 | |
| 		res->start = pavail[i].phys_addr;
 | |
| 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
 | |
| 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
 | |
| 
 | |
| 		if (insert_resource(&iomem_resource, res) < 0) {
 | |
| 			pr_warn("Resource insertion failed.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		insert_resource(res, &code_resource);
 | |
| 		insert_resource(res, &data_resource);
 | |
| 		insert_resource(res, &bss_resource);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| arch_initcall(report_memory);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
 | |
| #else
 | |
| #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
 | |
| #endif
 | |
| 
 | |
| void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
 | |
| 		if (start < LOW_OBP_ADDRESS) {
 | |
| 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
 | |
| 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
 | |
| 		}
 | |
| 		if (end > HI_OBP_ADDRESS) {
 | |
| 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
 | |
| 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
 | |
| 		}
 | |
| 	} else {
 | |
| 		flush_tsb_kernel_range(start, end);
 | |
| 		do_flush_tlb_kernel_range(start, end);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void copy_user_highpage(struct page *to, struct page *from,
 | |
| 	unsigned long vaddr, struct vm_area_struct *vma)
 | |
| {
 | |
| 	char *vfrom, *vto;
 | |
| 
 | |
| 	vfrom = kmap_atomic(from);
 | |
| 	vto = kmap_atomic(to);
 | |
| 	copy_user_page(vto, vfrom, vaddr, to);
 | |
| 	kunmap_atomic(vto);
 | |
| 	kunmap_atomic(vfrom);
 | |
| 
 | |
| 	/* If this page has ADI enabled, copy over any ADI tags
 | |
| 	 * as well
 | |
| 	 */
 | |
| 	if (vma->vm_flags & VM_SPARC_ADI) {
 | |
| 		unsigned long pfrom, pto, i, adi_tag;
 | |
| 
 | |
| 		pfrom = page_to_phys(from);
 | |
| 		pto = page_to_phys(to);
 | |
| 
 | |
| 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
 | |
| 			asm volatile("ldxa [%1] %2, %0\n\t"
 | |
| 					: "=r" (adi_tag)
 | |
| 					:  "r" (i), "i" (ASI_MCD_REAL));
 | |
| 			asm volatile("stxa %0, [%1] %2\n\t"
 | |
| 					:
 | |
| 					: "r" (adi_tag), "r" (pto),
 | |
| 					  "i" (ASI_MCD_REAL));
 | |
| 			pto += adi_blksize();
 | |
| 		}
 | |
| 		asm volatile("membar #Sync\n\t");
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(copy_user_highpage);
 | |
| 
 | |
| void copy_highpage(struct page *to, struct page *from)
 | |
| {
 | |
| 	char *vfrom, *vto;
 | |
| 
 | |
| 	vfrom = kmap_atomic(from);
 | |
| 	vto = kmap_atomic(to);
 | |
| 	copy_page(vto, vfrom);
 | |
| 	kunmap_atomic(vto);
 | |
| 	kunmap_atomic(vfrom);
 | |
| 
 | |
| 	/* If this platform is ADI enabled, copy any ADI tags
 | |
| 	 * as well
 | |
| 	 */
 | |
| 	if (adi_capable()) {
 | |
| 		unsigned long pfrom, pto, i, adi_tag;
 | |
| 
 | |
| 		pfrom = page_to_phys(from);
 | |
| 		pto = page_to_phys(to);
 | |
| 
 | |
| 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
 | |
| 			asm volatile("ldxa [%1] %2, %0\n\t"
 | |
| 					: "=r" (adi_tag)
 | |
| 					:  "r" (i), "i" (ASI_MCD_REAL));
 | |
| 			asm volatile("stxa %0, [%1] %2\n\t"
 | |
| 					:
 | |
| 					: "r" (adi_tag), "r" (pto),
 | |
| 					  "i" (ASI_MCD_REAL));
 | |
| 			pto += adi_blksize();
 | |
| 		}
 | |
| 		asm volatile("membar #Sync\n\t");
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(copy_highpage);
 | 
